File : Complex-Numbers-Exo-01
***********************************************************************
HERE
Venant de mon cours de math de secondaire
Mettre sous forme goniométrique, les nombres complexes :
z = - 2 . 31/2 + 2 . j
| z | = 4
tg () = - 1/ 31/2 = - 31/2 / 3 - tg () = 31/2 / 3 tg ( - ) = 31/2 / 3
- = / 6 = 5 . (/ 6) ;
z = 4 . (cos (5 . (/ 6)) + sin (5 . (/ 6))) ;
***************************
z = 4 – 4 . j
| z | = 4 . 21/2
tg () = - 4/ 4 = - 1 - tg () = 1 tg (- ) = 1
- = / 4 = - (/ 4) où encore = 2 . - (/ 4) = 7 . (/ 4)
z = 4 . 21/2 . (cos (7 . (/ 4)) + sin (7 . (/ 4))) ;
***************************
z = - 4 + 4 . j
| z | = 4 . 21/2
tg () = 4/ 4 = 1 tg () = 1 tg () = 1 tg ( + ) = 1
+ = / 4 = - 3 . (/ 4) = 2 . - 3 . (/ 4) = 3 . (/ 4) ;
z = 4 . 21/2 . (cos (5 . (/ 4)) + sin (5 . (/ 4))) ;
***************************
z = – 3 . j =>
z = 3 . (cos (3 . (/ 2)) + sin (3 . (/ 2))) ;
***************************
z1 = 1 + j . 31/2 ;
z2 = 2 – 2 . j ;