3. Etude de la proposition d’une version parallèle de l’algorithme Apriori
amélioré [5].
4. Implémentation sur MapReduce et expérimentations.
Mots Clés
DataMining, MapReduce, Règles d’association, Segmentation.
Références
[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining
association rules in large databases. In VLDB, pages 487–499, 1994.
[2] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary R.
Bradski, Andrew Y. Ng, and Kunle Olukotun. Map-reduce for machine
learning on multicore. In NIPS, pages 281–288, 2006.
[3] Jeffrey Dean and Sanjay Ghemawat. Mapreduce : Simplified data pro-
cessing on large clusters. In OSDI, pages 137–150, 2004.
[4] Wei Jiang, Vignesh T. Ravi, and Gagan Agrawal. A map-reduce system
with an alternate api for multi-core environments. In CCGRID, pages
84–93, 2010.
[5] Maria Malek and Hubert Kadima. Searching frequent itemsets by cluste-
ring data : towards a parallel approach using mapreduce. In Web Infor-
mation System Engineering 2011 and 2012 Combined Workshops, LNCS
7652 proceeding, pages 251–258. Springer, 2013.
[6] Owen Sean, Anil Robin, Dunning Ted, and Friedman Ellen. Mahout in
Action. Manning Publications, 1 edition, January 2011.
[7] Weizhong Zhao, Huifang Ma, and Qing He. Parallel k-means clustering
based on mapreduce. In CloudCom, pages 674–679, 2009.
2