Formules 2-XORSAT aléatoires dans la fenêtre critique

publicité
Formules 2-XORSAT aléatoires dans la fenêtre
critique
Vlady RAVELOMANANA1
1 LIPN
– UMR CNRS 7030, Université de Paris Nord
[email protected]
(travail en commun avec H ERVÉ DAUDÉ – LATP, Univ.. de Provence.)
Aléa 2008
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
1 / 26
Sommaire
1
Contextes: k-SAT, CSP
2
2-XORSAT
3
Enumérations exactes des graphes de 2-XORSAT
4
Transition de phase et 2-XORSAT
5
Conclusion et perspectives
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
2 / 26
Les formules aléatoires
k -SAT/CSP ...
Formules k -SAT aléatoires (k > 2) −→ transitions de phase
abruptes (sharp) F RIEDGUT, B OURGAIN 99
De manière générale,
Les objectifs dans les phénomènes de transitions de phase
1
Localisation du seuil, ex. 3-SAT 4.2???, 3-XORSAT D UBOIS , M ANDLER
03.
2
Nature de la transition: abrupte ou douce (’sharp’ ou ’coarse’). Voir
cours ALEA’05 de C REIGNOU, DAUDÉ.
3
Détails dans la Fenêtre Critique (ex: 2-SAT B OLLOBÁS et al. 06)
4
Structure de l’espace des solutions M ONASSON et al. 07
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
3 / 26
L’Exemple 2-SAT : Localisation du Seuil
Une instance : (v1 ∨ v2 ) ∧ (¬v1 ∨ v3 ) ∧ (¬v1 ∨ ¬v2 )
Une affectation : SAT avec (v1 = 1, v2 = 0, v3 = 1).
Localisation du seuil : n variables, m = c × n clauses. c < 1 proba
SAT ∼ 1, c > 1 proba SAT ∼ 0.
Structures combinatoires: graphes dirigés.
¬x = 1 =⇒ y = 1
E CRIRE
x ∨y
COMME
¬y = 1 =⇒ x = 1
Caractérisation : SAT ssi pas de chemin dirigé entre x et ¬x
et entre ¬x et x.
Preuves de la localisation : essentiellement premier et second
moments. G OERDT 92, D E LA V EGA 92, C HVÀTAL -R EED 92.
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
4 / 26
L’Exemple 2-SAT : Fenêtre Critique.
2-SAT scaling window :
Th. [Bollobás, Borgs, Chayes, Kim, Wilson] (2006)
Il existe des constantes ε0



P Fn,m=(1+λn n−1/3 ) n =


and λ0 (0 < ε0 < 1, 0 < λ0 < ∞) s. t.
1 − Θ(|λn |−3 )
Θ(1)
exp −Θ(λ−3
n )
si − ε0 n1/3 ≤ λn ≤ −λ0
si − λ0 ≤ λn ≤ +λ0
si + λ0 ≤ λn ≤ +ε0 n1/3 .
Remarques : Ces résultats évoquent [Janson, Knuth, Luczak,
Pittel] (1993)
h
i
P G(n, m = n/2(1 + λn n−1/3 ) sans composante complexe ∼

5
−3
si − n−1/12 λn ≤ −λ0

 1 − 24 |λn |
f (λn )
si − λ0 ≤ λn ≤ +λ0

 O λ−3/4 exp −λ3 /6
si + λ0 ≤ λn n1/12 .
n
n
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
5 / 26
Sommaire
1
Contextes: k-SAT, CSP
2
2-XORSAT
3
Enumérations exactes des graphes de 2-XORSAT
4
Transition de phase et 2-XORSAT
5
Conclusion et perspectives
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
6 / 26
2-XORSAT
Principales motivations
Travaux empiriques de K IRKPATRICK et S ELMAN (1994) sur k -SAT.
Les résultats rigoureux sont en nombre très limité!
Voir les apports de la C OMBINATOIRE A NALYTIQUE sur les
problèmes du type SAT.
M ONASSON (2007) a suggéré que (physique stat.) :
lim nexposant critique × proba [2 − XORSAT(n, 1/2n)] = O(1) ,
n→+∞
ou “exposant critique” = 1/12 .
On va montrer que “exposant critique” = 1/12 et expliciter O(1).
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
7 / 26
2-XORSAT: Les probabilités dans la fenêtre de transition
1
0,8
0,6
0,4
0,2
0
0
0,2
0,4
0,6
0,8
c
def
p(n, cn) = proba [2 − XOR avec n variables , cn clauses ] soit SAT
pour n = 1000 , n = 2000 et la fonction théorique : ec/2 (1 − 2c)1/4 .
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
8 / 26
2-XORSAT: Les probabilités dans la fenêtre de transition
1,6
1,2
0,8
0,4
0
-4
-2
0
2
4
Changement d’échelle au point zéro, i.e c = 1/2 :
n1/12 × p(n, n/2 + µn2/3 ) comme une fonction de µ.
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
9 / 26
Random 2-XORSAT
Ex :
x1 ⊕ x2 = 1, x2 ⊕ x3 = 0, x3 ⊕ x4 = 1, · · · .
Forme générale : AX = C où A possède m lignes et 2 colonnes
et C est un vecteur 0/1 de dimension m.
Distribution : A et C sont générés uniformément
Structures sous-jacentes : graphes avec arêtes pondérées
x ⊕ y = ε ⇐⇒ arête de poids ε ∈ {0, 1}.
Caractérisation : [C REIGNOU,DAUDE (2003)]
SAT ssi aucun cycle élémentaire de poids impair.
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
10 / 26
SAT ssi aucun cycle élémentaire de poids impair
1
0

x1 ⊕ x2



x2 ⊕ x3
x ⊕ x3


 1
x3 ⊕ x4
=1
=0
=0
=1
111
000
000
111
000
111
000
111
1
3 11
00
11
00
00
11
0
00
11
11
00
00
11
2
1
00
11
00
00
11
4 11
UNSAT ⇐= Fixons un cycle de poids impair ...
SAT ⇐= Pas de cycles de poids impair. Preuve basée sur une
DFS-affectation.
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
11 / 26
Sommaire
1
Contextes: k-SAT, CSP
2
2-XORSAT
3
Enumérations exactes des graphes de 2-XORSAT
4
Transition de phase et 2-XORSAT
5
Conclusion et perspectives
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
12 / 26
Idées générales : énumerer pour contrôler.
Nous allons énumérer les graphes connexes sans cycles de
poids impair suivant deux paramètres: nombre de sommets n et
nombre d’arêtes n + L. L = excès.
Soit
X
zn
CL (z) =
cn,n+L .
n!
n>0
Que valent les séries CL ?
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
13 / 26
Idées générales : énumerer pour contrôler.
Nous allons énumérer les graphes connexes sans cycles de
poids impair suivant deux paramètres: nombre de sommets n et
nombre d’arêtes n + L. L = excès.
Soit
X
zn
CL (z) =
cn,n+L .
n!
n>0
Que valent les séries CL ?
Th.
1
WL (2z)
2
avec WL = SGE de Wright des graphes connexes.
CL (z) =
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
13 / 26
Enumérations: arbres et cycles
Arbres enracinés et non enracinés (excès = −1)
T (z) = ze2T (z) =
X
zn
(2n)n−1 ,
n!
C−1 (z) = T − T 2 .
n>0
Cycles (excès = 0)
1
Nombre d’étiquetages du cycle lisse construit avec n > 2 sommets:
2n n!
.
2n
2
Série des cycles lisses (i.e. sans sommets de degré 1)
1
C̃0 (z) = − log (1 − 2z) − z/2 − z 2 /2 .
4
3
On en déduit C0 (avec la chevelure d’arbres plantés)
1
C0 (z) = − log (1 − 2T ) − T /2 − T 2 /2 .
4
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
14 / 26
Enumération via théorie des graphes (1)
Pour un graphe g avec n sommets et n + L arêtes, on considère
une numérotation de ses arêtes et tout sous graphe h de g est
codé par un élément de Fn+L
2 :
(0, 0, · · · , 0) = sous-graphe vide et (1, 1, · · · , 1) = g.
L’addition modulo 2 de 2 tels vecteurs = différence symétrique
des ens. d’arêtes de 2 sous-graphes
Si t est un arbre couvrant de g alors chacune des L + 1 arêtes
de g \ t forme un unique cycle fondamental et les (L + 1) cycles
c1 , · · · , cL+1 forment une base de l’espace des cycles engendré
par tous les cycles de g.
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
15 / 26
Enumération via théorie des graphes (2)
Pour une pondération ω (codée aussi sur Fn+L
) des arêtes de g,
2
on associe la fonction de poids Pω
Fn+L
−→ {0, 1}
2
n+L
X
(u1 , · · · , un+L ) −→
ui wi
(1)
i=1
Prop. Soit C l’espace des cycles de g.
∀c ∈ C,
V. Ravelomanana (LIPN – P13)
Pω (c) = 0 ⇐⇒ ∀i,
2-XORSAT inside the critical window
Pω (ci ) = 0 .
11 – 03 – 2008
16 / 26
Enumération via théorie des graphes (3)
2n−1 choix pour pondérer l’arbre couvrant t
pour chaque cycle fondamental, il n’y a qu’une manière de
pondérer pour que la base c1 , · · · cL+1 des cycles fondamentaux
vérifient ∀i ∈ [1, L + 1] , P(ci ) = 0.
Conséquence:
X
zn X
zn
1
CL (z) =
cn,n+L
=
wn,n+L 2n−1
= WL (2z) .
n!
n!
2
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
17 / 26
Sommaire
1
Contextes: k-SAT, CSP
2
2-XORSAT
3
Enumérations exactes des graphes de 2-XORSAT
4
Transition de phase et 2-XORSAT
5
Conclusion et perspectives
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
18 / 26
Phase sous-critique
Th.
La probabilité qu’une formule 2-XORSAT avec n variables et m < cn
avec c < 1/2 clauses soit SAT est
Pr (n, m = cn) = ec/2 (1 − 2c)1/4 + O(n−1/2 ) .
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
19 / 26
Phase sous-critique
Th.
La probabilité qu’une formule 2-XORSAT avec n variables et m < cn
avec c < 1/2 clauses soit SAT est
Pr (n, m = cn) = ec/2 (1 − 2c)1/4 + O(n−1/2 ) .
Preuve.
La probabilité qu’un graphe G(n, m = cn) ne contienne pas de
COMPOSANTES MULTICYCLIQUES est O(n−1/2 ) quand c < 1/2 cf.
F LAJOLET, K NUTH , P ITTEL (1989).
La probabilité qu’un graphe sans multicycles soit bien pondéré est
n!
[z n ]
n(n−1)
m
...
V. Ravelomanana (LIPN – P13)
C−1 (z)n−m
exp (C0 (z))
(n − m)!
2-XORSAT inside the critical window
11 – 03 – 2008
19 / 26
Preuve (suite)
Cauchy + changement de variable u = z/2e−z −→
I
1 2m−n−1
du
2
2
(1 − u)3/4 e−u/4−u /8 enh(u)
,
2πi
u
avec h(z) = z − log z + (1 − m/n) log (1 − (z − 1)2 ).
h0 (z) = 0 pour z = 2m/n< 1 et z = 1. h00 (2m/n) > 0.
La méthode du col s’applique (voir cf. F LAJOLET, K NUTH , P ITTEL).
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
20 / 26
Phase critique
Th.
La probabilité p(n, m = n/2(1 + µn−1/3 ), µ FIXÉ, qu’une formule
2-XORSAT aléatoire avec n variables and m clauses soit satisfiable
vérifie :
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
21 / 26
Phase critique
Th.
La probabilité p(n, m = n/2(1 + µn−1/3 ), µ FIXÉ, qu’une formule
2-XORSAT aléatoire avec n variables and m clauses soit satisfiable
vérifie :
lim n
1/12
n→∞
p(n, m) =
∞
X
r =0
√
2π e1/4 er
A(3r + 1/4, µ)
2r
!
,
où (er )r ∈N et A sont donnés par :
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
21 / 26
Phase critique
Th.
La probabilité p(n, m = n/2(1 + µn−1/3 ), µ FIXÉ, qu’une formule
2-XORSAT aléatoire avec n variables and m clauses soit satisfiable
vérifie :
lim n
1/12
n→∞
p(n, m) =
∞
X
r =0
√
2π e1/4 er
A(3r + 1/4, µ)
2r
!
,
où (er )r ∈N et A sont donnés par :
∞
X
r
er x = exp
r =0
∞
X
r =1
(6r )!
xr
5r
−1
2r
2
3 (3r )! (2r )!
!
k
3
1 2/3
µ
e−µ /6 X
23
.
A(y , µ) = (y +1)/3
3
k ! Γ (y + 1 − 2k )/3
k ≥0
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
21 / 26
Idées générales de la preuve
1
Analyse complexe : calcul du nombre asymptotique des bonnes
configurations avec n − m + r arbres (cf. J ANSON , K NUTH ,
L UCZAK , P ITTEL 93) :
ar (n, m) =
2
n!
2πi
I
SGE(z)
dz
,
z n+1
où SGE = fonction(T (z), Cr (z)) .
Probabilité : Pour tout entier r ≥ 0
(i)
pr (n, m) =
ar (n, m)
∼
n(n−1)
√
m
2π e1/4 er
A(3r + 1/4, µ)
2r n1/12
(ii)
Il existe R, C, > 0 t. q. ∀r ≥ R et ∀n ,
3
n1/12 pr (n, m) ≤ C e− r .
convergence dominée:
p(n, m) =
X
pr (n, m) .
r≥0
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
22 / 26
2-SAT ←-,→ 2-XORSAT:
méthodes et résultats
1
Caractérisations :
“2-SAT : Pas de chemin dirigé de x à ¬x”,
“2-XORSAT : Pas de cycles de poids impair”.
2
Outils mathématiques :
2-SAT : Méthodes probabilistes.
2-XORSAT : Combinatoire analytique.
3
Résultats dans “La Fenêtre” :
2-SAT : Ordre de grandeur.
2-XORSAT : Très précis. −→ f(x) = lim n1/12 p(n, m = n/2 + xn2/3 )
4
Max version :
MAX-2-SAT : cf. C O P P E R S M I T H et al (2004)
MAX-2-XORSAT −→ A faire (approche analytique ...)
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
23 / 26
L’Exemple 2-SAT: Espace des solutions (MAX-2-SAT aléatoire)
C OPPERSMITH , G AMARNIK , H AJIAGHAYI , S ORKIN (2004)
def
Fn,m = nombre MAXIMUM de clauses satisfaisables.
E [Fn,m=c.n ] = m − Θ(1/n) si c < 1.
Dans la "fenêtre", i.e. c = 1 + Θ(n−1/3 ), cette espérance est
m − Θ(1).
"Grand c", F (n, m) ∼ (3/4c + Θ(c 1/2 ))n.
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
24 / 26
Sommaire
1
Contextes: k-SAT, CSP
2
2-XORSAT
3
Enumérations exactes des graphes de 2-XORSAT
4
Transition de phase et 2-XORSAT
5
Conclusion et perspectives
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
25 / 26
Conclusion
2-XORSAT
Une bonne illustration sur les
APPORTS DE LA
C OMBINATOIRE A NALYTIQUE.
Perspectives
2-COL = bipartiteness (lié aussi au “Cuckoo hashing”)
2-QXORSAT (quantified version of XORSAT, cf. exposé N ADIA
C REIGNOU)
MAX-2-CSP (average case analysis ...)
MAX-2-XORSAT ...
V. Ravelomanana (LIPN – P13)
2-XORSAT inside the critical window
11 – 03 – 2008
26 / 26
Téléchargement