1eo_ch7(condensateurs).odt - page 1 sur 3
Ch.7 : LES CONDENSATEURS
I- Constitution
Un condensateur est constitué de deux conducteurs séparés par un isolant.
Les deux conducteurs sont les armatures du condensateur, et l'isolant est son diélectrique.
II – Charge et décharge d’un condensateur.
( Voir T.P. correspondant: Etude expérimentale d'un condensateur )
1. Charge d'un condensateur à travers une résistance alimenté avec une tension continue.
On observe l'évolution de la tension aux bornes d'un condensateur
2. Charge d'un condensateur à courant constant.
On observe l'évolution de la tension aux bornes d'un condensateur
UC
(V)
t
(s)
La tension aux bornes du condensateur
augmente régulièrement lorsqu’on le charge à
courant constant.
Lors de la charge d'un
condensateur à travers une
résistance alimentée avec une
tension continue, on distingue
deux phases : une première
appelée régime transitoire et une
deuxième appelée régime
permanent.
R
C
E = cste
E = 30 V UC
I= cste
C
UC
0 25 50 75 100 125 150 175 200 225 250 275
0
2,5
5
7,5
10
12,5
15
17,5
20
22,5
25
27,5
30
0
2,5
5
7,5
10
12,5
15
17,5
20
22,5
25
27,5
30
Charge d'un condensateur à travers une résistance
R = 10 M et C = 4,7 µFΩ
Temps en seconde
Tension Uc en volt
Plaques métalliques conductrices
Isolant (air) - Diélectrique
SYM BO LE:
C
Régime transitoire
Régime permanent
1eo_ch7(condensateurs).odt - page 2 sur 3
III – Capacité d’un condensateur.
1. Définition.
Sous une tension U1 un condensateur se charge de la quantité de charge électrique Q1.
Sous une tension U2 le même condensateur se charge de la quantité de charge électrique Q2.
On remarque que :
Q1
U1
=Q2
U2
=cste
Def: On appelle capacité ( C ) d'un condensateur le rapport constant Q/U.
où - Q est la charge portée par chaque armature en Coulomb ( C )
- U est la tension appliquée aux bornes du condensateur en Volt
- C est la capacité du condensateur en Farad ( F ).
2. Capacité d'un condensateur plan.
où - ε0 est la constante électrostatique
- εr est la permittivité relative du diélectrique.
ex.: air sec : εr =1 ; téflon: εr = 2 ; mica: εr =7.
Exercice d'application :
S = 15 cm² et e = 0,1 mm, calculer la capacité de ce condensateur. ( Solution : C = 0,13 nF)
IV – Association de condensateurs.
1. Capacité équivalente.
Le condensateur équivalent à une association de condensateurs, est celui qui, soumis à la même tension,
accumule la même charge totale. Ceq = QT / U
2. Association en parallèle.
QT = Q1 + Q2 + Q3
QT = Ceq.U ;
Q1 = C1.U ; Q2 = C2.U ; Q3 = C3.U
Ceq.U = C1.U + C2.U + C3.U
Ceq.U = ( C1 + C2 + C3 ).U
Lorsque les capacités sont en parallèles elles s'ajoutent : Ceq = C1 + C2 + C3
3. Association en série.
Lorsque les capacités sont en série ce sont leurs inverses qui
s'ajoutent pour donner l'inverse de la capacité équivalente.
C=Q
Uou Q=C.U
S: surface d'une
armature (m²)
e: épaisseur du
ε0=1
36 . π. 109=8,85 . 1012 F.m1
C=0.r.S
e
U=U1U2U3
U=Q
Ceq
; U1=Q
C1
; U2=Q
C2
; U3=Q
C3
Q
Ceq
=Q
C1
Q
C2
Q
C3
1
Ceq
.Q=
1
C1
1
C2
1
C3
.Q
enfin 1
Ceq
=1
C1
1
C2
1
C3
C
Q1
U1
--- ---
+++ +++
C
Q2
U2
--- ---
+++ +++
C1
Q1
--- ---
+++ +++
C3
Q3
U
--- ---
+++ +++
C2
Q2
--- ---
+++ +++
--- ---
+++ +++
CEQ
QT
U
--- ---
+++ +++
--- ---
+++ +++
--- ---
CEQ
Q
+++ +++
U
--- ---
C1
Q
+++ +++
-Q
U1
--- ---
C2
Q
+++ +++
-Q
U2
--- ---
C3
Q
+++ +++
-Q
U3
U
F=q.
E
E
F
F
1eo_ch7(condensateurs).odt - page 3 sur 3
V – Energie emmagasinée par un condensateur.
L'énergie emmagasinée par un condensateur de capacité C, chargé sous la tension U est :
Où - l'énergie W s'exprime en Joule ( J )
- La capacité C s'exprime en Farad ( F )
- La tension en Volt.
Exercice d'application :
Trouver deux nouvelles expressions de l'énergie W en utilisant la définition de la capacité. ( Solution : W = QU / 2 = Q² / 2C )
VI – Notion de champ électrique.
1. Définition.
A l'intérieur d'un condensateur chargé règne un champ
électrostatique noté
E
.
Ce vecteur
E
est :
- Perpendiculaire aux armatures.
- Dirigé de l'armature positive à l'armature négative
-
E
a pour intensité : E = ( VA - VB ) ÷ e
où VA - VB = UAB est la tension aux bornes du condensateur
et e la distance entre les armatures.
- E s'exprime en V/m ou V.m-1.
Exercice d'application :
Un condensateur plan a les caractéristiques suivantes : S = 350 cm² et e = 4mm.
Il est chargé sous une tension U = 25 V.
1) Calculer la capacité de ce condensateur.
2) Quel est l'intensité du champ électrique qui règne entre ces armatures ?
( Solution : C = 77,4 pF ; E = 6,25 kV/m )
2. Champ de claquage ou champ disruptif.
Def: C'est la valeur maximale du champ électrique que l'on peut appliquer sans détériorer l'isolant.
Ex.: Lorsque le diélectrique est l'air : Ed = 3,2 kV/mm, lorsque c'est du mica : Ed = 200 kV/mm.
Rmq : La tension maximale d'utilisation donnée par le constructeur est inférieure à celle déduite de ce champ de claquage.
Exercice d'application :
Au cours d'un orage, un système nuage-Terre peut être assimilé à un condensateur à air de surface 8 km² et d'épaisseur de diélectrique 500 m.
( Valeur du champ disruptif pour l'air : Ed = 3.2 MV/m )
Calculer:
a- la capacité de condensateur, (C=140 nF)
b- la tension maximale entre le nuage et la Terre, (UMAX=1,6 GV)
c- l'énergie emmagasinée par le système, (W=180 GJ)
d- la puissance libérée au cours de la décharge si celle-ci dure 10 ms. (P=18 TW)
3. Force électrostatique.
Une charge électrique placée dans un champ électrique
E
est soumise à la force électrostatique
La force électrostatique à pour caractéristiques :
- Sa direction est la même que celle de
E
- Elle est dirigée dans le même sens que
E
si q>0 et en sens contraire si q<0.
- Son intensité est
F=
F=q´ E
.
- Elle s'exprime en Newton ( N ).
W=1
2CU2
+
(q > 0)
-
(q < 0)
A B
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !