Accéder à la ressource

publicité
Electricité Initiation
TFS: DT01-120803.01
Résistance – Loi d’Ohm – Loi de Joule
Page 1 sur 11
Sommaire
1. Résistances – Matériaux résistants
2. Mesure de résistance – Caractéristiques d’une résistance
3. Echauffement d’une résistance : effet Joule (approche de la loi de Joule)
4. Relation entre résistance, tension et courant (approche de la loi d’Ohm)
5. Association de résistances
Electricité Initiation
TFS: DT01-120803.01
Résistance – Loi d’Ohm – Loi de Joule
Page 2 sur 11
1. Résistance – Matériaux résistants
1.1 Rappels : conducteur – isolant
- Un conducteur est un matériau qui a la propriété de laisser passer le courant électrique.
C’est généralement un métal, comme le cuivre ou l’aluminium.
- Un isolant est un matériau qui ne laisse pas passer le courant électrique. C’est en général le
cas des matières plastiques, du verre, du caoutchouc, de la porcelaine…
Ce sont les électrons libres qui, en se déplaçant sous l’effet d’un générateur électrique,
provoquent le courant électrique. Ils sont très nombreux et très mobiles dans les conducteurs,
pratiquement inexistants dans les isolants.
1.2 Résistance
Pour fabriquer une résistance électrique, on utilise un matériau qui se situe entre conducteur
et isolant. Ce matériau laisse passer le courant, mais en lui offrant une certaine « résistance ».
Ces matériaux sont généralement des alliages métalliques comme le nickel-chrome (ou
Nichrome), le cuivre-nickel (ou Constantan), le cuivre-nickel-zinc (ou Maillechort)…
Dans un schéma électrique, on représente habituellement une résistance par le symbole
suivant :
R
Electricité Initiation
TFS: DT01-120803.01
Résistance – Loi d’Ohm – Loi de Joule
Page 3 sur 11
Echauffement du matériau
Dans un matériau résistant, les électrons libres sont moins nombreux que dans un conducteur.
De plus, ils sont moins mobiles car ils rencontrent beaucoup plus d’obstacles pour se déplacer,
ce qui provoque l’échauffement du matériau.
Plus la tension du générateur provoquant ce déplacement est élevée, plus le nombre d’électrons
libres qui se déplacent est important (donc plus l’intensité du courant est importante), et plus
le matériau s’échauffe.
Selon les alliages utilisés, la difficulté des électrons à circuler est plus ou moins grande : le
matériau est donc plus ou moins résistant.
Un conducteur, comme un isolant, ne chauffe pratiquement pas :
- le conducteur car les électrons libres qu’il contient rencontrent peu d’obstacles dans
leur déplacement,
- l’isolant car il ne contient pratiquement pas d’électrons libres.
Electricité Initiation
TFS: DT01-120803.01
Résistance – Loi d’Ohm – Loi de Joule
Page 4 sur 11
2. Mesure de résistance – Caractéristiques d’une résistance
2.1 Ohm – Multiples et sous-multiples usuels
En pratique, on utilise le même mot résistance pour désigner l’élément lui-même et sa valeur.
L’unité de mesure de la résistance est l’ohm (symbole : Ω qui est la lettre grecque oméga
majuscule), mais on utilise aussi ses multiples et sous-multiples, et particulièrement :
- le kilohm (symbole : kΩ), qui vaut 1000 ohms,
- le mégohm (symbole : MΩ), qui vaut 1 million d’ohms,
- le milliohm (symbole : mΩ), qui vaut un millième d’ohm.
2.2 Multimètre – Ohmmètre
La résistance se mesure à l’aide d’un ohmmètre, fonction proposée par tous les multimètres
numériques ou à aiguille.
La mesure se fait résistance hors tension, les deux cordons de l’ohmmètre étant reliés aux
extrémités de l’élément à mesurer.
Pour éviter l’influence des autres éléments sur la valeur mesurée, la résistance doit être
déconnectée du circuit dans lequel elle se trouve.
Electricité Initiation
TFS: DT01-120803.01
Résistance – Loi d’Ohm – Loi de Joule
Page 5 sur 11
2.3 Caractéristiques d’une résistance
Selon leur utilisation, les résistances peuvent avoir des formes et des aspects très différents,
même si leur valeur est identique.
La valeur d’une résistance dépend de plusieurs paramètres :
•
du matériau utilisé : par exemple, à dimensions égales (longueur, section), le Nichrome est
plus résistant que le maillechort,
•
de la longueur : pour un matériau donné et pour la même section, plus la longueur est
importante et plus la résistance est importante,
•
de la section : pour un matériau donné et pour la même longueur, plus la section est faible
et plus la résistance est importante.
Electricité Initiation
TFS: DT01-120803.01
Résistance – Loi d’Ohm – Loi de Joule
Page 6 sur 11
3. Echauffement d’une résistance – Effet Joule
(approche de la loi de Joule)
3.1 Effet Joule (approche de la loi de Joule)
Tout élément traversé par un courant électrique s’échauffe, même s’il est conducteur : cette
propriété est appelée l’effet Joule.
Plus l’intensité du courant est élevée, plus l’échauffement est important (approche de la loi de
Joule).
Selon les applications, l’échauffement d’un élément peut être l’effet recherché ou, au contraire,
être un effet indésirable :
- effet recherché : toutes les applications de chauffage (convecteur, chauffe-eau, four…)
et de protection (fusibles, relais thermiques…)
- effet indésirable : échauffement des câbles électriques, échauffement des moteurs
électriques, des systèmes électroniques et informatiques…
Même indésirable, l’effet d’échauffement est inévitable. Dans tous les cas, recherché ou
indésirable, il faut dimensionner correctement les éléments (exemple : section de câbles
suffisante) et prendre des précautions (exemples : utilisation d’une rallonge adaptée, aération
suffisante) pour sécuriser le fonctionnement des systèmes électriques.
Dans le cas particulier du fusible, on calibre cet effet indésirable : quand l’intensité qui le
traverse est trop importante, alors le fusible chauffe puis fond (le fusible « saute »), ce qui
permet de minimiser les dégâts que provoquerait un échauffement trop important.
Electricité Initiation
TFS: DT01-120803.01
Résistance – Loi d’Ohm – Loi de Joule
Page 7 sur 11
3.2 Relation taille/puissance d’une résistance
Selon leur utilisation, les résistances électriques peuvent avoir des valeurs identiques mais des
tailles très différentes. D’une manière générale, plus la quantité de chaleur à fournir est
importante, plus la puissance électrique mise en jeu est importante, et plus les dimensions de la
résistance sont importantes.
Par exemple, on peut trouver :
-
une « grosse » résistance (quelques dizaines de centimètres de longueur) de 25 Ω - 1800
W, qui doit chauffer l’eau d’un lave-linge,
-
une « moyenne » résistance (quelques centimètres de longueur) de 25 Ω - 20 W, qui doit
tempérer l’intérieur d’un coffret électrique dans un navire pour éviter le gel et la
condensation,
-
une « petite » résistance (quelques millimètres de longueur) de 25 Ω - 1/4 W, qui est
nécessaire au fonctionnement d’une carte électronique, mais dont le rôle n’est pas de
chauffer.
Electricité Initiation
TFS: DT01-120803.01
Résistance – Loi d’Ohm – Loi de Joule
Page 8 sur 11
4. Relation entre résistance, tension et courant (approche de la loi d’Ohm)
4.1 Alimentation sous tension constante
A
G
I1
R1
A
G
I2 < I1
R2 > R1
On choisit R2 plus grande que R1 (R2 > R1).
Le même générateur G fournit la même tension aux bornes des deux résistances R1 et R2.
On constate que l’ampèremètre A, qui mesure les intensités du courant dans les résistances,
indique que l’intensité I1 dans R1 est plus grande que l’intensité I2 dans R2.
CONCLUSION (une première approche de la loi d’Ohm)
Lorsque des résistances de valeurs différentes sont alimentées sous la même tension, c’est
dans la résistance ayant la valeur la plus faible que l’on retrouve l’intensité la plus élevée
(ou : c’est dans la résistance ayant la valeur la plus élevée que l’on retrouve l’intensité la
plus faible)
Electricité Initiation
TFS: DT01-120803.01
Résistance – Loi d’Ohm – Loi de Joule
Page 9 sur 11
4.2 Alimentation sous tension variable
A
G1
I1
R
A
G2 > G1
I2 > I1
R
Le générateur G2 fournit une tension supérieure au générateur G1 (G2 > G1).
C’est la même résistance R qui est alimentée par G1 et G2 .
L’ampèremètre A mesure les intensités du courant dans la résistance,
On constate que l’intensité I2 dans R alimentée par G2 est plus grande que l’intensité I1 dans R
alimentée par G1.
CONCLUSION (une deuxième approche de la loi d’Ohm)
Lorsqu’une même résistance est alimentée sous des tensions différentes, l’intensité qui la
traverse est la plus élevée quand elle est alimentée par la tension la plus élevée
(ou : l’intensité qui la traverse est la plus faible quand elle est alimentée par la tension la
plus faible)
Electricité Initiation
TFS: DT01-120803.01
Résistance – Loi d’Ohm – Loi de Joule
Page 10 sur 11
5. Association de résistances
5.1 Association série de résistances
est équivalent à
R1
R2
Re
Mettre en série deux résistances équivaut à augmenter la longueur de fil résistant mis en œuvre.
La valeur de la résistance équivalente Re est forcément supérieure à la valeur de chacune des
résistances R1 et R2.
Conclusion
Un ensemble de résistances mises en série est équivalent à une résistance unique dont la
valeur est supérieure à la valeur de la plus grande résistance.
Electricité Initiation
TFS: DT01-120803.01
Résistance – Loi d’Ohm – Loi de Joule
Page 11 sur 11
5.2 Association parallèle de résistances
R1
est équivalent à
Re
R2
Mettre en parallèle deux résistances équivaut à augmenter la section de fil résistant mis en
œuvre. La valeur de la résistance équivalente Re est forcément inférieure à la valeur de chacune
des résistances R1 et R2.
Conclusion
Un ensemble de résistances mises en parallèle est équivalent à une résistance unique dont
la valeur est inférieure à la valeur de la plus petite résistance.
Téléchargement