27/03/2017 P16_conservation_energie_exos.doc 1/2
Principe de conservation de l’énergie - Exercices
1. Compléter avec un ou plusieurs mots.
1.1. L’énergie cinétique d’un corps est liée à sa ................................................ et à sa ..........................................
1.2. L’énergie ................................................ de pesanteur d’un objet ponctuel en interaction avec la Terre dépend
de l’................................................ de ce point.
1.3. L’expression de l’énergie ................................................ d’un solide de ................................................ m
en mouvement de ................................................ à la ................................................ v est 1
2mv².
1.4. Pour un objet ponctuel placé dans un champ de pesanteur ................................................, l’expression de son
énergie ................................................ de ................................................ est mgz où z mesure son
................................................ sur un axe (Oz) vertical orienté vers le ................................................
1.5. L’énergie ..................................... d’un système est la somme des énergies cinétique et potentielle du
système.
1.6. L’unité SI d’une énergie est le ................................................ de symbole ............
1.7. Au cours d’une chute libre sans vitesse initiale d’un solide, son énergie cinétique augmente, son énergie
potentielle de pesanteur ................................................ mais son énergie mécanique se ..................................
1.8. Les forces de frottement extérieures entraînent une ................................................ de l’énergie d’un système
par ................................................ thermique.
2. QCM
Cocher la réponse exacte. Donnée : g = 10 N.kg-1.
2.1. L’énergie cinétique d’une luge de masse m = 25,0 kg dont la vitesse est de 36,0 km.h-1 est de :
1,62 104 J ; 1,25 102 J ; 1,25 103 J
2.2. L’énergie potentielle de pesanteur étant choisie comme nulle au niveau de la mer, celle d’un plongeur de
masse 100 kg à la profondeur de 10 m a une valeur de :
1,0 kJ ; 1,0 104 J ; - 10 kJ ; 10 kJ
2.3. Pour que l’énergie cinétique d’un solide ponctuel soit multipliée par 4, il faut que sa vitesse soit multipliée
par : 2 ; 4 ; 16
2.4. Deux objets ponctuels A et B en interaction avec la Terre sont à la même altitude. Les vitesses de A et B sont
liées par la relation vA = 2 vB et les masses par mB = 4mA.
Leurs énergies cinétique, potentielle et mécanique sont telles que :
EC (A) = EC (B) ; Epp (A) = Epp (B) ; EM(A) = EM(B)
2.5. Pour une bille de masse m = 5 g chutant librement, sans vitesse initiale, d’une hauteur de 1,8 m par rapport
au sol :
son énergie cinétique initiale est égale à 9 10-2 J
sa vitesse est égale à 6,0 m.s-1 lorsqu’elle touche le sol
son énergie potentielle de pesanteur a augmenté de 9 10-2 J
3. Utiliser la relation de l’énergie cinétique et d’énergie potentielle de pesanteur
Epp = 0 J en un point 0 situé sur le sol.
Dans le référentiel terrestre, calculer l’énergie cinétique et l’énergie potentielle de pesanteur des corps suivants :
3.1. Un avion de masse m = 180 t volant à une altitude de 10 km à une vitesse v = 864 km.h-1.
.........................................................................................................................................................................
.........................................................................................................................................................................
.........................................................................................................................................................................
.........................................................................................................................................................................