
 
File : Complex-Numbers-Exo-01 
 
*********************************************************************** 
HERE 
 
Venant de mon cours de math de secondaire 
 
Mettre sous forme goniométrique, les nombres complexes : 
z = - 2 . 31/2 + 2 . j  
 
| z | = 4 
 
tg () = - 1/ 31/2 = - 31/2 / 3  - tg () = 31/2 / 3   tg ( - ) = 31/2 / 3  
 -   = / 6     = 5 . (/ 6) ; 
 
z = 4 . (cos (5 . (/ 6)) +  sin (5 . (/ 6))) ; 
 
*************************** 
z = 4 – 4 . j  
 
| z | = 4 . 21/2  
 
tg () = - 4/ 4 = - 1  - tg () = 1   tg (- ) = 1  
-   = / 4     = - (/ 4) où encore  = 2 .  - (/ 4) = 7 . (/ 4)  
 
z = 4 . 21/2  . (cos (7 . (/ 4)) +  sin (7 . (/ 4))) ; 
 
*************************** 
z = - 4 + 4 . j  
 
| z | = 4 . 21/2  
 
tg () = 4/ 4 = 1  tg () = 1  tg () = 1  tg ( + ) = 1  
  +   = / 4    = - 3 . (/ 4)    = 2 .  - 3 . (/ 4) = 3 . (/ 4) ;  
 
z = 4 . 21/2  . (cos (5 . (/ 4)) + sin (5 . (/ 4))) ; 
 
*************************** 
z = – 3 . j => 
 
z = 3  . (cos (3 . (/ 2)) + sin (3 . (/ 2))) ; 
 
 
*************************** 
z1 = 1 + j . 31/2 ;  
z2 = 2 – 2 . j ;