de développement importants de cette technologie), les réflexions sur la prochaine génération de systèmes
WDM à 400 Gb/s voire 1 Tb/s par longueur d’onde ont déjà commencé. L’objectif est, à l’horizon 2020, de
pouvoir véhiculer des capacités WDM totales de l’ordre de 80 à 100 Tb/s, sur des portées allant jusqu’à 2000
km. Pour cela, outre les évolutions des technologies optiques (généralisation de l’amplification Raman
distribuée ou bien introduction de nouvelles générations de fibres à très faible perte), d’importantes évolutions
sont également attendues tant au niveau du format de transmission, pour lequel s’affrontent aujourd’hui
approches mono-porteuse (Nyquist-WDM) et multi-porteuses (OFDM multi-bande), que des fonctions de
traitement du signal associées. En particulier, il est aujourd’hui acquis que la solution retenue devra s’appuyer
sur des formats de modulation à plus de 4 états, donc plus sensibles au bruit que le format QPSK actuel. Le
codage correcteur sera donc appelé à jouer un rôle clé dans la mise en œuvre des prochaines technologies de
transport longue distance sur fibre optique.
Un certain nombre de solutions de codage ont été proposées pour améliorer les performances et la portée des
systèmes cohérents à 100 Gb/s [1-4]. L’objectif est de fournir un gain de codage net (redondance comprise)
supérieur à 10dB, pour un taux d’erreur post-FEC de 10-
15
, avec un sur-débit de l’ordre de 20% maximum. Les
propositions avancées comprennent aussi bien des solutions dites de 2ième génération, s’appuyant sur des
codes en blocs avec décodage algébrique (HD-FEC), des solutions de 3ième génération plus innovantes telles
que les turbocodes ou bien les codes LDPC, combinant décodage à entrée souple (SD-FEC) et décodage itératif,
voire une combinaison (concaténation) des deux approches précédentes. A ce jour, la conception de codes
correcteurs spécifiquement dédiés aux formats de transmission 400 Gb/s et au-delà par longueur d’onde reste
donc un problème largement ouvert. Ciena puis Alcatel-Lucent, deux acteurs industriels majeurs dans le
domaine du transport optique, viennent tout juste d’annoncer, début mars 2012, et à quelques jours
d’intervalle, les premières puces électroniques pour le 400G [5][6].
L’objectif de cette thèse consiste à revisiter la conception et l’apport du codage correcteur pour les systèmes de
transmission cohérents à 400 Gb/s et au-delà sur fibre optique. Les spécificités propres à chacun des deux
formats de transmission pressentis (OFDM multi-bande et Nyquist-WDM) seront prises en compte dans la
conception des codes proposés, de même que les contraintes matérielles découlant d’un traitement
électronique à ultra-haut-débit. Différentes pistes seront explorées pour que les étages d’émission/réception
puissent bénéficier pleinement de la présence du code correcteur. On s’intéressera tout particulièrement à
l’optimisation conjointe du code et de la modulation (modulation codée) côté émetteur, au décodage à entrée
souple (SD-FEC), ainsi qu’à l’interaction entre les fonctions de synchronisation, d’égalisation et de décodage FEC
en réception.
RÉFÉRENCES :
[1] F. Chang, K. Onohara & T. Mizuochi, « Forward error correction for 100G transport networks », IEEE
Commun. Mag., Mar. 2010, pp. 48—55.
[2] T. Mizuochi & al, « Progress in soft-decision FEC », Proc. OFC 2011, Paper NWC2.
[3] K. Onohara & al, « Soft-decision-based forward error correction for 100 Gb/s transport systems », IEEE J.
Selec. Topics in Quantum Elec., vol. 16, no. 5, Sept/Oct. 2010.
[4] B. P. Smith & al, « Staircase codes: FEC for 100 Gb/s OTN », Preprint arXiv:1201.4106, 19 Jan. 2012
[5] “Ciena Widens Leadership in High Speed Optics with Innovative WaveLogic 3 Technology”, Telecom
Ramblings, 1er mars 2012. [Online] http://newswire.telecomramblings.com/2012/03/ciena-widens-
leadership-in-high-speed-optics-with-innovative-wavelogic-3-technology/
[6] “The 400G Photonic Service Engine”, Alcatel-Lucent Tech’zine, 6 mars 2012. [Online] http://www2.alcatel-
lucent.com/blogs/techzine/2012/the-400g-photonic-service-engine/