n
W1(n)
T1(n)
D(n)
T(n)
A= [a0, . . . , an1]B= [b0, . . . , bm1]
aibjai6=bj0i<n
0j < m
a0< a1< . . . < an1b0< b1< . . . < bm1
X= [x0, . . . , xn+m1]x0< x1< . . . < xn+m1
A B
A n B m Cn
n+m=
(n+m)!
n!.m!X A B
n!'2πnn
en
n=m
6=6=
<
6=
6=
W1(n, m)n+m1
D
nm > 0 (B, A, X)m= 0
A A1= [a0, . . . , an/21]A2= [an/2, . . . , an1]
α=an/2B B1B2B1= [b0, . . . , bj1]
B α B2= [bj, . . . , bm1]B α
b0> α B1B2=B
bm1< α B1=B B2
j bj1< α < bj
A1B1X[0, . . . , n/2 + j1]
A2B2X[n/2 + j, . . . , n +m1]
A
B
j B
O(log2m)
D(m, n) = D(n, m)n<m
D(n, m)D(n/2, m) + O(log m)nm
D(n, 0) = O(1)
D(n, m) = O(log2(n+m))
W(n, m) =
n+m+o(n+m)p
a1=b1=−∞ an=bm= +
i∈ {0, . . . , n 1}A k ∈ {0, . . . , m}B
bk1< aibk> ai
xi+k=ai
k aiO(1) m
O(1)
A B X
W1(n, m) = O(n+m)
i= 0, . . . , bncαi=ainj= 0, . . . , bmcβj=bjm
α1=β1 = −∞ αbnc+1 =βbmc+1 = +
i= 0, . . . , bncµi∈ {0, . . . , bmc+ 1}βµi1< αi< βµi
j= 0, . . . , bmcνj∈ {0, . . . , bnc+ 1}ανj1< βj< ανj
µiνjO(1)
O(n+m)
O(log log n)
O(nlog log n)
D(n, m) = O(log log n)
O(n+m)
D(M)(n)W(M)
1(n)
D(n)W1(n)
D(M)(n) = log2n W (M)
1(n) = O(n)
D(M)(n) = log log n W (M)
1(n) = O(n)
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !