Exercice 4
DÉMONTRER QUE LES DROITES (LM) ET (MJ) SONT PERPENDICULAIRES.
Hypothèses:
•JKLM est un quadrilatère non croisé de centre N
•JL=KM
•JM=KL
•ML=JK
Développement
•Première étape : Montrons que le quadrilatère JKLM est un parallélogramme
On sait que JM=KL et ML=JK (hypothèses), c'est à dire que les côtés opposés de ce
quadrilatère sont donc de même longueur.
Si un quadrilatère non croisé a ses côtés opposés deux à deux de même longueur,
alors c'est un parallélogramme.
Le quadrilatère JKLM est donc un parallélogramme.
•Deuxième étape : Montrons que le quadrilatère JKLM est un rectangle.
On sait que JKLM est un parallélogramme (je l'ai prouvé à la première étape)
On sait aussi que JL=KM (hypothèses), c'est à dire que les diagonales de ce
parallélogramme sont de même longueur.
Un rectangle est un parallélogramme qui a ses diagonales de même longueur
JKLM est donc un rectangle
•Troisième étape : Montrons que
On sait que JKLM est un rectangle (deuxième étape) et que les segments [LM] et [MJ] sont
consécutifs (ils ont un sommet en commun).
Un rectangle est un parallélogramme qui a 2 côtés consécutifs perpendiculaires
Donc