1
Développements limités usuels en 0
ex=1+x
1! +x2
2! +···+xn
n!+O!xn+1"
sh x=x+x3
3! +···+x2n+1
(2n+1)! +O!x2n+3"
ch x=1+
x2
2! +x4
4! +···+x2n
(2n)! +O!x2n+2"
sin x=xx3
3! +···+(1)nx2n+1
(2n+1)!+O!x2n+3"
cos x=1x2
2! +x4
4! +···+(1)nx2n
(2n)! +O!x2n+2"
(1 + x)α=1+αx+α(α1)
2! x2+···+α(α1) ···(αn+1)
n!xn+O!xn+1 "
1
1x
=1+x+x2+x3+···+xn+O!xn+1"
ln(1 x)=xx2
2x3
3x4
4···xn
n+O!xn+1"
1
1+x
=1x+x2x3+···+(1)nxn+O!xn+1"
ln(1 + x)=xx2
2+x3
3x4
4+···+(1)n1xn
n+O!xn+1"
1+x=1+
x
2x2
8+···+(1)n11×3×···×(2n3)
2×4×···×2nxn+O!xn+1"
1
1+x
=1x
2+3
8x2···+(1)n1×3×···×(2n1)
2×4×···×2nxn+O!xn+1"
Arctan x=xx3
3+···+(1)nx2n+1
2n+1+O!x2n+3"
Argth x=x+x3
3+···+x2n+1
2n+1+O!x2n+3"
Arcsin x=x+1
2
x3
3+···+1×3×···(2n1)
2×4×···×2n
x2n+1
2n+1+O!x2n+3"
Argsh x=x1
2
x3
3+···+(1)n1×3×···(2n1)
2×4×···×2n
x2n+1
2n+1+O!x2n+3"
th x=xx3
3+2
15x517
315x7+O!x9"
tan x=x+1
3x3+2
15x5+17
315x7+O!x9"
2
Développements en série entière usuels
eax =
#
n=0
an
n!xnaC,xR
sh x=
#
n=0
1
(2n+1)! x2n+1 xR
ch x=
#
n=0
1
(2n)! x2nxR
sin x=
#
n=0
(1)n
(2n+1)! x2n+1 xR
cos x=
#
n=0
(1)n
(2n)! x2nxR
(1 + x)α=1+
#
n=1
α(α1) ···(αn+1)
n!xn(αR)x]1;1[
1
ax
=
#
n=0
1
an+1 xn(aC)x]|a|;|a|[
1
(ax)2=
#
n=0
n+1
an+2 xn(aC)x]|a|;|a|[
1
(ax)k=
#
n=0
Ck1
n+k1
an+kxn(aC)x]|a|;|a|[
ln(1 x)=
#
n=1
1
nxnx[1;1[
ln(1 + x)=
#
n=1
(1)n1
nxnx]1;1]
1+x=1+
x
2+
#
n=2
(1)n11×3×···×(2n3)
2×4×···×(2n)xnx]1;1[
1
1+x
=1+
#
n=1
(1)n1×3×···×(2n1)
2×4×···×(2n)xnx]1;1[
Arctan x=
#
n=0
(1)n
2n+1 x2n+1 x[1;1]
Argth x=
#
n=0
1
2n+1 x2n+1 x]1;1[
Arcsin x=x+
#
n=1
1×3×···×(2n1)
2×4×···×(2n)
x2n+1
2n+1 x]1;1[
Argsh x=x+
#
n=1
(1)n1×3×···×(2n1)
2×4×···×(2n)
x2n+1
2n+1 x]1;1[
3
Dérivées usuelles
Fonction Dérivée Dérivabilité
xnnZnxn1R
xααRαxα1R
+
eαxαCαeαxR
axaR
+axln aR
ln |x|1
xR
logaxaR
+!{1}1
xln aR
cos xsin xR
sin xcos xR
tan x1+tan
2x=1
cos2xR!$π
2+kπ%%%kZ&
cotan x1cotan 2x=1
sin2xR!πZ
ch xsh xR
sh xch xR
th x1th 2x=1
ch 2x
R
coth x1coth 2x=1
sh 2x
R
Arcsin x1
1x2]1;1[
Arccos x1
1x2]1;1[
Arctan x1
1+x2R
Argsh x1
x2+1
R
Argch x1
x21]1;+[
Argth x1
1x2]1;1[
4
Primitives usuelles
IPolynômesetfractionssimples
Fonction Pr imitive Interva lles
(xx0)nx0R
nZ!{1}
(xx0)n+1
n+1
nN:xR
nZ!(N{1}):
x];x0[,]x0;+[
(xx0)αx0R
αC!{1}
(xx0)α+1
α+1 ]x0;+[
(xz0)nz0C!R
nZ!{1}
(xz0)n+1
n+1 R
1
xaaRln |xa|];a[,]a;+[
1
x(a+ib)aR,bR
1
2ln '(xa)2+b2(
+i Arctan xa
b
R
II Fonctions usuelles
Fonction Pr imitive Interva lles
ln x x(ln x1) ]0;+[
eαxαC1
αeαxR
sin xcos xR
cos xsin xR
tan xln |cos x|)π
2+kπ;π
2+kπ*
cotan xln |sin x|]kπ;(k+1)π[
sh xch xR
ch xsh xR
th xln(ch x)R
coth xln |sh x|];0[ ,]0;+[
Primitives usuelles 5
III Puissances et inverses de fonctions usuelles
Fonction Primitive Interva lles
sin2xx
2sin 2x
4R
cos2xx
2+sin 2x
4R
tan2xtan xx)π
2+kπ;π
2+kπ*
cotan 2xcotan xx]kπ;(k+1)π[
sh 2xsh 2x
4x
2R
ch 2xsh 2x
4+x
2R
th 2x x th xR
coth 2x x coth x];0[ ,]0;+[
1
sin xln %%%tan x
2%%%]kπ;(k+1)π[
1
cos xln %%%tan +x
2+π
4,%%%)π
2+kπ;π
2+kπ*
1
sh xln %%%th x
2%%%];0[ ,]0;+[
1
ch x2ArctanexR
1
sin2x=1+cotan
2xcotan x]kπ;(k+1)π[
1
cos2x=1+tan
2xtan x)π
2+kπ;π
2+kπ*
1
sh 2x=coth2x1coth x];0[ ,]0;+[
1
ch 2x=1th 2xth xR
1
sin4xcotan xcotan 3x
3]kπ;(k+1)π[
1
cos4xtan x+tan3x
3)π
2+kπ;π
2+kπ*
1 / 11 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !