Chapitre 3 : Propriétés des ondes Chapitre 3 : Propriétés des ondes

Chapitre 3 : Propriétés des ondes
1
Chapitre 3 : Propriétés des ondes
Compétences à acquérir :
Savoir que le phénomène de diffraction est lié au rapport de la longueur d’onde aux dimensions de l’ouverture ou de l’obstacle.
Connaître et exploiter la relation = /a.
Identifier les situations physiques où il est pertinent de prendre en compte le phénomène de diffraction.
Pratiquer une démarche expérimentale visant à étudier ou utiliser le phénomène de diffraction pour des ondes lumineuses.
Connaître et exploiter les conditions d’interférences constructives et destructives pour des ondes monochromatiques.
Pratiquer une démarche expérimentale visant à étudier quantitativement le phénomène d’interférence d’ondes lumineuses.
Mettre en oeuvre une démarche expérimentale pour mesurer une vitesse en utilisant l’effet Doppler.
Exploiter l’expression du décalage Doppler de la fréquence dans le cas des faibles vitesses.
Utiliser des données spectrales et un logiciel de traitement d’images pour illustrer l’utilisation de l’effet Doppler comme moyen d’investigation
en astrophysique.
I Diffraction
I.1 Manifestation de la diffraction
Les deux photos ci-dessus montrent la surface de l’eau lorsqu’une onde s’y propage (vue du haut) et qu’elle
rencontre un obstacle, ici une ouverture.
Les zones claires représentent le sommet des vaguelettes et les zones sombres les creux.
Observ ation concernant l’onde derrière l’obstacle : …………………………………………….........
…………………………………………………………………………………………………………….
Observation concernant l’influence de la largeur de l’ouverture : ……………………………………...
…………………………………………………………………………………………………………….
La diffraction est un phénomène caractéristique des ondes qui permet à celles-ci de …………………………………
les obstacles.
obstacles
Chapitre 3 : Propriétés des ondes
2
La diffraction est d’autant plus marquée que l’obstacle a des dimensions………………………….. par rapport à
longueur d’onde.
I.2 Diffraction des ondes lumineuses
Comme les ondes mécaniques, la lumière peut être diffractée lorsqu’elle rencontre un obstacle.
a) Diffraction en lumière monochromatique
Diffraction de la lumière émise par un laser
La figure de diffraction dépend des dimensions de l’obstacle ainsi que ………………………………………..
Dans le cas de la diffraction d’une lumière monochromatique par
un fente ou un fil de diamètre a, la demi-largeur angulaire de la
tache centrale de lumière a pour expression :
a
avec en radian, et a en mètre.
Si diminue alors ………………...et l ………………………
Expression de la largeur l de la tache de lumière centrale en fonction de , D et a :
……………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………
laser
écran
laser
écran
obstacle
laser
écran
Image 1 Image 2 Image 3
Chapitre 3 : Propriétés des ondes
3
b) Diffraction en lumière polychromatique
Figure de diffraction observée en lumière blanche (toutes les longueurs d’onde du spectre visible)
La superposition des différentes figures de diffraction produit des irisations colorées sur l’écran.
Explication :
…………………………………………………………………………………………………………………….
………………………………………………………………………………………………………………….…
…………………………………………………………………………………………………………………….
Source de
lumière
blanche
Obstacle
écran
Chapitre 3 : Propriétés des ondes
4
II Interférences
II.1 Que se passe-t-il quand deux ondes arrivent en un même point ?
Sur cette photo, la surface de l’eau est excitée par
deux sources d’ondes.
Comme au paragraphe I, le sommet des vaguelettes
correspond aux zones claires.
On constate que l’intersection de deux cercles
claires, c’est dire la rencontre de deux sommets de
vaguelettes, donne naissance une zone encore plus
claire.
Interprétation : ……………………………………………………………………………………………………
…………………………………………………………………………………………………………………….
Sur cette figure, on voit deux systèmes de cercles concentriques,
ils représentent les crêtes des vagues générées par deux sources.
Chaque trait noir représentant le sommet, entre deux traits
noirs, on a un creux.
Si on mettait un bouchon au point rouge, les crêtes créées par
les deux sources y arriveraient en même temps :
les ondes …………………………………l'une à l'autre, on
observerait ……………………………………
Au point vert, par contre, c'est un creux venant de droite et un
sommet venant de gauche qui se rencontrent. Le mouvement du
bouchon ……………………………………………………….,
les deux ondes …………………………..…… en ce point.
Au point violet, deux creux coïncident, on observerait………………………………………………
Chapitre 3 : Propriétés des ondes
5
Quand deux ondes arrivent en un point,
leurs amplitudes s’additionnent
algébriquement.
On dit qu’elles interfèrent.
II.2 Interférences d’ondes périodiques
Lorsque deux sources d’ondes ont la même fréquence, on dit qu’elles sont cohérentes. Elles interfèrent et
produisent une figure d’interférence stable car leur déphasage est constant.
Certains points sont en permanence situés en des lieux d’interférences destructives et d’autres en des lieux
d’interférences constructives.
Lorsque les ondes arrivent en phase en un point,
les interférences sont constructives : l’amplitude
est maximale.
Elle correspond à la somme des amplitudes des
deux ondes
Lorsque les ondes arrivent en opposition de
phase en un point, les interférences sont
destructives : l’amplitude est nulle.
II.3 Différence de marche
Sur la figure ci-contre, S1 et S2 représentent des sources
d’ondes. Le point P est atteint par les ondes issues de S1 et S2.
Les trajets d1 et d2 ont des longueurs différentes, on appelle
cette différence de longueur différence de marche.
On la note en général .
= d2 d1
d1
d2
S1
S2
P
1 / 9 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !