Symbolic Data and Self Organizing Map
Melle Aïcha EL GOLLI
Project AXIS INRIA-Rocquencourt
Lise CEREMADE university Paris IX, Dauphine
6/7 May 2004 Workshop on SDA- Dauphine 2
Complex data
Problem of data analysis !!!
Knowledge discovery
6/7 May 2004 Workshop on SDA- Dauphine 3
Data Base Data Base Expert
SObjects 1
SODAS (DB2SO, Dissimilarity, Discrimination, Regression, Visualisation,
Self organizing map (SOM) is neural
network using unsupervised learning:
vector quantization and/or clustering
while preserving the spatial ordering
of the referent vectors (prototype).
Clustering )
SObjects 2 SObjects 3
Results : Symbolic Objects,
clusters, tree, stars ...
6/7 May 2004 Workshop on SDA- Dauphine 4
Summary
¾Introduction classical Self Organizing Map
¾Extension Self organizing Map to dissimilarity data
¾Application in the Web Usage Mining
¾Conclusion
6/7 May 2004 Workshop on SDA- Dauphine 5
Clustering: SOM
1-neighborhood of c
c
2-neighborhood of c
wc={wc1, …wcp}, p is the dimension of input vectors
Neurons organized on a regular low-dimensional map (C, W) described by a graph
C: set of minterconnected neurons having a discrete topology (δrc shortest path on
graph)
W: set of referent vectors (weights)
1 / 23 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !