1
UED CEE (EEA) AM ParisTech Cluny - PA Gilles
Magnétisme et actionneurs
1- Principes physiques :
La quasi totalité des actionneurs électriques fonctionnent selon les 2 principes suivants :
1 Interaction champ courant :
C’est le principe de la force de Laplace : Bdli.dF =
Rappel : B = champ d’induction magnétique, en Tesla (T)
Pour créer une force de Laplace il faut des conducteurs dans un champ magnétique.
Exemples : MCC, MAS, moteur brushless, haut parleur…
2 Réluctance variable :
Exemple : actionneur à noyau plongeur :
S
F
o
2µ
B².S
F=
en attraction
Rappel : µ
o
= 4π.10
-7
= perméabilité
magnétique du vide
La force tend à
minimiser le trajet des lignes de champ dans l’air, et donc à
réduire l’entrefer
.
Elle a également comme conséquence de maximiser le flux, en minimisant la valeur de la
réluctance (Cf 2-), d’où le nom « réluctance variable ».
Pour créer une force de réluctance variable il faut
un champ magnétique dans un entrefer
variable
par la mobilité d’une pièce.
Exemples : Relais, électrovanne et autres actionneurs linéaires à faible course, manutention bridage
et ventouses magnétiques, moteurs à réluctance variable…
Circuit magnétique :
Il faut dans les 2 cas créer un champ magnétique pour obtenir des forces. Pour cela on a besoin
d’un circuit magnétique :
S
Source de flux
aimant
bobine
Canalisation du flux
matériau doux
Zone de création des forces
entrefer
flux Φ
ΦΦ
Φ
S
Source de flux
aimant
bobine
Canalisation du flux
matériau doux
Zone de création des forces
entrefer
flux Φ
ΦΦ
Φ
Rappel : Φ = flux magnétique, en Weber (Wb),
∫∫
=Φ dSB.
2
2- Modélisation des circuits magnétiques :
2-1- Analogies :
Il y a de nombreuses similitudes entre les différents domaines physiques. La schématisation
utilisée en électrocinétique est ainsi transposable à d’autres domaines, dont le magnétisme, on
parle alors de
schéma réluctant équivalent
.
Electricité Thermique Circuit magnétique
U T Force magnéto motrice (fmm) :
E
(A.tr)
i Q Flux magnétique : Φ (Wb)
S
l
ρ.R =
U = R.i
λ.S
l
R
th
=
T = R
Th
.Q
Réluctance :
R
(H
-1
)
Loi d’Hopkinson :
E = R.Φ
2-2- Eléments du schéma réluctant équivalent :
Conduction du flux :
Un
matériau doux
n’est pas un conducteur de flux parfait, il oppose donc une résistance à la
circulation du flux.
S
l
Φ
ΦΦ
Φ
R
.S.µµ
l
R
ro
=
Rappel :
µ
r
= perméabilité relative
Matériau non magnétique (air, cuivre, plastique…) :
µ
r
= 1
Création du flux :
Une
bobine
est une source parfaite de fmm
Φ
ΦΦ
Φ
in spires
n.i Φ
ΦΦ
Φ
Un
aimant
est une source de fmm avec une réluctance interne
Φ
ΦΦ
Φ
l
a
S
ud
N
ord
RaEa
Φ
ΦΦ
Φ
-Ha.la
Rappel : H = champ d’excitation magnétique (A/m)
Th. d’Ampère :
=nidlH.
2-3- Exemples :
Φ
ΦΦ
Φ
fuite
e
n.i
Φ
ΦΦ
Φ
R
fer
R
fuite
R
air
Schéma réluctant équivalent
On déduit (loi de maille
+ loi d’Hopkinson) :
ni = (R
air
+R
fer
)
.
Φ
3
SN
la
Circuit magnétique
avec aimant
Φ
ΦΦ
Φ
R
air
R
air
R
f1
R
f1
R
f2
Modèle superposable au
circuit magnétique
R
fer
= 2. R
f1
+ R
f2
2.R
air
Φ
ΦΦ
Φ
R
a
E
a
-H
a
.l
a
Modèle simplifié par addition des
réluctances en série
D’où la relation : -H
a
.l
a
= (2R
air
+R
fer
).Φ
D’où encore : -
H
a
.l
a
= (2R
air
+R
fer
).
B
a
S
a
, équation appelée
droite de charge
de l’aimant
2-4- Réflexion sur les réluctances :
Sµµ
L
R
ro
fer =
et
Sµ
e
R
o
air =
or en général
>>>
<<
1µ
Le
r
d’où :
airfer
RR <<
L’air est très mauvais conducteur de flux
, d’où l’intérêt d’un
entrefer le plus petit possible
.
Un matériau doux canalise le flux
, et ce d’autant plus que
µ
r
est grand.
3- Matériaux :
Les matériaux conducteurs de flux : matériaux doux :
La courbe B(H) est la
caractéristique d’un
matériau magnétique. Elle
donne la « réponse » du
matériau, à l’excitation H.
H
B
J
H
B
J
Coude de
saturation
Caractéristique
d’un matériau doux
B # J (T)
H (A/m)
B # J (T)
H (A/m)
Induction à saturation Bs
Induction rémanente Br
Champ coercitif Hc
Courbe de 1ère
aimantation
Zoom sur l’hystérésis
Rappel : B =
µ
o
.H + J avec J = polarisation magnétique (T)
Linéarisation pour un matériau doux non saturé : B =
µ
o
µ
r
.H
Un matériau doux a ainsi un effet « d’amplificateur magnétique ».
La saturation n’est pas intéressante, car au-delà du coude de saturation le matériau doux perd ses
propriétés et se comporte comme l’air. Elle est donc à éviter en pratique.
A chaque parcours du cycle d’hystérésis correspond une dissipation d’énergie, sous forme de
chaleur dans le matériau doux, appelée perte par hystérésis (Cf cours Transformateur). La surface
du cycle doit donc être la plus petite possible.
Caractéristiques d’un bon matériau : Bs grand,
µ
r
grand, cycle étroit
4
Bs (T)
µ
o
Hc (T)
µ
r
FeSi 1,5
1,8 1000
10 000
économique, résistant
FeCo
2,4
FeNi (permalloy)
<
3
10
300 000
plus performants
et plus chers
Le FeSi se trouve généralement sous forme d’empilements de tôles (feuilletage) de 0,35 à 1 mm
d’épaisseur et vernies (pour l’isolation électrique), ce qui permet de réduire les pertes magnétiques
par courants de Foucault.
Les tôles à grain orienté (laminage dans la direction de facile aimantation) et les tôles scratchées
(traitement laser) ont un
µ
r
plus élevé que les tôles standard.
Les matériaux sources de flux : aimants (ou matériaux durs) :
B (T)
J (T)
H (A/m)
Hc
B
Hc
J
Br
Cycle d’hystérésis d’un aimant
B
H
droite de
recul
Illustration de la désaimantation
Un aimant est une source de flux qui doit résister aux contraintes qui tendent à le
désaimanter
:
- si l’excitation H s’approche trop près de Hc on peut dégrader l’aimant (Cf figure ci-dessus)
- les aimants sont sensibles à la chaleur qui dégrade leurs propriétés, et les annule même
complètement au-delà de la température de Curie.
L’énergie magnétique volumique étant w = ½.B.H, (BH)max est une grandeur qui rend compte de
leur capacité énergétique.
Caractéristiques d’un bon matériau : Br grand, (BH)max grand, cycle large, résistance à des
températures élevées
Br (T)
µ
o
Hc (T)
Ferrites
0,4
0,4
économique
AlNiCo
1,3 < 0,1 désaimantation facile
obsolète
1,1
Terres rares : SmCo
NdFeB
1,5
3
plus performants et plus chers,
prix en baisse…
5
4- Méthodologie de résolution analytique de problèmes :
1 Comprendre :
Représenter les lignes de champ = le trajet du flux.
Prévoir le principe de création de la force ou du couple.
2 Modéliser :
Construire le schéma réluctant équivalent.
3 Calculer :
Cas où la source est une bobine :
Calculer le flux à partir du schéma réluctant.
En déduire l’induction dans l’entrefer, puis la force ou le couple.
Cas où la source est un aimant :
On ne peut pas calculer directement le flux, car, à cause de sa réluctance interne, la fmm
créée par l’aimant dépend elle-même du flux
Il faut donc d’abord trouver le point de fonctionnement (Ba, Ha) de l’aimant :
- à partir du schéma réluctant
droite de charge
- et à partir du cycle d’hystérésis
courbe de désaimantation
courbe de
désaimantation
Ba
Ha
droite de charge
En phase de conception, il faut choisir la géométrie du circuit magnétique de manière à
obtenir le point (BH)max.
En déduire l’induction dans l’entrefer : écrire l’équation traduisant la
conservation du flux
.
Calculer finalement la force ou le couple.
Cas où il y a plusieurs sources :
Appliquer les méthodes précédentes + le théorème de superposition (attention cependant à la
saturation du matériau doux).
5- Exemple : ventouse magnétique :
Applications : Manutention, outillage, fixation
Aimant : Br = 0,4 T,
Φ
34 mm
Coupelle : épaisseur 2 mm,
Φ
ext
40 mm
Matériau doux supposé parfait
Calculer la force de collage de la ventouse.
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !