Spécialité ISN - Terminale S Année 2014-2015
Sandrine Tripard - SMDF
1
TD n°10 : LES FONCTIONS RECURSIVITE- Fractales avec turtle
Savoirs
Capacités
Fonctions
-notion de fonction
-portée des variables
-définition récursive de fonctions
Concevoir l’entête d’une fonction, puis la
fonction elle-même.
I NOTION DE FONCTION ET EXEMPLE - Rappels
Une fonction est un morceau de programme autonome qui réalise une tâche précise et bien définie.
Le but de la fonction est :
de structurer le code : on obtient un code plus lisible, il est inutile de savoir comment la fonction est
écrite, il suffit de savoir ce qu'elle produit pour comprendre le programme principal.
d’isoler une instruction qui revient plusieurs fois dans un programme : on obtient ainsi des
programmes plus courts et plus lisibles.
d’organiser plus aisément le travail de développement : on peut confier à une personne l'écriture
d'une ou plusieurs fonctions, et l'écriture du programme principal à une autre.
La règle de base à respecter : le code d’une fonction ne doit pas dépasser une page de programme.
Une fonction est définie par
un nom (choisir un nom qui indique clairement ce que fait la fonction)
ses arguments qui porteront les valeurs communiquées par le programme principal à la fonction au
moment de son appel
éventuellement une valeur de retour communiquée au programme par la fonction en fin
d’exécution.
Principe général :
l’entête de la fonction
indique son mode
d’emploi.
En Python, pour définir
une fonction, on utilise
le mot-clé def, dont
voici la syntaxe : (ce qui est entre [ ] est optionnel).
Exemple:
Quel est le résultat renvoyé par cette
fonction ? Quel doit être le type des
arguments de cette fonction ?
II PARAMETRES D’UNE FONCTION et PORTEE DE VARIABLES
1) Paramètres d’une fonction
Il peut y avoir plusieurs paramètres à une fonction et ce nombre doit être fixé au moment où on définit la
fonction.
Pour pouvoir appeler une fonction il faut donc connaître les informations concernant les paramètres : leur
nombre, leurs types, et à quoi ils correspondent. Pour pouvoir l'utiliser il faut également savoir à quoi
correspond son résultat et quel traitement est réalisé. Toutes ces informations doivent être décrites dans la
spécification de la fonction.
Exemple 1 : Quel est le rôle de cette
fonction ?
Spécialité ISN - Terminale S Année 2014-2015
Sandrine Tripard - SMDF
2
Exemple 2 : Quelle est la différence avec la fonction précédente ?
Exemple 3 : Que fait cette nouvelle fonction ? Tester ces trois fonctions dans un programme.
2) Portée de variables : variables globales et locales
La portée d’une variable est l’endroit du programme où on peut accéder à la variable.
Exemple :
Tester ce programme. Quel
est l’affichage obtenu ?
La variable a de valeur 20 est créée dans la fonction : c’est une variable locale à la fonction.
Elle est détruite dès que l’on sort de la fonction.
Remarque : Les variables utilisées dans une fonction sont locales et n’ont pas d’incidences sur le programme
principal, sauf s’il a été mentionné dans le corps de la fonction qu’une variable est globale à l’aide de
l’instruction global.
Quel est le nouvel affichage ?
ATTENTION ! Il est préférable d’éviter
l’utilisation global car c’est une source
d’erreurs (on peut modifier le contenu d’une
variable sans s’en rendre compte, surtout dans
les gros programmes).
Spécialité ISN - Terminale S Année 2014-2015
Sandrine Tripard - SMDF
3
III FONCTIONS RECURSIVES
Une fonction qui s’exécute en s’appelant elle-même est dite récursive.
La récursivité est donc une méthode de programmation qui permet de simplifier certaines fonctions.
Exemple : FACTORIEL
Rappel : La fonction factorielle n, qui se note en mathématiques n! a pour valeur n! = 1×2×3×…×n
Pour programmer cette fonction, on peut :
- soit utiliser une boucle
Soit l’algorithme suivant qui n’est pas récursif :
Fonction factorielle (n entier)
Résultat=1
Pour i allant de 1 à n
Résultat = x*i
Finpour factorielle (n entier)
Retourner le résultat
- Soit créer un algorithme récursif
Fonction factorecu (n : entier)
Si n == 0
Alors retourner 1 # Cette première instruction est nécessaire pour que
la fonction s’arrête et est appelée condition d’arrêt
Sinon retourner n×factorecu (n-1) # appel de la fonction factorecu, l’argument
est décrémenté d’une unité et finira par être égal à 0, ce qui garantit que le
programme s’achèvera.
Finsi
Ecrire les étapes dans le cas où n= 4 :
Tester cet algorithme avec les nombres 3, 6 et 10 en le programmant en Python.
Correction :
Spécialité ISN - Terminale S Année 2014-2015
Sandrine Tripard - SMDF
4
IV Application aux fractales avec le module turtle
La notion de récursivité peut être illustrée géométriquement par des fractales.
I Présentation de fonctions graphiques de Python.
Nous allons utiliser la bibliothèque turtle de Python assimilable à un ensemble de points d’un plan.
Chaque point est désigné par deux coordonnées entières sur le plan.
L’origine (coordonnées (0 , 0)) est située au centre de la fenêtre. La taille de la fenêtre par défaut est de
(400 , 300).
a) Fonctions graphiques de base
Voici quelques fonctions de base de turtle Python :
Pendown( ) : met le crayon en position basse permet de tracer.
Penup( ) : permet de lever le crayon en vue de déplacement sans tracer.
Goto(x,y) : sert à déplacer le curseur vers un point dont on précise les coordonnées.
Forward(x) : permet de tracer un segment de longueur x (en pixels)
speed() change la vitesse à laquelle la tortue se déplace. Cette instruction prend une valeur entre 1
et 11. 11 est le plus rapide, 1 le plus lent.
shape() change la forme de la tortue. Nous utilisons la forme “turtle” pour dessiner une tortue,
mais nous pourrions aussi utiliser les valeurs “arrow” (flèche), “circle” (cercle), “square” (carré),
“triangle” (triangle) or “classic” (classique).
Remarque : Pour des informations complémentaires sur le graphisme sur Python et pour obtenir d’autres
fonctions vous pouvez consulter la page suivante : https://docs.python.org/3.4/library/turtle.html
Exercice 1 Dans le Shell de Python faites appel à la librairie turtle :
from turtle import *
Puis tester les commandes suivantes en déduisant les fonctionnalités de ces commandes.
penup()
right(90)
pendown()
backward(100)
goto(100,100)
left(120)
forward(50)
goto(-100,-100)
b) Fonctions pour tracer des polygones ou autre graphisme
Exercice 2
1) Compléter la fonction suivante permettant de tracer un
carré de côté x en partant du milieu de la fenêtre :
2) Tester cette fonction pour tracer un carré de côté 50.
3) Quels sont les paramètres à ajouter à la fonction précédente
pour obtenir le tracé d’un triangle équilatéral ou un hexagone
régulier sans modifier sa structure ?
4) Tester alors cette nouvelle fonction en traçant un triangle
équilatéral de côté 50 et un hexagone régulier de côté 50.
Exercice 3 : Tester ce programme et le modifier pour obtenir un autre
graphisme :
Spécialité ISN - Terminale S Année 2014-2015
Sandrine Tripard - SMDF
5
II Courbes fractales avec une fonction récursive
La courbe de Koch est l'une des premières courbes fractales à avoir été décrite.
Elle a été inventée en 1904 par le mathématicien suédois Helge von Koch.
Voici les premières étapes de sa construction :
On appelle ainsi les figures de base les unes dans les autres de façon récursive jusqu’à ce que a/3 ait atteint
une limite que l’on s’est fixée (par exemple de 10 comme dans l’exemple ci-dessous).
Lors de l’appel de la fonction courbekoch, les instructions s’empilent les
unes sur les autres sans rien faire d’autre et ne commence à tracer que
lorsque le paramètre (a < 10) est vérifié.
Exercice 4
1) Tester le programme précédent.
2) Faire des essais en faisant varier la condition (a > 10)
3) En imaginant que le flocon complet ci-dessous n’est autre que trois
courbes de Van Koch comme celle que l’on vient de réaliser au-dessus,
écrire le programme permettant d’obtenir le flocon en entier.
On part du dessin B), figure de base, qui va
se reproduire elle-même sur chacune des
branches.
Cette figure de base est constituée de quatre
branche de longueur a.
On peut donc considérer que la figure C) est
constituée ainsi :
une figure de base de côté a/3
une rotation à gauche de 60°
une figure de base de côté a/3
une rotation à droite de 12
une figure de base de côté a/3
une rotation à gauche de 60°
une figure de base de côté a/3
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !