LE REGLEMENT DE LA POLAIRE 10 janvier 2015 non surligné

publicité
La navigation au temps du roi Jean II du Portugal
Ou comment trouver au seizième siècle la latitude à l’aide du
règlement de la polaire.
A M Patrick Rocher, astronome à l’observatoire de Paris
1
Remerciements :
Ce document n’a pu être réalisé que grâce aux conseils et à un échange
soutenu avec M Patrick Rocher, astronome à l’observatoire de Paris.
Qu’il reçoive ici l’expression de toute ma gratitude.
TABLE DES MATIERES
(Ctrl +Clic pour suivre le lien de chaque titre)
Page 2 : Introduction
Page 6 : détermination de la latitude en supposant l’étoile Polaire sur l’axe du monde.
Page 9 : l’almicantarat
Page 11 : la formule approchée de correction de la hauteur de l’étoile Polaire.
Page 18 : la formule précise de correction de la hauteur de l’étoile Polaire.
Page 20 : table de correction
Page 21 : azimut d’un astre
Page 24: comment les marins faisaient-ils pour déterminer si deux astres ont même
hauteur ou même azimut ?
Page 26: calcul de l’angle horaire de la polaire
Page 32 : évaluation des écarts horaires en fonction de la latitude
Page 33 : interprétation de clichés
Page 38: exemple de calcul de détermination de la latitude
Page 40: annexe
Bibliographie
- L’astronomie nautique au Portugal de Joaquim Bensaúde
http://fr.wikipedia.org/wiki/Joaquim_Bensa%C3%BAde
- Les Portugais et l’astronomie nautique au temps des grandes découvertes
http://www.persee.fr/web/revues/home/prescript/article/geo_00034010_1914_num_23_130_8060
1
sur
2
1) Introduction
Nous savons qu’en première approximation, la latitude d’un lieu est égale à la
hauteur de l’étoile Polaris, mais qu’en est-il en 1500 ?
Schéma1
En jaune l’étoile Polaire de la Petite Ourse en jaune est à 3 ° 30 ‘du pôle Nord
céleste en rose. La détermination de la hauteur du pôle exigeait l’application de
corrections à la mesure de la hauteur de l’étoile Polaire
Vers 1455-1475 sous le règne du roi Jean II du Portugal apparaissent des règles
énoncées par la ‘’ Junta dos mathématicos ‘’ dont le règlement de la polaire
(régimento do norte) qui énonce les corrections selon les 8 positions possibles
des gardes, les étoiles (Kochab) !" # (%&'(ℎ*+) de la Petite Ourse.
2
3
La position du pôle céleste est au nombril de l’homme, celle des gardes
correspondait aux différentes parties du corps : ainsi dans la tête β(Kochab) est
à la verticale supérieure de la polaire(côté horizon sud), dans les pieds, à la
verticale inférieure de la polaire( côté horizon nord), dans le bras droit de
l’homme vu du côté gauche à l’ouest, et dans l’autre bras vu du côté droit, à
l’est.
Schéma 2
Mais qu’ont donc de si particulier ces positions ?
Deux d’ente elles (dans la tête et dans les pieds) correspondent au fait que
Polaris et Kochab ont même azimut d’où l’étude de cette notion au paragraphe
6 page 22.
Les deux autres (dans le bras de l’est et dans le bras de l’ouest) correspondent
au fait que Polaris et Kochab ont la même hauteur.
3
4
Ici Kochab en vert est dans ‘’ les pieds ‘’, la polaire est en jaune, la ligne en
rouge est le méridien en projection stéréographique.
Schéma 2
4
5
Schéma 3
En vert, le nombril qui coïncide avec le pôle nord céleste, en rose les étoiles de
la Petite Ourse.
Nous nous proposons dans ce qui va suivre de quantifier les corrections à
apporter à la détermination de la hauteur de l’étoile Polaire pour obtenir la
hauteur du pôle céleste qui est égale à la latitude du lieu.
On donnera la formule approchée et la formule exacte.
5
6
2) Détermination de la latitude en supposant l’étoile Polaire sur
l’axe du monde.
P est la projection orthogonale de l’étoile Polaire sur le plan horizontal, m désigne
l’observateur, une démonstration élémentaire montre que la latitude est égale à la hauteur
de l’étoile Polaire.
Notons que sur le schéma l’étoile Polaire ne se trouve pas sur l’axe du monde, mais sur l’axe
parallèle à l’axe du monde passant par l’observateur. Les distances considérables qui nous
séparent des étoiles légitiment ce schéma. Si deux points A et B sont situés sur terre, et si E
désigne une étoile, les droites (AE) et (BE) sont parallèles.
Schéma 4
6
7
Schéma 5
Les deux angles égaux à 56° sur le schéma sont des angles à côtés
perpendiculaires dans le plan méridien et sont donc égaux.
7
8
Exercice : Démontrer que si la polaire est considérée comme étant sur l’axe du
monde alors la hauteur de la polaire est égale à la latitude du lieu.
La précession des équinoxes fait que plus on se rapprochera de 2100 ,plus ce
résultat sera vrai, car la polaire sera alors au plus prés du pôle Nord celeste.
Mais en 1550 la polaire était environ à 3° du pôle Nord celeste , ce qui
introduisait une erreur importante dans la détermination de la latitude.
8
9
3 ) L’almicantarat (de l’arabe al-muquantarat ‘’ l'astrolabe ‘’)
L’almucantarat d’une étoile est l’ensemblesdes points de la sphère céleste qui
ont même hauteur que cette étoile. C’est un cercle contenu dans un plan
pl
perpendiculaire à la droite contenant le zénith et le centre de sphère celeste et
de ce fait parallele au
u plan horizontal.
e désigne l’étoile, z le zenith
Schéma 6
9
10
Exercice : 1) Montrez que l’almicantarat de l’étoile e est un cercle intersection
d’un cône de demi-angle
angle au sommet la distance zénithale de l’étoile, c'est-àc'est
dire le complément de sa hauteur. Dans le cas du schéma, la hauteur est égale
à 90°-32°=58°. En jaune,, le grand cercle de la sphère passant par z et l’étoile e.
zM a
2) Montrer que si M est un point de l’almicantarat, alors l’arc c
pour mesure la distance zénithale de l’astre e, c'est-à-dire 90°- hauteur de
l’astre.
Le schéma précédent en masquant la sphère céleste.
Schéma 7
10
11
4) La formule approchée de correction de la hauteur de l’étoile
Polaire en fonction de l’angle horaire
Nous avons représenté ci--dessous le triangle Neb du schéma 8 page 12 (les
points Neb ont été replacés par A, B, C) en respectant les données angulaires.
On voit ainsi ce que signifie que le triangle sphérique Neb est quasiment plan.
11
12
Schéma 8 (D est un point artificiel qui permet sur le fichier Cabri de rapprocher l’étoile e
du pôle.)
Nous allons calculer c
Nb en faisant l’approximation que le triangle sphérique
Neb est quasi plan du fait que l’étoile Polaire est très proche du pôle comme le
montre le schéma 8bis sur lequel
lequel les points N, e, b ont été remplacés par A, B
et C.
12
13
Appelons R le rayon de la sphère .On a dans le triangle sphérique eNb
.=
rectangle en b et quasi plan : cos eNb
/0
/1
2
Appelons c la mesure en degrés de c
Nb et d la mesure en degrés de Ne
2
On a longueur Nb
= R(c*π)/180
2 = R (d* π)/180
Longueur eN
. = R(c∗π)/180
Donc cos eNb
c
=
R(d∗ π)/180 d
< est égal à l’angle horaire H de l’étoile Polaire.
L’angle &:;
d est la distance au pôle de l’étoile Polaire, c'est-à-dire le complément sa
déclinaison= .
D’où la formule c = (90°-δ)cosH
Ce premier résultat va comme nous allons le voir nous permettre d’établir la
correction à, apporter à la hauteur de l’étoile Polaire à partir de la page14.
Notons que c
eZ = 90°- h avec h hauteur de l’étoile Polaire et que c
Pz = 90°-φ
avec φ latitude du lieu.
Comme l’étoile Polaire est proche du pôle Nord céleste on peut assimiler b à s
sous réserve que l’on ne soit pas à des latitudes élevées (<70°) comme le
@ Os
montre le montre le fichier fichier 8 cabri 3d . On a par ailleurs H = e.
Examinons à présent les différents cas.
13
14
Premier cas :
Schéma 9 ci-dessous. Démontrons que :
Angle horaire polaire ∈ [0° ; 90°] latitude ≈ hauteur polaire – correction
En effet b est alors entre N et z et l’on a : c
Nz = c
Nb + c
bz
D’où : 90°- φ ≈ c
Nb +90°-h avec h hauteur polaire et d'après (1) :
φ ≈ h-(90°- δ)cosH
Schéma 9 : en bleu, le cercle apparent décrit par l’étoile au cours de sa
rotation diurne.
14
15
Deuxième cas
Schéma 10 ci-dessous. Démontrons que :
Angle horaire polaire ∈ [90° ; 270°] latitude ≈ hauteur polaire +correction
Raisonnons sur le schéma 8 ci-dessous :
Toujours en assimilant s à b on a : N est entre b et z.
c
Nz = c
Nb + c
bz
90°-h ≈ c
Nb + 90°- φ et d'après (1) :
φ ≈ h + (90°- δ)cosH
Schéma 10
15
16
Troisième cas
Schéma 11 ci-dessous. Démontrons que :
Angle horaire polaire ∈ [270° ; 360°[ latitude ≈ hauteur polaire +correction
De nouveau, b est entre N et z et l’on est ramené au cas 1.
Schéma 11
On est ramené au premier cas.
16
17
Résumons :
Si angle horaire polaire ∈ [0° ; 90°] latitude ≈ hauteur polaire – correction
Si angle horaire polaire ∈ [90° ; 270°] latitude ≈ hauteur polaire + correction
Si angle horaire plaire ∈ [270° ; 360°] latitude ≈ hauteur polaire – correction
17
18
5) Formule précise de correction de la lecture de la hauteur
Le triangle de position
Schéma 12
c
EZ = 90°-h
h désignant la hauteur de l’astre
c
PE = 90°-D
D désignant la déclinaison de l’astre
c
PZ = 90°-φ φ désignant la latitude
18
19
La formule de Gauss vue dans le Mathématice n° 43 permet d’écrire sachant que
sur le schéma, D est la déclinaison de l’étoile Polaire, Phi (φ)
( ) est la latitude du lieu, et
h la hauteur de l’étoile Polaire :
Sinh = sinCsin D + cosC
Ccosδ cos%E
< = angle horaire H de la polaire ou 360° - angle horaire H de la polaire.
Avec P
D=cos H
Dans ce cas : cosP
D’où
Sinh = sinφsin
sin D + cosφcosδ
cos
cosH
La déclinaison de l’étoile Polaire est en janvier 2000 : 89° 15,51’ 3 ‘’B 89,25°
D’où
h = Arc sin (sin (89,25°) sinφ+cos
sin
(89,25°) cosφ cosH
Et donc :(sn(h - φ = Arc sin (sin (89,25°) sinφ+cos
sin
(89,25°) cosφ
φ cosH)-φ
5os (89,25°) cosC cos)-C
La différence est ainsi exprimée de manière plus précise en fonction de la
latitude et de l’angle horaire de l’étoile Polaire.
Le tableau suivant permet de comparer les formules approchées et exactes.
Classeur Excel :
Table de correction.xslx
On pourra aussi jouer sur le paramètre précession des équinoxes en allant sur
stellarium et en se plaçant à des dates plus ou moins éloignées de notre
19
20
TABLE DE CORRECTION
VILLE
latitude en °
latitude en rad
70
date
1,221730476
le 1 janvier 2000
déclinaison de la polaire °
89,6
hauteur - latitude
angle horaire polaire en degré
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
correction exacte en rad
correction 1 exacte en ded
correction 2 approchée en degrés
correction 1-correction 2
0,006873196
0,393805099
0,393923101
-0,000118003
0,00655231
0,375419696
0,375877048
-0,000457352
0,006028964
0,345434208
0,346410162
-0,000975954
0,005319905
0,304808121
0,306417777
-0,001609657
0,004447704
0,254834642
0,257115044
-0,002280402
0,003439939
0,197093959
0,2
-0,002906041
0,002328226
0,133397535
0,136808057
-0,003410522
0,001147137
0,06572611
0,069459271
-0,003733161
-6,69479E-05
-0,003835834
2,4503E-17
-0,003835834
-0,001276997
-0,07316656
-0,069459271
-0,003707289
-0,002446466
-0,140172181
-0,136808057
-0,003364124
-0,003540373
-0,202848424
-0,2
-0,002848424
-0,004526293
-0,259337484
-0,257115044
-0,00222244
-0,005375244
-0,307978792
-0,306417777
-0,001561015
-0,006062451
-0,347352839
-0,346410162
-0,000942677
-0,006567979
-0,376317504
-0,375877048
-0,000440456
-0,006877235
-0,394036539
-0,393923101
-0,000113438
-0,006981317
-0,4
-0,4
-2,03171E-14
-0,006877235
-0,394036539
-0,393923101
-0,000113438
-0,006567979
-0,376317504
-0,375877048
-0,000440456
-0,006062451
-0,347352839
-0,346410162
-0,000942677
-0,005375244
-0,307978792
-0,306417777
-0,001561015
-0,004526293
-0,259337484
-0,257115044
-0,00222244
-0,003540373
-0,202848424
-0,2
-0,002848424
-0,002446466
-0,140172181
-0,136808057
-0,003364124
-0,001276997
-0,07316656
-0,069459271
-0,003707289
-6,69479E-05
-0,003835834
-7,35089E-17
-0,003835834
0,001147137
0,06572611
0,069459271
-0,003733161
0,002328226
0,133397535
0,136808057
-0,003410522
0,003439939
0,197093959
0,2
-0,002906041
0,004447704
0,254834642
0,257115044
-0,002280402
0,005319905
0,304808121
0,306417777
-0,001609657
0,006028964
0,345434208
0,346410162
-0,000975954
0,00655231
0,375419696
0,375877048
-0,000457352
0,006873196
0,393805099
0,393923101
-0,000118003
0,006981317
0,4
0,4
-5,10703E-15
On pourra aussi jouer sur le paramètre précession des équinoxes en allant sur
stellarium et en se plaçant à des dates plus ou moins éloignées de notre
époque pour constater l’importance ou encore le caractère négligeable de la
correction.
Pour la fin du quinzième siècle, on pourra observer sur le fichier Excel qu’en
valeur absolue, la correction est environ de 3,4°, ce qui est considérable pour
se positionner correctement en latitude.
20
21
A présent, il va nous falloir préciser certaines notions avant de déterminer les
angles horaires de l’étoile polaire correspondant aux positions remarquables
des étoiles Polaris et Kochab.
6) Azimut d’un astre (de l’espagnol acimut
Schéma 13
21
fin XIIIe siècle)
22
L’azimut de l’étoile est l’angle .
e′Os , O étant le centre de la sphère, z le zénith,
e l’étoile, l’azimut se mesure à partir de s dans le sens rétrograde.
Deux étoiles qui ont même azimut seront donc deux étoiles qui appartiennent
au cercle vert. Le plan de ce cercle est un plan perpendiculaire au plan
horizontal et contient l’observateur O et les deux étoiles.
Nous allons montrer par une animation azimut.cg3 à l’aide du fichier CABRI
3D que les astres sont 2 fois par jour sur le même cercle azimutal.
Et grâce à courbes_azimut_et_hauteur.xlsx nous montrerons que les
astres ont même hauteur deux fois par jour sous réserve que la latitude ne soit
pas supérieure à 85°. Au delà, les courbes de hauteur ne se coupent plus.
La variation de la longitude ne modifie pas cette constatation.
6 bis) Discussion géométrique
Si HI< J < HK avec =1 déclinaison de &L , =2 déclinaison de &N et C la
latitude, alors les astres sont sur le même cercle azimutal mais avec des
azimuts qui diffèrent de 180°.La navigation se faisant à des latitudes moyennes,
cette condition ne sera jamais remplie, de sorte que les astres auront même
azimut.
a) Supposons le zénith différent du pôle
Le seul plan parallèle à l’équateur qui contient le centre de la sphère céleste est
l’équateur lui-même. Ce qui signifie que si les deux étoiles n’appartiennent pas
à l’équateur céleste, le plan qui contient le grand cercle ne peut pas être
parallèle à l’équateur et donc passe par le zénith deux fois par jour au cours de
la rotation diurne de la sphère céleste.
22
23
b) Supposons le zénith au pôle, et supposons que les deux étoiles n’ont pas
même ascension droite, alors les cercles azimutaux des deux étoiles ne
pourront jamais être confondus car le cercle azimutal de chaque étoile est dans
ce cas confondu avec son cercle horaire (voir la démonstration annexe 3).
Si les deux étoiles ont même ascension droite, le grand cercle passe
constamment par le zénith.
Si J sort de l’intervalle [HI ; HK] il y a en général les mêmes azimuts deux fois
par jour sauf si la latitude excède environ 75°et dans ce cas les astres ont
même azimut une fois par jour. Voir les courbes en annexe 2.
Aux latitudes moyennes, il y a donc les mêmes azimuts deux fois par jour.
Voir le classeur EXCEL : courbes_azimut_et_hauteur.xlsx
Les lignes 46 à 71 permettent de rentrer la longitude, la latitude et la date.
Les formules ayant servi à la programmation de ce classeur sortent du cadre
de notre exposé.
Pour le tableau des azimuts, il sera nécessaire selon les valeurs choisies de
modifier le type de graphique en privilégiant alors le graphique ‘’ nuages de
points’’ au risque d’avoir une interprétation erronée des graphiques !
Un clic droit avec la souris permet alors de modifier le graphique
Nous renvoyons à l’annexe en ce qui concerne le règlement du pôle
antarctique.
23
24
7) Comment les marins faisaient-ils pour observer deux étoiles jusqu'a
qu'elles aient même azimut ou même hauteur ?
Le marin tend son fil à plomb en direction de l’une des étoiles, par
exemple l’étoile e sur le schéma, ce qui donne la direction (ee’).
Il attend alors que l’autre étoile f soit cachée par le fil à plomb, ce qui signifie
qu’elle est précisément dans le plan (ee’m) et donc que les deux étoiles ont
même azimut.
m désigne l’observateur e et f sont deux étoiles, e’ la projection orthogonale
de e sur le plan horizontal.
Schéma et animation 14 fil à plomb.cg3
24
25
Pour les astres à la même hauteur, on se servait d’un astrolabe ou d’un
quadrant par exemple.
Astrolabe
Schéma 15 : Astrolabe
25
26
Schéma 16 : Quadrant de marin
8) Calcul de l’angle horaire de la polaire
Examinons à présent la légende du schéma 17 avec les onglets permettant
de passer de l’image au fichier cabri 3D.
26
27
e et u deux étoiles, e’ et u’ leurs projections stéréographiques
En turquoise le cercle horaire de l'étoile e, z le zénith et z’ sa projection
stéréographique de pôle, le pôle sud.
En jaune le cercle équateur
En vert le cercle azimutal de e et de u: c'est le grand cercle de la sphère céleste
passant par le zénith et l'étoile.
En vert, le méridien céleste.
D1 droite passant par les projections stéréographiques des points e et u
D2 intersection du plan méridien céleste avec le plan de l'équateur
Schéma 17 et animation parallélisme.cg3
27
28
Les points e’, u’ et z’ sont les projections stéréographiques, respectivement des
astres e et u et z’ celle du zénith.
Déplaçons le point a vers le pôle, l’étoile polaire e se rapproche du pôle et les
droites +L et +N tendent à devenir parallèles à condition que l’on ne soit pas
trop haut en latitude.
. Si le zénith est trop élevé, nous n’aurons pas le parallélisme annoncé.
. et e′P′z′
. sont pratiquement égaux.
Ce qui implique que les angles u′e′P′
<
Or la projection stéréographique conserve les angles donc les angles ueP
et .
ePZ sont pratiquement égaux. Or ce dernier angle est l’angle horaire de la
polaire.
Nous allons raisonner dans le triangle uPe. Nous pouvons admettre que ce
triangle sphérique est quasiment plan.
Voici les données à la fin du quinzième siècle :
Polaire : ascension droite 3,7° déclinaison 86,6°
Kochab : ascension droite 223,5° déclinaison 76,2°
Comme Kochab est dans les « pieds », la droite (ue’) est parallèle à la droite
(SP’).
Considérons alors le triangle uPe, si l’on change les sommets en A, B, et C, on
obtient le triangle de la figure suivante ou il apparaît quasiment plan.
28
29
Schéma 18
La distance de Polaris au pôle Nord céleste est le complément de sa
déclinaison.
Soit 90°-86,6°= 3,4°
La distance de kochab au pôle est 90°-76,2°
90°
= 13,8°
Revenons au schéma 17.
< s’appelle l’angle au pôle que forment Polaris et Kochab et
L’angle uPe
s’obtient à l’aide des ascensions droites.
< est égal à : 360°-(223,5°-3,7°)=140,2°
L’angle uPe
360°
Considérons alors le triangle uPe :
< vaut : 180°-140,2°
L’angle Pue
140,2°- H = 39,8°-H
La relation des 3 sinus appliquée au triangle uPe donne :
29
30
QRST
LU,W
=
QRS(UX,W°ZT)
U,[
La méthode de résolution de cette équation par dichotomie fournit alors :
HB 32 ,2°
D’ou en appliquant la formule (1) du paragraphe 3 :
Correction = 3,4*cos32, 2° B 2,9 °
Le règlement de la polaire établi à la fin du quinzième siècle indique 3° !
Exercice
Résoudre l’équation par voie trigonométrique
QRST QRS(UX,W°ZT)
LU,W
=
U,[
Solution :
On a une équation de la forme où H est l’inconnue.
a sinH = bsin(c-H)
D’où a sinH = b (sinc cosH - cosc sinH)
(a+b cosc) sinH = b sinc cosH
tanH =
0QRS\
]^0\_Q\
Donc le calcul est ramené à un calcul de tangente.
Yaël NAZE nous dit à ce sujet que:
" Les relations trigonométriques sont connues depuis fort longtemps (les
arabes du moyen-âge sont ceux qui ont défini cosinus etc., le sinus vient des
Grecs)...
mais les anciens n'écrivaient pas d'équations comme ci-dessus : même les
Principia de Newton ne sont pas écrits ainsi... cela date des dix huitième et dix
neuvième siècles ".
30
31
Exercice
Calculer les corrections à apporter à la lecture de la hauteur de l’étoile Polaire
en précisant à chaque fois le signe de cette correction. Nous supposerons et
sous réserve que la latitude ne soit pas trop haute que l’on passe d’une
position à une autre en ajoutant à chaque fois à l’angle horaire 90° et que par
conséquent avec cette réserve on peut partir de la valeur trouvée HB 32 ,2°.
Pour les autres positions de la polaire, Observons l’angle horaire H de la
polaire sur stellarium au 1 janvier 1600 à la latitude moyenne de PARIS ;
Observons à présent les données suivantes :
À partir de la position de KOCHAB en dessous de la polaire :
H= 2 h 1 min
A partir de la position de KOCHAB dans le bras de l’est :
H =8 h 8 min
A partir de la position de KOCHAB est au –dessous de la polaire :
H= 14 h 7 min
A partir de la position de KOCHAB est dans le bras de l’ouest :
H=20 h 8 min
Nous constatons que l’angle horaire augmente de 6h environ.
Le paragraphe suivant va nous permettre de préciser les écarts angulaires en
fonction de la latitude et démontrer que l’assertion que l’on trouve dans
certains ouvrages selon laquelle il faut rajouter 6 h pour passer d’une position à
l’autre dans les 4 positions remarquables de KOCHAB est fausse si l’on monte
en latitude.
31
32
9) Evaluation des écarts précédents en fonction de la latitude
L’étude suivante sur Excel regiment_polaire_1500.xlsx va nous montrer que
ces différences s’écartent notablement de
d 6 h au fur et à mesure que l’on
monte en latitude.
Précisions sur le classeur regiment_polaire_1500.xlsx
regiment_polai
H1 angle horaire :
H3 angle horaire :
H2 angle horaire :
H4 angle horaire :
même hauteur, polaire à l'ouest (première ligne)
même azimut est (troisième ligne)
même hauteur, polaire à l'est (deuxième ligne)
même azimut ouest (quatrième ligne
9
Variation d'angle horaire en heure en fonction de la latitude
8
7
6
5
H3 - H1
H2-H3
4
H4-H2
H1-H4
3
2
0
10
20
30
40
50
32
60
70
80
90
33
10) Interprétation de clichés
Les quatre clichés qui suivent ont été produits par le logiciel Stellarium.
On rappelle que Stellarium peut fonctionner avec différents types de projection
dont la projection stéréographique.
Un cercle ne passant pas par les pôles est transformé en cercle alors qu’un
cercle passant par les pôles est transformé en droite, ce qui est le cas du
méridien. On consultera avec profit le lien suivant sur la projection
stéréographique.
http://www-irem.ujf-grenoble.fr/spip/spip.php?article97
grenoble.fr/spip/spip.php?article97
Schéma 19
33
34
Exercice : interpréter les clichés obtenus, la ligne en vert est la projection du
méridien céleste en projection stéréographique.
KOCHAB en dessous de la polaire :
La polaire en rose, Kochab dans le petit cercle blanc.
34
35
Dans le bras de l’est :
La polaire en rose, Kochab en turquoise.
35
36
Au–dessous de la polaire : Kochab est en vert, la polaire en rose.
36
37
Le bras de l’ouest :
37
38
11) Exemple de calcul de détermination de la latitude.
Nous sommes à Paris le 1 janvier 1500 à 19 h 03 TU ou Kochab est dans les
pieds : Voici ce que donne stellarium, la ligne verte désigne le méridien céleste.
En rose, la polaire et en orange Kochab.
Schéma 20
En rose la polaire et en orange Kochab.
38
39
L’angle horaire est de 2h 15m 57 s : on applique donc :
Latitude = hauteur polaire – correction
La hauteur de l’étoile Polaire est 51° 38’ 60’’
Nous allons lui enlever les 2,9° trouvés précédemment et l’on trouve pour la
latitude de Paris : 51° 38’ 60 ‘’ -2,9°= 48° 45’
La latitude exacte de Paris est 48° 51’ 36’’.
Il était vital pour les marins d’avoir une latitude aussi exacte que possible.
Exercice
Que représentent 2,9° en Km ?
Réponse
2,9° représentent environ 322 km !
En effet 360° représentent environ 40000 km (voir le dossier Eratosthène N° 36
de mathematice) http://revue.sesamath.net/spip.php?rubrique101 et par
règle de trois on trouve la distance correspondant à 2,9°.
Nous ne pouvons qu’admirer l’ingéniosité des mathématiciens et astronomes
du seizième siècle en vue de parvenir à cette table de corrections appelée :
Règlement de la polaire ou Régiment de la polaire
39
40
Annexe
1) Le règlement de la polaire dans l’hémisphère austral
Voici ce que nous en dit Joachim Bensaude dans l’astronomie nautique au
Portugal à propos de l’atlas de Fernão Vaz Dourado(1580) qui inclut un
règlement du pôle sud intitulé : Regimento da altura pollo Cruzeiro do sul pella
estrella norte :
‘’ La méthode adoptée dans le règlement du pôle nord a été suivie pour le pôle
sud ; les guardas sont représentées par 3 étoiles dont les positions sont
indiquées également par rapport au pied, bras de l’est, tête et bras de l’ouest
avec les valeurs correspondantes de la correction ‘’.
Le point rouge sur la ligne verte indiqué par la fleche est le pôle sud.
Le réglement fait référence à la Croix du sud en à gauche du cliché.
40
41
2) Les courbes de hauteur et d’azimut
La variation de la longitude n’affecte que peu les courbes ci-dessous. En faire
l’expérience avec le classeur courbes_azimut_et_hauteur.xlsx.
Latitude 48°
41
42
Latitude 75° : les courbes ne se coupent plus qu’une seule fois (type de
graphique : nuage de points)
Latitude 84,5° : les courbes de hauteur ne se coupent plus !
42
43
3) Démonstration du b du paragraphe 6bis.
1) Soient deux plans P1 et P2 non parallèles et contenant le centre de la
sphère céleste S. Soit D leur droite d’intersection.
Soit C1 et C2 les cercles, intersection respectives de (C1) et (C2à) avec (S).
Montrons que les deux cercles se coupent en deux points de (D).
On a D=P1 ∩ P2, C1=P1 ∩ S, C2=P2 ∩ S
Posons ab,cde=D ∩ C1= P1 ∩ P2 ∩ P1 ∩ S = P2 ∩ P1 ∩ S
Posons af,cge = D ∩ C2= P1 ∩ P2 ∩ P2∩ S = P2 ∩ P1 ∩ S
43
44
D’où ab,cde =af,cge
2) Considérons à présent le grand cercle C1 qui passe par O et les deux étoiles
e1 et e2.
Le cercle noir est le cercle dont le plan est perpendiculaire à l’axe du monde et
qui passe par le zénith.
D’après 1), ce cercle coupe le cercle C1 en deux points. Soit comme sur le
schéma, a le point du cercle noir le plus proche du zénith.
Soit R la rotation d’angle mes arc aZ et d’axe l’axe du monde
L’image du cercle C1 est le cercle C2 qui passe donc par le zénith.
44
Téléchargement