PCSI Physique Exercices. M2-C1 Lycée Brizeux 2016-2017
Dynamique.
Exercice 1. Oscillations d’un anneau dans un cerceau.
Un cerceau de rayon ! est fixé au sol. Un anneau " de masse # peut glisser
sans frottement le long de ce cerceau. Cela signifie que la force ! exercée par
le cerceau sur l’anneau est perpendiculaire au cerceau.
a Quelles coordonnées doit-on a priori utiliser pour décrire la position de
l’anneau ?
b Ecrire le principe fondamental de la dynamique pour l’anneau.
c Projeter l’expression précédente sur la base choisie.
d En déduire la période des petites oscillations. On pourra utiliser $%& ' (
' pour ' ) *. Proposer une application numérique.
e Initialement, l’anneau est situé à la verticale au-dessous de + avec une
vitesse initiale ,- horizontale vers la droite. Trouver l’évolution au cours
du temps de la position de l’anneau.
Exercice 2. Lancer d’un objet *.
Un caillou est lancé depuis une hauteur . / *0123 avec une vitesse initiale de
norme ,-/ 45263789: faisant un angle ; / <5= avec l’horizontale. Le champ de
pesanteur est uniforme > / ?0@237$9A. A quel endroit le caillou touche-t-il à
nouveau le sol ?
Exercice 3. Etude d’un skieur *.
On étudie le mouvement d’un skieur descendant une piste selon la ligne de plus grande pente, faisant
l’angle ; avec l’horizontale. L’air exerce une force de frottement supposée de la forme B
C/ DE,, E est
un coefficient constant positif et , la vitesse du skieur. On note F et G les composantes tangentielle et
normale de la force de frottement exercée par la neige et B le coefficient de frottement solide tel que
F / B G . On choisit comme origine de l’axe +' de la ligne de plus grande pente la position initiale du
skieur, supposé partir à l’instant initial avec une vitesse négligeable. On note +H la normale à la piste
dirigée vers le haut.
a. Calculer F et G.
b. Calculer la vitesse , et la position ' du skieur à chaque instant.
c. Montrer que le skieur atteint une vitesse limite ,I et calculer , en fonction de ,I.
d. Calculer ,I pour E / *2JK, B / 50?, > / *5237$9A, # / @526L et ; / 41=.
e. Calculer littéralement et numériquement la date M: o le skieur a une vitesse
égale à ,IN.
f. A la date M:, le skieur tombe. On néglige alors la résistance de l’air, et on
considère que le coefficient de frottement sur le sol est multiplié par *5.
Calculer la distance parcourue par le skieur avant de s’arrêter.
Exercice 4. Décollage d’une bille **.
Sur un ressort de raideur O et longueur à vide P- est accrochée une plaque de masse
". On pose une bille de masse # sur la plaque.
a. Quelle est la longueur PQR du ressort à l’équilibre ?
b. Décrire le mouvement quand la bille reste au contact de la plaque.
c. Quelle est la condition de non-décollage de la bille ?
Réponses détaillées :
a. Le principe fondamental de la dynamique appliquée au système composé de la bille et de la
plaque (l’ensemble des deux est supposé se comporter comme un point matériel) à l’équilibre
donne (avec B
S la tension du ressort) :
# T " U / 5 / # T " > T F 22222 V 222225 / D # T " > D O PQR D P-22222 W 22222 PQR / P-D# T " >
O
Le vecteur XY est dirigé vers le haut. La longueur du ressort est plus faible qu’à vide à cause
du poids de la bille et de la plaque.
b. L’ensemble bille et plaque est alors rigide et se modélise comme un point matériel. On note
Z M leur altitude repérée par rapport à +. Le principe fondamental de la dynamique appliqué
au système bille et plaque donne en projection :
# T " Z / D # T " > D O Z D P-22222 W 22222 Z T O
# T " Z / D> T O
# T " P-
PCSI Physique Exercices. M2-C1 Lycée Brizeux 2016-2017
V 22222Z / PQR T [ $%& \-M T ] 22222^22222\-/O
# T "
[ et ] sont des constantes. Le système oscille à la pulsation \-. L’amplitude [ est donnée par
les conditions initiales.
c. Il faut évaluer la réaction ! / !XY de la plaque sur la bille. Pour cela, on applique le principe
fondamental de la dynamique à la bille.
#Z / D#> T !22222 W 22222! / # Z T > / # D\-A[$%& \-M T ] T >
Pour que ! reste positive, il faut que l’amplitude [ vérifie \-A[ _ >. Pour des grandes
amplitudes, la bille décolle, ce qui semble physiquement correct.
Exercice 5. Jeux aquatiques ***.
Un baigneur (masse # / @526L) saute d’un plongeoir sit à une hauteur . / *523 au-dessus de la
surface de l’eau. On considère qu’il se laisse chuter sans vitesse initiale et qu’il est uniquement soumis
à la force de pesanteur (on prendra > / *5237$9A) durant la chute. On note +Z , l’axe vertical descendant,
+ étant le point de saut.
a. Déterminer la vitesse ,` d’entrée dans l’eau ainsi que le temps de chute Ma. Application
numérique.
Lorsqu’il est dans l’eau, le baigneur ne fait aucun mouvement. Il subit, en plus de la pesanteur, une
force de frottement B
C/ DO, (, étant la vitesse et O / N1526L7$9:) et la poussée d’Archimède B
b/ D #> cd
(cd/ 50? est la densité du corps humain).
b. Etablir l’équation différentielle à laquelle obéit la vitesse en projection sur +Z , notée ,Y. On
posera e / # O.
c. Intégrer cette équation en prenant comme nouvelle origine des temps M / Ma.
d. Déterminer la vitesse limite ,I (f 5) en fonction de #, O, > et cd. Application numérique.
e. Exprimer la vitesse ,Y en fonction de ,`, ,I et M. Déterminer à quel instant M: le baigneur
commence à remonter.
f. En prenant la surface de l’eau comme nouvelle origine de l’axe +Z , exprimer Z M . En déduire
la profondeur maximale pouvant être atteinte.
g. En fait, il suffit que le baigneur arrive au fond de la piscine avec une vitesse de l’ordre de *237$9:
pour qu’il puisse se repousser avec ses pieds sans risque : à quel instant MA atteint-il cette vitesse
et quelle est la profondeur minimale du bassin ?
Réponses courtes :
a. Vitesse d’entrée dans l’eau et temps de chute :
,`/ N>.22222^22222Ma/N.
>22222 V 22222 ,`/*4237$9:22222^22222Ma/ *042$
b. Equation différentielle :
,YT,Y
e/ > * D *
cd
c. Solution de l’équation avec la nouvelle échelle des temps :
,YM / >e * D *
cd
T ,`D>e * D *
cd
ghi DM
e
d. Vitesse limite :
,I/>e * D *
cd
22222 V 22222 ,I/ D50<1j237$9:
e. Vitesse :
,YM / ,`T ,Ighi DM
eD ,I22222^22222M:/ e k& * T ,`
,I
22222 V 22222 M:/ *0*?2$
f. Altitude/profondeur :
Z M / e ,`T ,I* D ghi DM
eD ,IM22222 V 22222 Z3lh / 40*23
g. Equation différentielle :
MA/ e k& ,`T ,I
,AT ,I
22222 V 22222 MA/ 50mj2$22222 V 22222Z / <0?423
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !