Devoir n°4 D`après nos données, nous savons que

SELARIES Julien 17/11/09
NAINA Richard
TRAN Duy-Laurent
Devoir n°4
« Si vous vous teniez à un bras de distance de quelqu’un et que chacun de vous ait un pour cent
d’électrons en plus que de protons, la force de répulsion serait suffisante pour soulever une masse
égale à celle de la Terre entière ! » (R. Feynman 1918-1988)
D’après nos données, nous savons que :
-la masse moyenne d’un homme est de 70kg (m)
-la masse molaire atomique moyenne des atomes constitutifs d’un corps humain est de
10g.mol-1 (M)
-chaque atome contient en moyenne 10 protons.
Pour pouvoir démontrer l’affirmation de R. Feynman, nous allons comparer à
l’échelle macroscopique, dans notre cas, ces deux forces lors d’un déséquilibre des charges
électriques
Tout d’abord, nous devons connaître le nombre de protons (Np) contenus dans le
corps d’un humain. Effectivement, l’effet étant caractérisé par un repoussement, il nous faut
connaître la force qu’exercent les électrons lorsque les deux personnes se tiennent à un bras
de distance. Pour cela, nous devons dans un premier temps, calculer le nombre de mole
d’atomes dans le corps humain. (L’atome est composé d’un noyau qui contient des protons
et neutrons. Autours de ce noyau se trouve des électrons en mouvement) On applique la
relation de la masse molaire :
natomes = 𝑚𝑚𝑜𝑦𝑒𝑛𝑛𝑒
𝑀𝑚𝑜𝑦𝑒𝑛𝑛𝑒
natomes = 70.103
10 = 7,10.103 mol
A partir de cela, on peut ensuite calculer le nombre de moles de protons puisqu’on
sait qu’un atome dans un corps humain contient en moyenne 10 protons d’après nos
données ce qui donne :
nprotons = 7,0.103 x 10 = 7,0.104 mol
Nous pouvons ainsi, grâce à la relation faisant intervenir la constante d’Avogadro
(Na), calculer le nombre de protons contenus dans le corps humain. Na = 6,02.1023
Np = nprotons x Na ; Np = 7,0.104 x 6,02.1023 = 4,2.1028 protons
A l’aide de nos résultats, nous pouvons dorénavant calculer le pourcentage
d’électrons excédentaires (1%). En effet, on sait qu’un atome est électriquement neutre
puisqu’il possède autant de charges positives (protons) que de charges négatives (électrons).
Donc le nombre d’électrons dans un corps humain est égal à 4,2.1028. Nous calculons de la
manière suivante le nombre d’électrons en plus (Ne) :
Ne = 1% x Nelectrons ; Ne = 0,01 x 4,2.1028 = 4,2.1026 électrons
On peut en déduire la charge électrique des électrons (Q) portée par le corps humain.
Or, on sait qu’un électron possède comme charge électrique e, c'est-à-dire -1,6.10-19C. Ce
qui nous donne :
Q = Ne x e ; Q = 4,2.1026 x -1,6.10-19 = -6,7.107 C
Nous venons à exprimer la force électrique d’un corps humain. On propose la valeur
d’un bras de 50 cm afin de calculer la force électrique entre deux hommes. D’après la loi de
Coulomb :
F = k. 𝑄3
𝑑² ce qui nous fait F = 9,0.109 x (6,7.107
0,70² = 1,6.1026 N
Nous avons une force de répulsion qui tourne vers les 1026 N. Il faut pour vérifier
l’exactitude de l’affirmation de Feynman, en comparant cette force au « poids » qu’exerce la
Terre (FTerre) qui se vérifie par l’égalité suivante :
FTerre = MTerre x g MTerre étant la masse de la Terre. Elle est égale à 6.1024kg
g correspond à l’intensité du champ de pesanteur. Celle-ci est égale à
9,8 N.kg-1
FTerre = 6.1024 x 9,8 = 6.1025 N
Soit un ordre de grandeur de 1026, F et FTerre sont du même ordre de grandeur.
En comparant nos résultats précédents, on constate que cette force est bien plus
faible que la force électrique entre deux personnes chargées électriquement. On en conclue
donc que l’affirmation portée par le savant Richard Feynman est exacte.
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !