Telechargé par oroukobizime

Physique Chimie - MP - Fiches méthodes (Proetudes.blogspot.com)

publicité
MP
Fiches-méthodes
Physique
Chimie
Exercices corrigés
Sébastien Abry
Christophe Bernicot
Antoine Billaud
Pauline Boulleaux-Binot
Stéphanie Calmettes
Florence Depaquit-Debieuvre
Tommy Kopp
Gabrielle Lardé
MP
QUE
FAIRE
?
Une collection dirigée
par Sylvain Rondy
Physique
Chimie
Sébastien Abry
Stéphanie Calmettes
Professeur au lycée la Martinière Duchère
à Lyon
Professeur au lycée Saint-Denis à Annonay
Christophe Bernicot
Professeur au lycée Dupuy de Lôme à Lorient
Antoine Billaud
Florence Depaquit-Debieuvre
Professeur au lycée Roosevelt à Reims
Tommy Kopp
Diplomé de l’école des Mines de Paris
Professeur au lycée Jacques Prévert
à Boulogne-Billlancourt
Pauline Boulleaux-Binot
Gabrielle Lardé
Professeur au lycée Jean-Baptiste Corot
à Savigny-sur-Orge
Professeur au collège Marcel Mariotte
à Saint Siméon de Bressieux
2VF GBJSF
3RXU pWXGLHU XQH FDUWH G¶pTXLSRWHQWLHOOHV LGHQWLILHU OHV VRXUFHV HOOHV VRQW HQWRXUpHV SDU OHV pTXLSRWHQWLHOOHV
FKHUFKHU OHV ]RQHV R OHV OLJQHV GH FKDPS V¶pFDUWHQW
LGHQWLILHU OHV HQGURLWV R OH FKDPS pOHFWULTXH HVW QXO
3RXU FDOFXOHU OH SRWHQWLHO pOHFWULTXH −−→
−
→
VRLW FDOFXOHU OH FKDPS pOHFWULTXH HW LQWpJUHU OD UHODWLRQ E = −JUDG (V )
VRLW FDOFXOHU GLUHFWHPHQW HQ VRPPDQW OHV SRWHQWLHOV FUppV SDU OHV GLIIpUHQWHV FKDUJHV
VRLW UpVRXGUH O¶pTXDWLRQ GH 3RLVVRQ
$POTFJMT
$X QLYHDX G¶XQH FKDUJH VXUIDFLTXH OH SRWHQWLHO pOHFWULTXH HVW XQH IRQFWLRQ FRQWLQXH DORUV
TXH OH FKDPS pOHFWULTXH HVW GLVFRQWLQX
→
−
→−
2Q REWLHQW O¶pTXDWLRQ G¶XQH OLJQH pTXLSRWHQWLHOOH HQ LQWpJUDQW OD UHODWLRQ E . Gl = 0
→ −
−
→ −
→
2Q REWLHQW O¶pTXDWLRQ G¶XQH OLJQH GH FKDPS HQ LQWpJUDQW OD UHODWLRQ E ∧ Gl = 0 &YFNQMF USBJU©
$X FHQWUH G¶XQ SLqJH GH 3HQQLQJ OH FKDPS pOHFWULTXH VH PHW VRXV OD IRUPH −
→
→
→
E �a×y×−
e +a×x×−
e
x
y
R a HVW XQH FRQVWDQWH SRVLWLYH 2Q D WUDFp OD FDUWH DYHF GHV OLJQHV GH FKDPSV HW GHV pTXLSR
WHQWLHOOHV
y
x
20. Utiliser le potentiel électrique
141
'pWHUPLQHU O¶pTXDWLRQ j XQH FRQVWDQWH SUqV GHV OLJQHV pTXLSRWHQWLHOOHV
'pWHUPLQHU O¶pTXDWLRQ GHV OLJQHV GH FKDPS
,GHQWLILHU VXU OH VFKpPD OHV pTXLSRWHQWLHOOHV HW OHV OLJQHV GH FKDPS
'pWHUPLQHU O¶HPSODFHPHQW GHV FKDUJHV
40-65*0/
−
→
2Q QRWH Gl OH FKHPLQ pOpPHQWDLUH G¶XQH OLJQH pTXLSRWHQWLHOOH &RPPH HOOHV VRQW SHU
SHQGLFXODLUHV DX FKDPS pOHFWULTXH DORUV RQ D →
−
→−
E . Gl = a × yGx + a × xGy = 0
2Q UHFRQQDLW OD GLIIpUHQWLHOOH G¶XQ SURGXLW a × G (x × y) = 0 2Q REWLHQW O¶pTXDWLRQ GHV
OLJQHV pTXLSRWHQWLHOOHV HQ LQWpJUDQW x × y = cte
−
→
2Q QRWH Gl OH FKHPLQ pOpPHQWDLUH G¶XQH OLJQH GH FKDPS &RPPH HOOHV VRQW SDUDOOqOHV
DX FKDPS pOHFWULTXH DORUV RQ D ⎛ ⎞ ⎛
⎞ ⎛
⎞
0
→ ⎝Gx⎠ ⎝a × y ⎠ ⎝
−
→ −
→
⎠=−
0
E ∧ Gl = Gy ∧ a × x =
0
0
0
a × yGy − a × xGx
/HV OLJQHV GH FKDPS VXLYHQW O¶pTXDWLRQ
a ×�yGy − a × xGx = 0 2Q UHFRQQDLW j OD
�
FRQVWDQWH a SUqV OD GLIIpUHQWLHOOH G x2 − y 2 = 0 2Q REWLHQW O¶pTXDWLRQ GHV OLJQHV GH
FKDPS HQ LQWpJUDQW x2 − y 2 = cte
F¶HVWjGLUH
y 2 = x2 + cte
/HV pTXLSRWHQWLHOOHV VRQW HQ SRLQWLOOpHV HW OHV OLJQHV GH FKDPS HQ WUDLWV SOHLQV
/HV OLJQHV GH FKDPS VH GLULJHQW YHUV OHV FKDUJHV HOOHV VH WURXYHQW GRQF j O¶LQILQL VXU OHV
GHX[ ELVVHFWULFHV
&YFSDJDFT
3RWHQWLHO FUpp SDU XQH ERXOH FKDUJpH
8QH ERXOH GH UD\RQ R XQLIRUPpPHQW FKDUJpH GH FKDUJH Q FUpH OH FKDPS pOHFWULTXH �
Q
→
×r×−
er
SRXU r R
−
→
4πR3 �0
E =
Q
−
→
× er
VLQRQ
4π�0 ×r 2
&9&3$*$& 142
'pWHUPLQHU OH SRWHQWLHO pOHFWULTXH j O¶H[WpULHXU GH OD ERXOH
(Q GpGXLUH OH SRWHQWLHO pOHFWULTXH j O¶LQWpULHXU GH OD ERXOH
Électromagnétisme
&9&3$*$& 3URSULpWpV GHV pTXLSRWHQWLHOOHV
-XVWLILHU TXH OD FLUFXODWLRQ GX FKDPS pOHFWULTXH FUpp SDU XQH FKDUJH SRQFWXHOOH HVW FRQVHU
YDWLYH (Q GpGXLUH O¶H[LVWHQFH G¶XQ SRWHQWLHO pOHFWULTXH HW H[SOLFLWHU OH SRWHQWLHO pOHF
WULTXH FUpp SDU XQH FKDUJH SRQFWXHOOH 2Q SUHQGUD XQ SRWHQWLHO QXO j O¶LQILQL
0RQWUHU TXH G¶XQH PDQLqUH JpQpUDOH OHV pTXLSRWHQWLHOOHV VRQW SHUSHQGLFXODLUHV DX[
OLJQHV GH FKDPS pOHFWULTXH
-XVWLILHU TX¶XQ SODQ G¶DQWLV\PpWULH HVW XQH pTXLSRWHQWLHOOH
0RQWUHU TX¶j O¶LQWHUVHFWLRQ GH GHX[ pTXLSRWHQWLHOOHV OH FKDPS pOHFWULTXH HVW IRUFpPHQW
QXO
1PVS WPVT BJEFS
E©NBSSFS
−−→
−
→
8WLOLVHU OD UHODWLRQ E = −JUDG (V ) VRXV IRUPH LQWpJUDOH HW OD FRQWLQXLWp
GX SRWHQWLHO pOHFWULTXH
&9&3$*$& &DOFXOHU OD FLUFXODWLRQ GX FKDPS pOHFWULTXH HQWUH GHX[ SRLQWV A HW B
Solutions
&9&3$*$& 4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& −−→
−
→
2Q XWLOLVH OD UHODWLRQ FKDPS SRWHQWLHO E = −JUDG (V ) &RPPH OH FKDPS HW OH SRWHQ
WLHO QH GpSHQGHQW TXH GX UD\RQ r FHWWH UHODWLRQ GHYLHQW VLPSOHPHQW Er (r) = − GV
Gr 0DLQWHQDQW RQ LQWqJUH HQ IDLVDQW DSSDUDvWUH XQH FRQVWDQWH G¶LQWpJUDWLRQ V (r) = −
Q
Q
+K
Gr =
4π�0 × r2
4π�0 × r
2U OH SRWHQWLHO HVW QXO j O¶LQILQL GRQF OD FRQVWDQWH G¶LQWpJUDWLRQ HVW QXOOH V (r) =
Q
SRXU r > R
4π�0 × r
2Q UHSUHQG OH PrPH UDLVRQQHPHQW HQ LQWpJUDQW OH FKDPS j O¶LQWpULHXU GH OD ERXOH V (r) = −
Q
Q
× rGr = −
× r2 + K
4πR3 �0
8πR3 �0
20. Utiliser le potentiel électrique
143
2Q XWLOLVH OD FRQWLQXLWp GX SRWHQWLHO pOHFWULTXH DX QLYHDX GX UD\RQ R SRXU GpWHUPLQHU
OD FRQVWDQWH G¶LQWpJUDWLRQ V (R− ) = V (R+ ) −
Q
Q
× R2 + K =
3
8πR �0
4π�0 × R
2Q WURXYH K = 8π�3Q
'RQF GDQV OD ERXOH OH SRWHQWLHO pOHFWULTXH YDXW 0 ×R
V (r) = −
Q
× r2 − 3R2 SRXU r < R
3
8πR �0
&9&3$*$& −
→
→
8QH FKDUJH SRQFWXHOOH q SODFpH HQ O FUpH OH FKDPS pOHFWULTXH E = 4π�0q×r2 −
er 2Q
FDOFXOH OD FLUFXODWLRQ GH FH FKDPS HQWUH GHX[ SRLQWV A HW B B
CA
=
B
A
→
−
→−
E . Gl =
B
A
−
→
q
q
−
→
er . Gl =
2
4π�0 × r
4π�0
B
A
Gr
q
=−
2
r
4π�0
1
1
−
rB
rA
/D FLUFXODWLRQ HQWUH GHX[ SRLQWV A HW B QH GpSHQG SDV GX FKHPLQ VXLYL GRQF OD FLUFX
ODWLRQ HVW FRQVHUYDWLYH ,O H[LVWH GRQF XQH IRQFWLRQ V WHOOH TXH B
= − (V (B) − V (A))
CA
3DU LGHQWLILFDWLRQ RQ GpILQLW OH SRWHQWLHO pOHFWULTXH HQ WRXW SRLQW M j XQH FRQVWDQWH
SUqV q
V (M ) =
+ cte
4π�0 × r
2Q VXSSRVH VH GpSODFHU VXU XQH pTXLSRWHQWLHOOH V = cte GRQF GV = 0 F¶HVWjGLUH →
−
→−
− E . Gl = 0
144
−
→
−
→
Gl HVW XQ FKHPLQ pOpPHQWDLUH DSSDUWHQDQW j XQH pTXLSRWHQWLHOOH HW E OH FKDPS pOHFWULTXH
DX QLYHDX GH O¶pTXLSRWHQWLHOOH &HV GHX[ YHFWHXUV VRQW SHUSHQGLFXODLUHV HQWUH HX[ GRQF
OH FKHPLQ pOpPHQWDLUH G¶XQH pTXLSRWHQWLHOOH HVW SHUSHQGLFXODLUH DX FKDPS pOHFWULTXH
GRQF OHV VXUIDFHV pTXLSRWHQWLHOOHV VRQW SHUSHQGLFXODLUHV DX[ OLJQHV GH FKDPS pOHFWULTXH
/H FKDPS pOHFWULTXH HVW WRXMRXUV SHUSHQGLFXODLUH j XQ SODQ G¶DQWLV\PpWULH RU OHV pTXL
SRWHQWLHOOHV VRQW SHUSHQGLFXODLUHV DX[ OLJQHV GH FKDPS GRQF OHV SODQV G¶DQWLV\PpWULH
VRQW GHV VXUIDFHV pTXLSRWHQWLHOOHV
/H FKDPS pOHFWULTXH HVW SHUSHQGLFXODLUH DX[ pTXLSRWHQWLHOOHV 'RQF j O¶LQWHUVHFWLRQ GH
GHX[ pTXLSRWHQWLHOOHV OH FKDPS pOHFWULTXH HVW SHUSHQGLFXODLUH DX[ GHX[ VXUIDFHV OH
FKDPS pOHFWULTXH HQ FH SRLQW HVW GRQF IRUFpPHQW QXO
Électromagnétisme
Utiliser le théorème de Gauss
6UJMJTFS MF UI©PS¨NF EF (BVTT
pour
un champ électrique
calculer
QPVS DBMDVMFS
21
VO DIBNQ ©MFDUSJRVF
2VBOE PO OF TBJU QBT −
→
(Q WRXW SRLQW M GH O¶HVSDFH OH FKDPS pOHFWULTXH E HW OD GHQVLWp YROXPLTXH GH FKDUJH
ρ VRQW UHOLpV SDU O¶pTXDWLRQ ORFDOH GH 0D[ZHOO *DXVV −
→
ρ(M )
GLY E (M ) =
�0
/RUVTX¶RQ LQWqJUH O¶pTXDWLRQ GH 0D[ZHOO *DXVV VXU XQ YROXPH RQ REWLHQW OH WKpRUqPH
GH *DXVV
/H IOX[ GX FKDPS pOHFWULTXH j WUDYHUV XQH VXUIDFH IHUPpH HVW pJDO j OD FKDUJH Qint
FRQWHQXH GDQV FHWWH VXUIDFH GLYLVpH SDU OD SHUPLWWLYLWp GLpOHFWULTXH GX YLGH �0 → QLQW
−
→−
E .GS =
�0
VXUIDFH
2VF GBJSF
3RXU DSSOLTXHU OH WKpRUqPH GH *DXVV GpWHUPLQHU OD GpSHQGDQFH HW OD GLUHFWLRQ GX FKDPS pOHFWULTXH JUkFH DX[ LQYDULDQFHV
HW DX[ V\PpWULHV GH OD GLVWULEXWLRQ GH FKDUJHV pOHFWULTXHV
H[SOLFLWHU XQH VXUIDFH IHUPpH GLWH GH *DXVV UHVSHFWDQW OHV V\PpWULHV GH OD GLVWUL
EXWLRQ HW SDVVDQW SDU OH SRLQW R O¶RQ FKHUFKH OH FKDPS pOHFWULTXH
FDOFXOHU OH IOX[ GX FKDPS pOHFWULTXH j WUDYHUV FHWWH VXUIDFH
FDOFXOHU OD FKDUJH pOHFWULTXH FRQWHQXH GDQV FHWWH VXUIDFH
DSSOLTXHU OH WKpRUqPH GH *DXVV
21. Utiliser le théorème de Gauss pour calculer un champ électrique
145
$POTFJMT
−
→
/H YHFWHXU VXUIDFH pOpPHQWDLUH GS HVW WRXMRXUV GLULJp YHUV O¶H[WpULHXU GH OD VXUIDFH
/D VXUIDFH GH *DXVV HVW HQ JpQpUDO VRLW SDUDOOqOH VRLW QRUPDOH DX FKDPS pOHFWULTXH $LQVL
OHV FDOFXOV GH IOX[ VRQW SOXV VLPSOHV
'DQV OH FDV R OD VXUIDFH GH *DXVV HVW SHUSHQGLFXODLUH DX FKDPS pOHFWULTXH FHWWH VXUIDFH
HVW XQH pTXLSRWHQWLHOOH
'DQV OH FDV R OD VXUIDFH GH *DXVV HVW SDUDOOqOH DX FKDPS pOHFWULTXH OH IOX[ GX FKDPS j
WUDYHUV FHWWH VXUIDFH HVW QXO
&YFNQMF USBJU©
2Q FRQVLGqUH XQH ERXOH XQLIRUPpPHQW FKDUJpH GH FHQWUH O HW GH FKDUJH Q 2Q VH SODFH HQ
FRRUGRQQpHV VSKpULTXHV 8Q SRLQW M D SRXU FRRUGRQQpHV (r, θ, φ)
'pWHUPLQHU OD GHQVLWp YROXPLTXH GH FKDUJH ρ
−
→
'pWHUPLQHU OD GpSHQGDQFH HW OD GLUHFWLRQ GX FKDPS pOHFWULTXH E (M ) DX SRLQW M -XVWLILHU TXH O¶RQ XWLOLVH FRPPH VXUIDFH GH *DXVV XQH VSKqUH GH UD\RQ r HW GH FHQWUH O
(Q GpGXLUH OH IOX[ GX FKDPS pOHFWULTXH j WUDYHUV FHWWH VXUIDFH IHUPpH
'DQV XQ SUHPLHU WHPSV RQ VXSSRVH TXH OH SRLQW M VH WURXYH KRUV GH OD ERXOH (r > R)
'pWHUPLQHU OD FKDUJH FRQWHQXH GDQV OD VXUIDFH GH *DXVV (Q GpGXLUH OH FKDPS pOHFWULTXH
HQ WRXW SRLQW KRUV GH OD ERXOH 4XH UHWURXYH WRQ "
2Q VXSSRVH TXH OH SRLQW M VH WURXYH GDQV OD ERXOH (r < R) 'pWHUPLQHU OD FKDUJH
FRQWHQXH GDQV OD VXUIDFH GH *DXVV (Q GpGXLUH OH FKDPS pOHFWULTXH HQ WRXW SRLQW GH OD
ERXOH
40-65*0/
•
−
→
er
M
r
O
146
×
3×Q
/D UpSDUWLWLRQ HVW XQLIRUPH GRQF ρ = VQ = 4πR
3
/D GLVWULEXWLRQ D XQH V\PpWULH VSKpULTXH GRQF OH FKDPS pOHFWULTXH QH GpSHQG TXH GX
−
→
−
→
UD\RQ r E (M ) = E (r) 7RXW SODQ SDVVDQW SDU OD GURLWH (OM ) HVW XQ SODQ GH V\PpWULH
Électromagnétisme
GH OD GLVWULEXWLRQ GH FKDUJHV GRQF OH FKDPS pOHFWULTXH DSSDUWLHQW j FHWWH GURLWH LO HVW
−
→
→
UDGLDO )LQDOHPHQW OH FKDPS pOHFWULTXH VH PHW VRXV OD IRUPH E (M ) = Er (r)−
er 2Q FKRLVLW XQH VXUIDFH GH *DXVV UHVSHFWDQW OD V\PpWULH GH OD GLVWULEXWLRQ SHUSHQGLFX
ODLUH DX[ OLJQHV GH FKDPS HW SDVVDQW SDU OH SRLQW M /D VSKqUH GH UD\RQ r UHVSHFWH
SDUIDLWHPHQW OHV WURLV FRQGLWLRQV
−
→
→
2Q H[SOLFLWH OH YHFWHXU VXUIDFH pOpPHQWDLUH GS = r2 × VLQ(θ)GθGφ−
er SXLV RQ FDOFXOH
OH IOX[ GX FKDPS pOHFWULTXH Φ(r) =
→
−
→−
E .GS =
π
VLQ(θ)Gθ
0
2π
Gφ
0
/¶LQWpJUDOH VXU OHV YDULDEOHV DQJXODLUHV YDXW 4π GRQF Φ(r) = 4πr2 × Er (r)
&RPPH OD VXUIDFH GH *DXVV FRQWLHQW WRXWH OD ERXOH DORUV OD FKDUJH LQWpULHXUH HVW FHOOH
GH OD ERXOH Qint = Q 2Q DSSOLTXH OH WKpRUqPH GH *DXVV Φ(r) = �Q0 HW RQ LVROH OH
FKDPS pOHFWULTXH Er (r) =
→
→
er .r2 VLQ(θ)GθGφ−
er = r2 Er (r)
Er (r)−
−
→
Q
Q
−
→
er
=⇒ E (M ) =
2
4π�0 × r
4π�0 × r2
2Q UHWURXYH OD ORL GH &RXORPE
3
&HWWH IRLV OD VXUIDFH GH *DXVV FRQWLHQW OD FKDUJH Qint = ρ × V = ρ × 43 πr3 = Q × Rr 3 3
2Q DSSOLTXH OH WKpRUqPH GH *DXVV 4πr2 × Er (r) = �Q0 × Rr 3 HW RQ LVROH OH FKDPS
pOHFWULTXH −
→
Q
r →
E (M ) =
× 3−
er
4π�0 R
&YFSDJDFT
&KDPS FUpp SDU XQ F\OLQGUH XQLIRUPpPHQW FKDUJp
2Q PRGpOLVH XQ ILO SDU XQ F\OLQGUH GH WUqV JUDQGH KDXWHXU GH UD\RQ R XQLIRUPpPHQW FKDUJp
HW GH GHQVLWp YROXPLTXH GH FKDUJH ρ0 −
→
'pWHUPLQHU OD GpSHQGDQFH HW OD GLUHFWLRQ GX FKDPS pOHFWULTXH E DX SRLQW M GH FRRU
GRQQpHV F\OLQGULTXHV (r, θ, z)
([SOLFLWHU XQH VXUIDFH GH *DXVV HW FDOFXOHU OH IOX[ GX FKDPS pOHFWULTXH j WUDYHUV FHWWH
VXUIDFH
'DQV XQ SUHPLHU WHPSV RQ VXSSRVH TXH OH SRLQW M VH WURXYH KRUV GX ILO (r > R)
'pWHUPLQHU OD FKDUJH FRQWHQXH GDQV OD VXUIDFH GH *DXVV (Q GpGXLUH OH FKDPS pOHFWULTXH
HQ WRXW SRLQW KRUV GX ILO
2Q VXSSRVH PDLQWHQDQW TXH OH SRLQW M VH WURXYH GDQV OH ILO (r < R) 'pWHUPLQHU OD
FKDUJH FRQWHQXH GDQV OD VXUIDFH GH *DXVV (Q GpGXLUH OH FKDPS pOHFWULTXH HQ WRXW SRLQW
GX ILO
&9&3$*$& 21. Utiliser le théorème de Gauss pour calculer un champ électrique
147
&9&3$*$& &KDPS FUpp SDU XQ SODQ LQILQL
/H SODQ (Oxy) HVW XQLIRUPpPHQW FKDUJp 2Q QRWH σ OD GHQVLWp VXUIDFLTXH GH FKDUJHV 2Q
−
→
FKHUFKH OH FKDPS pOHFWULTXH E HQ WRXW SRLQW M GH FRRUGRQQpHV (x, y, z) HQ GHKRUV GX SODQ
z �= 0
'pWHUPLQHU OD GpSHQGDQFH HW OD GLUHFWLRQ GX FKDPS pOHFWULTXH
-XVWLILHU TXH OD FRPSRVDQWH Ez (z) VXLYDQW O¶D[H (Oz) GX FKDPS pOHFWULTXH HVW LPSDLUH
(Q GpGXLUH O¶H[SUHVVLRQ GX FKDPS pOHFWULTXH
&9&3$*$& %RXOH QRQ XQLIRUPpPHQW FKDUJpH
−
→
8QH GLVWULEXWLRQ GH FKDUJHV j V\PpWULH VSKpULTXH JpQqUH XQ FKDPS pOHFWULTXH E GH QRUPH
FRQVWDQWH pJDOH j E0 HQ WRXW SRLQW GH O¶HVSDFH 'pWHUPLQHU OD GHQVLWp YROXPLTXH GH FKDUJH
ρ(r) IRQFWLRQ GH OD FRRUGRQQpH VSKpULTXH r
1PVS WPVT BJEFS
E©NBSSFS
&9&3$*$& 8WLOLVHU OHV SURSULpWpV GH V\PpWULH HW G¶LQYDULDQFH GH OD GLVWULEXWLRQ GH
FKDUJHV /D VXUIDFH GH *DXVV VXLW OD IRUPH GH OD GLVWULEXWLRQ
&9&3$*$& 8WLOLVHU OHV SURSULpWpV GH V\PpWULH HW G¶LQYDULDQFH GH OD GLVWULEXWLRQ GH
FKDUJHV /D VXUIDFH GH *DXVV VXLW OD IRUPH GH OD GLVWULEXWLRQ
&9&3$*$& $SSOLTXHU OH WKpRUqPH GH *DXVV j XQH FRXURQQH VSKpULTXH
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& O
148
Électromagnétisme
×
r
M
•
−
→
er
/D GLVWULEXWLRQ GH FKDUJHV HVW LQYDULDQWH SDU WUDQVODWLRQ VHORQ O¶D[H (Oz) HW HOOH HVW
LQYDULDQWH SDU URWDWLRQ DXWRXU GH O¶D[H (Oz) GRQF OH FKDPS pOHFWULTXH QH GpSHQG TXH
−
→
−
→
GX UD\RQ r E (M ) = E (r)
/H SODQ SDVVDQW SDU OH SRLQW M HW O¶D[H (Oz) HVW XQ SODQ GH V\PpWULH GRQF OH FKDPS
pOHFWULTXH DSSDUWLHQW j FH SODQ OD FRPSRVDQWH RUWKRUDGLDOH HVW QXOOH Eθ (r) = 0 (QILQ
OH SODQ SDVVDQW SDU OH SRLQW M HW SHUSHQGLFXODLUH j O¶D[H (Oz) HVW OXL DXVVL XQ SODQ GH
V\PpWULH GH OD GLVWULEXWLRQ GRQF OH FKDPS pOHFWULTXH DSSDUWLHQW j FH SODQ OD FRPSRVDQWH
D[LDOH HVW QXOOH Ez (r) = 0 3DU FRQVpTXHQW OH FKDPS pOHFWULTXH HVW UDGLDO −
→
→
E (M ) = Er (r)−
er
$ILQ GH UHVSHFWHU OD V\PpWULH F\OLQGULTXH GH OD GLVWULEXWLRQ RQ FRQVLGqUH XQH VXUIDFH F\
OLQGULTXH GH UD\RQ r G¶D[H (Oz) HW GH KDXWHXU L 2Q FDOFXOH OH IOX[ GX FKDPS pOHFWULTXH
HQ GpFRPSRVDQW OH F\OLQGUH HQ WURLV VXUIDFHV →
→
→
→
−
→−
−
→−
−
→−
−
→−
E .GS +
E .GS +
E .GS
Φ(r) =
E .GS =
EDVH LQIpULHXUH
EDVH VXSpULHXUH
VXUIDFH ODWpUDOH
Φ(r) =
2π
0
Gθ
L
0
Solutions
&RPPH OH FKDPS pOHFWULTXH HVW UDGLDO OH IOX[ j WUDYHUV OHV GHX[ EDVHV HVW QXO 2Q H[SOL
−
→
→
FLWH OH YHFWHXU VXUIDFH pOpPHQWDLUH GH OD VXUIDFH UDGLDOH GS = rGθGz −
er SXLV RQ LQWqJUH Er (r) × rGz = 2πL × r × Er (r)
/D VXUIDFH GH *DXVV FRQWLHQW OD FKDUJH Qint = ρ × V = ρ × L πR2 2Q DSSOLTXH OH
WKpRUqPH GH *DXVV Φ(r) = Q�int
HW RQ LVROH OH FKDPS pOHFWULTXH 0
−
→
ρ × R2 −
→
E (M ) =
er
2�0 × r
&HWWH IRLV OD VXUIDFH GH *DXVV FRQWLHQW OD FKDUJH Qint = ρ × V = ρ × L πr2 2Q
HW RQ LVROH OH FKDPS pOHFWULTXH DSSOLTXH OH WKpRUqPH GH *DXVV Φ(r) = Q�int
0
−
→
ρ × r−
→
E (M ) =
er
2�0
21. Utiliser le théorème de Gauss pour calculer un champ électrique
149
&9&3$*$& x
M
•
•
H
z
y
/D GLVWULEXWLRQ GH FKDUJHV pWDQW LQYDULDQWH SDU WUDQVODWLRQ OH ORQJ GHV D[HV (Ox) HW (Oy)
OH FKDPS pOHFWULTXH QH GpSHQG TXH GH OD FRRUGRQQpH z 6L RQ QRWH H OH SURMHWp RUWKR
JRQDO GH M VXU OH SODQ (Oxy) DORUV WRXW SODQ SDVVDQW SDU OD GURLWH (HM ) HVW XQ SODQ
GH V\PpWULH GRQF OH FKDPS pOHFWULTXH HVW GLULJp VXLYDQW O¶D[H (Oz) −
→
→
ez
E = Ez (z)−
/D GLVWULEXWLRQ GH FKDUJHV HVW V\PpWULTXH SDU UDSSRUW DX SODQ (Oxy) GRQF OD IRQFWLRQ
Ez (z) HVW LPSDLUH ∀z �= 0, Ez (−z) = −Ez (z)
2Q FRQVLGqUH OD VXUIDFH F\OLQGULTXH G¶D[H (HM ) FRPSULVH HQWUH OHV DEVFLVVHV −z HW z
HW GH VHFWLRQ S 9RLU VFKpPD &RPPH OH FKDPS pOHFWULTXH HVW GLULJp VXLYDQW O¶D[H GX
F\OLQGUH DORUV OH IOX[ j WUDYHUV OD VXUIDFH ODWpUDOH HVW QXO →
→
→
→
−
→−
−
→−
−
→−
−
→−
E .GS =
E .GS +
E .GS +
E .GS
Φ(z) =
VXUIDFH F\OLQGUH
=0+
VXUIDFH ODWpUDOH
→
→
Ez (−z)−
ez .GS (−−
ez ) +
EDVH HQ −z
=
→
→
Ez (z)−
ez .GS −
ez +
EDVH HQ −z
=2×
EDVH HQ z
EDVH HQ −z
EDVH HQ z
→
→
Ez (z)−
ez .GS −
ez
EDVH HQ z
→
→
Ez (z)−
ez .GS −
ez
EDVH HQ z
Ez (z) × GS = 2 × Ez (z) × S
2U OD VXUIDFH GH *DXVV FRQWLHQW OD FKDUJH Qint = σ × S HW OH WKpRUqPH GH *DXVV GRQQH
σ
Φ(z) = Q�int
F¶HVWjGLUH Ez (z) = 2×�
G¶R 0
0
−
→
σ −
→
E (z) = VLJQH(z) ×
ez
2�0
150
Électromagnétisme
&9&3$*$& r + Gr
r
O
2Q FRQVLGqUH OD FRXURQQH VSKpULTXH FRPSULVH HQWUH OHV GHX[ VSKqUHV FRQFHQWULTXHV GH UD\RQV
r HW r + Gr /D FKDUJH FRPSULVH GDQV FHWWH FRXURQQH HVW δQint = ρ(r) × GV = ρ(r) × 4πr2 × Gr
VXUIDFH LQWpULHXUH
=
VXUIDFH H[WpULHXUH
−→
→
E0 −
er .GS1 +
VXUIDFH LQWpULHXUH
=−
Solutions
0DLQWHQDQW RQ FDOFXOH OH IOX[ GX FKDPS pOHFWULTXH ,O \ D OD VXUIDFH LQWpULHXUH GH UD\RQ r HW OD
VXUIDFH H[WpULHXUH GH UD\RQ r +Gr /H YHFWHXU VXUIDFH pOpPHQWDLUH GH OD VXUIDFH LQWpULHXUH HVW
−→
→
→
GS1 = −r2 VLQ θGθGφ−
er = −GS1 −
er HW OH YHFWHXU VXUIDFH pOpPHQWDLUH GH OD VXUIDFH H[WpULHXUH
−→
→
→
HVW GS2 = (r + Gr)2 VLQ θGθGφ−
er = GS2 −
er /H IOX[ GX FKDPS pOHFWULTXH j WUDYHUV OD VXUIDFH
HQWRXUDQW OD FRXURQQH HVW −
→ −→
−
→ −→
E .GS1 +
E .GS2
Φ=
−→
→
E0 −
er .GS2
VXUIDFH H[WpULHXUH
E0 GS1 +
VXUIDFH LQWpULHXUH
E0 GS2
VXUIDFH H[WpULHXUH
= −E0 × 4πr2 + E0 × 4π(r + Gr)2
2Q IDFWRULVH SXLV RQ HIIHFWXH XQH DSSUR[LPDWLRQ DX SUHPLHU RUGUH Φ = 4πE0 × (r + Gr)2 − r2 = 4πE0 2rGr + (Gr)2 � 8πE0 r × Gr
0DLQWHQDQW RQ SHXW DSSOLTXHU OH WKpRUqPH GH *DXVV Φ = δQ
�0 8πE0 × r × Gr =
ρ(r) × 4πr2 × Gr
�0
(QILQ RQ LVROH OD GHQVLWp YROXPLTXH GH FKDUJHV ρ(r) = 2 ×
� 0 × E0
r
21. Utiliser le théorème de Gauss pour calculer un champ électrique
151
22
Déterminer la capacité
d’unMB condensateur
%©UFSNJOFS
DBQBDJU©
EVO DPOEFOTBUFVS
2VBOE PO OF TBJU QBT 8Q FRQGHQVDWHXU HVW FRQVWLWXp GH GHX[ ERUQHV PpWDOOLTXHV HQ LQIOXHQFH WRWDOH O¶XQH
SRUWDQW XQH FKDUJH Q HW GH SRWHQWLHO V+ HW O¶DXWUH XQH FKDUJH −Q HW GH SRWHQWLHO V− 6L RQ QRWH U = V+ − V− OD WHQVLRQ DX[ ERUQHV GX FRQGHQVDWHXU DORUV OD FDSDFLWp HQ
)DUDG ) GX FRQGHQVDWHXU HVW OD JUDQGHXU VFDODLUH C=
Q
U
/D FDSDFLWp DSSDUWHQDQW j [10−9 ; 10−3 ] ) QH GpSHQG TXH GH OD JpRPpWULH GHV SODTXHV
HW GH OD SHUPLWWLYLWp GLpOHFWULTXH GX GX PLOLHX LVRODQW
/D FDSDFLWp G¶XQ FRQGHQVDWHXU SODQ ERUQHV
SODQHV LGpDO HIIHWV GH ERUGV QpJOLJHDEOHV
GH VHFWLRQ S HW G¶pSDLVVHXU e HVW C=
�0 × S
× �r
e
V+
V−
�0 HVW OD SHUPLWWLYLWp GLpOHFWULTXH GX YLGH �r HVW OD SHUPLWWLYLWp GLpOHFWULTXH UHODWLYH VDQV
XQLWp GX PLOLHX �r HVW XQLWDLUH SRXU OH YLGH
/¶DLU HVW XQ LVRODQW PDLV VRXV GH IRUWV FKDPSV pOHFWULTXHV VXSpULHXUV j 3, 6 × 106 9P−1
OHV pOHFWURQV GHV PROpFXOHV VRQW DUUDFKpV GH OHXU RUELWH HW SDUWLFLSHQW j OD FRQGXFWLRQ
pOHFWULTXH
152
Électromagnétisme
2VF GBJSF
3RXU H[SULPHU OD FDSDFLWp G¶XQ FRQGHQVDWHXU SODQ H[SULPHU OH FKDPS pOHFWULTXH FUpp SDU XQ SODQ LQILQL XQLIRUPpPHQW FKDUJp
H[SULPHU OH FKDPS pOHFWULTXH FUpp SDU GHX[ SODQV LQILQLV XQLIRUPpPHQW FKDUJpV GH
FKDUJHV RSSRVpHV HW VpSDUpV SDU XQH GLVWDQFH e
FDOFXOHU OD GLIIpUHQFH GH SRWHQWLHO U HQWUH OHV GHX[ SODTXHV JUkFH j O¶LQWpJUDOH U = V+ − V− =
SODTXH−
SODTXH+
→
−
→−
E . Gl
FDOFXOHU OD FDSDFLWp C = Q
U
$POTFJMT
3RXU FDOFXOHU OH FKDPS pOHFWULTXH RQ SHXW XWLOLVHU OH WKpRUqPH GH *DXVV
3RXU FDOFXOHU XQH WHQVLRQ RQ SHXW XWLOLVHU OD FLUFXODWLRQ GX FKDPS pOHFWULTXH UAB = VA − VB = −
B
GV =
A
B
→
−
→−
E . Gl
A
&YFNQMF USBJU©
2Q pWXGLH XQ FRQGHQVDWHXU SODQ GH VHFWLRQ S G¶pSDLVVHXU e HW G¶D[H (Ox) /HV GHX[ SODQV
VH WURXYHQW DX[ DEVFLVVHV − 2e HW 2e 2Q LPSRVH XQH WHQVLRQ U DX[ ERUQHV GX FRQGHQVDWHXU
GH IDoRQ j FH TXH OD SODTXH HQ O¶DEVFLVVH − 2e SRUWH OD FKDUJH Q HW OD SODTXH j O¶DEVFLVVH 2e OD
FKDUJH −Q
2Q pWXGLH XQH SODTXH FRQVLGpUpH FRPPH LQILQLH SRVVpGDQW XQH FKDUJH VXUIDFLTXH σ HW
−
→
SODFpH GDQV OH SODQ (Oyz) 'pWHUPLQHU OD IRUPH JpQpUDOH GX FKDPS pOHFWULTXH E (M )
−
→
FUpp SDU OD SODTXH DX SRLQW M &DOFXOHU O¶H[SUHVVLRQ GX FKDPS E HQ WRXW SRLQW GH
O¶HVSDFH
(Q GpGXLUH TXH OH FKDPS j O¶H[WpULHXU GX FRQGHQVDWHXU HVW QXO 'pWHUPLQHU OH FKDPS
pOHFWULTXH j O¶LQWpULHXU GX FRQGHQVDWHXU
([SULPHU OD GLIIpUHQFH GH SRWHQWLHO U HQ IRQFWLRQ GH �0 GH OD FKDUJH VXUIDFLTXH σ HW GH
O¶pSDLVVHXU e
(Q GpGXLUH OD FDSDFLWp C GX FRQGHQVDWHXU
22. Déterminer la capacité d’un condensateur
153
40-65*0/
2Q UHSUHQG OH UDLVRQQHPHQW GH O¶H[HUFLFH GH OD ILFKH SUpFpGHQWH /D GLVWULEXWLRQ GH
FKDUJHV pWDQW LQYDULDQWH SDU WUDQVODWLRQ OH ORQJ GHV D[HV (Oy) HW (Oz) OH FKDPS pOHF
WULTXH QH GpSHQG TXH GH OD FRRUGRQQpH x 6L RQ QRWH H OH SURMHWp RUWKRJRQDO GH M VXU
OH SODQ (Oyz) DORUV WRXW SODQ SDVVDQW SDU OD GURLWH (HM ) HVW XQ SODQ GH V\PpWULH GRQF
OH FKDPS pOHFWULTXH HVW GLULJp VXLYDQW O¶D[H (Ox) −
→
→
E = Ex (x)−
ex
2Q DSSOLTXH OH WKpRUqPH GH *DXVV VXU XQ F\OLQGUH G¶D[H (Ox) GRQW OHV GHX[ EDVHV VH
WURXYHQW HQWUH −x HW x 2Q WURXYH −
→
σ −
→
E = VLJQH(x) ×
ex
2�0
6XU OH VFKpPD RQ LQGLTXH OH FKDPS pOHFWULTXH FUpp SDU FKDTXH SODTXH /D SODTXH GH
−→
SRWHQWLHO V + JpQqUH OH FKDPS pOHFWULTXH E+ HW FHOOH GH SRWHQWLHO V − OH FKDPS pOHFWULTXH
−→
E− −→
E+
−→
E−
+
+
+
+
+
+
+
+
+
+
+
+
+
−
−
−
−→ −
E+ −
−
−
−
−
−
−→ −
E− −
−
− 2e
e
2
−→
E+
−→
E−
x
'¶DSUqV OH SULQFLSH GH VXSHUSRVLWLRQ RQ DGGLWLRQQH OHV FKDPSV pOHFWULTXHV ¬ O¶H[Wp
ULHXU GX FRQGHQVDWHXU LOV VH FRPSHQVHQW OH FKDPS pOHFWULTXH HVW QXO È O¶LQWpULHXU GX
−
→
→
FRQGHQVDWHXU OHV FKDPSV pOHFWULTXHV V¶DMRXWHQW HW OH FKDPS pOHFWULTXH YDXW E = �σ0 −
ex 2Q FDOFXOH OD GLIIpUHQFH GH SRWHQWLHO U = V+ − V− =
V+
V−
GV = −
−e/2
→
−
→−
E . Gl
e/2
3XLV RQ UHPSODFH O¶H[SUHVVLRQ GX FKDPS pOHFWULTXH U =−
154
Électromagnétisme
−e/2
e/2
σ−
σ
→
→
ex = −
ex .Gx−
�0
�0
−e/2
e/2
Gx = −
σ
σ×e
× (−e) =
�0
�0
2Q XWLOLVH OD GpILQLWLRQ GH OD FDSDFLWp C=
Q
σ×S
�0 × S
=
× �0 =
U
σ×e
e
&YFSDJDFT
&RQGHQVDWHXU F\OLQGULTXH
2Q pWXGLH XQ FRQGHQVDWHXU F\OLQGULTXH FRQVWLWXp GH GHX[ SODTXHV F\OLQGULTXHV FRQFHQ
WULTXHV G¶D[H (Ox) O¶XQH GH UD\RQ R1 HW O¶DXWUH GH UD\RQ R2 > R1 2Q SRVH e = R2 − R1 2Q LPSRVH XQH WHQVLRQ U DX[ ERUQHV GX FRQGHQVDWHXU GH IDoRQ j FH TXH OD SODTXH LQWpULHXUH
SRUWH XQH FKDUJH Q HW OD SODTXH H[WpULHXUH OD FKDUJH −Q
&9&3$*$& (Q FRQVLGpUDQW OHV F\OLQGUHV VXIILVDPPHQW ORQJV SRXU QpJOLJHU OHV HIIHWV GH ERUGV Gp
WHUPLQHU OH FKDPS pOHFWULTXH j O¶LQWpULHXU GX FRQGHQVDWHXU
(Q GpGXLUH OD FDSDFLWp C GX FRQGHQVDWHXU
6LPSOLILHU O¶H[SUHVVLRQ HQ VXSSRVDQW Re1 � 1 4XH UHWURXYHWRQ "
&9&3$*$& &RQGHQVDWHXU VSKpULTXH
2Q pWXGLH XQ FRQGHQVDWHXU VSKpULTXH FRQVWLWXp G¶XQH ERUQH VSKpULTXH GH FKDUJH Q GH UD\RQ
R1 HW GH FHQWUH O HW G¶XQH GHX[LqPH ERUQH VSKpULTXH GH FKDUJH −Q GH UD\RQ R2 > R1
HW GH FHQWUH O 2Q SRVH e = R2 − R1 2Q UDSSHOOH OH ODSODFLHQ HQ FRRUGRQQpHV VSKpULTXHV
SRXU XQH IRQFWLRQ QH GpSHQGDQW TXH GX UD\RQ Δf (r) =
1 G2 (r × f (r))
×
r
Gr2
'pWHUPLQHU O¶H[SUHVVLRQ GX SRWHQWLHO pOHFWULTXH V GDQV OH FRQGHQVDWHXU j XQH FRQVWDQWH
PXOWLSOLFDWLYH SUqV /H SRWHQWLHO HVW SULV QXO j O¶LQILQL
3DU KRPRJpQpLWp H[SULPHU FHWWH FRQVWDQWH HQ IRQFWLRQ GH �0 GH OD FKDUJH Q HW G¶XQ
IDFWHXU QXPpULTXH N ([SULPHU OD FDSDFLWp GX FRQGHQVDWHXU
$SSUR[LPHU j O¶RUGUH XQ HQ Re1 OD FDSDFLWp GX FRQGHQVDWHXU
3DU FRPSDUDLVRQ DYHF OH FRQGHQVDWHXU SODQ GpWHUPLQHU OD YDOHXU GX IDFWHXU N aQm`+2 , *2Mi`H2
22. Déterminer la capacité d’un condensateur
155
1PVS WPVT BJEFS
E©NBSSFS
&9&3$*$& 8WLOLVHU OH WKpRUqPH GH *DXVV SRXU GpWHUPLQHU OH FKDPS pOHFWULTXH GDQV
OH FRQGHQVDWHXU
&9&3$*$& 5pVRXGUH O¶pTXDWLRQ GH 3RLVVRQ
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& /D GLVWULEXWLRQ GH FKDUJHV pWDQW F\OLQGULTXH RQ VH SODFH HQ FRRUGRQQpHV F\OLQGULTXHV
/D GLVWULEXWLRQ HVW LQYDULDQWH SDU WUDQVODWLRQ VXLYDQW O¶D[H (Oz) HW LQYDULDQWH SDU URWDWLRQ
DXWRXU GH O¶D[H (Oz) GRQF OH FKDPS pOHFWULTXH QH GpSHQG TXH GH OD FRRUGRQQpH UDGLDOH
−
→
−
→
→
→
r E = E (r) 'H SOXV OH SODQ (Π) = (M, −
er , −
eθ ) SHUSHQGLFXODLUH j O¶D[H (Oz) HW
SDVVDQW SDU OH SRLQW M FRXSH OD GLVWULEXWLRQ GH FKDUJHV HQ GHX[ GRQF (Π) HVW XQ SODQ
→
→
er , −
ez ) SDVVDQW SDU O¶D[H (Oz) HW OH SRLQW M
GH V\PpWULH 'H PrPH OH SODQ (Π� ) = (M, −
FRXSH OD GLVWULEXWLRQ GH FKDUJHV HQ GHX[ GRQF OH SODQ (Π� ) HVW XQ SODQ GH V\PpWULH /H
FKDPS pOHFWULTXH GRLW DSSDUWHQLU j FHV GHX[ SODQV GRQF OH FKDPS pOHFWULTXH HVW UDGLDO −
→
→
E = Er (r)−
er
2Q DSSOLTXH OH WKpRUqPH GH *DXVV j XQH VXUIDFH F\OLQGULTXH IHUPpH G¶D[H (Oz) GH
KDXWHXU H HW GH UD\RQ r WHO TXH R1 ≤ r ≤ R2 &HWWH VXUIDFH IHUPpH FRQWLHQW OD FKDUJH
Q /H FKDPS pOHFWULTXH pWDQW UDGLDO OH IOX[ GX FKDPS pOHFWULTXH j WUDYHUV FHWWH VXUIDFH
YDXW 2π H
→
−
→−
→
→
E .GS =
Er (r)−
er .rGθGz −
er = 2πrH × Er (r)
VXUIDFH
θ=0 z=0
2Q DSSOLTXH OH WKpRUqPH GH *DXVV 2πrH × Er (r) =
Q
�0
2Q REWLHQW OH FKDPS pOHFWULTXH GDQV OH FRQGHQVDWHXU −
→
−
→
er
Q
×
E =
2π�0 H
r
2Q FRPPHQFH SDU FDOFXOHU OD GLIIpUHQFH GH SRWHQWLHO DX[ ERUQHV GX FRQGHQVDWHXU U=
+
−
156
Électromagnétisme
GV = −
+
−
→
−
→−
E . Gl =
−
+
Er (r).Gr =
−
+
Q
Gr
Q
R2
×
=
OQ
2π�0 H
r
2π�0 H R1
(QVXLWH RQ HQ GpGXLW OD FDSDFLWp GX FRQGHQVDWHXU C=
Q
2π�0 H
=
2
U
OQ R
R
1
2Q UHPSODFH R2 SDU R1 + e GDQV OD FDSDFLWp SXLV RQ HIIHFWXH XQH DSSUR[LPDWLRQ j
O¶RUGUH XQ HQ e/R1 C=
2πR1 H × �0
2π�0 H
2π�0 H
�
= R1 +e
e
OQ R1
OQ 1 + e
R1
2Q UHWURXYH OD FDSDFLWp G¶XQ FRQGHQVDWHXU SODQ GH VXUIDFH 2πR1 H HW G¶pSDLVVHXU e
&9&3$*$& /D GLVWULEXWLRQ GH FKDUJHV HVW j V\PpWULH VSKpULTXH GRQF OH SRWHQWLHO pOHFWULTXH QH
GpSHQG TXH GX UD\RQ r $ O¶LQWpULHXU GX FRQGHQVDWHXU LO Q¶\ D SDV GH FKDUJH GRQF
2
(r))
O¶pTXDWLRQ GH 3RLVVRQ V¶pFULW ΔV (r) = 0 F¶HVWjGLUH 1r × G (r×V
= 0 G¶R
Gr2
G2 (r×V (r))
= 0 2Q LQWqJUH GHX[ IRLV RQ REWLHQW Gr2
r × V (r) = C1 + C2 × r
2Q GLYLVH SDU OH UD\RQ r SRXU REWHQLU OH SRWHQWLHO /H SRWHQWLHO HVW QXO j O¶LQILQL GRQF C2 = 0 3DU FRQVpTXHQW RQ D V (r) = Cr1 2Q XWLOLVH O¶H[SUHVVLRQ GX SRWHQWLHO FUpp SDU XQH FKDUJH SRQFWXHOOH V ∝ �0q×r 3DU
LGHQWLILFDWLRQ DYHF O¶H[SUHVVLRQ SUpFpGHQWH RQ D C1 = N ×
GRQF
V (r) = N ×
Q
�0 × r
Q
�0
R2 × R 1
Q
=
×
=
V+ − V−
V (R1 ) − V (R2 )
N
R2 − R1
&RPPH R2 = R1 + e RQ HIIHFWXH XQH DSSUR[LPDWLRQ j O¶RUGUH XQ C=
Q
�0
2Q FDOFXOH OD FDSDFLWp GX FRQGHQVDWHXU C=
C1
+ C2
r
Solutions
V (r) =
�0
(R1 + e) × R1
�0
R2
×
�
× 1
N
e
N
e
2Q GHYUDLW UHWURXYHU O¶H[SUHVVLRQ G¶XQ FRQGHQVDWHXU SODQ GH VXUIDFH 4πR12 HW G¶pSDLV
VHXU e C =
VSKpULTXH 4π�0 R12
GRQF N
e
1
= 4π
2Q REWLHQW DORUV OD FDSDFLWp GX FRQGHQVDWHXU
C = 4π�0 ×
R 2 × R1
R 2 − R1
22. Déterminer la capacité d’un condensateur
157
23
Calculer l’énergie potentielle électrique
$BMDVMFS
M©OFSHJF QPUFOUJFMMF ©MFDUSJRVF
2VBOE PO OF TBJU QBT /D GHQVLWp YROXPLTXH G¶pQHUJLH pOHFWULTXH -P−3 HVW →
�0 −
� E �2
2
/¶pQHUJLH pOHFWULTXH FRQWHQXH GDQV O¶HVSDFH HVW
ue GV ue =
HVSDFH
−
→
8QH FKDUJH q SODFpH DX SRLQW M SORQJpH GDQV XQ FKDPS pOHFWURVWDWLTXH E GpULYDQW
−−→
−
→
GX SRWHQWLHO pOHFWULTXH V WHO TXH E = −JUDG(V ) SRVVqGH O¶pQHUJLH SRWHQWLHOOH Ep = q × V (M ) + cte
&HWWH pQHUJLH UHSUpVHQWH OH WUDYDLO QpFHVVDLUH SRXU DPHQHU OD FKDUJH GHSXLV O¶LQILQL SR
WHQWLHO QXO DX SRLQW M 2VF GBJSF
3RXU UHWURXYHU OD FDSDFLWp G¶XQ FRQGHQVDWHXU SODQ GpWHUPLQHU O¶H[SUHVVLRQ GX FKDPS pOHFWULTXH GDQV OH FRQGHQVDWHXU
LQWpJUHU OD GHQVLWp YROXPLTXH G¶pQHUJLH pOHFWULTXH VXU OH YROXPH GX FRQGHQVDWHXU
2
2
Q
PHWWUH O¶pQHUJLH pOHFWULTXH VRXV OD IRUPH Ee = 2×C
RX VRXV OD IRUPH Ee = C×U
2 SXLV LGHQWLILHU OD FDSDFLWp
3RXU pWDEOLU O¶pQHUJLH SRWHQWLHOOH G¶XQH FKDUJH q GDQV XQ FKDPS pOHFWULTXH DSSOLTXHU OH WKpRUqPH GH O¶pQHUJLH FLQpWLTXH j OD FKDUJH
LGHQWLILHU O¶pQHUJLH SRWHQWLHOOH
158
Électromagnétisme
$POTFJMT
$POTFJMT
$POTFJMT
$POTFJMT
'DQV OH PRGqOH GX FRQGHQVDWHXU OH FKDPS pOHFWULTXH HVW QXO HQ GHKRUV GX YROXPH FRPSULV
'DQV
OH PRGqOH
GX FRQGHQVDWHXU
OH FKDPS
pOHFWULTXH
HVW LO
QXO
HQ GHKRUV
GX YROXPHODFRPSULV
HQWUH OHV
GHX[ ERUQHV
3RXU FDOFXOHU
O¶pQHUJLH
pOHFWULTXH
VXIILW
GRQF G¶LQWpJUHU
GHQVLWp
'DQV
OH PRGqOH
GX FRQGHQVDWHXU
OH FKDPS
pOHFWULTXH
HVW LO
QXO
HQ GHKRUV
GX YROXPHODFRPSULV
HQWUH
OHV
GHX[
ERUQHV
3RXU
FDOFXOHU
O¶pQHUJLH
pOHFWULTXH
VXIILW
GRQF
G¶LQWpJUHU
GHQVLWp
YROXPLTXH
G¶pQHUJLH
pOHFWULTXH
VXU
O¶LQWpULHXU
GX
FRQGHQVDWHXU
'DQV
OH PRGqOH
GX FRQGHQVDWHXU
OH FKDPS
pOHFWULTXH
HVW LO
QXO
HQ GHKRUV
GX YROXPHODFRPSULV
HQWUH
OHV
GHX[
ERUQHV
3RXU FDOFXOHU
O¶pQHUJLH
pOHFWULTXH
VXIILW
GRQF G¶LQWpJUHU
GHQVLWp
YROXPLTXH
G¶pQHUJLH
pOHFWULTXH
VXU
O¶LQWpULHXU
GX
FRQGHQVDWHXU
HQWUH
OHV GHX[
ERUQHVpOHFWULTXH
3RXU FDOFXOHU
LO VXIILW GRQF G¶LQWpJUHU OD GHQVLWp
YROXPLTXH
G¶pQHUJLH
VXU O¶pQHUJLH
O¶LQWpULHXUpOHFWULTXH
GX FRQGHQVDWHXU
YROXPLTXH G¶pQHUJLH pOHFWULTXH VXU O¶LQWpULHXU GX FRQGHQVDWHXU
&YFNQMF USBJU©
&YFNQMF USBJU©
&YFNQMF USBJU©
&YFNQMFSDU
USBJU©
/RUV GH OD FKDUJH G¶XQ FLUFXLW RC DOLPHQWp
XQ JpQpUDWHXU GH WHQVLRQ U OH FRQGHQVD
/RUV
GH OD FKDUJHO¶pQHUJLH
G¶XQ FLUFXLW
RC DOLPHQWp
SDU 2XQ
JpQpUDWHXU
GH WHQVLRQ
U GH
OH FRQGHQVD
/H
FRQGHQVDWHXU
HVW SODQ
VHFWLRQ S
WHXU HPPDJDVLQH
pOHFWULTXH
Ee = C×U
2 2XQ
/RUV GH OD FKDUJH G¶XQ FLUFXLW RC DOLPHQWp
SDU
JpQpUDWHXU GH WHQVLRQ U OH FRQGHQVD
C×U
=
/H
FRQGHQVDWHXU
HVW
SODQ
GH
VHFWLRQ
S
WHXU
HPPDJDVLQH
O¶pQHUJLH
pOHFWULTXH
E
G¶pSDLVVHXU
e
HW
G¶D[H
(Oz)
2Q
QpJOLJHUD
OHV
HIIHWV
GH
ERUGV
F¶HVWjGLUH
TXH
O¶RQ
VXSSRVH
e
/RUV GH OD FKDUJH G¶XQ FLUFXLW RC DOLPHQWp
SDU
2 2XQ JpQpUDWHXU GH WHQVLRQ U OH FRQGHQVD
FRQGHQVDWHXU
HVW SODQ
GH
VHFWLRQ
S
WHXU
HPPDJDVLQH
O¶pQHUJLH
pOHFWULTXH
Ee =OHVC×U
2 2 /H
G¶pSDLVVHXU
e
HW
G¶D[H
(Oz)
2Q
QpJOLJHUD
HIIHWV
GH
ERUGV
F¶HVWjGLUH
TXH
O¶RQ
VXSSRVH
C×U
OH
SODQ
GX
FRQGHQVDWHXU
FRPPH
LQILQL
/H
FRQGHQVDWHXU
HVW SODQ
GH
VHFWLRQ
S
WHXU HPPDJDVLQH
O¶pQHUJLH
pOHFWULTXH
Ee =OHV HIIHWV
2
G¶pSDLVVHXU
e
HW
G¶D[H
(Oz)
2Q
QpJOLJHUD
GH
ERUGV
F¶HVWjGLUH
TXH
O¶RQ
VXSSRVH
OH SODQ GX FRQGHQVDWHXU
FRPPH
LQILQL
G¶pSDLVVHXU
e
HW
G¶D[H
(Oz)
2Q
QpJOLJHUD
OHV
HIIHWV
GH
ERUGV
F¶HVWjGLUH
TXH
O¶RQ
VXSSRVH
-XVWLILHU
TXH OH FKDPS
pOHFWULTXH
OH SODQ
GX FRQGHQVDWHXU
FRPPH
LQILQLHVW XQLIRUPH GDQV OH FRQGHQVDWHXU
OH SODQ
GX FRQGHQVDWHXU
FRPPH
LQILQLHVW XQLIRUPH GDQV OH FRQGHQVDWHXU
-XVWLILHU
TXH
OH
FKDPS
pOHFWULTXH
(Q
UpJLPH
SHUPDQHQW
OD QRUPH
GX FKDPS
j O¶LQWpULHXU GX FRQGHQ
-XVWLILHU
TXH
OH FKDPS GpWHUPLQHU
pOHFWULTXH HVW
XQLIRUPH
GDQV OHpOHFWULTXH
FRQGHQVDWHXU
(Q
UpJLPH
SHUPDQHQW
OD QRUPH
GX FKDPS
j O¶LQWpULHXU GX FRQGHQ
VDWHXU
-XVWLILHU
TXH
OH FKDPS GpWHUPLQHU
pOHFWULTXH HVW
XQLIRUPH
GDQV OHpOHFWULTXH
FRQGHQVDWHXU
(Q
UpJLPH SHUPDQHQW
GpWHUPLQHU
OD
QRUPHpOHFWULTXH
GX FKDPSHVW
pOHFWULTXH
j O¶LQWpULHXU
GX FRQGHQ
VDWHXU
$
O¶H[WpULHXU
GX
FRQGHQVDWHXU
OH
FKDPS
QXO
(Q
O¶pQHUJLH
pOHF
(Q
UpJLPH SHUPDQHQW GpWHUPLQHU OD QRUPH GX FKDPS pOHFWULTXH jGpGXLUH
O¶LQWpULHXU
GX FRQGHQ
VDWHXU
$
O¶H[WpULHXU
GX
FRQGHQVDWHXU
OH
FKDPS
pOHFWULTXH
HVW
QXO
(Q
GpGXLUH
O¶pQHUJLH
pOHF
WULTXH
HPPDJDVLQpH
SDU
OH
FRQGHQVDWHXU
VDWHXU
$
O¶H[WpULHXU
GX FRQGHQVDWHXU
OH FKDPS pOHFWULTXH HVW QXO (Q GpGXLUH O¶pQHUJLH pOHF
WULTXH
HPPDJDVLQpH
SDU
OH
FRQGHQVDWHXU
5HWURXYHU
O¶H[SUHVVLRQ
FDSDFLWp
G¶XQpOHFWULTXH
FRQGHQVDWHXU
SODQ
$
O¶H[WpULHXU
GX FRQGHQVDWHXU
OH FKDPS
HVW QXO
(Q GpGXLUH O¶pQHUJLH pOHF
WULTXH
HPPDJDVLQpH
SDUGH
OH OD
FRQGHQVDWHXU
5HWURXYHU
O¶H[SUHVVLRQ
FDSDFLWp G¶XQ FRQGHQVDWHXU SODQ
WULTXH HPPDJDVLQpH
SDUGH
OH OD
FRQGHQVDWHXU
5HWURXYHU O¶H[SUHVVLRQ GH OD FDSDFLWp G¶XQ FRQGHQVDWHXU SODQ
40-65*0/ O¶H[SUHVVLRQ GH OD FDSDFLWp G¶XQ FRQGHQVDWHXU SODQ
5HWURXYHU
40-65*0/
40-65*0/
40-65*0/
x
x•H
x H
•x•H
0 •H
•
y•
•0
y •0
y 0
y
−
→
E (M )
−
→
E (M )
−
→
E (M )
−
→
z E (M )
z
z
z
M
•
M
•
M
•
M
•
V+ V−
V+
V−
V+
V−
V + V − GH O¶H[HUFLFH TXHVWLRQ GH OD ILFKH © 8WLOLVHU OHV SUR
2Q UHSUHQG OH UDLVRQQHPHQW
2Q
UHSUHQG
OH UDLVRQQHPHQW
GH O¶H[HUFLFH
GH ODOHVILFKH
GH
© 8WLOLVHU
OHV SUR
SULpWpV
JpRPpWULTXHV
GX FKDPS
pOHFWULTXHªTXHVWLRQ
6L RQ QpJOLJH
HIIHWV
ERUGV DORUV
LO \
2Q
UHSUHQG
OHGHUDLVRQQHPHQW
GHGHO¶H[HUFLFH
ªTXHVWLRQ
GHOHODORQJ
ILFKH
D[HV
© 8WLOLVHU
OHV(Oy)
SUR
SULpWpV
JpRPpWULTXHV
GX
FKDPS
pOHFWULTXH
6L
RQ
QpJOLJH
OHV
HIIHWV
GH
ERUGV
DORUV
LO \
D2Q
LQYDULDQFH
OD
GLVWULEXWLRQ
FKDUJHV
SDU
WUDQVODWLRQ
GHV
(Ox)
HW
UHSUHQG
OH UDLVRQQHPHQW
GH O¶H[HUFLFH
ªTXHVWLRQ
GH ODOHVILFKH
GH
© 8WLOLVHU
OHV SUR
SULpWpV
JpRPpWULTXHV
GXRUWKRJRQDO
FKDPS
pOHFWULTXH
6L
RQ
QpJOLJH
HIIHWV
ERUGV
DORUV
LOOD\
D6L
LQYDULDQFH
GH
OD
GLVWULEXWLRQ
GH
FKDUJHV
SDU
WUDQVODWLRQ
OH
ORQJ
GHV
D[HV
(Ox)
HW
(Oy)
RQ
QRWH
H
OH
SURMHWp
GH
M
VXU
O¶XQ
GHV
SODQV
DORUV
WRXW
SODQ
SDVVDQW
SDU
SULpWpV
JpRPpWULTXHV
GX FKDPSGHpOHFWULTXH
ª 6L
RQ QpJOLJH
OHV HIIHWV
GH ERUGV
DORUV
LO \
DGURLWH
LQYDULDQFH
GH
OD
GLVWULEXWLRQ
FKDUJHV
SDU
WUDQVODWLRQ
OH
ORQJ
GHV
D[HV
(Ox)
HW
(Oy)
6L
RQ QRWH
H)GH
OHHVW
SURMHWp
RUWKRJRQDO
GH M
VXU
O¶XQ
GHV SODQV
DORUVGHV
WRXWGLULJp
SODQ(Ox)
SDVVDQW
SDU
OD
(HM
XQ
SODQ
GH V\PpWULH
GRQF
OH
FKDPS
pOHFWULTXH
HVW
VXLYDQW
O¶D[H
D6LLQYDULDQFH
OD
GLVWULEXWLRQ
GH
FKDUJHV
SDU
WUDQVODWLRQ
OH
ORQJ
D[HV
HW
(Oy)
−
→ H)OHHVW
RQ QRWH
SURMHWp
RUWKRJRQDO
GH M
VXU OH
O¶XQ
GHV SODQV
DORUV HVW
WRXWGLULJp
SODQ SDVVDQW
SDU
OD
−
→
GURLWH
(HM
XQ
SODQ
GH
V\PpWULH
GRQF
FKDPS
pOHFWULTXH
VXLYDQW
O¶D[H
(z)
ezSODQ
RUWKRJRQDO
(Oz)
(HM
E =
6L
RQ QRWH
H)E
OHHVW
GH M
VXU OH
O¶XQ
GHV SODQV
DORUV HVW
WRXWGLULJp
SODQ SDVVDQW
SDU
OD
zSURMHWp
−
→
GURLWH
XQ−
GH
V\PpWULH
GRQF
FKDPS
pOHFWULTXH
VXLYDQW
O¶D[H
→
ezSODQ
0D[ZHOO*DXVV
(Oz)
(HM
E =
2Q XWLOLVH
O¶pTXDWLRQ
GH
j O¶LQWpULHXU
FRQGHQVDWHXU
VXLYDQW O¶D[H
−
→
GURLWH
)EHVW
XQ−
GH V\PpWULH GRQF
OH FKDPS GX
pOHFWULTXH
HVW GLULJp
z (z)
→
ezGH
0D[ZHOO*DXVV j O¶LQWpULHXU GX FRQGHQVDWHXU (Oz)
−
E =
Ez (z)−
→
2Q XWLOLVH
O¶pTXDWLRQ
ezGH
0D[ZHOO*DXVV j O¶LQWpULHXU GX FRQGHQVDWHXU (Oz)
E =
Ez (z)→
2Q XWLOLVH
O¶pTXDWLRQ
−
→ GEz
2Q XWLOLVH O¶pTXDWLRQ GH 0D[ZHOO*DXVV
j O¶LQWpULHXU
= 0 GX FRQGHQVDWHXU GLY−
E =
→
GE
z
Gz
GLY−
E = GEz = 0
→
Gzz = 0
GLY−
E = GE
→
/D FRPSRVDQWH GX FKDPS HVW GRQF
= 0 OH FKDPS HVW XQLIRUPH GDQV OH
GLYFRQVWDQWH
E = Gz 'RQF
Gz
FRQGHQVDWHXU
2Q FDOFXOH OD FLUFXODWLRQ GX FKDPS pOHFWULTXH HQWUH OHV GHX[ SODTXHV −
23. Calculer l’ énergie potentielle électrique
→
−
→−
E . Gl = Ez × e
159
/D FRPSRVDQWH GX FKDPS HVW GRQF FRQVWDQWH 'RQF OH FKDPS HVW XQLIRUPH GDQV OH
FRQGHQVDWHXU
2Q FDOFXOH OD FLUFXODWLRQ GX FKDPS pOHFWULTXH HQWUH OHV GHX[ SODTXHV −
+
→
−
→−
E . Gl = Ez × e
2U OD FLUFXODWLRQ GX FKDPS pOHFWULTXH HVW pJDOH j O¶RSSRVp GH OD YDULDWLRQ GX SRWHQWLHO −
+
→
−
→−
E . Gl = Ez × e = − (V− − V+ ) = U
'RQF RQ REWLHQW Ez = Ue /H FKDPS pOHFWULTXH HVW QXO j O¶H[WpULHXU GX FRQGHQVDWHXU RQ LQWqJUH OD GHQVLWp YROX
PLTXH G¶pQHUJLH pOHFWULTXH VXU OH YROXPH GX FRQGHQVDWHXU e × S �0 × U 2
�0 × U 2
�0 × U 2
×S
GV
=
×
S
×
e
=
Ee =
2 × e2
2 × e2
2×e
HVSDFH
2Q WUDQVIRUPH FHWWH GHUQLqUH H[SUHVVLRQ SRXU IDLUH DSSDUDvWUH OD FDSDFLWp GX FRQGHQVD
WHXU U2
�0 × S U 2
×
=C×
Ee =
e
2
2
�0 ×S
3DU LGHQWLILFDWLRQ RQ REWLHQW OD FDSDFLWp C = e &YFSDJDFT
&9&3$*$& &DSDFLWp G¶XQ FRQGHQVDWHXU
8QH SODTXH GH VHFWLRQ S SODFpH GDQV OH SODQ (Oxy) FKDUJpH XQLIRUPpPHQW SDU XQH GHQVLWp
VXUIDFLTXH σ FUpH OH FKDPS pOHFWULTXH −
→
σ −
→
E = VLJQH(z) ×
ez
2�0
/D SODTXH HVW VXSSRVpH LQILQLH RQ QpJOLJH OHV HIIHWV GH ERUGV 2Q SUHQGUD XQ SRWHQWLHO pOHF
WULTXH QXO DX QLYHDX GH OD SODTXH
160
'pWHUPLQHU OH SRWHQWLHO pOHFWULTXH HQ WRXW SRLQW GH O¶HVSDFH
3RXUTXRL HQ UpDOLWp OH SRWHQWLHO pOHFWULTXH HVWLO QXO j O¶LQILQL "
2Q DPqQH GHSXLV O¶LQILQL XQH SODTXH LGHQWLTXH GH FKDUJH −Q = −S × σ TXH O¶RQ SODFH
SDUDOOqOHPHQW j OD SUHPLqUH SODTXH j XQH GLVWDQFH e 0RQWUHU TXH O¶pQHUJLH SRWHQWLHOOH
Q2
VH PHW VRXV OD IRUPH Ep = 2×C
(Q GpGXLUH OD FDSDFLWp GX FRQGHQVDWHXU
Électromagnétisme
&9&3$*$& eQHUJLH SRWHQWLHOOH pOHFWULTXH
−
→
8QH FKDUJH q VH GpSODFH OLEUHPHQW GDQV XQ FKDPS pOHFWULTXH E 2Q QRWHUD V OH SRWHQWLHO
pOHFWULTXH
([SULPHU OH WUDYDLO GH OD IRUFH pOHFWULTXH HQWUH GHX[ SRLQWV A HW B
(Q GpGXLUH O¶H[SUHVVLRQ GH O¶pQHUJLH SRWHQWLHOOH GH OD FKDUJH
8Q RSpUDWHXU DPqQH OD FKDUJH GHSXLV O¶LQILQL MXVTX¶DX SRLQW A 'pWHUPLQHU OH WUDYDLO
IRXUQL SDU O¶RSpUDWHXU
&9&3$*$& 'HX[ FKDUJHV HQ LQWHUDFWLRQ
2Q SODFH XQH FKDUJH q DX SRLQW P 2Q DPqQH GHSXLV O¶LQILQL XQH FKDUJH −q TXH O¶RQ SODFH
DX SRLQW N j XQH GLVWDQFH d GH OD SUHPLqUH FKDUJH 2Q QRWH VA (B) OH SRWHQWLHO pOHFWULTXH
FUpp SDU OD FKDUJH DX SRLQW A HQ XQ SRLQW B
5DSSHOHU OH SRWHQWLHO pOHFWULTXH FUpp SDU OD FKDUJH q 2Q SUHQGUD XQ SRWHQWLHO QXO j O¶LQ
ILQL
(Q GpGXLUH O¶pQHUJLH pOHFWULTXH GX V\VWqPH GH GHX[ FKDUJHV
0RQWUHU TXH O¶pQHUJLH pOHFWULTXH GX V\VWqPH V¶pFULW Ee =
q
(VN (P ) − VP (N ))
2
q
(Q GpGXLUH O¶H[SUHVVLRQ GH OD FDSDFLWp GH FH V\VWqPH GH GHX[ FKDUJHV C = VN (P )−V
P (N )
1PVS WPVT BJEFS
Solutions
E©NBSSFS
&9&3$*$& 8WLOLVHU OD UHODWLRQ FKDPSSRWHQWLHO
&9&3$*$& 8WLOLVHU OD GpILQLWLRQ GX WUDYDLO G¶XQH IRUFH
&9&3$*$& 8WLOLVHU OD ILFKH © 8WLOLVHU OH SRWHQWLHO pOHFWULTXH ª
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& −
→
−
→
2Q XWLOLVH OD UHODWLRQ FKDPS SRWHQWLHO E = − GV
Gz ez TXH O¶RQ LQWqJUH V (z) = − 2�σ0 × z + K1 , SRXU z > 0
V (z) = 2�σ0 × z + K2 , SRXU z < 0
23. Calculer l’ énergie potentielle électrique
161
&9&3$*$& 8WLOLVHU OD ILFKH © 8WLOLVHU OH SRWHQWLHO pOHFWULTXH ª
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& −
→
−
→
2Q XWLOLVH OD UHODWLRQ FKDPS SRWHQWLHO E = − GV
Gz ez TXH O¶RQ LQWqJUH V (z) = − 2�σ0 × z + K1 , SRXU z > 0
V (z) = 2�σ0 × z + K2 , SRXU z < 0
/H SRWHQWLHO HVW FRQWLQX DX QLYHDX GH OD SODTXH RQ D K1 = K2 2U FH SRWHQWLHO HVW QXO
VXU OD SODTXH GRQF K1 = K2 = 0 )LQDOHPHQW OH SRWHQWLHO HQ WRXW SRLQW GH O¶HVSDFH
HVW σ
×z
V (z) = −VLJQH(z) ×
2�0
(Q UpDOLWp OD SODTXH Q¶HVW SDV LQILQLH GRQF OH FKDPS pOHFWULTXH HW OH SRWHQWLHO V¶DQQXOHQW
j O¶LQILQL
/D SODTXH TXH O¶RQ DPqQH SRVVqGH O¶pQHUJLH SRWHQWLHOOH Ep = −Q × V (e) = −σ × S ×
e
−σ × e
σ2 × S × e
Q2
×
=
=
2�0
2�0
2
S × �0
2Q UHWURXYH O¶pQHUJLH HPPDJDVLQpH SDU XQ FRQGHQVDWHXU GH FDSDFLWp C = �0 ×S
e &9&3$*$& −
→
−
→
/D IRUFH pOHFWULTXH Fe = q × E V¶DSSOLTXH VXU OD FKDUJH 2Q FDOFXOH OH WUDYDLO j SDUWLU
GH OD GpILQLWLRQ B
B
→
−
→
−
→
−
→−
WAB = Fe . Gl = q × E . Gl
A
A
2Q WUDQVIRUPH OD FLUFXODWLRQ GX FKDPS pOHFWULTXH SDU O¶RSSRVp GH OD YDULDWLRQ GH SRWHQ
WLHO pOHFWULTXH WAB = −q × ΔB
AV
/¶pQHUJLH SRWHQWLHOOH HW OH WUDYDLO VRQW UHOLpV SDU WAB = −ΔB
A Ep 3DU LGHQWLILFDWLRQ RQ
D
Ep = q × V + cte
2Q pWXGLH OD FKDUJH GDQV VRQ PRXYHPHQW GHSXLV O¶LQILQL VRXPLVH j OD IRUFH pOHFWULTXH
−
→
−
→
Fe HW OD IRUFH GH O¶RSpUDWHXU Fo 2Q DSSOLTXH OH WKpRUqPH GH O¶pQHUJLH FLQpWLTXH HQWUH
O¶LQILQL HW OH SRLQW A 2Q VXSSRVH TXH OD YLWHVVH GH OD FKDUJH HVW QXOOH j O¶LQILQL HW DX
SRLQW A −
→
−→
ΔA
∞ Ec = 0 = W (Fe ) + W (Fop )
/¶RSpUDWHXU IRXUQLW GRQF OH WUDYDLO 162
−→
−
→
Électromagnétisme
W (Fop ) = −W (Fe ) = q × (V (A) − V (∞)) = q × V (A) = Ep (A)
(Q HIIHW OH SRWHQWLHO HVW QXO j O¶LQILQL
/¶pQHUJLH SRWHQWLHOOH HW OH WUDYDLO VRQW UHOLpV SDU WAB = −ΔB
A Ep 3DU LGHQWLILFDWLRQ RQ
D
Ep = q × V + cte
2Q pWXGLH OD FKDUJH GDQV VRQ PRXYHPHQW GHSXLV O¶LQILQL VRXPLVH j OD IRUFH pOHFWULTXH
−
→
−
→
Fe HW OD IRUFH GH O¶RSpUDWHXU Fo 2Q DSSOLTXH OH WKpRUqPH GH O¶pQHUJLH FLQpWLTXH HQWUH
O¶LQILQL HW OH SRLQW A 2Q VXSSRVH TXH OD YLWHVVH GH OD FKDUJH HVW QXOOH j O¶LQILQL HW DX
SRLQW A −
→
−→
ΔA
∞ Ec = 0 = W (Fe ) + W (Fop )
/¶RSpUDWHXU IRXUQLW GRQF OH WUDYDLO −→
−
→
W (Fop ) = −W (Fe ) = q × (V (A) − V (∞)) = q × V (A) = Ep (A)
(Q HIIHW OH SRWHQWLHO HVW QXO j O¶LQILQL
&9&3$*$& '¶DSUqV OD ILFKH © 8WLOLVHU OH SRWHQWLHO pOHFWULTXH ª OD FKDUJH q FUpH DX SRLQW N OH
SRWHQWLHO q
DYHF P N = r
VP (N ) =
4π�0 × r
2Q DPqQH OD FKDUJH −q j XQH GLVWDQFH d GH O¶DXWUH FKDUJH GRQF O¶pQHUJLH pOHFWULTXH GX
V\VWqPH HVW −q 2
Ee = −q × VP (N ) =
4π�0 × d
/HV GHX[ FKDUJHV pWDQW MXVWH GH VLJQHV RSSRVpV OD FKDUJH −q FUpH DX SRLQW P OH SRWHQWLHO
VN (P ) = − 4π�q0 ×r DYHF N P = r 2Q UHPDUTXH VN (P ) − VP (N ) = −2 × VP (N ) HW
SDU FRQVpTXHQW RQ REWLHQW Ee = −q × VP (N ) =
Solutions
q
(VN (P ) − VP (N ))
2
2Q FDOFXOH OD FDSDFLWp C=
q
q
=
= 2π�0 × d
VN (P ) − VP (N )
2 × Ee /q
23. Calculer l’ énergie potentielle électrique
163
24
Déterminer le champ
%©UFSNJOFS
et le potentiel électrique
MF DIBNQ
FU MFunQPUFOUJFM
créés par
dipôle électrique
DS©©T QBS VO EJQ´MF ©MFDUSJRVF
2VBOE PO OF TBJU QBT −
→
eθ
8Q GLS{OH HVW FRQVWLWXp GH GHX[ FKDUJHV RS
SRVpHV q > 0 DX SRLQW P HW −q DX SRLQW
N (OOHV VRQW VpSDUpHV G¶XQH GLVWDQFH d
r
/¶DSSUR[LPDWLRQ GLSRODLUH FRQVLVWH j pWX
GLHU OH FKDPS pOHFWULTXH FUpp HQ XQ SRLQW M
ORLQ GX GLS{OH OM = r � d
−q
q
• • •
N O P
d
•
M
−
→
er
θ
z
−−→
→
/H PRPHQW GLSRODLUH HVW OH YHFWHXU −
p = q × N P /D QRUPH GX PRPHQW GLSRODLUH V¶H[
SULPH HQ 'HE\H ' � 3, 36 × 10−30 &P /HV OLJQHV GH FKDPSV VRQW HQ WUDLWV SOHLQV
HW OHV VXUIDFHV pTXLSRWHQWLHOOHV HQ SRLQ
WLOOpV /H SRWHQWLHO pOHFWULTXH GpFURLW HQ r12
VHORQ OD ORL V (M ) �
−−→
−
→
−
→
→
p .OM
p .−
er
1
×
=
4π�0
OM 3
4π�0 × r2
−−→
→
2Q QRWH −
r = OM /H FKDPS pOHFWULTXH
GpFURLW HQ r13 −
→
E (M ) �
164
−
1
→
−
→
−
→
→
2−
3(
p
.
r
)
r
−
r
p
4π�0 × r5
Électromagnétisme
−
→
p
2VF GBJSF
3RXU GpWHUPLQHU OH SRWHQWLHO FUpp SDU XQ GLS{OH pOHFWULTXH −−→ −−→
H[SULPHU OD ORQJXHXU P M JUkFH j P M = �P O + OM �
HIIHFWXHU XQH DSSUR[LPDWLRQ DX SUHPLHU RUGUH HQ dr GH OD IUDFWLRQ P1M
UHFRPPHQFHU SRXU OD IUDFWLRQ N1M
q
DGGLWLRQQHU OHV SRWHQWLHOV V (M ) = 4π�
0
1
1
P M − NM
3RXU GpWHUPLQHU OH FKDPS pOHFWULTXH FUpp SDU XQ GLS{OH pOHFWULTXH H[SULPHU OH SRWHQWLHO pOHFWULTXH V
−−→
−
→
XWLOLVHU OD UHODWLRQ E = −JUDG (V )
$POTFJMT
$X SUHPLHU RUGUH RQ D (1 + x)α � 1 + αx
→
→
→
→
→
→
2Q UDSSHOOH �−
u +−
v �2 = �−
u �2 + �−
v �2 + 2−
u .−
v
/H JUDGLHQW HQ FRRUGRQQpHV VSKpULTXHV V¶pFULW −−→
∂V −
∂V −
1 ∂V −
1
→
→
→
JUDG(V ) =
×
er + ×
eθ +
eφ
∂r
r
∂θ
r VLQ θ
∂φ
&YFNQMF USBJU©
2Q pWXGLH XQ GLS{OH pOHFWULTXH GH FHQWUH O FRQVWLWXp G¶XQH FKDUJH SRVLWLYH q SODFpH DX SRLQW
P HW G¶XQH FKDUJH QpJDWLYH −q SODFpH DX SRLQW N (OOHV VRQW VpSDUpHV G¶XQH GLVWDQFH d 2Q
QRWH (Oz) O¶D[H FRQWHQDQW OHV GHX[ FKDUJHV HW RQ UHSqUH XQ SRLQW M GDQV O¶DSSUR[LPDWLRQ
GLSRODLUH JUkFH j VHV FRRUGRQQpHV VSKpULTXHV
−−→ −−→
'pWHUPLQHU P1M HW N1M DX SUHPLHU RUGUH HQ dr HQ IRQFWLRQ GH r HW GH P O.OM −−→ −−→
(Q GpGXLUH O¶H[SUHVVLRQ GH P1M − N1M HQ IRQFWLRQ GH OM HW GX SURGXLW VFDODLUH N P .OM (Q GpGXLUH O¶H[SUHVVLRQ GX SRWHQWLHO pOHFWULTXH
'pWHUPLQHU O¶H[SUHVVLRQ GX FKDPS pOHFWULTXH
24. Déterminer le champ et le potentiel électrique créés par un dipôle électrique
165
40-65*0/
−−→
2Q FDOFXOH OD ORQJXHXU P M FRPPH pWDQW OD QRUPH GX YHFWHXU P M −−→
−−→
−−→ −−→1/2
−−→
−−→ −−→
P M = �P M � = �P O + OM � = P O2 + OM 2 + 2P O.OM
−−→ −−→ 1/2
−−→ −−→1/2
d2
2P O.OM
2
2
= d /4 + r + 2P O.OM
=r× 1+
+
4 × r2
r2
2Q HIIHFWXH XQH DSSUR[LPDWLRQ DX SUHPLHU RUGUH HQ d/r RQ REWLHQW −−→ −−→ −−→ −−→ P O.OM
P O.OM
1
1
PM � r × 1 +
�
1−
GRQF
2
r
PM
r
r2
−−→
−−→ −−→
−−→ −−→
2Q UHFRPPHQFH DYHF N M = �N O + OM � = � − P O + OM � 6HXO XQ VLJQH −
GLIIqUH 2Q WURXYH −−→ −−→ P O.OM
1
1
�
1+
NM
r
r2
−
−
→ −−→
−−→ −−→
2Q VRXVWUDLW OHV GHX[ H[SUHVVLRQV HW RQ WURXYH P1M − N1M � −2 P O.rOM
= N Pr.3OM
3
2Q XWLOLVH OH SULQFLSH GH VXSHUSRVLWLRQ SRXU FDOFXOHU OH SRWHQWLHO &RPPH XQH FKDUJH q
JpQqUH OH SRWHQWLHO V = 4π�q0 ×r j XQH GLVWDQFH r DORUV −−→ −−→
1
N P .OM
q
q
q
1
q
V =
−
=
−
�
×
4π�0 (P M ) 4π�0 (N M )
4π�0 P M
NM
4π�0
r3
−−→
→
−
−−→
p .OM
p×FRV θ
→
2Q LQWURGXLW OH PRPHQW GLSRODLUH −
p = q × N P GRQF V (M ) � 4π�
3 = 4πε ×r 2 0 ×r
0
−−→
→
2Q H[SULPH OH SURGXLW VFDODLUH −
p .OM G¶DSUqV OH VFKpPD GH OD SDUWLH © 4XDQG RQ QH
−−→
→
VDLW SDV ª −
p .OM = p FRV θ 2Q FDOFXOH OH FKDPS pOHFWULTXH j SDUWLU GX JUDGLHQW Er = −
'H PrPH RQ D p
2p FRV θ
∂V
∂ FRV θ/r2
=−
=
×
∂r
4π�0
∂r
4π�0 × r3
p × VLQ θ
1 ∂V
=
Eθ = − ×
r
∂θ
4π�0 r3
&YFSDJDFT
&9&3$*$& 'LS{OH F\OLQGULTXH
'HX[ ILOV LGHQWLTXHV (1) HW (2) G¶D[HV SDUDOOqOHV j (Oz) LQILQLPHQW ORQJV VRQW GLVSRVpV
GDQV OH YLGH SDUDOOqOHPHQW O¶XQ j O¶DXWUH /H ILO (1) G¶D[H x = d HW y = 0 SRUWH OD FKDUJH
OLQpLTXH λ HW OH ILO (2) G¶D[H x = −d HW y = 0 SRUWH OD FKDUJH OLQpLTXH −λ 2Q pWXGLH OH
SRWHQWLHO HQ XQ SRLQW M GX SODQ (Oxy) ORLQ GX GLS{OH
2Q QRWH r = OM HW RQ LQWURGXLW p0 = 2dλ OH PRPHQW GLSRODLUH OLQpLTXH
166
Électromagnétisme
y
−
→
eθ
•
M
−
→
er
r
−λ
λ
• • •
(2) O (1)
θ
x
2Q GRQQH OH SRWHQWLHO j XQH FRQVWDQWH C SUqV FUpp SDU XQH GLVWULEXWLRQ OLQpLTXH GH FKDUJH
GH GHQVLWp OLQpLTXH GH FKDUJH λ j XQH GLVWDQFH r V (r) = −
'pWHUPLQHU OH SRWHQWLHO HQ XQ SRLQW M VLWXp j XQH GLVWDQFH r1 GX ILO (1) HW r2 GX ILO (2)
/H SRWHQWLHO HVW QXO DX FHQWUH O GH OD GLVWULEXWLRQ
6LPSOLILHU GDQV O¶DSSUR[LPDWLRQ GLSRODLUH OH SRWHQWLHO HQ IRQFWLRQ GH r θ �0 HW p0 4XH
GLUH SDU UDSSRUW DX SRWHQWLHO G¶XQ GLS{OH FRQVWLWXp GH GHX[ FKDUJHV "
(Q GpGXLUH OHV VXUIDFHV pTXLSRWHQWLHOOHV 7UDFHU TXHOTXHV pTXLSRWHQWLHOOHV
1PVS WPVT BJEFS
&9&3$*$& E©NBSSFS
Solutions
λ
OQ(r) + C
2π�0
$GGLWLRQQHU OHV SRWHQWLHOV
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& '¶DSUqV OH SULQFLSH GH VXSHUSRVLWLRQ OH SRWHQWLHO DX SRLQW M HVW O¶DGGLWLRQ GHV GHX[
SRWHQWLHOV λ
λ
OQ(r1 ) + C +
OQ(r2 ) + C
V (M ) = V1 (M ) + V2 (M ) = −
2π�0
2π�0
r2
λ
=
+ 2C
OQ
2π�0
r1
/H SRWHQWLHO HVW QXO DX FHQWUH GH OD GLVWULEXWLRQ F¶HVWjGLUH ORUVTXH r2 = r1 = d GRQF
V (O) = 2C = 0 G¶R C = 0 SDU FRQVpTXHQW r2
λ
OQ
V (M ) =
2π�0
r1
24. Déterminer le champ et le potentiel électrique créés par un dipôle électrique
167
2Q FDOFXOH DX SUHPLHU RUGUH −−→ −−→
−−→ −−→1/2
r1 = �P O + OM � = P O2 + OM 2 + 2P O.OM
−−→ −−→1/2
= r2 + d2 + 2P O.OM
−−→ −−→ −−→ −−→ 1/2
P O.OM
d2 2P O.OM
=r× 1+ 2 +
�r× 1+
2
r
r
r2
−−→ −−→ 'H PrPH RQ D r2 � r × 1 + N O.r2OM GRQF DX SUHPLHU RUGUH RQ D −−→ −−→ −−→ −−→
−−→ −−→
N O.OM
P O.OM
N P .OM
r2
�1+
−
=
1
+
r1
r2
r2
r2
$LQVL OH SRWHQWLHO pOHFWULTXH DX SRLQW M GHYLHQW −−→ −−→ −−→ −−→
N P .OM
N P .OM
λ
λ
OQ 1 +
×
�
V (M ) �
2
2π�0
r
2π�0
r2
−−→
−−→
6DFKDQW TXH �N P � = 2d HW TXH �OM � = r RQ FDOFXOH OH SURGXLW VFDODLUH HQ XWLOLVDQW
−−→ −−→
OH VFKpPD GH O¶pQRQFp λ × N P .OM = 2dλ × r FRV θ = p0 × r FRV θ 3DU FRQVpTXHQW
OH SRWHQWLHO GHYLHQW p0 FRV θ
V (M ) �
2π�0 × r
/H SRWHQWLHO GpFURLW HQ 1/r DORUV TX¶LO GpFURLW HQ 1/r2 SRXU XQ GLS{OH FRQVWLWXp GH GHX[
FKDUJHV SRQFWXHOOHV
6XU XQH VXUIDFH pTXLSRWHQWLHOOH OH SRWHQWLHO HVW FRQVWDQW V =C=
p0 FRV θ
π�0 × r
GRQF
r(θ) = K × FRV θ
−
→
p
168
Électromagnétisme
Prévoir le mouvement
MF NPVWFNFOU
d’un 1S©WPJS
dipôle électrique
plongé
dans
EVOunEJQ´MF
champ©MFDUSJRVF
extérieurQMPOH©
EBOT VO DIBNQ FYU©SJFVS
25
2VBOE PO OF TBJU QBT −
→
$FWLRQV H[HUFpHV VXU XQ GLS{OH ULJLGH 8Q FKDPS pOHFWULTXH E H[WpULHXU H[HUFH VXU
→
XQ GLS{OH ULJLGH GH FHQWUH
O HWGH PRPHQW GLSRODLUH −
p −
→ −−→ −
−
→
→
− XQH IRUFH F = JUDG p . E
→
−−→ → −
p ∧ E (O)
− XQ PRPHQW MO � −
−
→
−
→
6L OH FKDPS pOHFWULTXH E HVW XQLIRUPH DORUV OD IRUFH F HVW QXOOH
→
8Q GLS{OH ULJLGH GH FHQWUH O HW GH PRPHQW −
p SORQJp GDQV XQ FKDPS pOHFWULTXH SRVVqGH
O¶pQHUJLH SRWHQWLHOOH −
→
→
Ep � −−
p . E (O)
0RXYHPHQW G¶XQ GLS{OH − XQ FKDPS XQLIRUPH H[HUFH XQ FRXSOH TXL WHQG j DOLJQHU OH GLS{OH GDQV OD GLUHFWLRQ HW
OH VHQV GX FKDPS pOHFWULTXH
− XQ FKDPS QRQ XQLIRUPH H[HUFH XQ FRXSOH TXL WHQG j DOLJQHU OH GLS{OH GDQV OD GLUHFWLRQ
HW OH VHQV GX FKDPS pOHFWULTXH ORFDO (W OH FKDPS H[HUFH XQH IRUFH TXL O¶HQWUDvQH YHUV
OHV UpJLRQV GH FKDPS LQWHQVH R OHV OLJQHV GH FKDPS VH UHVVHUUHQW
2VF GBJSF
3RXU FDOFXOHU OD IRUFH OH PRPHQW RX O¶pQHUJLH SRWHQWLHOOH G¶XQ GLS{OH ULJLGH DGGLWLRQQHU OHV GHX[ IRUFHV OHV GHX[ PRPHQWV RX OHV GHX[ pQHUJLHV GH FKDTXH
FKDUJH
$POTFJMT
3RXU GpWHUPLQHU OD SRVLWLRQ G¶pTXLOLEUH RQ FKHUFKH OH PLQLPXP GH O¶pQHUJLH SRWHQWLHOOH
3RXU OHV DSSOLFDWLRQV QXPpULTXHV RQ SUHQGUD �0 � 8, 85 × 10−12 86,
25. Prévoir le mouvement d’un dipôle électrique plongé dans un champ extérieur
169
&YFNQMF USBJU©
2Q FRQVLGqUH XQ GLS{OH ULJLGH FRPSRVp GH GHX[ FKDUJHV −q HW q SODFpHV DX[ SRLQWV N HW P 2Q DSSHOOH d OD GLVWDQFH N P 2Q UHSqUH O¶D[H GX GLS{OH SDU UDSSRUW j O¶D[H (Oz) JUkFH j
−
→
→
ex O¶DQJOH θ 2Q DMRXWH XQ FKDPS pOHFWULTXH XQLIRUPH E = E0 −
•
θ
×
O
•
P (q)
x
N (−q)
&DOFXOHU OD IRUFH pOHFWULTXH TXL V¶DSSOLTXH VXU OH GLS{OH
([SULPHU OH PRPHQW GH OD IRUFH pOHFWULTXH HQ O FHQWUH GX GLS{OH
0RQWUHU TXH FH PRPHQW WHQG j DOLJQHU OH GLS{OH VXU OH FKDPS pOHFWULTXH
/¶pQHUJLH SRWHQWLHOOH GX GLS{OH HVW OD VRPPH GHV pQHUJLHV SRWHQWLHOOHV GH FKDFXQH GHV
−
→
→
p .E
FKDUJHV 0RQWUHU TXH O¶pQHUJLH GX GLS{OH V¶pFULW Ep = −−
'pWHUPLQHU OD SRVLWLRQ G¶pTXLOLEUH VWDEOH
40-65*0/
,O V¶DSSOLTXH XQH IRUFH pOHFWULTXH VXU FKDTXH FKDUJH /D IRUFH WRWDOH TXL V¶DSSOLTXH VXU
−
→
−
→
−
→ −
→
OH GLS{OH HVW GRQF QXOOH F = q E − q E = 0 2Q DGGLWLRQQH OHV PRPHQWV GHV GHX[ IRUFHV −−→ −−→ −
−−→ −
→ −−→ −
→
→
−−→
MO = OP ∧ q E + ON ∧ −q E = q OP − ON ∧ E
−−→ −
→ → −
→
= q × NP ∧ E = −
p ∧E
−−→
→
2Q FDOFXOH OH PRPHQW MO = −p × E0 VLQ θ−
ez &H PRPHQW HVW QXO ORUVTXH O¶DQJOH θ
HVW QXO F¶HVWjGLUH ORUVTXH OH PRPHQW GLSRODLUH HVW DOLJQp HW GDQV OH PrPH VHQV TXH OH
FKDPS pOHFWULTXH
2Q DGGLWLRQQH OHV GHX[ pQHUJLHV SRWHQWLHOOHV Ep = Ep (P ) + Ep (N ) = qV (P ) − qV (N ) = q (V (P ) − V (N ))
3XLV RQ FDOFXOH OD GLIIpUHQFH GH SRWHQWLHO JUkFH j OD FLUFXODWLRQ GX FKDPS pOHFWULTXH Ep = −q
P
N
170
Électromagnétisme
→
−
→−
−
→
E . Gl = −q E .
P
N
−
→
−
→ −−→
−
→
→
Gl = −q E .N P = −−
p .E
2Q H[SULPH O¶pQHUJLH SRWHQWLHOOH Ep = −p × E0 × FRV θ /D SRVLWLRQ G¶pTXLOLEUH VWDEOH
HVW DWWHLQWH GRQF O¶pQHUJLH SRWHQWLHOOH HVW PLQLPXP SRXU θ = 0 /H GLS{OH HVW DOLJQp HW
GDQV OH PrPH VHQV TXH OH FKDPS pOHFWULTXH
&YFSDJDFT
'pSODFHPHQW G¶XQ GLS{OH
→
2Q pWXGLH XQ GLS{OH ULJLGH GH PRPHQW −
p HW GH FHQWUH A GDQV OH FKDPS pOHFWULTXH FUpp SDU
&9&3$*$& XQH FKDUJH q > 0 IL[H DX FHQWUH O GX UpIpUHQWLHO 2Q SODFH OH PRPHQW VXU O¶D[H (Ox) 2Q
QRWH x > 0 OD SRVLWLRQ GX FHQWUH GX GLS{OH
0RQWUHU TX¶j O¶pTXLOLEUH OH GLS{OH HVW GLULJp GDQV OH VHQV GHV x FURLVVDQWV
2Q VXSSRVH TXH OH GLS{OH HVW DOLJQp VXU O¶D[H GHV DEVFLVVHV &DOFXOHU OD IRUFH TXL V¶DS
SOLTXH 0RQWUHU TXH OH GLS{OH VH GLULJH YHUV OH FHQWUH O
&9&3$*$& 6WDELOLVDWLRQ GH O¶DPPRQLDF
2Q DSSHOOH p0 = 0, 5 × 10−29 &P OH PRPHQW GLSRODLUH GH OD PROpFXOH G¶DPPRQLDF 2Q
GRQQH OH FKDPS pOHFWULTXH FUpp SDU XQ GLS{OH GH FHQWUH O HQ XQ SRLQW M −
→
E (M ) =
−−→ −−→
1
→
−
→
2−
p
3(
p
.
OM
)
OM
−
(OM
)
4π�0 × OM 5
/D PROpFXOH G¶DPPRQLDF VH VWDELOLVH DXWRXU G¶XQ LRQ DUJHQW $J+ GH FHQWUH O j XQH
GLVWDQFH r0 = 0, 25 QP SRXU IRUPHU OH FRPSOH[H >$J 1+3 @+ B 5HSUpVHQWHU XQ LRQ OHV OLJQHV GH FKDPS HW OH GLS{OH GDQV VD SRVLWLRQ G¶pTXLOLEUH
VWDEOH
C ([SULPHU O¶pQHUJLH SRWHQWLHOOH E1 GH O¶DPPRQLDF HQ IRQFWLRQ GH �0 OD FKDUJH pOp
PHQWDLUH e p0 HW r0 &DOFXOHU OD YDOHXU
D (Q TXRL FH UpVXOWDW MXVWLILHWLO OD IRUPDWLRQ G¶XQ FRPSOH[H >$J 1+3 @+ "
0DLQWHQDQW RQ FRQVLGqUH OH FRPSOH[H >$J 1+3 2 @+ /D GLVWDQFH LRQGLS{OH HVW WRXMRXUV
GH r0 = 0, 25 QP
B 5HSUpVHQWHU OH FRPSOH[H DYHF OHV GHX[ GLS{OHV &H FRPSOH[H HVW V\PpWULTXH
C 'pWHUPLQHU O¶pQHUJLH SRWHQWLHOOH E12 HQWUH OHV GHX[ GLS{OHV HQ IRQFWLRQ GH p0 �0 HW
r0 /D FDOFXOHU
D (Q GpGXLUH O¶pQHUJLH SRWHQWLHOOH E2 GH FH GHX[LqPH FRPSOH[H /D FDOFXOHU
E &RQFOXUH
25. Prévoir le mouvement d’un dipôle électrique plongé dans un champ extérieur
171
1PVS WPVT BJEFS
E©NBSSFS
&9&3$*$& /H PRPHQW WHQG j DOLJQHU OH GLS{OH VXU OH FKDPS pOHFWULTXH
&9&3$*$& /¶LRQ $J+ VH FRPSRUWH FRPPH XQH FKDUJH SRQFWXHOOH q = e
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& −
→
→
/H GLS{OH YRLW OH FKDPS pOHFWULTXH E = 4π�0q×x2 −
ex FUpp SDU OD FKDUJH ,O V¶DSSOLTXH VXU
−−→
−
→
−
→
OH GLS{OH OH PRPHQW MA = p ∧ E (A) &H PRPHQW WHQG j DOLJQHU OH GLS{OH VXU OHV
OLJQHV GH FKDPS F¶HVWjGLUH VXU O¶D[H GHV DEVFLVVHV
−
→
p0 ×q
→
→
→
2Q FDOFXOH OH SURGXLW VFDODLUH −
p . E = p0 −
ex . 4π�0q×x2 −
ex = 4π�
2 SXLV OD IRUFH 0 ×x
−
→ −−→ −
−
→
p0 × q −
→
F = JUDG →
p .E = −
ex
2π�0 × x3
/D IRUFH HVW GLULJpH YHUV OH FHQWUH O GRQF OH GLS{OH VH GLULJH YHUV O
&9&3$*$& B
/HV OLJQHV GH FKDPS pOHFWULTXH GL
YHUJHQW GHSXLV O¶LRQ
−
→
p
$J+
/H PRPHQW GLSRODLUH V¶DOLJQH VXU XQH
OLJQH GH FKDPS HW VH UDSSURFKH GH O¶LRQ
C /¶pQHUJLH SRWHQWLHOOH FRUUHVSRQG j O¶pQHUJLH GX GLS{OH GDQV OH FKDPS FUpp SDU O¶LRQ −
→
→
→
p . E = −p0 −
er .
E1 = −−
e −
e × p0
→
� −11, 5 × 10−20 er = −
2
4π�0 r0
4π�0 r02
D /¶pQHUJLH SRWHQWLHOOH pWDQW QpJDWLYH FH FRPSOH[H HVW SOXV VWDEOH TX¶XQ LRQ HW XQ
GLS{OH WRWDOHPHQW VpSDUpV
172
Électromagnétisme
B
/HV GHX[ GLS{OHV YRQW VH UDSSURFKHU GH
O¶LRQ HQ VXLYDQW XQH OLJQH GH FKDPS
/D GLUHFWLRQ GHV GLS{OHV HVW LPSRVpH SDU
OHV OLJQHV GH FKDPS
−
→
p1
•
O1
$J+
−
→
p2
•
O2
x
/D V\PpWULH GX FRPSOH[H OXL DFFRUGH
XQH FHUWDLQH VWDELOLWp
C 2Q DSSHOOH O1 HW O2 OH FHQWUH GHV GLS{OHV /H GLS{OH FUpH DX QLYHDX GX GLS{OH OH FKDPS pOHFWULTXH −−−→ −−−→
1
−
→
→
2−
.
O
O
)
O
O
−
(O
O
)
3(
p
p
2
2 1
2 1
2 1
2
4π�0 × O2 O15
p0 −
1
−
→
→
→
2 −
e
e
ex
p
)
×
(−2r
)
−
(2r
)
p
3(−2r
=
=
0
0
0
x
0
0
x
4π�0 (2r0 )5
16π�0 r03
−
→
E2 (1) =
/¶pQHUJLH G¶LQWHUDFWLRQ YDXW GRQF −
→
→
p1 .E2 (1) = −
E12 = −−
Solutions
p20
� −18 × 10−31 16π�0 r03
D 2Q FDOFXOH O¶pQHUJLH GH FH GHX[LqPH FRPSOH[H E2 = 2 × E1 + E12 � −23 × 10−20 E &H GHX[LqPH FRPSOH[H HVW SOXV VWDEOH TXH OH SUHPLHU FDU VRQ pQHUJLH SRWHQWLHOOH HVW
SOXV EDVVH
25. Prévoir le mouvement d’un dipôle électrique plongé dans un champ extérieur
173
26
Mettre en évidence les analogies
.FUUSF FO ©WJEFODF
entre
l’électrostatique
MFT BOBMPHJFT
FOUSF et la gravitation
M©MFDUSPTUBUJRVF FU MB HSBWJUBUJPO
2VBOE PO OF TBJU QBT 8QH FKDUJH q0 SODFpH DX SRLQW O FUpH HQ XQ SRLQW M WHO TXH OM = r OH FKDPS pOHF
WULTXH −
→
q0 →
1
× 2−
E =
er
4πε0 r
8QH PDVVH m0 SODFpH DX SRLQW O FUpH HQ XQ SRLQW M WHO TXH OM = r OH FKDPS
JUDYLWDWLRQQHO m0 →
−
→
er
g = −G × 2 −
r
2Q XWLOLVH O¶DQDORJLH VXLYDQWH q0 ←→ m0
HW
1
←→ −G
4πε0
/D IRUPH ORFDOH GX WKpRUqPH GH *DXVV SRXU OD JUDYLWDWLRQ V¶pFULW →
GLY−
g (M ) = −4πG × μ(M )
DYHF μ(M ) OD PDVVH YROXPLTXH DX SRLQW M /D IRUPH JOREDOH GX WKpRUqPH GH *DXVV SRXU OD JUDYLWDWLRQ V¶pFULW −
→
−
→
g .GS = −4πG × mLQW
VXUIDFH
R mint HVW OD PDVVH FRPSULVH j O¶LQWpULHXUH GH OD VXUIDFH IHUPpH
2VF GBJSF
3RXU FDOFXOHU OH FKDPS JUDYLWDWLRQQHO FUpp SDU XQH GLVWULEXWLRQ GH PDVVH LO VXIILW GH UH
SUHQGUH OD PrPH PpWKRGH TXH SRXU FDOFXOHU XQ FKDPS pOHFWULTXH YRLU OD ILFKH © 8WL
OLVHU OH WKpRUqPH GH *DXVV SRXU FDOFXOHU XQ FKDPS pOHFWULTXH ª 174
Électromagnétisme
$POTFJMT
/D VXUIDFH GH *DXVV HVW HQ JpQpUDO VRLW SDUDOOqOH VRLW QRUPDOH DX FKDPS JUDYLWDWLRQQHO
&YFNQMF USBJU©
2Q FRQVLGqUH XQH SODQqWH KRPRJqQH GH FHQWUH O HW GH PDVVH MP 2Q VH SODFH HQ FRRUGRQ
QpHV VSKpULTXHV 8Q SRLQW M D SRXU FRRUGRQQpHV (r, θ, φ)
'pWHUPLQHU OD PDVVH YROXPLTXH μ GH OD SODQqWH
→
'pWHUPLQHU OD GpSHQGDQFH HW OD GLUHFWLRQ GX FKDPS JUDYLWDWLRQQHO −
g DX SRLQW M -XVWLILHU TXH O¶RQ XWLOLVH FRPPH VXUIDFH GH *DXVV XQH VSKqUH GH UD\RQ r HW GH FHQWUH O
(Q GpGXLUH OH IOX[ GX FKDPS JUDYLWDWLRQQHO j WUDYHUV FHWWH VXUIDFH IHUPpH
/H SRLQW M VH WURXYH KRUV GH OD SODQqWH r > R 'pWHUPLQHU OD PDVVH FRQWHQXH GDQV OD
VXUIDFH GH *DXVV (Q GpGXLUH OH FKDPS JUDYLWDWLRQQHO HQ WRXW SRLQW KRUV GH OD SODQqWH
4XH UHWURXYH WRQ "
40-65*0/
P
&RPPH OD UpSDUWLWLRQ GH OD PDVVH HVW XQLIRUPH DORUV RQ D μ = MVP = 3×M
4πR3
/D GLVWULEXWLRQ HVW j V\PpWULH VSKpULTXH GRQF OH FKDPS JUDYLWDWLRQQHO QH GpSHQG TXH GX
→
→
UD\RQ r −
g (M ) = −
g (r) 7RXW SODQ FRQWHQDQW OD GURLWH (OM ) HVW XQ SODQ GH V\PpWULH
GH OD GLVWULEXWLRQ GH PDVVH GRQF OH FKDPS JUDYLWDWLRQQHO DSSDUWLHQW j FHWWH GURLWH LO HVW
→
→
er UDGLDO )LQDOHPHQW OH FKDPS JUDYLWDWLRQQHO VH PHW VRXV OD IRUPH −
g (M ) = gr (r)−
2Q FKRLVLW XQH VXUIDFH GH *DXVV UHVSHFWDQW OD V\PpWULH GH OD GLVWULEXWLRQ SHUSHQGLFXODLUH
DX[ OLJQHV GH FKDPS HW SDVVDQW SDU OH SRLQW M /D VSKqUH GH FHQWUH O HW GH UD\RQ r
UHVSHFWH SDUIDLWHPHQW OHV WURLV FRQGLWLRQV
−
→
→
2Q H[SOLFLWH OH YHFWHXU VXUIDFH pOpPHQWDLUH GS = r2 × VLQ(θ)GθGφ−
er SXLV RQ FDOFXOH
OH IOX[ GX FKDPS JUDYLWDWLRQQHO −
→
−
→
−
→
−
→
2
2
Φ(r) =
g .GS = gr (r) er .r × VLQ(θ)GθGφ er = gr (r) × r
VLQ(θ)GθGφ
/¶LQWpJUDOH VXU OHV YDULDEOHV DQJXODLUHV YDXW 4π GRQF OH IOX[ GHYLHQW Φ(r) = 4πr2 × gr (r)
/D VXUIDFH GH *DXVV FRQWLHQW WRXWH OD SODQqWH GRQF OD PDVVH LQWpULHXUH HVW FHOOH GH OD
SODQqWH Mint = MP 2Q DSSOLTXH OH WKpRUqPH GH *DXVV Φ(r) = −4πG × MP SXLV RQ
LVROH OH FKDPS JUDYLWDWLRQQHO gr (r) = −G ×
MP
r2
MP →
→
=⇒ −
g (M ) = −G × 2 −
er
r
2Q UHWURXYH OD ORL GH 1HZWRQ
26. Mettre en évidence les analogies entre l’ électrostatique et la gravitation
175
&YFSDJDFT
&9&3$*$& $SSUR[LPDWLRQ NpSOpULHQQH
-XVWLILHU TXH OH FKDPS JUDYLWLRQQHO FUpp SDU XQ DVWUH GH PDVVH M j V\PpWULH VSKp
ULTXH HVW pTXLYDOHQW DX FKDPS JUDYLWDWLRQQHO FUpp SDU XQH PDVVH SRQFWXHOOH M SODFpH
DX FHQWUH GH JUDYLWp GH O¶DVWUH
&DOFXOHU O¶DFFpOpUDWLRQ GH OD SHVDQWHXU j OD VXUIDFH GH OD 7HUUH 2Q UDSSHOOH OD PDVVH GH
OD 7HUUH MT � 5, 9 × 1024 NJ OD FRQVWDQWH GH JUDYLWDWLRQ G � 6, 67 × 10−11 86, HW OH
UD\RQ PR\HQ GH OD 7HUUH RT � 6400 NP
aQm`+2 , **S
1PVS WPVT BJEFS
&9&3$*$& E©NBSSFS
$SSOLTXHU OH WKpRUqPH GH *DXVV j O¶DVWUH
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& 2Q FKHUFKH OH FKDPS JUDYLWDWLRQQHO HQ XQ SRLQW M HQ GHKRUV GH O¶DVWUH r > R 2Q
DSSOLTXH OH WKpRUqPH GH *DXVV j WUDYHUV OD VSKqUH GH UD\RQ r HW GH FHQWUH O /H IOX[ GX
FKDPS JUDYLWDWLRQQHO YDXW −
→
−
→
Φ(r) =
g .GS = gr (r) × 4πr2
VSKqUH
/D VSKqUH GH UD\RQ r FRQWLHQW OD PDVVH GH OD SODQqWH Mint = M 'RQF OH WKpRUqPH GH
2Q UHWURXYH ELHQ OD
*DXVV V¶pFULW Φ(r) = −4πG × Mint F¶HVWjGLUH gr (r) = − G×M
r2
ORL GH 1HZWRQ F¶HVWjGLUH OH FKDPS JUDYLWDWLRQQHO FUpp SDU XQH PDVVH M ORFDOLVpH DX
SRLQW O G×M−
−
→
→
g =−
er
r2
2Q IDLW O¶DSSOLFDWLRQ QXPpULTXH g0 =
G × MT
� 9, 77 PV−2
RT2
2Q UHWURXYH OD YDOHXU KDELWXHOOHPHQW DGPLVH g0 � 9, 81 PV−2 176
Électromagnétisme
27
Modéliser une distribution de courant
.PE©MJTFS
VOF EJTUSJCVUJPO EF DPVSBOU
2VBOE PO OF TBJU QBT −
→
j (M, t)
/¶LQWHQVLWp GX FRXUDQW FRUUHVSRQG DX GpELW
GH FKDUJHV j WUDYHUV XQH VHFWLRQ S F¶HVW
jGLUH OH QRPEUH GH FKDUJHV WUDYHUVDQW OD
VHFWLRQ S SDU XQLWp GH WHPSV −
→
−
→
j (M, t).GS
I(t) =
−
→
GS
M ∈S
−
→
j (M, t) HVW OH YHFWHXU GHQVLWp GH FRXUDQW pOHFWULTXH /RUVTXH FHOXLFL HVW XQLIRUPH VXU
OD VHFWLRQ HW SHUSHQGLFXODLUH j FHOOHFL DORUV O¶LQWHQVLWp YDXW I = j × S
−
→
→
/H YHFWHXU GHQVLWp GH FRXUDQW pOHFWULTXH j = ρ × −
v HVW OH SURGXLW GH OD GHQVLWp YROX
PLTXH GH FKDUJH HW GX YHFWHXU YLWHVVH
/RUVTX¶LO \ D SOXVLHXUV SRUWHXUV GH FKDUJHV RQ DGGLWLRQQH OHV YHFWHXUV GHQVLWpV GH FRXUDQW
GH FKDTXH SRUWHXU GH FKDUJH −
→ ∗ −
ni q i →
j =
vi
i
2VF GBJSF
3RXU H[SULPHU OH YHFWHXU GHQVLWp YROXPLTXH GH FRXUDQW H[SULPHU OH YHFWHXU YLWHVVH G¶XQH FKDUJH
H[SULPHU OD GHQVLWp YROXPLTXH GH FKDUJH HW IDLUH OH SURGXLW
3RXU H[SULPHU OH YHFWHXU GHQVLWp YROXPLTXH GH FRXUDQW j SDUWLU GH O¶LQWHQVLWp I VL OD GHQVLWp GH FRXUDQW HVW XQLIRUPH FDOFXOHU j = I/S
DMRXWHU OH YHFWHXU XQLWDLUH GLULJp GDQV OH VHQV GH O¶LQWHQVLWp
27. Modéliser une distribution de courant
177
&YFNQMF USBJU©
2Q LPSRVH XQ FRXUDQW I = 1, 0 $ GDQV XQ ILO GH FXLYUH GH VHFWLRQ S = 1, 0 PP2 2Q QRWH
MCu = 64 J OD PDVVH PRODLUH GX FXLYUH HW ρcu = 8, 9 × 103 NJP−3 VD PDVVH YROXPLTXH
&KDTXH DWRPH GH FXLYUH OLEqUH XQ pOHFWURQ OLEUH
([SULPHU OD YLWHVVH v GHV pOHFWURQV HQ IRQFWLRQ GH O¶LQWHQVLWp I GH OD GHQVLWp SDUWLFXODLUH
n∗ HW GH OD FKDUJH GH O¶pOHFWURQ −e
5HOLHU OD GHQVLWp YROXPLTXH n∗ DYHF OD PDVVH PRODLUH OD PDVVH YROXPLTXH HW OH QRPEUH
G¶$YRJDGUR NA = 6, 02 × 1023 PRO−1 (Q GpGXLUH OD YLWHVVH v GHV pOHFWURQV
40-65*0/
2Q VXSSRVH TXH OH YHFWHXU GHQVLWp YROXPLTXH GH FRXUDQW HVW XQLIRUPH VXU OD VHFWLRQ GX
ILO GRQF FRPPH O¶LQWHQVLWp I HVW SDU FRQYHQWLRQ GLULJpH GDQV OH VHQV RSSRVp j FHOXL GX
PRXYHPHQW GHV pOHFWURQV RQ D I = −j × S = −S × n∗ × (−e) × v
3DU FRQVpTXHQW OD YLWHVVH YDXW v = S×nI∗ ×e
×NA
2Q H[SULPH OD GHQVLWp SDUWLFXODLUH n∗ = ρCu
MCu
Cu
)LQDOHPHQW RQ D v = S×ρI×M
� 0, 075 PPV−1 Cu ×NA ×e
&YFSDJDFT
&9&3$*$& &kEOH FRD[LDO
8Q FkEOH FRD[LDO HVW FRPSRVp GH WURLV F\OLQGUHV FRD[LDX[ G¶D[H (Oz) GH UD\RQ r1 r2 > r1
HW r3 > r2 'DQV OH F\OLQGUH LQWpULHXU GH UD\RQ r1 LO FLUFXOH XQ FRXUDQW I GDQV OH VHQV GHV
z FURLVVDQWV (QWUH OHV GHX[ F\OLQGUHV GH UD\RQ r2 HW r3 LO FLUFXOH OH PrPH FRXUDQW I PDLV
HQ VHQV LQYHUVH GDQV OH VHQV GHV z GpFURLVVDQWV /HV GHQVLWpV YROXPLTXHV GH FRXUDQW VRQW
XQLIRUPHV
−
→
'pWHUPLQHU OD GHQVLWp YROXPLTXH GH FRXUDQW j1 GDQV OH F\OLQGUH LQWpULHXU
−
→
'pWHUPLQHU OD GHQVLWp YROXPLTXH GH FRXUDQW j2 FLUFXODQW HQWUH OHV GHX[ F\OLQGUHV H[Wp
ULHXUV
&9&3$*$& &\OLQGUH HQ URWDWLRQ
2Q pWXGLH XQ F\OLQGUH GH FKDUJH Q UpSDUWLH XQLIRUPpPHQW GH UD\RQ R HW GH ORQJXHXU L 2Q
PHW OH F\OLQGUH HQ URWDWLRQ XQLIRUPH j OD SXOVDWLRQ ω DXWRXU GH VRQ D[H GH UpYROXWLRQ (Oz)
178
([SULPHU OD GHQVLWp YROXPLTXH GH FKDUJHV
'pWHUPLQHU OH YHFWHXU YLWHVVH G¶XQ SRLQW M VH WURXYDQW j XQH GLVWDQFH r GH O¶D[H GH
V\PpWULH
(Q GpGXLUH OH YHFWHXU GHQVLWp YROXPLTXH GH FRXUDQW
&DOFXOHU O¶LQWHQVLWp GDQV OH F\OLQGUH HQ IRQFWLRQ GH OD FKDUJH Q HW GH OD SpULRGH T GX
PRXYHPHQW
Électromagnétisme
1PVS WPVT BJEFS
E©NBSSFS
&9&3$*$& 8WLOLVHU I = j × S
&9&3$*$& /H PRXYHPHQW HVW FLUFXODLUH XQLIRUPH
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& −
→
→
/D GHQVLWp YROXPLTXH GH FRXUDQW HVW KRPRJqQH GRQF j1 = j1 −
ez HW I = j1 × S 3DU
−
→
→
I −
FRQVpTXHQW RQ D j1 = π×r2 ez
1
/H FRXUDQW FLUFXOH GDQV OH VHQV GHV z GpFURLVVDQWV GRQF −
→
→
j2 = −j2 −
ez HW
I = j2 × S = j2 × π × r32 − r22
Solutions
−
→
→
)LQDOHPHQW RQ D j2 = − π× rI2 −r2 −
e
( 3 2) z
&9&3$*$& &RPPH OD FKDUJH HVW XQLIRUPpPHQW UpSDUWLH DORUV ρ = πRQ
2 ×L →
→
/H YHFWHXU YLWHVVH G¶XQ PRXYHPHQW FLUFXODLUH XQLIRUPH HVW −
v = rω −
eθ −
→
−
→
2Q XWLOLVH OD GpILQLWLRQ GX YHFWHXU GHQVLWp YROXPLTXH j = ρ × rω eθ −
→
2Q LQWqJUH OD GHQVLWp YROXPLTXH GH FRXUDQW j VXU XQH GHPLVHFWLRQ GH VXUIDFH pOpPHQ
→
WDLUH GrGz −
eθ R L
R
L
→
−
→−
j .GS = ρ × ω rGr Gz
I=
0
0
0
0
2Q FDOFXOH OHV GHX[ LQWpJUDOHV SXLV RQ UHPSODFH O¶H[SUHVVLRQ GH OD GHQVLWp YROXPLTXH
GH FKDUJH R2
Q×ω
Q
Q
×
ω
×L=
=
I=
2
πR × L
2
2π
T
27. Modéliser une distribution de courant
179
28
Utiliser les propriétés géométriques
6UJMJTFS
du champ
magnétique
MFT QSPQSJ©U©T
H©PN©USJRVFT
EV DIBNQ NBHO©UJRVF
2VBOE PO OF TBJU QBT 8QH ERXFOH GH FRXUDQW SDUFRXUXH SDU XQ FRXUDQW G¶LQWHQVLWp i FUpH HQ WRXW SRLQW M XQ
� GRQW O¶RULHQWDWLRQ HVW GRQQpH SDU OD UqJOH GH OD PDLQ GURLWH VL OHV
FKDPS PDJQpWLTXH B
GRLJWV GH OD PDLQ GURLWH V¶HQURXOHQW HQ VXLYDQW OH VHQV GX FRXUDQW pOHFWULTXH OD GLUHFWLRQ
GX FKDPS PDJQpWLTXH FUpp HVW GRQQpH SDU OD GLUHFWLRQ GX SRXFH
→
·−
B
i
−
→
B
i
−
→
3OXV JpQpUDOHPHQW HQ UpJLPH SHUPDQHQW OD GHQVLWp YROXPLTXH GH FRXUDQW j HW OH FKDPS
PDJQpWLTXH VRQW UHOLpV SDU OHV pTXDWLRQV GLIIpUHQWLHOOHV −
→
GLY B = 0
0D[ZHOOIOX[
→
−
→
−
→−
0D[ZHOO$PSqUH
URW B = μ0 j
3ULQFLSH GH VXSHUSRVLWLRQ HQ XQ SRLQW GH O¶HVSDFH OH FKDPS PDJQpWLTXH HVW OD VRPPH
GHV FKDPSV PDJQpWLTXHV FUppV SDU OHV GLIIpUHQWV VRXUFHV GH FRXUDQW
,QWHUSUpWDWLRQ JpRPpWULTXH GH O¶pTXDWLRQ GH 0D[ZHOO$PSqUH /HV OLJQHV GH FKDPS V¶HQURXOHQW DXWRXU GHV VRXUFHV GH FRXUDQW HQ
VXLYDQW OD UqJOH GH OD PDLQ GURLWH VL OHV GRLJWV GH OD PDLQ GURLWH
V¶HQURXOHQW HQ VXLYDQW OHV OLJQHV GH FKDPS OH SRXFH GRQQH OD
GLUHFWLRQ GH O¶LQWHQVLWp GDQV OHV ILOV YXV HQ FRXSH ·i
3OXV OHV OLJQHV GH FKDPS VRQW UHVVHUUpHV SOXV OD QRUPH GX FKDPS PDJQpWLTXH HVW pOHYpH
'pSHQGDQFH GX FKDPS PDJQpWLTXH /HV LQYDULDQFHV GH OD GLVWULEXWLRQ GH FRXUDQW VH
UHWURXYHQW GDQV OH FKDPS PDJQpWLTXH FUpp ² VL OD GLVWULEXWLRQ GH FRXUDQW HVW LQYDULDQWH SDU WUDQVODWLRQ VXLYDQW O¶D[H (Ox) DORUV
OH FKDPS PDJQpWLTXH DX SRLQW M (x, y, z) VHUD LQGpSHQGDQW GH OD FRRUGRQQpH x
² VL OD GLVWULEXWLRQ GH FRXUDQW HVW LQYDULDQWH SDU URWDWLRQ G¶XQ DQJOH θ DXWRXU GH
O¶D[H (Oz) DORUV OH FKDPS PDJQpWLTXH DX SRLQW M (r, θ, z) VHUD LQGpSHQGDQW GH
OD FRRUGRQQpH θ
180
Électromagnétisme
'LUHFWLRQ GX FKDPS PDJQpWLTXH /HV V\PpWULHV HW DQWLV\PpWULHV GH OD GLVWULEXWLRQ GH
FRXUDQW VH UHWURXYHQW GDQV OD GLUHFWLRQ GX FKDPS PDJQpWLTXH FUpp ² OH FKDPS PDJQpWLTXH FUpp HQ WRXW SRLQW G¶XQ SODQ GH V\PpWULH Π+ G¶XQH GLV
WULEXWLRQ GH FRXUDQW HVW SHUSHQGLFXODLUH j FH SODQ
² OH FKDPS PDJQpWLTXH FUpp HQ WRXW SRLQW G¶XQ SODQ G¶DQWLV\PpWULH Π− G¶XQH
GLVWULEXWLRQ GH FRXUDQW DSSDUWLHQW j FH SODQ
2VF GBJSF
3RXU GpWHUPLQHU XQ FKDPS PDJQpWLTXH LO IDXW FRPPHQFHU SDU VLPSOLILHU VD IRUPH GpWHUPLQHU OHV LQYDULDQFHV GH OD GLVWULEXWLRQ GH FRXUDQW SRXU VLPSOLILHU OHV GpSHQ
GDQFHV GX FKDPS
GpWHUPLQHU OHV SODQV GH V\PpWULH HW G¶DQWLV\PpWULH SRXU H[SOLFLWHU OD GLUHFWLRQ GX
FKDPS PDJQpWLTXH HQ FHUWDLQV SRLQWV GH O¶HVSDFH
$POTFJMT
3RXU GpWHUPLQHU OH FKDPS PDJQpWLTXH HQ XQ SRLQW GH O¶HVSDFH LO IDXW FKHUFKHU OHV SODQV
GH V\PpWULH RX G¶DQWLV\PpWULH SDVVDQW SDU FH SRLQW SRXU H[SOLFLWHU OD IRUPH JpQpUDOH GX
FKDPS HQ FH SRLQW
6L XQ SRLQW DSSDUWLHQW j GHX[ SODQV GH V\PpWULH DORUV OH FKDPS PDJQpWLTXH HQ FH SRLQW
HVW QXO
6L XQ SRLQW DSSDUWLHQW j GHX[ SODQV G¶DQWLV\PpWULH DORUV OH FKDPS PDJQpWLTXH HQ FH SRLQW
HVW GLULJp SDU OD GURLWH G¶LQWHUVHFWLRQ GHV GHX[ SODQV
&YFNQMF USBJU©
4XDWUH ILOV LQILQLV SDUFRXUXV SDU XQH LQWHQVLWp i FRQVWDQWH VRQW GLVSRVpV GH OD PDQLqUH VXL
YDQWH 2Q pWXGLH OH FKDPS PDJQpWLTXH FUpp SDU FHWWH GLVWULEXWLRQ
y
'pWHUPLQHU OD QDWXUH GHV SODQV SODQ GH V\PpWULH G¶DQWLV\
PpWULH DXWUH (xOy) (xOz) (OAz) HW (ABz)
B·
A
'pWHUPLQHU OD YDOHXU GX FKDPS PDJQpWLTXH DX FHQWUH O GX
FDUUp
x
O
2ULHQWHU OD OLJQH GH FKDPS UHSUpVHQWpH HQ SRLQWLOOpV VXU OH
·D
C
VFKpPD
28. Utiliser les propriétés géométriques du champ magnétique
181
40-65*0/
/HV SODQV (xOy) HW (xOz) VRQW GHV SODQV G¶DQWLV\PpWULH
/H SODQ (OAz) HVW XQ SODQ GH V\PpWULH
/H SODQ (ABz) Q¶HVW QL XQ SODQ GH V\PpWULH QL XQ SODQ G¶DQ
WLV\PpWULH
/H SRLQW O DSSDUWLHQW DX[ SODQV (xOy) (yOz) HW (xOz) TXL
VRQW GHV SODQV G¶DQWLV\PpWULH OH FKDPS PDJQpWLTXH DSSDU
WLHQW GRQF j O¶LQWHUVHFWLRQ GH FHV WURLV SODQV LO HVW GRQF QXO
(Q XWLOLVDQW OD UqJOH GH OD PDLQ GURLWH RQ RULHQWH OD OLJQH GH
FKDPS
y
B·
A
x
O
C
·D
&YFSDJDFT
&9&3$*$& 0RQWUHU TX¶XQ ILO LQILQL SRUWp SDU O¶D[H (Oz) FUpH XQ FKDPS PDJQpWLTXH RUWKRUDGLDO GH
−
→
→
eθ OD IRUPH B = Bθ (r)−
0RQWUHU TX¶XQ VROpQRwGH LQILQL G¶D[H (Oz) ERELQH IRUPpH HQ HQURXODQW GHV ILOV VXU XQ
−
→
→
F\OLQGUH LQILQL G¶D[H (Oz) FUpH XQ FKDPS PDJQpWLTXH GH OD IRUPH B = B(r)−
ez 1PVS WPVT BJEFS
&9&3$*$& E©NBSSFS
8WLOLVHU OHV V\PpWULHV HW OHV LQYDULDQFHV
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& 182
→
→
7RXW SODQ FRQWHQDQW OH ILO FRPSRUWDQW OHV YHFWHXUV −
er HW −
ez HVW XQ SODQ GH V\PpWULH OH
FKDPS PDJQpWLTXH HVW GRQF SHUSHQGLFXODLUH j FHV SODQV 7RXW SODQ SHUSHQGLFXODLUH DX
→
→
eθ HVW XQ SODQ G¶DQWLV\PpWULH OH FKDPS PDJQpWLTXH
ILO FRPSRUWDQW OHV YHFWHXUV −
er HW −
−
→
→
HVW GRQF FRQWHQX GDQV FHV SODQV 2Q HQ GpGXLW TXH B HVW RUWKRUDGLDO SRUWp SDU −
eθ /D GLVWULEXWLRQ GH FRXUDQW HVW LQYDULDQWH SDU URWDWLRQ G¶DQJOH θ DXWRXU GX ILO B QH GpSHQG
GRQF SDV GH OD YDULDEOH θ 'H SOXV OD GLVWULEXWLRQ GH FRXUDQW HVW LQYDULDQWH SDU WUDQVODWLRQ
G¶D[H Oz B QH GpSHQG GRQF SDV GH OD YDULDEOH z
−
→
→
eθ /H FKDPS HVW GH OD IRUPH B = Bθ (r)−
7RXW SODQ FRQWHQDQW O¶D[H (Oz) HVW XQ SODQ G¶DQWLV\PpWULH SRXU OD GLVWULEXWLRQ GH FRX
−
→
UDQW OH FKDPS PDJQpWLTXH HVW GRQF FRQWHQX GDQV FHV SODQV 2Q HQ GpGXLW TXH B HVW
Électromagnétisme
z
Solutions
/D GLVWULEXWLRQ GH FRXUDQW HVW LQYDULDQWH SDU URWDWLRQ G¶DQJOH θ DXWRXU GX ILO B QH GpSHQG
GRQF SDV GH OD YDULDEOH θ 'H SOXV OD GLVWULEXWLRQ GH FRXUDQW HVW LQYDULDQWH SDU WUDQVODWLRQ
G¶D[H Oz B QH GpSHQG GRQF SDV GH OD YDULDEOH z
−
→
→
eθ /H FKDPS HVW GH OD IRUPH B = Bθ (r)−
7RXW SODQ FRQWHQDQW O¶D[H (Oz) HVW XQ SODQ G¶DQWLV\PpWULH SRXU OD GLVWULEXWLRQ GH FRX
−
→
UDQW OH FKDPS PDJQpWLTXH HVW GRQF FRQWHQX GDQV FHV SODQV 2Q HQ GpGXLW TXH B HVW
→
RUWKRUDGLDO SRUWp SDU −
ez /D GLVWULEXWLRQ GH FRXUDQW HVW LQYDULDQWH SDU WUDQVODWLRQ OH ORQJ GH O¶D[H (Oz) B QH
GpSHQG GRQF SDV GH OD YDULDEOH z 'H SOXV OD GLVWULEXWLRQ GH FRXUDQW HVW LQYDULDQWH SDU
URWDWLRQ G¶DQJOH θ DXWRXU GH O¶D[H (Oz) B QH GpSHQG GRQF SDV GH OD YDULDEOH θ
−
→
→
/H FKDPS HVW GH OD IRUPH B = B(r)−
e 28. Utiliser les propriétés géométriques du champ magnétique
183
29
Utiliser le théorème d’Ampère
6UJMJTFS MF UI©PS¨NF E"NQ¨SF
2VBOE PO OF TBJU QBT 2Q DSSHOOH FLUFXODWLRQ G¶XQ FKDPS YHFWRULHO OH ORQJ G¶XQ FRQWRXU
IHUPp RULHQWp Γ OH FKDPS PDJQpWLTXH SDU H[HPSOH O¶LQWpJUDOH →
−
→ −
B ·G l
CΓ =
Γ
Γ
−
→
R G l HVW XQ YHFWHXU XQLWDLUH WDQJHQW DX FRQWRXU Γ
(Q UpJLPH SHUPDQHQW RQ REWLHQW OH WKpRUqPH G¶$PSqUH HQ LQWpJUDQW O¶pTXDWLRQ GH 0D[ZHOO
$PSqUH →
−
→ −
B · G l = μ0 Σ�k Ik
k
Γ
DYHF μ0 = 4π ×10−7 86, OD SHUPpDELOLWp PDJQpWLTXH GX YLGH HW Ik OHV LQWHQVLWpV HQODFpHV
SDU OH FRQWRXU IHUPp Γ 2Q D �k = 1 VL Ik HVW RULHQWp HQ VXLYDQW OD UqJOH GH OD PDLQ GURLWH
HW �k = −1 VLQRQ
2VF GBJSF
3RXU GpWHUPLQHU OH FKDPS PDJQpWLTXH HQ XQ SRLQW GH O¶HVSDFH JUkFH DX WKpRUqPH G¶$P
SqUH LO IDXW −
→
VLPSOLILHU OD IRUPH JpQpUDOH GH B HQ pWXGLDQW OHV LQYDULDQFHV HW V\PpWULHV GX V\VWqPH
−
→
FKRLVLU XQ FRQWRXU G¶$PSqUH Γ HW FDOFXOHU OD FLUFXODWLRQ GH B VXU FH FRQWRXU
DSSOLTXHU OH WKpRUqPH G¶$PSqUH
$POTFJMT
&KRLVLU MXGLFLHXVHPHQW OH FRQWRXU G¶$PSqUH SRXU VLPSOLILHU OH FDOFXO GH OD FLUFXODWLRQ HQ
H[SORLWDQW OHV V\PpWULHV GX V\VWqPH SDU H[HPSOH
184
Électromagnétisme
&YFNQMF USBJU©
8Q ILO LQILQL GH VHFWLRQ QXOOH HW RULHQWp VHORQ O¶D[H (Oz) HVW SDUFRXUX SDU XQH LQWHQVLWp i
FRQVWDQWH
4XHOOH HVW OD IRUPH GX FKDPS PDJQpWLTXH FUpp SDU FH ILO "
4XHO FRQWRXU G¶$PSqUH SHUPHW G¶H[SORLWHU DX PLHX[ OHV V\PpWULHV GX SUREOqPH "
(Q DSSOLTXDQW OH WKpRUqPH G¶$PSqUH GpWHUPLQHU OD IRUPH GX FKDPS PDJQpWLTXH FUpp
SDU OH ILO
40-65*0/
&RPPH PRQWUp GDQV OD ILFKH Qƒ © 8WLOLVHU OHV SUR
SULpWpV JpRPpWULTXHV GX FKDPS PDJQpWLTXH ª HQ XWLOL
VDQW OHV V\PpWULHV HW LQYDULDQFHV GX V\VWqPH OH FKDPS
−
→
→
PDJQpWLTXH HVW GH OD IRUPH B = B(r)−
eθ −
→
3RXU VLPSOLILHU OH FDOFXO GH OD FLUFXODWLRQ GH B RQ FKRL
VLW XQ FRQWRXU G¶$PSqUH VXU OHTXHO B(r) HVW FRQVWDQW r
FRQVWDQW HW SRXU OHTXHO OH YHFWHXU WDQJHQW DX FRQWRXU
−
→
−
→
G l HVW FROLQpDLUH j B RQ FKRLVLW GRQF XQ FHUFOH GH
UD\RQ r FRPPH FRQWRXU G¶$PSqUH
/D FLUFXODWLRQ GX FKDPS PDJQpWLTXH VXU OH FHUFOH V¶pFULW
2πr −
→
→ −
CΓ = 0 B · G l = B(r) × 2πr
r
z·
O(I)
θ
−
→
eθ −
→
er
/H WKpRUqPH G¶$PSqUH V¶pFULW 2πrB(r) = μ0 I 2Q HQ GpGXLW 0I
B(r) = μ2πr
&YFSDJDFT
&9&3$*$& &KDPS FUpp SDU XQ VROpQRwGH
8Q VROpQRwGH LQILQL HVW FRPSRVp GH ILOV SDUFRXUXV SDU XQ FRXUDQW G¶LQWHQVLWp I HQURXOpV OH
ORQJ G¶XQ F\OLQGUH G¶D[H (Oz) 6XU XQH ORQJXHXU d N ILOV VRQW HQURXOpV RQ QRWHUD n = Nd y 2
3
· · · · · · · · · · ·
r1
z
1
d
r2
29. Utiliser le théorème d’Ampère
185
4XHOOH HVW OD IRUPH GX FKDPS PDJQpWLTXH FUpp SDU FH V\VWqPH "
(Q DSSOLTXDQW OH WKpRUqPH G¶$PSqUH VXU XQ UHFWDQJOH FRQWHQX GDQV OH VROpQRwGH
−
→
PRQWUHU TXH OH FKDPS PDJQpWLTXH B int j O¶LQWpULHXU GX VROpQRwGH HVW XQLIRUPH
(Q DSSOLTXDQW OH WKpRUqPH G¶$PSqUH VXU XQ UHFWDQJOH VLWXp KRUV GX VROpQRwGH PRQ
−
→
WUHU TXH OH FKDPS PDJQpWLTXH B ext j O¶H[WpULHXU GX VROpQRwGH HVW XQLIRUPH
−
→
2Q VXSSRVH TXH OH FKDPS PDJQpWLTXH B ext j O¶H[WpULHXU GX VROpQRwGH HVW QXO (Q DSSOL
TXDQW OH WKpRUqPH G¶$PSqUH VXU XQ UHFWDQJOH GRQW O¶XQ GHV F{WpV VH WURXYH GDQV OH
VROpQRwGH HW OH VHFRQG HQ GHKRUV GpWHUPLQHU OD YDOHXU GH Bint HQ IRQFWLRQ GHV GRQQpHV
GX SUREOqPH
&9&3$*$& 8Q WRUH HVW FRPSRVp GH N ILOV SDUFRXUXV SDU XQ FRXUDQW G¶LQWHQVLWp I HQURXOpV OH ORQJ G¶XQ
WRUH G¶D[H (Oz)
4XHOOH HVW OD IRUPH GX FKDPS PDJQpWLTXH FUpp SDU FH V\VWqPH "
4XHO FRQWRXU G¶$PSqUH SHUPHW G¶H[SORLWHU DX PLHX[ OHV V\PpWULHV GX SUREOqPH "
−
→
(Q DSSOLTXDQW OH WKpRUqPH G¶$PSqUH GpWHUPLQHU OH FKDPS PDJQpWLTXH B ext j O¶H[Wp
ULHXU GX WRUH
−
→
(Q DSSOLTXDQW OH WKpRUqPH G¶$PSqUH GpWHUPLQHU OH FKDPS PDJQpWLTXH B int j O¶LQWp
ULHXU GX WRUH
1PVS WPVT BJEFS
E©NBSSFS
&9&3$*$& →
−
→ −
$WWHQWLRQ DX VLJQH GH B · G l SRXU OH FDOFXO GH OD FLUFXODWLRQ
&9&3$*$& 8WLOLVHU OHV V\PpWULHV HW OHV LQYDULDQFHV
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& 186
(Q XWLOLVDQW OHV V\PpWULHV HW OHV LQYDULDQFHV RQ D PRQWUp GDQV OD ILFKH Qƒ © 8WLOLVHU
OHV SURSULpWpV JpRPpWULTXHV GX FKDPS PDJQpWLTXH ª TXH OH FKDPS PDJQpWLTXH HVW GH OD
−
→
→
IRUPH B = B(r)−
ez &DOFXORQV OD FLUFXODWLRQ GX FKDPS PDJQpWLTXH VXU OH UHFWDQJOH Électromagnétisme
(Q XWLOLVDQW OHV V\PpWULHV HW OHV LQYDULDQFHV RQ D PRQWUp GDQV OD ILFKH Qƒ © 8WLOLVHU
OHV SURSULpWpV JpRPpWULTXHV GX FKDPS PDJQpWLTXH ª TXH OH FKDPS PDJQpWLTXH HVW GH OD
−
→
→
IRUPH B = B(r)−
ez &DOFXORQV OD FLUFXODWLRQ GX FKDPS PDJQpWLTXH VXU OH UHFWDQJOH 1
−
→
B · Gl
=
d
0
→
→
B(r1 )−
e z · (−Gl−
e z) +
d
+
=
=
0
→
→
B(r2 )−
e z · (Gl−
e z) +
r1 +r2
−B(r1 )d + 0 + B(r2 )d + 0
[B(r2 ) − B(r1 )] d
0 r1 +r2
0
→
→
B(r)−
e z · (−Gl−
e y)
→
→
B(r)−
e z · (Gl−
e y)
/H WKpRUqPH G¶$PSqUH V¶pFULW
[B(r2 ) − B(r1 )] d = μ0 Ienlacee = 0
B(r2 ) = B(r1 )
/H FKDPS HVW ELHQ XQLIRUPH GDQV OH VROpQRwGH
8Q FDOFXO DQDORJXH VXU OH UHFWDQJOH SHUPHW GH PRQWUHU TXH OH FKDPS HVW KRPRJqQH
KRUV GX VROpQRwGH LO Q¶\ D SDV G¶LQWHQVLWp HQODFpH SDU /D FLUFXODWLRQ GX FKDPS PDJQpWLTXH VXU OH FRQWRXU VH FDOFXOH GH PDQLqUH DQDORJXH
2Q D
Solutions
−
→
3 B · Gl = Bint d − Bext d = Bint d
/H WKpRUqPH G¶$PSqUH V¶pFULW FHWWH IRLV
Bint d = μ0 N I
Bint = μ0 Nd I = μ0 nI
&9&3$*$& →
→
7RXW SODQ FRQWHQDQW O¶D[H GX WRUH FRPSRUWDQW OHV YHFWHXUV −
er HW −
ez HVW XQ SODQ GH
V\PpWULH OH FKDPS PDJQpWLTXH HVW GRQF SHUSHQGLFXODLUH j FHV SODQV 7RXW SODQ SHUSHQ
→
→
eθ HVW XQ SODQ G¶DQWLV\PpWULH OH
GLFXODLUH j O¶D[H GX WRUH FRPSRUWDQW OHV YHFWHXUV −
er HW −
−
→
FKDPS PDJQpWLTXH HVW GRQF FRQWHQX GDQV FHV SODQV 2Q HQ GpGXLW TXH B HVW RUWKRUDGLDO
→
SRUWp SDU −
eθ /D GLVWULEXWLRQ GH FRXUDQW HVW LQYDULDQWH SDU URWDWLRQ G¶DQJOH θ DXWRXU GX ILO B QH GpSHQG
GRQF SDV GH OD YDULDEOH θ
−
→
→
/H FKDPS HVW GH OD IRUPH B = B(r, z)−
eθ −
→
3RXU VLPSOLILHU OH FDOFXO GH OD FLUFXODWLRQ GH B RQ FKRLVLW XQ FRQWRXU G¶$PSqUH VXU
−
→
OHTXHO B(r, z) HVW FRQVWDQW HW SRXU OHTXHO OH YHFWHXU WDQJHQW DX FRQWRXU G l HVW FROLQpDLUH
−
→
j B RQ FKRLVLW GRQF XQ FHUFOH GH UD\RQ r GDQV XQ SODQ SHUSHQGLFXODLUH j O¶D[H GX WRUH
z FRQVWDQW HW GRQW OH FHQWUH VH WURXYH VXU O¶D[H (Oz) FRPPH FRQWRXU G¶$PSqUH
&DOFXORQV OD FLUFXODWLRQ GX FKDPS PDJQpWLTXH VXU XQ FHUFOH j O¶H[WpULHXU GX WRUH SDU
H[HPSOH VLWXp DX GHVVXV GX WRUH
29. Utiliser le théorème d’Ampère
187
−
→
OHTXHO B(r, z) HVW FRQVWDQW HW SRXU OHTXHO OH YHFWHXU WDQJHQW DX FRQWRXU G l HVW FROLQpDLUH
−
→
j B RQ FKRLVLW GRQF XQ FHUFOH GH UD\RQ r GDQV XQ SODQ SHUSHQGLFXODLUH j O¶D[H GX WRUH
z FRQVWDQW HW GRQW OH FHQWUH VH WURXYH VXU O¶D[H (Oz) FRPPH FRQWRXU G¶$PSqUH
&DOFXORQV OD FLUFXODWLRQ GX FKDPS PDJQpWLTXH VXU XQ FHUFOH j O¶H[WpULHXU GX WRUH SDU
H[HPSOH VLWXp DX GHVVXV GX WRUH
1
−
→
B · Gl
=
=
2πr
B(r, z)Gl
0
Bext (r, z) × 2πr
/H WKpRUqPH G¶$PSqUH V¶pFULW
2πrBext (r, z) = μ0 Ienlacee = 0
Bext = 0
/H FKDPS HVW QXO HQ GHKRUV GX WRUH
8Q FDOFXO DQDORJXH VXU XQ FHUFOH VLWXp j O¶LQWpULHXU GX WRUH GRQQH OD FLUFXODWLRQ VXLYDQWH −
→
2 B · Gl = Bint (r, z) × 2πr
/H WKpRUqPH G¶$PSqUH V¶pFULW FHWWH IRLV
2πrBint = μ0 N I
N
I
Bint = μ0 2πr
188
Électromagnétisme
Utiliser l’expression
magnétique
dipolaire
du champ
6UJMJTFS
MFYQSFTTJPO
EV DIBNQ
30
NBHO©UJRVF EJQPMBJSF
2VBOE PO OF TBJU QBT 3RXU XQH ERXFOH GH FRXUDQW HQVHUUDQW XQH VXUIDFH S HW SDUFRXUXH
−
→
SDU XQH LQWHQVLWp I RQ DSSHOOH PRPHQW PDJQpWLTXH M OH YHF
WHXU −
→
→
M = IS −
n
−
→
n ·
I
→
R −
n HVW OD QRUPDOH j OD VXUIDFH S RULHQWpH JUkFH j OD UqJOH GH
OD PDLQ GURLWH
2Q SHXW DVVRFLHU XQ PRPHQW j XQ GLS{OH PDJQpWLTXH SDU DQDORJLH DYHF XQH ERXFOH GH
FRXUDQW
7RXW FRPPH XQH ERXFOH GH FRXUDQW FUpH XQ FKDPS PDJQpWLTXH XQ GLS{OH PDJQpWLTXH
−
→
GH PRPHQW GLSRODLUH M HVW DXVVL j O¶RULJLQH G¶XQ FKDPS PDJQpWLTXH HQ WRXW SRLQW P GH
O¶HVSDFH
−
→
'DQV O¶DSSUR[LPDWLRQ GLSRODLUH F¶HVWjGLUH VL P VH
eθ
−
→
WURXYH j XQH GLVWDQFH r GX GLS{OH JUDQGH GHYDQW OD WDLOOH
er
r
FDUDFWpULVWLTXH GX GLS{OH OH FKDPS V¶pFULW P
θ
−
→
−
→
−
→
0M
−
→
B (P ) = μ4πr
3 (2 FRV θ er + VLQ θ eθ )
M
/HV OLJQHV GH FKDPS PDJQpWLTXH RQW O¶DOOXUH VXLYDQWH −
→
M
2VF GBJSF
3RXU DSSOLTXHU O¶H[SUHVVLRQ GX FKDPS PDJQpWLTXH GLSRODLUH V¶DSSX\HU VXU XQ VFKpPD SRXU YLVXDOLVHU OHV FRRUGRQQpHV XWLOLVpHV
YpULILHU TXH O¶RQ VH WURXYH ELHQ GDQV O¶DSSUR[LPDWLRQ GLSRODLUH
30. Utiliser l’expression du champ magnétique dipolaire
189
&YFNQMF USBJU©
2Q FRQVLGqUH XQH VSLUH FLUFXODLUH GH UD\RQ b G¶D[H (Oz) FRQWHQXH GDQV OH SODQ (xOy) GX
→
→
→
ey , −
ez ) (OOH HVW SDUFRXUXH SDU XQ FRXUDQW G¶LQWHQVLWp FRQVWDQWH
UHSqUH (O, −
ex , −
2Q UHSqUH OD SRVLWLRQ G¶XQ SRLQW M GH O¶HVSDFH HQ FRRUGRQQpHV VSKpULTXHV
z
θ
r
I
x
M
y
O
H
φ
−
→ →
-XVWLILHU TXH OH FKDPS PDJQpWLTXH FUpp SDU OD VSLUH HVW GH OD IRUPH B · −
eφ = 0 HW TXH
B(M ) = B(r, θ)
3RXU XQH VSLUH GH UD\RQ b = 1 FP HW XQH LQWHQVLWp i = 0, 5 $ TXHOOH HVW OD YDOHXU GX
PRPHQW PDJQpWLTXH "
40-65*0/
/H SODQ (OHz) HVW XQ SODQ G¶DQWLV\PpWULH SRXU OD GLVWULEXWLRQ GH FRXUDQW OH FKDPS
−
→ →
→
eφ = 0
PDJQpWLTXH HVW GRQF GDQV FH SODQ GH QRUPDOH −
eφ 2Q D ELHQ B · −
/D GLVWULEXWLRQ GH FRXUDQW HVW LQYDULDQWH SDU URWDWLRQ G¶DQJOH φ DXWRXU GH O¶D[H (Oz)
B(M ) QH GpSHQG GRQF SDV GH OD YDULDEOH φ 2Q D GRQF B(M ) = B(r, θ)
/H PRPHQW PDJQpWLTXH GH OD VSLUH HVW M = πb2 i � 1, 3 × 10−4 $P−2 &YFSDJDFT
&9&3$*$& 2Q UHSUHQG OD VSLUH SUpFpGHQWH
190
→
−
→ −−−→
−
→ −
/H ORQJ G¶XQH OLJQH GH FKDPS TXH GLUH GH B ∧ Gl DYHF Gl = GOM OH YHFWHXU WDQJHQW
j OD OLJQH GH FKDPS "
(WDEOLU O¶pTXDWLRQ GHV OLJQHV GH FKDPS ORLQ GX GLS{OH HQ FRRUGRQQpHV VSKpULTXHV
'HVVLQHU O¶DOOXUH GHV OLJQHV GH FKDPS GDQV OH SODQ φ = FRQVWDQWH HQ Q¶RXEOLDQW SDV GH
OHV RULHQWHU
&RPSDUHU OHV OLJQHV GH FKDPS PDJQpWRVWDWLTXH DX[ OLJQHV GH FKDPS pOHFWURVWDWLTXH FUpp
SDU XQ GLS{OH
Électromagnétisme
1PVS WPVT BJEFS
&9&3$*$& E©NBSSFS
8WLOLVHU O¶H[SUHVVLRQ GX FKDPS PDJQpWLTXH GLSRODLUH GH OD SDUWLH ´4XDQG
RQ QH VDLW SDV ´
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& →
→ −
−
→
−
→ −
−
→ −
→
B HVW WDQJHQW DX[ OLJQHV GH FKDPS GRQF B HW Gl VRQW FROLQpDLUHV HW B ∧ Gl = 0 −
→
−
→
→
→
/H YHFWHXU Gl Q¶D GH FRPSRVDQWHV FRPPH B TXH VXU −
e HW −
e HW V¶pFULW
r
θ
−
→
→
→
Gl = Gr−
er + rGθ−
eθ
GRQF
→
−
→ −
−
→
→
B ∧ Gl = (Br rGθ − Bθ Gr)−
eφ = 0
Solutions
G¶R
Br rGθ = Bθ Gr
2 FRV θrGθ = VLQ θGr
2 FRV θGθ
= Gr
VLQ θ
r
2G OQ VLQ θ = G OQ r
(Q LQWpJUDQW RQ REWLHQW DYHF A XQH FRQVWDQWH G¶LQWpJUDWLRQ r = A VLQ2 θ
/HV OLJQHV GH FKDPS PDJQpWLTXH RQW O¶DOOXUH VXLYDQWH −
→
M
/HV OLJQHV GH FKDPS PDJQpWLTXH HW OHV OLJQHV GH FKDPS pOHFWULTXH FUppV SDU GHV GLS{OHV
UHVSHFWLYHPHQW PDJQpWLTXH HW pOHFWULTXH RQW OD PrPH DOOXUH
30. Utiliser l’expression du champ magnétique dipolaire
191
31 Expliquer le comportement
&YQMJRVFS
MF DPNQPSUFNFOU
d’un dipôle
magnétique placé
EVO EJQ´MF
NBHO©UJRVF
QMBD©
dans un
champ extérieur
EBOT VO DIBNQ FYU©SJFVS
2VBOE PO OF TBJU QBT −
→
$FWLRQV H[HUFpHV VXU XQ GLS{OH 8Q FKDPS PDJQpWLTXH B H[WpULHXU H[HUFH VXU XQ
−
→
GLS{OH GH FHQWUH O HW GH PRPHQW GLSRODLUH M −
→ −−→ −
→ −
→
² XQH IRUFH F = JUDG M · B
−→ −
→ −
→
² XQ PRPHQW ΓO = M ∧ B
−
→
−
→
6L OH FKDPS PDJQpWLTXH B HVW XQLIRUPH DORUV OD IRUFH F HVW QXOOH
2Q SHXW DVVRFLHU DX GLS{OH XQH pQHUJLH SRWHQWLHOOH −
→ −
→
Ep = − M · B
0RXYHPHQW G¶XQ GLS{OH ² 8Q FKDPS XQLIRUPH H[HUFH XQ FRXSOH TXL WHQG j DOLJQHU OH GLS{OH GDQV OD GLUHFWLRQ
HW OH VHQV GX FKDPS PDJQpWLTXH
² 8Q FKDPS QRQ XQLIRUPH H[HUFH XQ FRXSOH TXL WHQG j DOLJQHU OH GLS{OH GDQV OD
GLUHFWLRQ HW OH VHQV GX FKDPS pOHFWULTXH ORFDO (W OH FKDPS H[HUFH XQH IRUFH TXL
O¶HQWUDvQH YHUV OHV UpJLRQV GH FKDPS LQWHQVH R OHV OLJQHV GH FKDPS VH UHVVHUUHQW
2VF GBJSF
/HV H[SUHVVLRQV GH OD IRUFH GX FRXSOH HW GH O¶pQHUJLH SRWHQWLHOOH VRQW DQDORJXHV j FHOOHV
TXH O¶RQ SHXW GpWHUPLQHU SRXU XQH VSLUH 3RXU UHWURXYHU OHV H[SUHVVLRQV GDQV OH FDV GH OD
VSLUH FDOFXOHU OH PRPHQW UpVXOWDQW GHV IRUFHV GH /DSODFH H[HUFpHV VXU FKDTXH SRUWLRQ GH
OD VSLUH
HQ GpGXLUH OD SXLVVDQFH GHV IRUFHV GH /DSODFH
HQ GpGXLUH O¶H[SUHVVLRQ GH O¶pQHUJLH SRWHQWLHOOH
HQ GpGXLUH O¶H[SUHVVLRQ GH OD IRUFH
192
Électromagnétisme
$POTFJMT
HQ GpGXLUH O¶H[SUHVVLRQ GH OD IRUFH
$POTFJMT
3RXU GpWHUPLQHU OD SRVLWLRQ G¶pTXLOLEUH RQ FKHUFKH OH PLQLPXP GH O¶pQHUJLH SRWHQWLHOOH
&YFNQMF USBJU©
8Q ILO LQILQL GH VHFWLRQ QXOOH HW RULHQWp VHORQ O¶D[H (Oz) HVW SDUFRXUX z
SDU XQH LQWHQVLWp i FRQVWDQWH ,O FUpH XQ FKDPS PDJQpWLTXH GH OD IRUPH
−
→ μ0 I −
B = 2πr →
eθ HQ WRXW SRLQW M GH O¶HVSDFH 8Q GLS{OH PDJQpWLTXH HVW SODFp
−
→
→
DX YRLVLQDJH GX ILO 6RQ PRPHQW HVW M = M −
ex −
→
M
x
4XHOOH K\SRWKqVH IDXWLO IDLUH SRXU FRQVLGpUHU OH FKDPS XQLIRUPH j O¶pFKHOOH GX GLS{OH "
'DQV FHWWH DSSUR[LPDWLRQ TXHOOH HVW O¶H[SUHVVLRQ GH OD IRUFH H[HUFpH VXU OH GLS{OH "
40-65*0/
3RXU FRQVLGpUHU TXH OH GLS{OH HVW SORQJp GDQV XQ FKDPS PDJQpWLTXH XQLIRUPH LO IDXW
FRQVLGpUHU TXH VD WDLOOH FDUDFWpULVWLTXH HVW SHWLWH GHYDQW VD GLVWDQFH r j O¶D[H GX ILO 2Q
VH SODFH GDQV O¶DSSUR[LPDWLRQ GLSRODLUH
'DQV FHWWH DSSUR[LPDWLRQ OD IRUFH H[HUFpH VXU OH GLS{OH HVW
−
→ −−→
−
→
→
→
F = JUDG (M −
ex · B(r)−
ey ) = 0
&YFSDJDFT
&9&3$*$& 2Q UHSUHQG OH GLS{OH pWXGLp SUpFpGHPPHQW
'DQV FHWWH DSSUR[LPDWLRQ TXHOOH HVW O¶H[SUHVVLRQ GX PRPHQW H[HUFp VXU OH GLS{OH "
4XHO VHUD O¶HIIHW GH FH PRPHQW VXU OH GLS{OH "
4XHO GLVSRVLWLI LQGXVWULHO XWLOLVH FHWWH SURSULpWp "
31. Expliquer le comportement d’un dipôle magnétique placé dans un champ extérieur
193
1PVS WPVT BJEFS
&9&3$*$& E©NBSSFS
/H FKDPS PDJQpWLTXH Q¶HVW SDV IRUFpPHQW LQGpSHQGDQW GX WHPSV HQ LQ
GXVWULH 4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& /H PRPHQW H[HUFp VXU OH GLS{OH HVW
−
→ −
→ −
→
μ0 I −
μ0 I −
→
→
Γ = M ∧ B = M−
ex ∧
M→
ez
ey =
2πr
2πr
/H PRPHQW WHQG j IDLUH WRXUQHU OH GLS{OH SRXU O¶DOLJQHU DYHF OH FKDPS PDJQpWLTXH GDQV
−
→ →
OH PrPH VHQV Γ · −
e > 0 /RUVTXH OH GLS{OH HVW DOLJQp DYHF OH FKDPS PDJQpWLTXH OH
z
194
PRPHQW V¶DQQXOH HW Q¶D GRQF SOXV G¶HIIHW
(Q XWLOLVDQW XQ FKDPS WRXUQDQW RQ SHXW IDLUH WRXUQHU OH GLS{OH j OD PrPH YLWHVVH TXH OH
FKDPS PDJQpWLTXH 2Q SHXW DLQVL FUpHU XQ PRWHXU V\QFKURQH
Électromagnétisme
32
Effectuer un bilan de charges
&GGFDUVFS VO CJMBO EF DIBSHFT
2VBOE PO OF TBJU QBT −
→
→
/H YHFWHXU GHQVLWp YROXPLTXH GH FRXUDQW V¶pFULW j = ρ × −
v DYHF ρ OD GHQVLWp YROX
−
→
PLTXH GH FKDUJHV HW v OH YHFWHXU YLWHVVH GHV FKDUJHV
−
→
j (M, t)
/¶LQWHQVLWp GX FRXUDQW I(t) FRUUHVSRQG DX
IOX[ GH FKDUJHV j WUDYHUV XQH VXUIDFH S
GX YHFWHXU GHQVLWp YROXPLTXH GH FRXUDQW
−
→
j (M, t) −
→
−
→
j (M, t).GS
I(t) =
−
→
GS
M ∈S
6L OH YHFWHXU GHQVLWp YROXPLTXH GH FRXUDQW HVW XQLIRUPH VXU OD VHFWLRQ HW SHUSHQGLFXODLUH
j OD VXUIDFH DORUV OH IOX[ V¶pFULW VLPSOHPHQW I(t) = j(M, t) × S
/D TXDQWLWp pOpPHQWDLUH GH FKDUJHV δq WUDYHUVDQW XQH VXUIDFH S SHQGDQW O¶LQWHUYDOOH GH
WHPSV pOpPHQWDLUH Gt HVW δq = I(t) × Gt
6¶LO \ D p(M, t) FKDUJHV FUppHV SDU XQLWp GH YROXPH HW SDU XQLWp GH WHPSV DX SRLQW
M DORUV O¶pTXDWLRQ ORFDOH XQLGLPHQVLRQQHOOH G¶D[H (Ox) GH FRQVHUYDWLRQ GH OD FKDUJH
V¶pFULW ∂j(M, t) ∂ρ(M, t)
+
= p(M, t)
∂x
∂t
ρ(M, t) HVW OD GHQVLWp YROXPLTXH GH FKDUJHV F¶HVWjGLUH OD FKDUJH SDU XQLWp GH YROXPH
j O¶LQVWDQW t DX SRLQW M (OOH VH JpQpUDOLVH j WURLV GLPHQVLRQV JUkFH j O¶RSpUDWHXU GLYHUJHQFH ∂ρ(M, t)
−
→
= p(M, t)
GLY j (M, t) +
∂t
32. Effectuer un bilan de charges
195
2VF GBJSF
3RXU pWDEOLU O¶pTXDWLRQ XQLGLPHQVLRQQHOOH VXLYDQW O¶D[H (Ox) GH FRQVHUYDWLRQ GH OD FKDUJH δqe
δqs
x
x + Gx
x
FRQVLGpUHU OHV pFKDQJHV GH FKDUJHV GDQV XQH WUDQFKH G¶pSDLVVHXU Gx GH VHFWLRQ S
FRPSULVH HQWUH OHV GHX[ DEVFLVVHV x HW x + Gx SHQGDQW O¶LQWHUYDOOH GH WHPSV Gt
H[SULPHU OD FKDUJH pOpPHQWDLUH δqe = j(x, t)SGt HQWUDQW SDU OD IDFH VLWXpH j O¶DEV
FLVVH x
H[SULPHU OD FKDUJH pOpPHQWDLUH δqs = j(x + Gx, t)SGt VRUWDQW SDU OD IDFH VLWXpH j
O¶DEVFLVVH x + Gx
UpDOLVHU OH ELODQ GH FKDUJHV VXLYDQW δq(t + Gt) = δq(t) + δqe − δqs
δq(t) HVW OH QRPEUH GH SDUWLFXOHV FRQWHQXHV GDQV OD WUDQFKH j O¶LQVWDQW t
VLPSOLILHU HQ IDLVDQW GHV DSSUR[LPDWLRQV j O¶RUGUH XQ
$POTFJMT
$ O¶RUGUH XQ RQ D f (x + Gx, t) − f (x, t) � ∂f
∂x Gx
/D GLYHUJHQFH G¶XQ YHFWHXU GLULJp VHORQ O¶D[H (Ox) HW QH GpSHQGDQW TXH GH OD FRRUGRQQpH
x V¶pFULW Gf
→
GLY (f (x)−
ex ) =
Gx
&YFNQMF USBJU©
2Q pWXGLH XQ FRQGXFWHXU UHFWLOLJQH G¶D[H (Ox) FRQWHQDQW XQH GHQVLWp YROXPLTXH GH FKDUJHV
−
→
→
ρ 2Q VXSSRVH TXH OH YHFWHXU GHQVLWp YROXPLTXH GH FRXUDQW j = j(x, t)−
ex HVW XQLIRUPH
VXU OD VHFWLRQ S GX FRQGXFWHXU 2Q pWXGLH XQH WUDQFKH G¶pSDLVVHXU Gx FRPSULVH HQWUH OHV
DEVFLVVHV x HW x + Gx HQWUH O¶LQVWDQW t HW O¶LQVWDQW t + Gt
196
'pWHUPLQHU OD FKDUJH pOpPHQWDLUH δqe TXL HQWUH SDU OD VHFWLRQ j O¶DEVFLVVH x HW OD FKDUJH
pOpPHQWDLUH δqs TXL VRUW SDU OD VHFWLRQ G¶DEVFLVVH x + Gx
Électromagnétisme
&DOFXOHU δqe − δqs DX SUHPLHU RUGUH
2Q QRWH δq(t) OD FKDUJH FRPSULVH GDQV OD WUDQFKH j O¶LQVWDQW t ([SULPHU OD YDULDWLRQ
δq(t + Gt) − δq(t) HQ IRQFWLRQ GH OD GHQVLWp YROXPLTXH GH FKDUJHV ρ GH OD VHFWLRQ S HW
GHV LQWHUYDOOHV pOpPHQWDLUHV Gx HW Gt
(Q GpGXLUH O¶pTXDWLRQ GH FRQVHUYDWLRQ XQLGLPHQVLRQQHOOH GH OD FKDUJH
40-65*0/
3HQGDQW O¶LQWHUYDOOH GH WHPSV Gt LO HQWUH OD FKDUJH pOpPHQWDLUH δqe = j(x, t) × S × Gt
HW LO VRUW OD FKDUJH pOpPHQWDLUH δqs = j(x + Gx, t) × S × Gt
2Q FDOFXOH j O¶RUGUH XQ δqe − δqs = − (j(x + Gx, t) − j(x, t)) SGt � −
∂j(x, t)
SGtGx
∂x
2Q H[SULPH OHV GHX[ FKDUJHV pOpPHQWDLUHV FRQWHQXHV GDQV OD WUDQFKH DX[ LQVWDQWV t HW
t + Gt δq(x, t + Gt) = ρ(x, t + Gt)SGx
HW
δq(x, t) = ρ(x, t)SGx
2Q FDOFXOH j O¶RUGUH XQ δq(x, t + Gt) − δq(x, t) = (ρ(x, t + Gt) − ρ(x, t)) SGx �
∂ρ(x, t)
× SGtGx
∂t
5pDOLVRQV XQ ELODQ GH FKDUJHV δq(t + Gt) − δq(t) = δqe − δqs (Q UHPSODoDQW SXLV HQ
VLPSOLILDQW SDU OH SURGXLW SGtGx RQ WURXYH ∂j(x, t) ∂ρ(x, t)
+
=0
∂x
∂t
&YFSDJDFT
&9&3$*$& /RL GHV QRHXGV
2Q FRQVLGqUH XQ Q°XG FRQVWLWXp GH WURLV ILOV 'DQV OH SUHPLHU LO HQWUH O¶LQWHQVLWp I1 HW GDQV
OHV GHX[ DXWUHV LO VRUW OHV LQWHQVLWpV I2 HW I3 2Q pWXGLH OH YROXPH V JULVp GDQV OHTXHO RQ
VXSSRVH TXH OD GHQVLWp YROXPLTXH GH FKDUJHV ρ(t) HVW XQLIRUPH
I2
I1
I3
32. Effectuer un bilan de charges
197
$ SDUWLU G¶XQ ELODQ GH FKDUJHV DSSOLTXp DX YROXPH PRQWUHU OD UHODWLRQ VXLYDQWH Gρ
× V = I1 − I 2 − I 3
Gt
4XH UHWURXYHWRQ HQ UpJLPH SHUPDQHQW "
1PVS WPVT BJEFS
&9&3$*$& E©NBSSFS
$SSOLTXHU OD PpWKRGH
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& 2Q UpDOLVH XQ ELODQ GH FKDUJHV HQWUH OHV LQVWDQWV t HW t + Gt ,O HQWUH OD FKDUJH pOpPHQWDLUH
δq1 = I1 Gt HW LO VRUW OHV GHX[ FKDUJHV pOpPHQWDLUHV δq2 = I2 Gt HW δq3 = I3 Gt
2Q FDOFXOH DX SUHPLHU RUGUH OD YDULDWLRQ GH OD FKDUJH GX YROXPH HQWUH OHV GHX[ LQVWDQWV
FRQVLGpUpV δq(t + Gt) − δq(t) =ρ(t + Gt) × V − ρ(t) × V
= (ρ(t + Gt) − ρ(t)) × V
Gρ
� ×V
Gt
2Q UpDOLVH XQ ELODQ GH FKDUJHV δq(t + Gt) − δq(t) = δq1 − δq2 − δq3 = (I1 − I2 − I3 ) Gt
2Q UHPSODFH OHV H[SUHVVLRQV HW RQ VLPSOLILH SDU O¶LQWHUYDOOH GH WHPSV pOpPHQWDLUH Gt Gρ
× V = I1 − I 2 − I 3
Gt
198
(Q UpJLPH VWDWLRQQDLUH O¶pTXDWLRQ GHYLHQW I1 − I2 − I3 = 0 2Q UHWURXYH OD ORL GHV
Q°XGV
Électromagnétisme
Utiliser les équations de Maxwell
6UJMJTFS
MFT ©RVBUJPOT EF .BYXFMM
33
2VBOE PO OF TBJU QBT −
→
−
→
eTXDWLRQV GH 0D[ZHOO /H FKDPS pOHFWULTXH E OH FKDPS PDJQpWLTXH B OD GHQVLWp
−
→
YROXPLTXH GH FKDUJHV ρ HW OH YHFWHXU GHQVLWp YROXPLTXH GH FRXUDQW j VRQW UHOLpV SDU
TXDWUH pTXDWLRQV GLIIpUHQWLHOOHV ⎧
−
→
ρ
⎪
pTXDWLRQ GH 0D[ZHOO *DXVV
GLY E =
⎪
⎪
ε0
⎪
⎪
−
→
⎪
⎪
GLY B = 0
pTXDWLRQ GH 0D[ZHOO IOX[
⎨
−
→
�−
�
∂B
−
→ →
⎪
URW E = −
pTXDWLRQ GH 0D[ZHOO )DUDGD\
⎪
⎪
∂t
⎪
−
→
⎪
�→�
⎪
⎪
∂E
−
→
→ −
⎩ −
URW B = μ0 × j + μ0 ε0 ×
pTXDWLRQ GH 0D[ZHOO $PSqUH
∂t
,QWHUSUpWDWLRQ GHV IRUPHV LQWpJUDOHV GHV pTXDWLRQV GH 0D[ZHOO /¶LQWpJUDWLRQ GH O¶pTXDWLRQ GH 0D[ZHOO *DXVV VXU XQ YROXPH GpOLPLWp SDU XQH VXUIDFH
IHUPpH IRXUQLW OH WKpRUqPH GH *DXVV �
→ Qint
−
→−
E .GS =
ε0
VXUIDFH
/¶LQWpJUDWLRQ GH O¶pTXDWLRQ GH 0D[ZHOO )DUDGD\ VXU XQH VXUIDFH GRQQH OD ORL GH )DUD
GD\ ��
→
−
→−
Gφ
B .GS
DYHF Φ =
e=−
Gt
VXUIDFH
�−
→
→−
/D IHP e FRUUHVSRQG j OD FLUFXODWLRQ GX FKDPS pOHFWULTXH e = E . Gl VXU OH FRQWRXU
VXU OHTXHO V¶DSSXLH OD VXUIDFH G¶LQWpJUDWLRQ
/¶LQWpJUDWLRQ HQ UpJLPH SHUPDQHQW GH O¶pTXDWLRQ GH 0D[ZHOO $PSqUH VXU XQH VXUIDFH
GRQQH OH WKpRUqPH G¶$PSqUH �
→
−
→−
B . Gl = μ0 × I
33. Utiliser les équations de Maxwell
199
(Q UpJLPH VWDWLTXH WRXWHV OHV GpULYpHV SDUWLHOOHV SDU UDSSRUW DX WHPSV VRQW QXOOHV 2Q
UHWURXYH OHV pTXDWLRQV UHQFRQWUpHV HQ pOHFWURVWDWLTXH HW PDJQpWRVWDWLTXH
eTXDWLRQ ORFDOH GH FRQVHUYDWLRQ GH OD FKDUJH /HV pTXDWLRQV GH 0D[ZHOO UHVSHFWHQW O¶pTXDWLRQ GH FRQVHUYDWLRQ GH OD FKDUJH −
→ ∂ρ
=0
GLY j +
∂t
eTXDWLRQV GH SURSDJDWLRQ GHV FKDPSV pOHFWULTXH HW PDJQpWLTXH GDQV OH YLGH 'DQV OH YLGH OD GHQVLWp YROXPLTXH GH FKDUJH ρ HW OD GHQVLWp YROXPLTXH GH FRXUDQW
−
→
j VRQW QXOOHV /HV FKDPSV pOHFWULTXH HW PDJQpWLTXH YpULILHQW OD PrPH pTXDWLRQ GH
SURSDJDWLRQ −
→
−
→
∂2 E
1
−
→
= 0 HW
ΔE − 2 ×
2
c
∂t
−
→
−
→
1
∂2 B
−
→
ΔB − 2 ×
= 0
2
c
∂t
2Q LQWURGXLW OD FpOpULWp c = √μ01×ε0 � 3 × 108 PV−1 (Q UpJLPH SHUPDQHQW OH SRWHQWLHO pOHFWULTXH V YpULILH O¶pTXDWLRQ GH 3RLVVRQ ΔV = −
ρ
�0
2VF GBJSF
3RXU YpULILHU OD FRPSDWLELOLWp GHV pTXDWLRQV GH 0D[ZHOO DYHF O¶pTXDWLRQ ORFDOH GH FRQVHU
YDWLRQ GH OD FKDUJH FDOFXOHU OD GLYHUJHQFH GH O¶pTXDWLRQ GH 0D[ZHOO $PSqUH
LQWHUYHUWLU OD GpULYpH WHPSRUHOOH HW OHV GpULYpHV VSDWLDOHV GH OD GLYHUJHQFH
UHWURXYHU O¶pTXDWLRQ ORFDOH GH FRQVHUYDWLRQ GH OD FKDUJH
3RXU REWHQLU O¶pTXDWLRQ GH SURSDJDWLRQ YpULILpH SDU OH FKDPS pOHFWULTXH SUHQGUH OH URWDWLRQQHO GH O¶pTXDWLRQ GH 0D[ZHOO )DUDGD\
VLPSOLILHU HQ LQWHUYHUWLVVDQW GpULYpH WHPSRUHOOH HW GpULYpHV VSDWLDOHV
3RXU REWHQLU O¶pTXDWLRQ GLIIpUHQWLHOOH YpULILpH SDU OH FKDPS PDJQpWLTXH SUHQGUH OH URWD
WLRQQHO GH O¶pTXDWLRQ GH 0D[ZHOO $PSqUH
200
Électromagnétisme
$POTFJMT
3RXU UHWURXYHU O¶pTXDWLRQ GH SURSDJDWLRQ RQ XWLOLVH OHV GHX[ UHODWLRQV VXLYDQWHV −
−−→ −
−
→
−
→
−
→ −
→→
−
→→
URW URW X = JUDG GLY X − Δ X
HW
GLY URW X = 0
2Q SHXW PRQWUHU TXH O¶RQ SHXW WRXMRXUV LQWHUYHUWLU OHV GpULYpHV VSDWLDOHV HW OHV GpULYpHV
WHPSRUHOOHV
&YFNQMF USBJU©
¬ SDUWLU GHV pTXDWLRQV GH 0D[ZHOO UHWURXYHU O¶pTXDWLRQ ORFDOH GH FRQVHUYDWLRQ GH OD
FKDUJH
(Q LQWpJUDQW O¶pTXDWLRQ GH 0D[ZHOO )DUDGD\ UHWURXYHU OD ORL GH )DUDGD\
40-65*0/
2Q FDOFXOH OD GLYHUJHQFH GH O¶pTXDWLRQ GH 0D[ZHOO $PSqUH TXH O¶RQ WUDQVIRUPH HQ
LQWHUYHUWLVVDQW OHV GpULYpHV VSDWLDOHV HW WHPSRUHOOHV SXLV HQ VXEVWLWXDQW O¶pTXDWLRQ GH
0D[ZHOO *DXVV −
→
−
∂E
−
→
−
→→
×
GLY
j
+
μ
×
ε
×
GLY
GLY URW B = μ0
0
0
∂t
−
→
∂ GLY E
−
→
= μ0 × GLY j + μ0 × ε0 ×
∂t
∂ρ
−
→
= μ0 × GLY j + μ0 ×
∂t
−
→
&RPPH OD GLYHUJHQFH G¶XQ URWDWLRQQHO HVW QXOOH DORUV RQ WURXYH 0 = GLY j + ∂ρ
∂t FH TXL
HVW ELHQ O¶pTXDWLRQ ORFDOH GH FRQVHUYDWLRQ GH OD FKDUJH
2Q LQWqJUH OHV GHX[ PHPEUHV GH O¶pTXDWLRQ GH 0D[ZHOO )DUDGD\ VXU XQH VXUIDFH S
*UkFH DX WKpRUqPH GH 6WRNHV OH PHPEUH GH JDXFKH GHYLHQW → −
→
→
−
→−
−
→ −
E . Gl = e
URW E .GS =
VXUIDFH
FRQWRXU
/H PHPEUH GH GURLWH VH WUDQVIRUPH HQ LQWHUYHUWLVVDQW OHV GpULYpHV VSDWLDOHV HW WHPSR
UHOOHV −
→
→
→
−
→−
GΦ
G
∂B −
B .GS = −
.GS = −
−
∂t
Gt
Gt
VXUIDFH
VXUIDFH
(Q LGHQWLILDQW OHV GHX[ PHPEUHV GH O¶pTXDWLRQ GH 0D[ZHOO )DUDGD\ RQ UHWURXYH OD ORL
GH )DUDGD\
33. Utiliser les équations de Maxwell
201
&YFSDJDFT
&9&3$*$& eTXDWLRQ GH SURSDJDWLRQ
'pWHUPLQHU O¶pTXDWLRQ GH SURSDJDWLRQ GX FKDPS pOHFWULTXH GDQV OH YLGH
5HFRPPHQFHU GDQV XQ PLOLHX FRQGXFWHXU GH FRQGXFWLYLWp γ UHVSHFWDQW OD ORL G¶2KP
−
→
−
→
ORFDOH j = γ × E 2Q VXSSRVHUD TXH OD GHQVLWp YROXPLTXH GH FKDUJH HVW TXDVLPHQW
QXOOH
&9&3$*$& 'DQV XQ VXSUDFRQGXFWHXU
−
→
→
2Q LPSRVH HQ UpJLPH SHUPDQHQW XQ FKDPS PDJQpWLTXH B = B0 −
ey VXU XQ VXSUDFRQGXF
WHXU FRPSULV GDQV OH GHPLHVSDFH x > 0 8Q VXSUDFRQGXFWHXU HVW FRQVWLWXp G¶pOHFWURQV GH
PDVVH m HW GH GHQVLWp SDUWLFXODLUH n∗ /D WHPSpUDWXUH HVW VXIILVDPPHQW IDLEOH SRXU TXH
OHV pOHFWURQV QH VXELVVHQW SDV G¶LQWHUDFWLRQ DYHF OH UpVHDX FULVWDOOLQ /H VXSUDFRQGXFWHXU HVW
FRQVLGpUp FRPPH LQILQL VHORQ OHV D[HV (Oy) HW (Oz) RQ VXSSRVHUD TXH OH FKDPS PDJQpWLTXH
−
→
−
→
j O¶LQWpULHXU HVW GH OD IRUPH B (M ) = B (x)
(Q QpJOLJHDQW OD IRUFH PDJQpWLTXH GpWHUPLQHU XQH UHODWLRQ HQWUH OH FKDPS pOHFWULTXH
−
→
−
→
E OD GHQVLWp YROXPLTXH GH FRXUDQW j n∗ m HW e
(Q GpGXLUH TX¶j O¶LQWpULHXU GX VXSUDFRQGXFWHXU OD GHQVLWp YROXPLTXH GH FRXUDQW HW OH
FKDPS PDJQpWLTXH VRQW UHOLpV SDU →
→
e2 × n∗ −
−
→ −
×B
URW j = −
m
0RQWUHU TX¶j O¶LQWpULHXU GX VXSUDFRQGXFWHXU OH FKDPS PDJQpWLTXH YpULILH O¶pTXDWLRQ
GLIIpUHQWLHOOH −
→
−
→ B
−
→
ΔB − 2 = 0
L
/H FKDPS PDJQpWLTXH pWDQW FRQWLQX j OD VXUIDFH GX VXSUDFRQGXFWHXU GpWHUPLQHU FH
FKDPS HQ WRXW SRLQW GH FHOXLFL
/¶HIIHW 0HLVVQHU LQGLTXH TX¶XQ VXSUDFRQGXFWHXU © H[SXOVH OHV OLJQHV GH FKDPS PDJQp
WLTXH ª ([SOLTXHU
1PVS WPVT BJEFS
202
E©NBSSFS
&9&3$*$& &DOFXOHU OH URWDWLRQQHO GH O¶pTXDWLRQ GH 0D[ZHOO )DUDGD\
&9&3$*$& $SSOLTXHU OH 3)' j XQ pOHFWURQ
Électromagnétisme
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& 2Q FDOFXOH OH URWDWLRQQHO GX URWDWLRQQHO GX FKDPS pOHFWULTXH SXLV RQ VLPSOLILH JUkFH j
−
→
O¶pTXDWLRQ GH 0D[ZHOO *DXVV GDQV OH YLGH GLY E = 0 −
−−→ −
→
−
→
−
→
−
→ −
→→
URW URW E = JUDG GLY E − Δ E = −Δ E
0DLQWHQDQW RQ FDOFXOH OH URWDWLRQQHO GH O¶pTXDWLRQ GH 0D[ZHOO )DUDGD\ HQ LQWHUYHUWLV
VDQW OHV GpULYpHV WHPSRUHOOHV HW VSDWLDOHV →
−
→ −
−
→
−
→
−
→
−
∂
URW
B
∂
1
∂E
∂2 E
−
→ −
→→
−
→∂ B
=−
=−
μ0 ε0 ×
=− 2 ×
URW URW E = −URW
∂t
∂t
∂t
∂t
c
∂t2
2Q LGHQWLILH OHV GHX[ UpVXOWDWV HW RQ WURXYH −
→
−
→
1
∂2 E
−
→
ΔE − 2 ×
= 0
c
∂t2
/H FDOFXO UHVVHPEOH LO IDXW MXVWH UDMRXWHU XQ GHX[LqPH WHUPH ORUVTX¶RQ VXEVWLWXH O¶pTXD
WLRQ GH 0D[ZHOO $PSqUH 2Q REWLHQW −
→
−
∂
∂E
−
→
−
→ −
→→
μ0 × j + μ0 ε0 ×
URW URW E = −
∂t
∂t
−
→
−
→
−
→
−
→
∂j
∂2 E
∂E
∂2 E
1
1
= −μ0 ×
= −μ0 γ ×
− 2×
− 2×
∂t
c
∂t2
∂t
c
∂t2
Solutions
(Q LGHQWLILDQW j QRXYHDX RQ WURXYH FHWWH IRLV −
→
−
→
−
→
∂2 E
∂E
1
−
→
= 0
−
μ
γ
×
ΔE − 2 ×
0
2
c
∂t
∂t
&9&3$*$& 2Q pWXGLH XQ pOHFWURQ GDQV OH UpIpUHQWLHO WHUUHVWUH VXSSRVp JDOLOpHQ 6HXOH OD IRUFH pOHF
−
→
−
→
WULTXH V¶DSSOLTXH F = −e × E 2Q DSSOLTXH OH 3)' →
−
→
G−
v
m
= −e × E
Gt
→
−
j
→
2U OH YHFWHXU YLWHVVH HVW UHOLp DX YHFWHXU GHQVLWp YROXPLTXH GH FRXUDQW SDU −
v = −e×n
∗
'RQF OH 3)' GHYLHQW −
→
→
Gj
e 2 × n∗ −
=
×E
Gt
m
33. Utiliser les équations de Maxwell
203
2Q
2Q FDOFXOH
FDOFXOH OHOHURWDWLRQQHO
URWDWLRQQHOGHGHODODUHODWLRQ
UHODWLRQWURXYpH
WURXYpHj OD
j OD
TXHVWLRQ
TXHVWLRQ
SUpFpGHQWH
SUpFpGHQWH
RQ RQ
LQWHUYHUWLW
LQWHUYHUWLW
OHV GpULYpHV
GpULYpHVWHPSRUHOOHV
WHPSRUHOOHVHWHWVSDWLDOHV
VSDWLDOHVHWHWRQRQLQVqUH
LQVqUHOD OD
UHODWLRQ
0D[ZHOO
)DUDGD\
OHV
UHODWLRQ
GHGH
0D[ZHOO
)DUDGD\
−
−
−
→
−
→ →
−
→
−
→−
→
→−
→ 2 2 ∗ ∗
→
−
e2 e×2 n
URW jj
∂∂ URW
→
×∗ n∗ ∂ B∂ B
e e ××n n −
−
→
−
→ GGj j
→−
→−
==URW
URW
××
URWURW E E = =
−−
××
==
∂t
∂t
GtGt
mm
mm
∂t ∂t
2Q
2Q UHJURXSH
UHJURXSHOHV
OHVGpULYpHV
GpULYpHV 2 2 ∗ ∗
→−
→ −
∂∂ −
→−
→ e e××n n −
→−
→
→
−
→−
URW
URW j j ++
××B B = =0 0
∂t
∂t
mm
2Q
2Q LQWqJUH
LQWqJUH SDU
SDU UDSSRUW
UDSSRUWDX
DXWHPSV
WHPSV6L6LOHOHFKDPS
FKDPSPDJQpWLTXH
PDJQpWLTXH
HVWHVW
QXO
QXO
OH FRXUDQW
OH FRXUDQW
HVW HVW
QXOQXO
GRQF
GRQF OD
OD FRQVWDQWH
FRQVWDQWHG¶LQWpJUDWLRQ
G¶LQWpJUDWLRQHVW
HVWQXOOH
QXOOH2Q
2QREWLHQW
REWLHQW
OD OD
UHODWLRQ
UHODWLRQ
GHPDQGpH
GHPDQGpH
2×
→−
→
e2e×
n∗n∗ −
→−
→
−
→
−
→−
××
BB
URW
URW j j ==−−
mm
2Q
2Q FDOFXOH
FDOFXOH OHOH URWDWLRQQHO
URWDWLRQQHOGX
GXURWDWLRQQHO
URWDWLRQQHOGXGXFKDPS
FKDPSPDJQpWLTXH
PDJQpWLTXH
HW HW
RQRQ
VLPSOLILH
VLPSOLILH
JUkFH
JUkFH
j j
O¶pTXDWLRQ
O¶pTXDWLRQ GH
GH0D[ZHOO
0D[ZHOO IOX[
IOX[ −
−
−
→
−→ −
−
→ −−
→−
→
→−
→
−
→−
→
→
−
→→
−
→
−
→−
URW
URW URW
URWBB ==JUDG
JUDG GLY
GLY
BB −−
ΔΔ
B B= =
−Δ
−Δ
BB
2Q
2Q FDOFXOH
FDOFXOHOHOHURWDWLRQQHO
URWDWLRQQHOGHGHO¶pTXDWLRQ
O¶pTXDWLRQGHGH0D[ZHOO
0D[ZHOO
$PSqUH
$PSqUH
HQHQ
UpJLPH
UpJLPH
SHUPDQHQW
SHUPDQHQW
μ μ× ×
−
→
−
2 2 n∗n∗ −
−
→
→−
→
→
−
→
−
→ −
→
−
→→
−
→
−
→−
0 0 e e× ×
URWBB ==μμ
URW
URW URW
××
BB
URW j j ==−−
0 0××URW
mm
0DLQWHQDQW
0DLQWHQDQWRQ
RQLGHQWLILH
LGHQWLILHOHV
OHVGHX[
GHX[H[SUHVVLRQV
H[SUHVVLRQVHWHWRQRQ
WURXYH
WURXYH
2×
−
→
−
→ μμ
→−
→ −
e2e×
n∗n∗ −
→−
→
0 0××
ΔΔBB−−
××B B= =0 0
mm
204
mm
2Q
2Q DD GRQF
GRQF LL =
= μμ00×e
2 ×n
2 ×n
∗∗
×e
&¶HVW
&¶HVWXQH
XQHpTXDWLRQ
pTXDWLRQGLIIpUHQWLHOOH
GLIIpUHQWLHOOHOLQpDLUH
OLQpDLUHGXGXVHFRQG
VHFRQG
RUGUH
RUGUH
KRPRJqQH
KRPRJqQH
j FRHIILFLHQWV
j FRHIILFLHQWV
FRQVWDQWV
FRQVWDQWV
GH VROXWLRQ
VROXWLRQ
−
→
−
→
−
→−
→ xx −
→−
→ − x− x
BB(M
(M) )==AA××e Le L++C C× ×
e eL L
−
→−
→ −
→−
→
2U OH
OH FKDPS
FKDPS QH
QHSHXW
SHXWGLYHUJHU
GLYHUJHUj jO¶LQILQL
O¶LQILQLGRQF
GRQFAA==0 0&RPPH
&RPPH
OH OH
FKDPS
FKDPS
PDJQpWLTXH
PDJQpWLTXH
HVW
HVW FRQWLQX
FRQWLQX jjODODVXUIDFH
VXUIDFHGX
GXVXSUDFRQGXFWHXU
VXSUDFRQGXFWHXUDORUV
DORUVHQHQ
WRXW
WRXW
SRLQW
SRLQW
GXGX
VXSUDFRQGXFWHXU
VXSUDFRQGXFWHXU
OH OH
FKDPS
FKDPS HVW
HVW x x
−
→−
→
→
→
BB(M
(M) )==BB
e−eL−−
eLy−
ey
0×
0×
/H FKDPS
FKDPSPDJQpWLTXH
PDJQpWLTXHV¶DWWpQXH
V¶DWWpQXHWUqV
WUqVUDSLGHPHQW
UDSLGHPHQW
GDQV
GDQV
OH OH
VXSUDFRQGXFWHXU
VXSUDFRQGXFWHXU
,O H[SXOVH
,O H[SXOVH
OHV OHV
OLJQHV
OLJQHV GH
GH FKDPS
FKDPSHQ
HQGHKRUV
GHKRUV
Électromagnétisme
Réaliser un bilan d’énergie
3©BMJTFS
électromagnétique
VO
CJMBO E©OFSHJF
34
©MFDUSPNBHO©UJRVF
2VBOE PO OF TBJU QBT /H FKDPS pOHFWURPDJQpWLTXH WUDQVSRUWH OD GHQVLWp YROXPLTXH G¶pQHUJLH -P−3 uem =
B2
ε0 × E 2
+
2
2 × μ0
/D SXLVVDQFH UD\RQQpH P (t) SDU OH FKDPS pOHFWURPDJQpWLTXH j WUDYHUV XQH VXUIDFH S HVW
−
→
pJDOH DX IOX[ GX YHFWHXU GH 3R\QWLQJ Π j WUDYHUV FHOOHFL −
→ −
→
→
−
→−
−
→
E∧B
Π .GS DYHF Π =
P (t) =
μ0
VXUIDFH
/H FKDPS pOHFWURPDJQpWLTXH FqGH DX[ SRUWHXUV GH FKDUJH OD SXLVVDQFH YROXPLTXH →
−
→−
Pv = j . E
−
→
j HVW OD GHQVLWp YROXPLTXH GH FKDUJH
/RL G¶2KP ORFDOH GDQV XQ FRQGXFWHXU OH FKDPS pOHFWULTXH HW OD GHQVLWp YROXPLTXH GH
FKDUJH VRQW UHOLpV SDU −
→
−
→
j =γ×E
γ HVW OD FRQGXFWLYLWp pOHFWULTXH (Ω−1 .P−1 )
eTXDWLRQ ORFDOH GH 3R\QWLQJ O¶pTXDWLRQ ORFDOH GH FRQVHUYDWLRQ GH O¶pQHUJLH pOHFWUR
PDJQpWLTXH V¶pFULW −
→ ∂uem
= −Pv
GLY Π +
∂t
3RXU XQ YROXPH V OH ELODQ GHYLHQW GUem
= −PSHUGXH
Gt
DYHF Uem =
V uem GV HW PSHUGXH =
V Pv GV P (t) +
34. Réaliser un bilan d’ énergie électromagnétique
205
2VF GBJSF
3RXU GpWHUPLQHU OD SXLVVDQFH YROXPLTXH FpGpH DX[ SRUWHXUV GH FKDUJH pFULUH OD IRUFH GH /RUHQW] V¶DSSOLTXDQW VXU XQH FKDUJH
FDOFXOHU OD SXLVVDQFH GH OD IRUFH GH /RUHQW]
PXOWLSOLHU SDU OD GHQVLWp SDUWLFXODLUH HW LQWURGXLUH OD GHQVLWp YROXPLTXH GH FRXUDQW
$POTFJMT
/D UpVLVWDQFH pOHFWULTXH G¶XQ FRQGXFWHXU GH VHFWLRQ S GH ORQJXHXU L HW GH FRQGXFWLYLWp
L
pOHFWULTXH γ HVW R = S×γ
&YFNQMF USBJU©
'pFKDUJH G¶XQ FRQGXFWHXU GDQV O¶DLU
8QH ERXOH FRQGXFWULFH GH FHQWUH O HW GH UD\RQ R SRUWH LQLWLDOHPHQW OD FKDUJH Q0 XQLIRU
PpPHQW UpSDUWLH HQ VXUIDFH (OOH HVW DEDQGRQQpH GDQV O¶DLU VXSSRVp OpJqUHPHQW FRQGXFWHXU
GH FRQGXFWLYLWp γ 2Q QRWHUD τ = εγ0 ¬ O¶LQVWDQW t OD ERXOH SRUWH OD FKDUJH Q(t)
0RQWUHU TXH OH FKDPS PDJQpWLTXH HVW QXO j O¶H[WpULHXU GH OD ERXOH
([SOLFLWHU OH FKDPS pOHFWULTXH HQ XQ SRLQW M VLWXp j XQH GLVWDQFH r = OM j O¶H[WpULHXU
GH OD ERXOH
eWDEOLU O¶pTXDWLRQ GLIIpUHQWLHOOH YpULILpH SDU OD FKDUJH Q(t) /D UpVRXGUH &RPPHQWHU
([SULPHU OD SXLVVDQFH YROXPLTXH IRXUQLH SDU OH FKDPS pOHFWULTXH j O¶DLU (Q GpGXLUH OD
SXLVVDQFH GLVVLSpH GDQV O¶DLU
([SULPHU OD GHQVLWp YROXPLTXH G¶pQHUJLH pOHFWURPDJQpWLTXH 9pULILHU OD FRQVHUYDWLRQ
ORFDOH GH O¶pQHUJLH pOHFWURPDJQpWLTXH
40-65*0/
206
/D GLVWULEXWLRQ GH FRXUDQW UpVXOWH GH OD GpFKDUJH GH OD ERXOH GDQV O¶DLU &HWWH GLVWULEXWLRQ
GH FRXUDQW HVW j V\PpWULH VSKpULTXH GH FHQWUH O 'RQF WRXV OHV SODQV FRQWHQDQW OD GURLWH
(OM ) VRQW GHV SODQV GH V\PpWULH OH FKDPS PDJQpWLTXH GRLW rWUH RUWKRJRQDO j WRXV FHV
SODQV ,O HVW GRQF QXO
2Q DSSOLTXH OH WKpRUqPH GH *DXVV *UkFH j O¶H[HPSOH GH OD ILFKH © 8WLOLVHU OH WKpR
−
→
−
→
UqPH GH *DXVV SRXU FDOFXOHU XQ FKDPS pOHFWULTXH ª RQ WURXYH E (r) = 4πεQ(t)
2 er 0 ×r
2Q XWLOLVH O¶pTXDWLRQ GH 0D[ZHOO $PSqUH GDQV ODTXHOOH RQ VXEVWLWXH OD ORL G¶2KP
−
→
−
→
ORFDOH j = γ E &RPPH OH FKDPS PDJQpWLTXH HVW QXO RQ WURXYH −
→
→
−
→
∂E
−
→
−
→−
URW( B ) = 0 = μ0 γ × E + μ0 ε0 ×
∂t
Électromagnétisme
2Q UHPSODFH OH FKDPS pOHFWULTXH SDU VRQ H[SUHVVLRQ 6HXOH OD FKDUJH GpSHQG GX WHPSV
RQ REWLHQW GQ(t)
γ
+
× Q(t) = 0
Gt
ε0
2Q UpVRXW FHWWH pTXDWLRQ Q(t) = A × e−t/τ /D ERXOH SRUWH OD FKDUJH LQLWLDOH Q0 GRQF t
Q(t) = Q0 × e− τ
/D ERXOH VH GpFKDUJH G¶DXWDQW SOXV YLWH TXH O¶DLU HVW FRQGXFWHXU
→
−
→−
/H FKDPS pOHFWULTXH IRXUQLW j O¶DLU OD SXLVVDQFH YROXPLTXH Pv = j . E = γ × Er2 (M )
2Q LQWqJUH VXU O¶HVSDFH SRXU REWHQLU OD SXLVVDQFH FpGpH SDU OH FKDPS +∞
γ × Q2 (t)
4πr2
γQ2 (t)
2
P (t) =
γ × Er (t)GV =
Gr
=
r4
16π 2 ε20
4πε20 R
R
HVSDFH H[WpULHXU
/H FKDPS PDJQpWLTXH pWDQW QXO OD GHQVLWp YROXPLTXH G¶pQHUJLH pOHFWURPDJQpWLTXH YDXW uem =
B2
ε0 × Er2
ε0 × Er2
+
=
2
2×μ
2
0DLQWHQDQW RQ FDOFXOH OD GpULYpH GH FHWWH GHQVLWp YROXPLTXH G¶pQHUJLH →
∂Er
γ
∂uem
−
→−
= ε0 × Er ×
= ε0 × Er × − × Er = −γEr2 = − j . E
∂t
∂t
ε0
&RPPH OH FKDPS PDJQpWLTXH HVW QXO OH YHFWHXU GH 3R\QWLQJ HVW QXO 2Q UHWURXYH ELHQ →
−
→ ∂uem
−
→−
= − j .E
GLY Π +
∂t
&YFSDJDFT
&9&3$*$& 3XLVVDQFH GLVVLSpH SDU HIIHW -RXOH
2Q pWXGLH XQ FRQGXFWHXU F\OLQGULTXH G¶D[H (Oz) GH VHFWLRQ S HW GH ORQJXHXU L SRUWDQW
GHV pOHFWURQV GH GHQVLWp SDUWLFXODLUH XQLIRUPH n∗ 2Q QRWH γ OD FRQGXFWLYLWp pOHFWULTXH 2Q
SORQJH OH FRQGXFWHXU GDQV XQ FKDPS pOHFWURPDJQpWLTXH ,O VH FUpH XQ FRXUDQW pOHFWULTXH I
OH ORQJ GX EDUUHDX F\OLQGULTXH
'pWHUPLQHU OD SXLVVDQFH GH OD IRUFH pOHFWURPDJQpWLTXH V¶DSSOLTXDQW VXU XQ pOHFWURQ
(Q GpGXLUH OD SXLVVDQFH YROXPLTXH GH OD IRUFH pOHFWURPDJQpWLTXH HQ IRQFWLRQ GH OD GHQ
−
→
−
→
VLWp YROXPLTXH GH FRXUDQW j HW GX FKDPS pOHFWULTXH E (Q GpGXLUH OD SXLVVDQFH pOHFWULTXH UHoXH SDU OH FRQGXFWHXU HQ IRQFWLRQ GH γ I L HW S
,GHQWLILHU O¶H[SUHVVLRQ GH OD UpVLVWDQFH GX FRQGXFWHXU
34. Réaliser un bilan d’ énergie électromagnétique
207
&RQGXFWHXU HQ UpJLPH SHUPDQHQW
2Q VH SURSRVH GH YpULILHU OD FRQVHUYDWLRQ GH O¶pQHUJLH pOHFWURPDJQpWLTXH GDQV XQ F\OLQGUH
SOHLQ G¶D[H (Oz) GH JUDQGH ORQJXHXU h GH UD\RQ a GH FRQGXFWLYLWp pOHFWULTXH γ SDUFRXUX
SDU XQ FRXUDQW SHUPDQHQW G¶LQWHQVLWp I 2Q DGPHWWUD TXH OD GHQVLWp GH FRXUDQW YROXPLTXH
−
→
→
ez HVW XQLIRUPH
j = j0 × −
&9&3$*$& ([SULPHU j0 ([SULPHU OD UpVLVWDQFH R GX F\OLQGUH HQ IRQFWLRQ GH γ HW GHV GRQQpHV JpRPpWULTXHV
(Q GpGXLUH O¶H[SUHVVLRQ GX FKDPS pOHFWULTXH j O¶LQWpULHXU GX FRQGXFWHXU
([SULPHU OH FKDPS PDJQpWLTXH j O¶LQWpULHXU GX FRQGXFWHXU
(Q GpGXLUH O¶H[SUHVVLRQ GX YHFWHXU GH 3R\QWLQJ j O¶LQWpULHXU GX FRQGXFWHXU
&DOFXOHU OD SXLVVDQFH UD\RQQpH VRUWDQWH GH OD VXUIDFH GX F\OLQGUH GH KDXWHXU h HQ IRQF
WLRQ GH OD UpVLVWDQFH R HW GH O¶LQWHQVLWp I
&RQFOXUH
1PVS WPVT BJEFS
E©NBSSFS
&9&3$*$& &DOFXOHU OD SXLVVDQFH GH OD IRUFH GH /RUHQW]
&9&3$*$& 8WLOLVHU OD ORL G¶2KP ORFDOH 3RXU FDOFXOHU OH FKDPS PDJQpWLTXH XWLOLVHU
OH WKpRUqPH G¶$PSqUH
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& −
→
−
→
−
→
→
,O V¶DSSOLTXH VXU O¶pOHFWURQ OD IRUFH GH /RUHQW] F = −e × E − e × −
v ∧ B 2Q FDOFXOH
OD SXLVVDQFH GH FHWWH IRUFH −
→→
−
→→
P = F .−
v = −e × E .−
v
−
→
−
→
(Q HIIHW OH SURGXLW
v ∧ B HVW SHUSHQGLFXODLUH DX YHFWHXU YLWHVVH GRQF OH
YHFWRULHO
−
→ →
→
SURGXLW VFDODLUH −
v ∧ B .−
v HVW QXO
3RXU REWHQLU OD SXLVVDQFH YROXPLTXH RQ PXOWLSOLH OD SXLVVDQFH SDU OD GHQVLWp SDUWLFX
−
→
→
ODLUH HQ IDLVDQW LQWHUYHQLU OH YHFWHXU GHQVLWp YROXPLTXH GH FRXUDQW j = −e × n∗ × −
v −
→→ −
→
→−
v = j .E
Pv = P × n∗ = −e × n∗ × E .−
208
Électromagnétisme
2
2Q VXEVWLWXH OD ORL G¶2KP ORFDOH Pv = jγ 3XLV RQ LQWqJUH FHWWH SXLVVDQFH YROXPLTXH
SRXU REWHQLU OD SXLVVDQFH pOHFWULTXH UHoXH SDU OH FRQGXFWHXU Pe =
j2
I2
j2
L
×V =
×S×L=
× I2
×S×L=
2
γ
γ
γ×S
γ×S
L
2Q UHWURXYH OD SXLVVDQFH GLVVLSpH SDU HIIHW -RXOH R × I 2 DYHF R = γ×S
&9&3$*$& /D GHQVLWp YROXPLTXH GH FKDUJH HVW XQLIRUPH GRQF j0 = πaI 2 h
h
/D UpVLVWDQFH GX FRQGXFWHXU HVW R = γ×S
= γ×πa
2
→
−
−
→
→
I −
'¶DSUqV OD ORL G¶2KP ORFDOH RQ D E = γj = πγa
2 ez /D GHQVLWp YROXPLTXH GH FRXUDQW HVW GLULJpH VXLYDQW O¶D[H (Oz) GRQF OD GLVWULEXWLRQ GH
FRXUDQW HVW V\PpWULTXH DXWRXU GH O¶D[H (Oz) LQYDULDQWH SDU WUDQVODWLRQ OH ORQJ GH O¶D[H
−
→
−
→
(Oz) GRQF OH FKDPS PDJQpWLTXH QH GpSHQG TXH GX UD\RQ r B (M ) = B (r)
7RXW SODQ FRQWHQDQW O¶D[H Oz) HVW XQ SODQ GH V\PpWULH GRQF OH FKDPS PDJQpWLTXH HVW
−
→
→
RUWKRUDGLDO B (M ) = Bθ (r)−
eθ 2Q XWLOLVH OH WKpRUqPH G¶$PSqUH VXU XQ FHUFOH GH UD\RQ r HW G¶D[H (Oz) (Q UHSUHQDQW
O¶H[HPSOH GH OD ILFKH © 8WLOLVHU OH WKpRUqPH G¶$PSqUH ª RQ WURXYH Solutions
−
→
μ0 × j0 × r −
→
B (M ) =
eθ
2
2Q XWLOLVH OD GpILQLWLRQ GX YHFWHXU GH 3R\QWLQJ −
→ −
→
−
→
E∧B
j2 × r −
j2 × r −
→
→
→
Π =
= 0
eθ = − 0
ez ∧ −
er
μ0
2γ
2γ
/D SXLVVDQFH UD\RQQpH SDU OH F\OLQGUH GH KDXWHXU h FRUUHVSRQG DX IOX[ GX YHFWHXU GH
3R\QWLQJ j WUDYHUV VD VXUIDFH P (t) =
VXUIDFH
→
−
→−
Π .GS =
2π h
θ=0 z=0
j2 × a −
→
→
− 0
er
er .aGθGz −
2γ
2Q LQWqJUH HW RQ WURXYH P (t) = −
πj02 × a2 × h
h
= −I 2 ×
= −R × I 2
γ
γπa2
/D SXLVVDQFH pOHFWURPDJQpWLTXH HVW WUDQVPLVH DX FRQGXFWHXU TXL OD GLVVLSH SDU HIIHW
-RXOH
34. Réaliser un bilan d’ énergie électromagnétique
209
Physique des ondes
35
Déterminer l’équation de propagation
%©UFSNJOFS
du champ
électromagnétique
M©RVBUJPO
EF QSPQBHBUJPO
EV DIBNQ ©MFDUSPNBHO©UJRVF
2VBOE PO OF TBJU QBT 'DQV FHWWH ILFKH RQ FKHUFKH j pWDEOLU O¶pTXDWLRQ GH SURSDJDWLRQ GX FKDPS pOHFWURPDJQp
WLTXH GDQV XQ PLOLHX OLQpDLUH KRPRJqQH HW LVRWURSH
8Q FDV SDUWLFXOLHU LPSRUWDQW HVW O¶pTXDWLRQ GH SURSDJDWLRQ
GX FKDPS
pOHFWURPDJQpWLTXH
−
→ −
→
GDQV OH YLGH F¶HVWjGLUH VDQV FKDUJH ρ = 0 QL FRXUDQW j = 0 'DQV FHV FRQGLWLRQV OHV pTXDWLRQV GH 0D[ZHOO VH UppFULYHQW −
→
GLY E = 0
−
→
GLY B = 0
−
→
→
1 ∂E
−
→−
URW B = 2
c ∂t
−
→
→
∂B
−
→−
URW E = −
∂t
/D VHXOH IRUPXOH G¶DQDO\VH YHFWRULHOOH j FRQQDvWUH SRXU FH FKDSLWUH HVW OD GpILQLWLRQ GH
−
→
−
→
O¶RSpUDWHXU ODSODFLHQ YHFWRULHO Δ SRXU WRXW FKDPS YHFWRULHO A GpSHQGDQW GHV WURLV YD
ULDEOHV G¶HVSDFH RQ D TXHO TXH VRLW OH V\VWqPH GH FRRUGRQQpHV FKRLVL −
−−→ −
→ −
→−
→
−
→ −
→→
URW URW A = JUDG GLY E − Δ A
'DQV GH WHOOHV FRQGLWLRQV OHV FKDPSV pOHFWULTXH HW PDJQpWLTXH DVVRFLpV j XQH RQGH
pOHFWURPDJQpWLTXH VXLYHQW O¶pTXDWLRQ GH SURSDJDWLRQ GH G¶$OHPEHUW −
→
−
→−
→
1 ∂2 E
ΔE = 2
c ∂t2
−
→
−
→−
→
1 ∂2 B
HW Δ B = 2
c ∂t2
2VF GBJSF 3RXU pWDEOLU O¶pTXDWLRQ GH SURSDJDWLRQ GX FKDPS pOHFWULTXH DSSOLTXHU O¶RSpUDWHXU URWDWLRQQHO j O¶pTXDWLRQ GH 0D[ZHOO)DUDGD\ −
→
−
∂B
−
→ −
→→
−
→
URW URW E = URW −
∂t
210
Physique des ondes
−
→−
→
XWLOLVHU OD GpILQLWLRQ GX ODSODFLHQ YHFWRULHO SRXU IDLUH DSSDUDvWUH Δ E −
→
−−→ −
→ −
→−
→ −
∂B
→
JUDG GLY E − Δ E = URW −
∂t
−
→
XWLOLVHU O¶pTXDWLRQ GH 0D[ZHOO*DXVV SRXU IDLUH GLVSDUDvWUH OH WHUPH GLY E −
→
−
→
−
→−
→ −
∂B
→
GLY E = 0 ⇒ − Δ E = URW −
∂t
→
−
→−
SHUPXWHU GpULYpH GH WHPSV HW G¶HVSDFH DILQ GH IDLUH DSSDUDvWUH URW B →
−
→−
→
∂ −
→−
URW B
−Δ E = −
∂t
FRQFOXUH DYHF O¶pTXDWLRQ GH 0D[ZHOO$PSqUH −
→
−
→−
→
1 ∂2 E
ΔE = 2
c ∂t2
$POTFJMT
,O HVW LPSRUWDQW G¶rWUH j O¶DLVH DYHF OHV RSpUDWHXUV G¶DQDO\VH YHFWRULHOOH 6L FH Q¶HVW SDV
OH FDV LO HVW V€UHPHQW MXGLFLHX[ GH SDVVHU XQ SHX GH WHPSV VXU FHWWH QRWLRQ SRXU ELHQ
FRPSUHQGUH OH IRQFWLRQQHPHQW GHV RSpUDWHXUV HW VDYRLU OHV PDQLSXOHU
,O HVW DXVVL LQGLVSHQVDEOH GH FRQQDvWUH OHV pTXDWLRQV GH 0D[ZHOO GDQV OH FDV JpQpUDO HW
GDQV OH YLGH VDQV FKDUJH QL FRXUDQW &YFNQMF USBJU©
eWDEOLU O¶pTXDWLRQ GH SURSDJDWLRQ GX FKDPS PDJQpWLTXH GDQV OH YLGH
(Q V¶LQVSLUDQW GH OD PpWKRGH GpFULWH FLGHVVXV pWDEOLU O¶pTXDWLRQ GH SURSDJDWLRQ GX
FKDPS PDJQpWLTXH GDQV OH YLGH VDQV FKDUJH QL FRXUDQW 40-65*0/
/¶pWDEOLVVHPHQW GH O¶pTXDWLRQ G¶RQGH SRXU OH FKDPS PDJQpWLTXH V¶REWLHQW GH PDQLqUH
VLPLODLUH DX FKDPS pOHFWULTXH 2Q DSSOLTXH O¶RSpUDWHXU URWDWLRQQHO j O¶pTXDWLRQ GH
0D[ZHOO$PSqUH −
→
−
−
→ −
→→
−
→ 1 ∂E
URW URW B = URW
c2 ∂t
35. Déterminer l’ équation de propagation du champ électromagnétique
211
3DU OLQpDULWp GH O¶RSpUDWHXU URWDWLRQQHO RQ SHXW pFULUH −
→
−
1 −
→ ∂E
−
→ −
→→
URW URW B = 2 URW
c
∂t
'DQV OD SDUWLH JDXFKH GH O¶pTXDWLRQ FLGHVVXV XWLOLVHU OD GpILQLWLRQ GX ODSODFLHQ YHFWRULHO
−
→−
→
SRXU IDLUH DSSDUDvWUH Δ B −
→
−−→ −
→ −
→−
→
1 −
→ ∂E
JUDG GLY B − Δ B = 2 URW
c
∂t
*UkFH j O¶pTXDWLRQ GLWH GH 0D[ZHOO)OX[ RQ SHXW VLPSOLILHU OH WHUPH GH JDXFKH −
→
−
→
−
→−
→
1 −
→ ∂E
GLY B = 0 ⇒ − Δ B = 2 URW
c
∂t
2Q SHUPXWH HQVXLWH OD GpULYpH G¶HVSDFH HW GH WHPSV −
→−
→
→
1 ∂ −
→−
−Δ B = 2
URW E
c ∂t
2Q SHXW HQVXLWH JUkFH j O¶pTXDWLRQ GH 0D[ZHOO)DUDGD\ UHWURXYHU O¶pTXDWLRQ G¶RQGH
UHFKHUFKpH −
→
−
→−
→
1 ∂2 B
ΔB = 2
c ∂t2
2Q UHWURXYH ELHQ OH IDLW TXH OH FKDPS PDJQpWLTXH VXLW O¶pTXDWLRQ GH SURSDJDWLRQ GH
G¶$OHPEHUW DYHF c = ε01μ0 &YFSDJDFT
&9&3$*$& eTXDWLRQ G¶RQGH GDQV XQ FRQGXFWHXU
2Q VH SODFH j SUpVHQW GDQV XQ FRQGXFWHXU 2Q VXSSRVH TXH FH GHUQLHU HVW ORFDOHPHQW QHXWUH
GH FKDUJHV j WRXW LQVWDQW ρ = 0 HW TX¶LO Q¶HVW SDV PDJQpWLTXH RQ FRQVHUYH OD SHUPpDELOLWp
−
→
−
→
PDJQpWLTXH GX YLGH μ0 2Q UDSSHOOH OD ORL G¶2KP ORFDOH j = γ E 212
5ppFULUH OHV pTXDWLRQV GH 0D[ZHOO GDQV FHV FRQGLWLRQV HQ XWLOLVDQW OD ORL G¶2KP ORFDOH
−
→
eWDEOLU O¶pTXDWLRQ G¶RQGH UpJLVVDQW OD SURSDJDWLRQ GX FKDPS pOHFWULTXH E DX VHLQ GX
FRQGXFWHXU &RPPHQWHU OH UpVXOWDW REWHQX
Physique des ondes
1PVS WPVT BJEFS
&9&3$*$& E©NBSSFS
$YHF O¶K\SRWKqVH GH QHXWUDOLWp GX FRQGXFWHXU VHXOH O¶pTXDWLRQ GH
0D[ZHOO$PSqUH HVW PRGLILpH SDU UDSSRUW DX FDV GX YLGH VDQV FKDUJH
QL FRXUDQW
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& $YHF OHV K\SRWKqVHV SURSRVpHV SDU O¶pQRQFp OHV pTXDWLRQV GH 0D[ZHOO GHYLHQQHQW −
→
GLY E = 0
−
→
→
∂B
−
→−
URW E = −
∂t
−
→
GLY B = 0
−
→
→
−
→
1 ∂E
−
→−
URW B = 2
+ μ0 γ E
c ∂t
−
→
3RXU pWDEOLU O¶pTXDWLRQ GH SURSDJDWLRQ GX FKDPS pOHFWULTXH E RQ FRPPHQFH SDU FRP
SRVHU O¶pTXDWLRQ GH 0D[ZHOO)DUDGD\ SDU O¶RSpUDWHXU URWDWLRQQHO −
→
−
−−→ −
−
→
→
→
−
→
∂
B
−
→ −
→
−
→
URW URW E = JUDG GLY E − Δ E = URW −
∂t
Solutions
−
→
/¶pTXDWLRQ GH 0D[ZHOO*DXVV QRXV GRQQH GLY E = 0
2Q SHUPXWH SDU DLOOHXUV GpULYpHV G¶HVSDFH HW GH WHPSV GDQV OH PHPEUH GH GURLWH GH
O¶pTXDWLRQ SUpFpGHQWH FH TXL QRXV SHUPHW G¶XWLOLVHU O¶pTXDWLRQ GH 0D[ZHOO$PSqUH ,O
YLHQW −
→
−
→
−
→−
→
1 ∂E
∂
μ0 γ E + 2
−Δ E = −
∂t
c ∂t
$SUqV VLPSOLILFDWLRQ RQ REWLHQW −
→
−
→
−
→−
→
1 ∂2 E
∂E
ΔE = 2
+ μ0 γ
c ∂t2
∂t
2Q UHWURXYH ELHQ FRPPH GH FRXWXPH SRXU OHV pTXDWLRQV G¶RQGH XQ WHUPH GH SURSD
JDWLRQ GpULYpH GRXEOH HQ WHPSV HW RQ REWLHQW DXVVL XQ WHUPH VLPLODLUH j FHOXL G¶XQH
pTXDWLRQ GH GLIIXVLRQ GpULYpH VLPSOH HQ WHPSV 35. Déterminer l’ équation de propagation du champ électromagnétique
213
36
Reconnaître et résoudre l’équation
d’onde
d’Alembert
3FDPOOB®USF
FU de
S©TPVESF
M©RVBUJPO EPOEF EF E"MFNCFSU
2VBOE PO OF TBJU QBT 5HFRQQDvWUH O¶pTXDWLRQ G¶RQGH GH G¶$OHPEHUW
'DQV OHV GHX[ ILFKHV SUpFpGHQWHV QRXV DYRQV UHQFRQWUp j SOXVLHXUV UHSULVHV O¶pTXDWLRQ
G¶RQGH GH G¶$OHPEHUW &HWWH GHUQLqUH SHUPHW GH OLHU OHV YDULDWLRQV WHPSRUHOOH HW VSDWLDOH
G¶XQ FKDPS VFDODLUH RX YHFWRULHO TXL FDUDFWpULVH O¶RQGH
'DQV OH FDV JpQpUDO G¶XQH SURSDJDWLRQ PXOWLGLPHQVLRQQHOOH QRQ GLVSHUVLYH O¶pTXD
WLRQ G¶RQGH GH G¶$OHPEHUW V¶pFULW ΔΦ =
1 ∂2Φ
c2 ∂t2
c HVW KRPRJqQH j XQH YLWHVVH RQ O¶DSSHOOH FpOpULWp GH O¶RQGH
6L OD SURSDJDWLRQ HVW XQLGLPHQVLRQQHOOH O¶pTXDWLRQ SUpFpGHQWH VH VLPSOLILH HQ 1 ∂2Φ
∂2Φ
=
∂x2
c2 ∂t2
6ROXWLRQV GH O¶pTXDWLRQ G¶RQGH GH G¶$OHPEHUW
2Q VH UHVWUHLQW j O¶pTXDWLRQ G¶RQGH GH G¶$OHPEHUW XQLGLPHQVLRQQHOOH WRXWH VROXWLRQ GH
FHWWH pTXDWLRQ HVW XQH RQGH SODQH F¶HVWjGLUH XQH RQGH GRQW WRXV OHV IURQWV G¶RQGH VRQW
SHUSHQGLFXODLUHV j OD GLUHFWLRQ GH SURSDJDWLRQ
,O H[LVWH WURLV W\SHV GH VROXWLRQV j O¶pTXDWLRQ G¶RQGH GH G¶$OHPEHUW XQLGLPHQVLRQQHOOH ² OHV RQGHV SODQHV SURJUHVVLYHV 233 TXL VRQW GH OD IRUPH Φ(x, t) = f (x − ct)
RX
Φ(x, t) = g(x + ct)
DYHF f HW g GHV IRQFWLRQV LPSRVpHV SDU OHV FRQGLWLRQV DX[ OLPLWHV /HV YDULDEOHV GH
WHPSV HW G¶HVSDFH VRQW DLQVL FRXSOpHV DX VHLQ G¶XQH VHXOH YDULDEOH
f (x − ct) HVW XQH RQGH SODQH TXL VH SURSDJH YHUV OHV x FURLVVDQWV VDQV DWWpQXDWLRQ
QL GpIRUPDWLRQ g(x + ct) VH SURSDJH YHUV OHV x GpFURLVVDQWV
214
Physique des ondes
² OHV RQGHV SURJUHVVLYHV KDUPRQLTXHV RX PRQRFKURPDWLTXHV 233+ RX 2330 TXL VRQW GH OD IRUPH Φ(x, t) = Φ0 FRV (ωt − kx − φ0 )
(OOHV SUpVHQWHQW XQH SpULRGH WHPSRUHOOH ω = 2π
T HW XQH SpULRGH VSDWLDOH λ = cT −
→
−
→
→
2Q GpILQLW OH YHFWHXU G¶RQGH k WHO TXH k = k −
u DYHF k = ω x
c
&HV RQGHV Q¶RQW SDV G¶H[LVWHQFH SK\VLTXH FH VRQW VLPSOHPHQW GHV RXWLOV PDWKpPD
WLTXHV XWLOHV j O¶DQDO\VH GH OD SURSDJDWLRQ GHV RQGHV SODQHV SURJUHVVLYHV HQ JpQpUDO
² OHV RQGHV VWDWLRQQDLUHV 26 TXL VRQW GH OD IRUPH Φ(x, t) = f (x)g(t)
DYHF f HW g GHV IRQFWLRQV UpHOOHV 'DQV FH FDV OHV YDULDEOHV G¶HVSDFH HW GH WHPSV
VRQW GpFRXSOpHV O¶RQGH QH VH SURSDJH SOXV
2VF GBJSF 3RXU FKRLVLU HQWUH RQGH SODQH SURJUHVVLYH HW RQGH VWDWLRQQDLUH V¶DLGHU GHV FRQGLWLRQV DX[
OLPLWHV VL OH GRPDLQH GH SURSDJDWLRQ GH O¶RQGH HVW LQILQL UHFKHUFKHU XQH VROXWLRQ VRXV
IRUPH G¶RQGH SODQH SURJUHVVLYH
VL DX FRQWUDLUH OH PLOLHX GH SURSDJDWLRQ FRPSUHQG XQH OLPLWH IL[H TXL HPSrFKH
O¶RQGH GH VH SURSDJHU UHFKHUFKHU SOXW{W XQH VROXWLRQ VRXV IRUPH G¶RQGH VWDWLRQ
QDLUH
6L O¶RQ FRQVLGqUH XQH RQGH SODQH SURJUHVVLYH KDUPRQLTXH XWLOLVHU OD QRWDWLRQ FRPSOH[H
SRXU VLPSOLILHU OHV FDOFXOV
6L O¶RQ V¶LQWpUHVVH j XQH RQGH VWDWLRQQDLUH XWLOLVHU OD PpWKRGH GH VpSDUDWLRQ GHV YDULDEOHV
SUpVHQWpH HQ GpWDLOV GDQV O¶H[HPSOH WUDLWp FLGHVVRXV $POTFJMT
/D PpWKRGH GLWH GH VpSDUDWLRQ GHV YDULDEOHV HVW WUqV XWLOLVpH LO HVW GRQF WUqV IRUWHPHQW
FRQVHLOOp GH ELHQ OD FRPSUHQGUH HW GH ELHQ OD PDvWULVHU 6D PLVH HQ °XYUH HVW GpWDLOOpH
GDQV O¶H[HPSOH WUDLWp FLGHVVRXV
,O Q¶HVW SDV GHPDQGp GH VDYRLU GpPRQWUHU OD IRUPH GHV VROXWLRQV HQ RQGH SODQH SURJUHVVLYH
GH O¶pTXDWLRQ GH G¶$OHPEHUW PDLV VHXOHPHQW G¶rWUH FDSDEOH GH YpULILHU TXH OHV IRQFWLRQV
GH OD IRUPH Φ(x, t) = f (x − ct) HW Φ(x, t) = g(x + ct) OH VRQW
,O HVW FRQVHLOOp GH ELHQ PDvWULVHU O¶XWLOLVDWLRQ GH OD QRWDWLRQ FRPSOH[H UpVHUYpH DX[ RQGHV
SODQHV SURJUHVVLYHV KDUPRQLTXHV HOOH VLPSOLILH ELHQ VRXYHQW OHV FDOFXOV
36. Reconnaître et résoudre l’ équation d’onde de d’Alembert
215
&YFNQMF USBJU©
6ROXWLRQV VWDWLRQQDLUHV GH O¶pTXDWLRQ XQLGLPHQVLRQQHOOH GH G¶$OHPEHUW
2Q FKHUFKH GDQV FHW H[HPSOH j PHWWUH HQ °XYUH OD PpWKRGH GH VpSDUDWLRQ GHV YDULDEOHV
2Q FRQVLGqUH XQH VROXWLRQ s HQ RQGH VWDWLRQQDLUH GH O¶pTXDWLRQ GH G¶$OHPEHUW j XQH GLPHQ
VLRQ GH OD IRUPH s(x, t) = f (x)g(t) 2Q FKHUFKH OD IRUPH GHV IRQFWLRQV f HW g
6XEVWLWXHU s GDQV O¶pTXDWLRQ GH G¶$OHPEHUW HW WURXYHU O¶pTXDWLRQ YpULILpH SDU f g HW
OHXUV GpULYpHV
(Q MXVWLILDQW WUqV SUpFLVpPHQW PRQWUHU TXH FHWWH pTXDWLRQ SHXW rWUH VpSDUpH HQ GHX[
pTXDWLRQV GLIIpUHQWLHOOHV GLVWLQFWHV TXH O¶RQ pFULUD 2Q LQWURGXLUD XQH FRQVWDQWH K
(Q UpDOLVDQW GHV K\SRWKqVHV VXU OH VLJQH GH OD FRQVWDQWH TXL HVW DSSDUXH GpWHUPLQHU OD
IRUPH GHV IRQFWLRQV f HW g
&RQFOXUH VXU OD IRUPH GH OD VROXWLRQ JpQpUDOH VWDWLRQQDLUH GH O¶pTXDWLRQ GH G¶$OHPEHUW
HQ LQWURGXLVDQW GHV FRQVWDQWHV MXGLFLHXVHV
40-65*0/
/¶pTXDWLRQ GH G¶$OHPEHUW j XQH GLPHQVLRQ V¶pFULW ∂ 2 s(x, t)
1 ∂ 2 s(x, t)
=
∂x2
c2 ∂t2
(Q VXEVWLWXDQW GDQV FHWWH pTXDWLRQ O¶H[SUHVVLRQ GH s RQ REWLHQW g(t)
G2 f (x)
1 G2 g(t)
=
f
(x)
Gx2
c2 Gt2
6RLW HQ UpDUUDQJHDQW OHV WHUPHV 1 G2 f (x)
1 1 G2 g(t)
=
f (x) Gx2
c2 g(t) Gt2
'DQV O¶pTXDWLRQ SUpFpGHQWH OH PHPEUH GH JDXFKH HVW XQH IRQFWLRQ GH OD VHXOH YDULDEOH
G¶HVSDFH x HW OH PHPEUH GH GURLWH HVW IRQFWLRQ GH OD VHXOH YDULDEOH GH WHPSV t &HWWH
pTXDWLRQ GHYDQW rWUH YpULILpH SRXU x HW t GDQV OHXU GRPDLQH GH GpILQLWLRQ UHVSHFWLI FHOD
HQWUDvQH TXH OHV GHX[ PHPEUHV GH O¶pTXDWLRQ VRQW pJDX[ j XQH FHUWDLQH FRQVWDQWH K 1 1 G2 g(t)
1 G2 f (x)
=
=K
f (x) Gx2
c2 g(t) Gt2
2Q SHXW GRQF VpSDUHU O¶pTXDWLRQ GLIIpUHQWLHOOH HQ GHX[ pTXDWLRQV GLVWLQFWHV G2 f (x)
− Kf (x) = 0
Gx2
216
Physique des ondes
HW
G2 g(t)
− c2 Kg(t) = 0
Gt2
2Q VXSSRVH GDQV XQ SUHPLHU WHPSV TXH OD FRQVWDQWH HVW QXOOH K 2Q REWLHQW
DORUV G2 f (x)
G2 g(t)
=
0
HW
=0
Gx2
Gt2
&HOD LPSOLTXH HQ SDUWLFXOLHU TXH g HVW XQH IRQFWLRQ GLYHUJHQWH DYHF OH WHPSV FH TXL
Q¶HVW SDV DFFHSWDEOH
2Q VXSSRVH GDQV XQ GHX[LqPH WHPSV TXH K > 0 /¶pTXDWLRQ GLIIpUHQWLHOOH YpULILpH
SDU g LPSOLTXH DORUV XQH VROXWLRQ HQ FRPELQDLVRQ OLQpDLUH G¶XQH H[SRQHQWLHOOH FURLV
VDQWH HW G¶XQH H[SRQHQWLHOOH GpFURLVVDQWH −t
t
1
τ
τ
DYHF τ =
g(t) = AH + BH
Kc2
2U O¶RQGH QH SHXW SDV DYRLU XQH DPSOLWXGH TXL GLYHUJH DYHF OH WHPSV HW O¶pTXDWLRQ
GH G¶$OHPEHUW QH SUHQG SDV HQ FRPSWH OHV SKpQRPqQHV TXL GLVVLSHQW O¶pQHUJLH GX
V\VWqPH 'RQF QL O¶H[SRQHQWLHOOH FURLVVDQWH QL O¶H[SRQHQWLHOOH GpFURLVVDQWH QH VRQW
GHV VROXWLRQV TXL FRQYLHQQHQW
2Q VXSSRVH HQILQ TXH K < 0 2Q REWLHQW DORUV O¶pTXDWLRQ GLIIpUHQWLHOOH G¶XQ RVFLOOD
WHXU KDUPRQLTXH QRQ DPRUWL SRXU g G2 g(t)
+ ω 2 g(t) = 0
Gt2
DYHF ω 2 = −Kc2 > 0
'RQF g HVW GRQF GH OD IRUPH g(t) = A FRV(ωt + φ0 )
/D IRQFWLRQ f YpULILH TXDQG j HOOH O¶pTXDWLRQ G2 f (x)
+ k 2 f (x, t) = 0
Gx2
DYHF k 2 =
ω2
c2
/D IRQFWLRQ f HVW GRQF GH OD IRUPH f (x) = B FRV(kx + φ1 )
&H VRQW OHV GHX[ VHXOHV VROXWLRQV TXL RQW XQ VHQV SK\VLTXH
2Q HQ GpGXLW GRQF TXH OHV VROXWLRQV j O¶pTXDWLRQ GH G¶$OHPEHUW VRQW OHV IRQFWLRQV s GH
OD IRUPH s(x, t) = A FRV(ωt + φ0 ) FRV(kx + φ1 )
&YFSDJDFT
&9&3$*$& )RUPH JpQpUDOH GHV VROXWLRQV HQ RQGHV SODQHV SURJUHVVLYHV
9pULILHU TXH OHV IRQFWLRQV GH OD IRUPH f (x − ct) HW g(x + ct) VRQW VROXWLRQ GH O¶pTXDWLRQ
XQLGLPHQVLRQQHOOH GH G¶$OHPEHUW
36. Reconnaître et résoudre l’ équation d’onde de d’Alembert
217
1PVS WPVT BJEFS
&9&3$*$& E©NBSSFS
,O IDXW XWLOLVHU OHV IRUPXOHV GH GpULYDWLRQ SRXU OHV IRQFWLRQV FRPSRVpHV
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& &RQVLGpURQV f (x − ct) 2Q QRWH p = x − ct (Q XWLOLVDQW OD IRUPXOH GH OD GpULYpH G¶XQH
IRQFWLRQ FRPSRVpH RQ D Gf (p) ∂p
Gf (p)
∂f (p)
=
=1×
∂x
Gp ∂x
Gp
SXLV
∂ 2 f (p)
∂ Gf (p)
G ∂f (p)
G Gf (p)
G2 f (p)
∂ ∂f (p)
=
=
=
=
=
∂x2
∂x ∂x
∂x Gp
Gp ∂x
Gp Gp
Gp2
3XLV HQ GpULYDQW SDU UDSSRUW j t ∂f (p)
Gf (p) ∂p
Gf (p)
=
= (−c)
∂t
Gp ∂t
Gp
SXLV
G2 f (p)
∂ 2 f (p)
∂
Gf (p)
G ∂f (p)
G
Gf (p)
∂ ∂f (p)
= (−c)
= −c
= −c (−c)
= c2
=
2
∂t
∂t ∂t
∂t
Gp
Gp ∂t
Gp
Gp
Gp2
'¶R O¶RQ SHXW DLVpPHQW GpGXLUH TXH ∂ 2 f (p)
1 ∂ 2 f (p)
=
∂x2
c2 ∂t2
/H VRLQ HVW ODLVVp DX OHFWHXU GH YpULILHU VXU OH PrPH SULQFLSH TXH OD IRQFWLRQ g(c + xt)
HVW DXVVL VROXWLRQ GH O¶pTXDWLRQ GH G¶$OHPEHUW j XQH GLPHQVLRQ
218
Physique des ondes
Utiliser la notation complexe
6UJMJTFS MB OPUBUJPO DPNQMFYF
pourdéterminer la relation de structure
QPVS E©UFSNJOFS
MB SFMBUJPO EF TUSVDUVSF
37
2VBOE PO OF TBJU QBT /HV pTXDWLRQV G¶RQGH VRQW GH PDQLqUH JpQpUDOH OLQpDLUHV 2Q YD GRQF GDQV FH FKDSLWUH
LQWURGXLUH O¶XWLOLVDWLRQ GH OD QRWDWLRQ FRPSOH[H TXL HVW XQ H[FHOOHQW RXWLO GH FDOFXO SRXU
O¶pWXGH GHV VROXWLRQV KDUPRQLTXHV GHV SKpQRPqQHV OLQpDLUHV
−
→
6RLW ψ XQ FKDPS VFDODLUH HW A XQ FKDPS YHFWRULHO 6L RQ VXSSRVH TXH OHV GHX[ FKDPSV
VRQW GHV VROXWLRQV SODQHV SURJUHVVLYHV KDUPRQLTXHV G¶XQH pTXDWLRQ G¶RQGH RQ SHXW DORUV
OHV pFULUH VRXV OD IRUPH −
→→
→
r − φ) FKDPS VFDODLUH
ψ(−
r , t) = ψ0 FRV(ωt − k .−
−
→−
−
→
−
→−
→
r − φ) FKDPS YHFWRULHO
A ( r , t) = A FRV(ωt − k .→
0
(Q QRWDWLRQ FRPSOH[H FHV FKDPSV GHYLHQQHQW →−
−
→
→
r , t) = ψ 0 ej(ωt− k . r )
ψ(−
→−
−
→
−
→−
−
→
A (→
r , t) = A 0 ej(ωt− k . r )
DYHF ψ 0 = ψ0 e−jφ
−
→
−
→
DYHF A 0 = A e−jφ
/HV RSpUDWHXUV GLIIpUHQWLHOV JUDGLHQW GLYHUJHQFH URWDWLRQQHO ODSODFLHQ VFDODLUH HW ODSOD
FLHQ YHFWRULHO DLQVL TXH OD GpULYDWLRQ WHPSRUHOOH GHYLHQQHQW GDQV FHV FRQGLWLRQV −−→
−
→
JUDG ψ = −j k ψ
Δψ = −k 2 ψ
−
→−
−
→
→
GLY A = −j k . A
−
→−
→
−
→
Δ A = −k 2 A
−
→ −
→
→
−
→−
URW A = −j k ∧ A
∂ψ
= jωψ
∂t
/D UHODWLRQ GH VWUXFWXUH DVVRFLpH j XQH RQGH pOHFWURPDJQpWLTXH HVW XQH UHODWLRQ YHF
−
→
−
→
WRULHOOH TXL UHOLH OHV FKDPSV pOHFWULTXH E HW PDJQpWLTXH B DLQVL TXH OH YHFWHXU G¶RQGH
−
→
k (OOH SHUPHW GH FDUDFWpULVHU OH FDUDFWqUH WUDQVYHUVH G¶XQH RQGH pOHFWURPDJQpWLTXH VH
SURSDJHDQW GDQV OH YLGH VDQV FKDUJH QL FRXUDQW OHV YDULDWLRQV GHV FKDPSV pOHFWULTXH HW
PDJQpWLTXH RQW OLHX GDQV XQ SODQ SHUSHQGLFXODLUH j OD GLUHFWLRQ GH SURSDJDWLRQ GH O¶RQGH
−
→
SRUWpH SDU OH YHFWHXU G¶RQGH k 37. Utiliser la notation complexe pour déterminer la relation de structure
219
2VF GBJSF 3RXU GpWHUPLQHU OD UHODWLRQ GH VWUXFWXUH UppFULUH OHV pTXDWLRQV GH 0D[ZHOO GDQV OH YLGH KRUV FKDUJHV HW FRXUDQWV VRXV OD
IRUPH −
→−
−
→−
→
→
−j k . B = 0
−j k . E = 0
−
→ −
−
→ −
−
→
→
→
→
1 −
−j k ∧ B = 2 jω E
−j k ∧ E = −jω B
c
VLPSOLILHU OHV pTXDWLRQV REWHQXHV −
→−
→
k .E = 0
−
→ −
→
−
→
k ∧ E = ωB
−
→−
→
k .B = 0
−
→ −
→ −ω −
→
k ∧B = 2 E
c
−
→
UppFULUH OHV pTXDWLRQV GDQV OH GRPDLQH UpHO FH TXL HVW SRVVLEOH FDU k HVW UpHO LFL
GpGXLUH DORUV GHV GHX[ SUHPLqUHV pTXDWLRQV TXH OH FKDPS pOHFWURPDJQpWLTXH HVW
−
→−
−
→−
→
→
WUDQVYHUVH k . E = 0 HW k . B = 0
pWDEOLU HQILQ OD UHODWLRQ GH VWUXFWXUH j SDUWLU GH O¶pTXDWLRQ GH 0D[ZHOO)DUDGD\
→ −
−
→
→
1−
B = k ∧E
ω
$POTFJMT
/HV H[SUHVVLRQV FRPSOH[HV GHV pTXDWLRQV GH 0D[ZHOO QH GRLYHQW SDV rWUH DSSULVHV SDU
F°XU FDU HOOHV GpSHQGHQW GH OD FRQYHQWLRQ GH SKDVH XWLOLVpH ,O IDXW FHSHQGDQW rWUH FDSDEOH
GH OHV UHWURXYHU UDSLGHPHQW
&YFNQMF USBJU©
&RQYHQWLRQ GH SKDVH LQYHUVH
'DQV FHW H[HUFLFH RQ XWLOLVH OD FRQYHQWLRQ GLWH GH SKDVH LQYHUVH RQ VXSSRVH j SUpVHQW TXH
OHV VROXWLRQV j O¶pTXDWLRQ G¶RQGH XQLGLPHQVLRQQHOOH GH W\SH SODQH SURJUHVVLYH KDUPRQLTXH
V¶pFULYHQW ψ(x, t) = ψ 0 ej(kx−ωt) 220
4XH GHYLHQQHQW OHV H[SUHVVLRQV HQ QRWDWLRQ FRPSOH[H GHV RSpUDWHXUV GLIIpUHQWLHOV GLY
−
→
−
→ −−→
URW JUDG Δ HW Δ "
4XHOOHV VRQW OHV QRXYHOOHV H[SUHVVLRQV GHV GpULYpHV WHPSRUHOOHV G¶RUGUH HW HQ QRWD
WLRQ FRPSOH[H "
Physique des ondes
5ppFULUH DORUV OHV pTXDWLRQV GH 0D[ZHOO DYHF FHWWH FRQYHQWLRQ
5HWURXYHU OD UHODWLRQ GH VWUXFWXUH GHV RQGHV pOHFWURPDJQpWLTXHV GDQV FHWWH FRQYHQWLRQ
GH SKDVH GDQV OH YLGH VDQV FKDUJH QL FRXUDQW &RPPHQWHU OH UpVXOWDW REWHQX
40-65*0/
−
→
6RLW A (x, t) XQ FKDPS YHFWRULHO TXHOFRQTXH HQ QRWDWLRQ FRPSOH[H HW ψ(x, t) XQ FKDPS
VFDODLUH /HV RSpUDWHXUV GLIIpUHQWLHOV V¶pFULYHQW DORUV −
→−
→
−
→
GLY A = +j k . A
−
→ −
→
→
−
→−
URW A = +j k ∧ A
−
→−
→
−
→
Δ A = −k 2 A
Δψ = −k 2 ψ
/HV GpULYpHV WHPSRUHOOHV HQ QRWDWLRQ FRPSOH[H GHYLHQQHQW TXDQW j HOOHV ∂ψ
= −jωψ
∂t
HW
∂2ψ
= +jω 2 ψ
∂t2
$YHF OD FRQYHQWLRQ GH SKDVH LQYHUVH OHV pTXDWLRQV GH 0D[ZHOO GDQV OH YLGH GHYLHQQHQW −
→−
→
ρ
j k .E =
ε0
−
→ −
→
−
→
j k ∧ E = +jω B
−−→
−
→
JUDG ψ = +j k ψ
−
→−
→
j k .B = 0
−
→ −
→
−
→
−
→
j k ∧ B = −μ0 ε0 jω E + μ0 j
eFULUH OHV pTXDWLRQV GH 0D[ZHOO GDQV OH YLGH QH VLJQLILH SDV TX¶LO Q¶\ D QL FKDUJH QL
FRXUDQW PDLV TXH OD SHUPpDELOLWp PDJQpWLTXH HW OD SHUPLWWLYLWp GLpOHFWULTXH GX PLOLHX
VRQW FHOOHV GX YLGH μ0 HW ε0 UHVSHFWLYHPHQW (Q VLPSOLILDQW OD QRXYHOOH pFULWXUH FRPSOH[H GH O¶pTXDWLRQ GH 0D[ZHOO)DUDGD\ RQ RE
WLHQW → −
−
→
→
1−
B = k ∧E
ω
/D UHODWLRQ GH VWUXFWXUH GHV RQGHV pOHFWURPDJQpWLTXHV FRQVHUYH OD PrPH H[SUHVVLRQ
VRXV FHWWH FRQYHQWLRQ GH SKDVH FH TXL HVW UDVVXUDQW LO Q¶\ D SDV GH UDLVRQ TXH OH SKp
QRPqQH SK\VLTXH VRLW PRGLILp SDU OD FRQYHQWLRQ XWLOLVpH &YFSDJDFT
9HFWHXU G¶RQGH FRPSOH[H
2Q V¶LQWpUHVVH GDQV FHW H[HPSOH DX FDV R O¶RQGH pOHFWURPDJQpWLTXH QH VH SURSDJH SOXV
GDQV OH YLGH PDLV GDQV XQ PLOLHX PDWpULHO OLQpDLUH KRPRJqQH HW LVRWURSH &H PLOLHX HVW SDU
DLOOHXUV VXSSRVp GLpOHFWULTXH GH SHUPLWWLYLWp ε HW QRQ PDJQpWLTXH /H YHFWHXU G¶RQGH HVW
DORUV FRPSOH[H HW V¶pFULW k = kr + jki R kr HW ki VRQW UHVSHFWLYHPHQW OHV SDUWLHV UpHOOH HW
LPDJLQDLUH GH k
&9&3$*$& 37. Utiliser la notation complexe pour déterminer la relation de structure
221
5DSSHOHU OD GpILQLWLRQ G¶XQ PLOLHX KRPRJqQH HW G¶XQ PLOLHX LVRWURSH
eFULUH OHV pTXDWLRQV GH 0D[ZHOO DYHF OHV RSpUDWHXUV YHFWRULHOV SRXU FH PLOLHX
2Q VXSSRVH TX¶LO Q¶\ D QL FKDUJH QL FRXUDQW GDQV OH PLOLHX FRQVLGpUp 5ppFULUH OHV pTXD
WLRQV GH 0D[ZHOO HQ QRWDWLRQ FRPSOH[H
/H FKDPS pOHFWURPDJQpWLTXH HVWLO WUDQVYHUVH "
4XHOOH HVW OD UHODWLRQ GH VWUXFWXUH GX FKDPS pOHFWURPDJQpWLTXH SRXU FH PLOLHX "
1PVS WPVT BJEFS
&9&3$*$& E©NBSSFS
/¶RUWKRJRQDOLWp HQWUH OHV FKDPSV pOHFWULTXH HW PDJQpWLTXH G¶XQH SDUW HW
OH YHFWHXU G¶RQGH G¶DXWUH SDUW SHXW VH FDUDFWpULVHU j O¶DLGH G¶XQ SURGXLW
VFDODLUH QXO SDU H[HPSOH
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& 8Q PLOLHX KRPRJqQH HVW XQ PLOLHX GDQV OHTXHO OHV SURSULpWpV QH GpSHQGHQW SDV GX SRLQW
FRQVLGpUp
8Q PLOLHX HVW GLW LVRWURSH VL VHV SURSULpWpV QH GpSHQGHQW SDV GH OD GLUHFWLRQ FRQVLGpUpH
6HXOHV OHV pTXDWLRQV GH 0D[ZHOO*DXVV HW GH 0D[ZHOO$PSqUH VRQW PRGLILpHV FDU OD
SHUPLWWLYLWp GLpOHFWULTXH GX PLOLHX GHYLHQW ε 2Q REWLHQW −
→
GLY B = 0
−
→ ρ
GLY E =
ε
−
→
→
∂B
−
→−
URW E = −
∂t
→
−
→−
URW B = μ0
−
→
∂E
−
→
j +ε
∂t
−
→ −
→
/H PLOLHX HVW YLGH GH FKDUJH ρ = 0 HW GH FRXUDQW j = 0 /HV pTXDWLRQV GH 0D[
ZHOO VH UppFULYHQW GRQF −
→−
−
→−
→
→
− j k .E = 0
− j k .B = 0
−
→ −
−
→ −
→
−
→
→
−
→
− j k ∧ B = μ0 εjω E
− j k ∧ E = −jω B
$SUqV VLPSOLILFDWLRQ OHV pTXDWLRQV GH 0D[ZHOO*DXVV HW GH 0D[ZHOO)OX[ GHYLHQQHQW −
→−
→
k .E = 0
HW
−
→−
→
k .B = 0
&HV pTXDWLRQV QRXV SHUPHWWHQW GH FRQFOXUH TXH OH FKDPS pOHFWURPDJQpWLTXH HVW WUDQV
−
→
−
→
YHUVH OHV YDULDWLRQV GH E HW GH B RQW OLHX GDQV XQ SODQ SHUSHQGLFXODLUH j OD GLUHFWLRQ
GH SURSDJDWLRQ
222
Physique des ondes
−
→−
→
− j k .E = 0
−
→ −
→
−
→
− j k ∧ E = −jω B
−
→−
→
− j k .B = 0
−
→ −
→
−
→
− j k ∧ B = μ0 εjω E
$SUqV VLPSOLILFDWLRQ OHV pTXDWLRQV GH 0D[ZHOO*DXVV HW GH 0D[ZHOO)OX[ GHYLHQQHQW −
→−
→
k .E = 0
HW
−
→−
→
k .B = 0
&HV pTXDWLRQV QRXV SHUPHWWHQW GH FRQFOXUH TXH OH FKDPS pOHFWURPDJQpWLTXH HVW WUDQV
−
→
−
→
YHUVH OHV YDULDWLRQV GH E HW GH B RQW OLHX GDQV XQ SODQ SHUSHQGLFXODLUH j OD GLUHFWLRQ
GH SURSDJDWLRQ
3RXU FH PLOLHX RQ SHXW H[WUDLUH OD QRXYHOOH UHODWLRQ GH VWUXFWXUH GH O¶pTXDWLRQ GH 0D[ZHOO
)DUDGD\ → −
→
−
→
1−
B = k ∧E
ω
−
→ −
→
$WWHQWLRQ FHSHQGDQW k HW E pWDQW FRPSOH[HV RQ QH SHXW SDV pFULUH OD UHODWLRQ GH
VWUXFWXUH SRXU OHV FKDPSV UpHOV
Solutions
37. Utiliser la notation complexe pour déterminer la relation de structure
223
38
Déterminer le champ magnétique
%©UFSNJOFS
onde àNBHO©UJRVF
partir du champ
d’une
MF DIBNQ
EVOF électrique
POEF
QBSUJS EV DIBNQ ©MFDUSJRVF
2VBOE PO OF TBJU QBT %LHQ VRXYHQW GDQV O¶pWXGH GHV RQGHV pOHFWURPDJQpWLTXHV RQ WUDYDLOOH GDQV XQ SUHPLHU
−
→
WHPSV VXU O¶H[SUHVVLRQ GX FKDPS pOHFWULTXH E GX IDLW QRWDPPHQW GH OD GpILQLWLRQ GH OD
SRODULVDWLRQ G¶XQH RQGH 2Q FKHUFKH GDQV XQ VHFRQG WHPSV j GpWHUPLQHU O¶H[SUHVVLRQ GX
−
→
FKDPS PDJQpWLTXH B j SDUWLU GH O¶H[SUHVVLRQ REWHQXH SRXU OH FKDPS pOHFWULTXH
−
→
'DQV OH FDV JpQpUDO OD UHODWLRQ OD SOXV VLPSOH HQWUH OHV FKDPSV pOHFWULTXH E HW PDJQpWLTXH
−
→
B DVVRFLpV j XQH RQGH pOHFWURPDJQpWLTXH HVW OD UHODWLRQ GH 0D[ZHOO)DUDGD\ −
→
→
∂B
−
→−
URW E = −
∂t
2Q UDSSHOOH GH SOXV OD UHODWLRQ GH VWUXFWXUH GHV RQGHV pOHFWURPDJQpWLTXHV YDODEOH XQL
TXHPHQW SRXU OHV RQGHV pOHFWURPDJQpWLTXHV SODQHV HW SURJUHVVLYHV −
→ −
→
−
→
k ∧E
B =
ω
2VF GBJSF 3RXU pWDEOLU O¶H[SUHVVLRQ GX FKDPS PDJQpWLTXH j SDUWLU GX FKDPS pOHFWULTXH VL O¶RQGH pOHFWURPDJQpWLTXH pWXGLpH HVW SODQH HW SURJUHVVLYH XWLOLVHU OD UHODWLRQ GH
VWUXFWXUH GHV RQGHV pOHFWURPDJQpWLTXHV
VLQRQ XWLOLVHU O¶pTXDWLRQ GH 0D[ZHOO)DUDGD\ HQ QpJOLJHDQW OHV FKDPSV FRQVWDQWV
FDU RQ V¶LQWpUHVVH j XQH RQGH F¶HVWjGLUH j XQ SKpQRPqQH GpSHQGDQW GX WHPSV
$POTFJMT
0rPH VL OHV FDOFXOV VRQW SOXV FRPSOLTXpV DYHF O¶pTXDWLRQ GH 0D[ZHOO)DUDGD\ LO HVW IDX[
G¶XWLOLVHU OD UHODWLRQ GH VWUXFWXUH SRXU XQH RQGH TXL Q¶HVW SDV SODQH HW SURJUHVVLYH
224
Physique des ondes
&YFNQMF USBJU©
&KDPS pOHFWURPDJQpWLTXH GDQV OH YLGH
2Q FRQVLGqUH GDQV FHW H[HPSOH XQH RQGH SODQH SURJUHVVLYH VH GpSODoDQW GDQV OH YLGH VDQV
→
FKDUJH QL FRXUDQW VXLYDQW OHV x FURLVVDQWV SRODULVpH UHFWLOLJQHPHQW VHORQ −
u y
'RQQHU O¶H[SUHVVLRQ GX FKDPS pOHFWULTXH DVVRFLp j FHWWH RQGH
(Q MXVWLILDQW O¶XWLOLVDWLRQ GH OD UHODWLRQ GH VWUXFWXUH GpWHUPLQHU O¶H[SUHVVLRQ GX FKDPS
PDJQpWLTXH
9pULILHU OH UpVXOWDW REWHQX HQ XWLOLVDQW O¶pTXDWLRQ GH 0D[ZHOO)DUDGD\
40-65*0/
/¶RQGH FRQVLGpUpH pWDQW SODQH SURJUHVVLYH OH FKDPS pOHFWULTXH HVW WUDQVYHUVH $YHF
O¶K\SRWKqVH GH O¶pQRQFp VXU OD SRODULVDWLRQ O¶H[SUHVVLRQ GX FKDPS pOHFWULTXH HVW ⎛
⎞
−
→ ⎝ Ex (x, t) = 0
Ey (x, t) = E0 FRV(ωt − kx) ⎠
E =
Ez (x, t) = 0
/¶RQGH pWXGLpH pWDQW SODQH HW SURJUHVVLYH HOOH YpULILH OD UHODWLRQ GH VWUXFWXUH GHV RQGHV
pOHFWURPDJQpWLTXHV GDQV OH YLGH &HOD GRQQH HQ XWLOLVDQW ω = kc ⎞
⎛
⎞ ⎛
⎞ ⎛
k
−
→ −
→
0
0
ω
−
→
k ∧E
⎠
0
= ⎝ 0 ⎠ ∧ ⎝ E0 FRV(ωt − kx) ⎠ = ⎝
B =
ω
E0
0
FRV(ωt − kx)
0
c
/¶pTXDWLRQ GH 0D[ZHOO)DUDGD\ V¶pFULW HQ FRRUGRQQpHV FDUWpVLHQQHV ⎛
→
−
→−
URW E = ⎝
−
∂Ey (x,t)
∂z
0
∂Ey (x,t)
∂x
⎛
⎞
−
→
− ∂Bx∂t(x,t)
⎟
⎠ = −∂ B = ⎜
⎝ − ∂By∂t(x,t) ⎠
∂t
− ∂Bz∂t(x,t)
⎞
/¶RQGH pWDQW WUDQVYHUVH RQ VDLW TXH Bx (x, t) = 0
2Q QpJOLJH GH SOXV OHV FKDPSV FRQVWDQWV FDU RQ V¶LQWpUHVVH j OD SURSDJDWLRQ G¶XQH RQGH −
∂By (x, t)
= 0 ⇒ By (x, t) = 0
∂t
−
→
,O UHVWH DLQVL j UpVRXGUH O¶pTXDWLRQ GLIIpUHQWLHOOH VXU OD FRRUGRQQpH z GH B ∂Ey (x, t)
∂Bz (x, t)
=−
∂x
∂t
38. Déterminer le champ magnétique d’une onde à partir du champ électrique
225
/H FDOFXO FRQGXLW j − ∂Bz∂t(x,t) = kE0 VLQ(ωt − kx) (Q LQWpJUDQW SDU UDSSRUW DX WHPSV
LO YLHQW OD FRQVWDQWH G¶LQWpJUDWLRQ HVW FRQVLGpUpH QXOOH XQH IRLV GH SOXV k
Bz (x, t) = + E0 FRV(ωt − kx)
ω
−
→
(Q UpVXPp OH FKDPS PDJQpWLTXH B DVVRFLp j O¶RQGH pWXGLpH V¶pFULW ⎛
⎞
Bx (x, t) = 0
−
→ ⎝
⎠
By (x, t) = 0
B =
E0
Bz (x, t) = c FRV(ωt − kx)
2Q UHWURXYH ELHQ O¶H[SUHVVLRQ GX FKDPS PDJQpWLTXH pWDEOLH j OD TXHVWLRQ SUpFpGHQWH
&YFSDJDFT
&9&3$*$& 2QGH JXLGpH HW FKDPS PDJQpWLTXH
'DQV FHW H[HUFLFH RQ V¶LQWpUHVVH j OD SURSDJDWLRQ G¶XQH RQGH pOHFWURPDJQpWLTXH GDQV XQ
JXLGH G¶RQGH /H JXLGH G¶RQGH VH FRPSRVH GH GHX[ FRQGXFWHXUV SDUIDLWV SODQV HW LQILQLV GH
→
QRUPDOH −
u z VLWXpV UHVSHFWLYHPHQW HQ z = 0 HW z = e /¶RQGH pOHFWURPDJQpWLTXH pWXGLpH VH
SURSDJH HQWUH FHV GHX[ SODQV GDQV OH YLGH
−
→
2Q GRQQH O¶H[SUHVVLRQ GX FKDPS pOHFWULTXH E DVVRFLp j FHWWH RQGH � πz �
−
→
→
E = E0 VLQ
FRV(ωt − kx)−
uy
e
−
→
'RQQHU OH YHFWHXU G¶RQGH k DVVRFLp j FHWWH RQGH
−
→
&DOFXOHU O¶H[SUHVVLRQ GX FKDPS PDJQpWLTXH B DVVRFLp j FHWWH RQGH
226
Physique des ondes
1PVS WPVT BJEFS
&9&3$*$& E©NBSSFS
/¶RQGH GRQQpH SDU O¶pQRQFp HVWHOOH SODQH HW SURJUHVVLYH "
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& '¶DSUqV O¶H[SUHVVLRQ GX FKDPS pOHFWULTXH SURSRVp OH YHFWHXU G¶RQGH DVVRFLp j FHWWH
−
→
→
RQGH HVW k = k −
u x
&RQVLGpURQV O¶RQGH j XQ LQVWDQW t TXHOFRQTXH IL[p HW SODoRQVQRXV GDQV XQ SODQ G¶RQGH
� �→
−
→
−
→
u j x IL[p /¶H[SUHVVLRQ GX FKDPS E HVW DORUV E = E � VLQ πz −
0
e
y
/H FKDPS pOHFWULTXH Q¶HVW SDV XQLIRUPH VXU XQ SODQ G¶RQGH GRQF O¶RQGH Q¶HVW SDV SODQH
2Q QH SHXW GRQF SDV XWLOLVHU OD UHODWLRQ GH VWUXFWXUH GHV RQGHV pOHFWURPDJQpWLTXHV Up
VHUYpH DX[ RQGHV SODQHV HW SURJUHVVLYHV
� −
→�
−
−
→→
5pDOLVRQV GRQF OH FDOFXO DYHF O¶pTXDWLRQ GH 0D[ZHOO)DUDGD\ URW E = − ∂∂tB ⎛ ∂Ey (x,z,t) ⎞ ⎛ ∂Bx (x,z,t) ⎞
−
− ∂z
∂t
(x,z,t) ⎟
⎠=⎜
⎝
0
⎠
⎝ − ∂By ∂t
∂Ey (x,z,t)
∂Bz (x,z,t)
−
∂x
∂t
Solutions
3RXU OD FRRUGRQQpH x RQ D � πz �
π
∂Bx (x, z, t)
= −E0 FRV
FRV(ωt − kx)
∂t
e
e
2Q LQWqJUH HQVXLWH SDU UDSSRUW DX WHPSV HW RQ QpJOLJH FRPPH KDELWXHOOHPHQW OHV FKDPSV
FRQVWDQWV RQ VRXKDLWH HQ HIIHW pWXGLHU XQH RQGH ,O YLHQW � πz �
π
FRV
VLQ(ωt − kx)
Bx (x, z, t) = E0
eω
e
3RXU OD FRRUGRQQpH z RQ SURFqGH GH OD PrPH PDQLqUH FH TXL FRQGXLW j � πz �
E0
VLQ
FRV(ωt − kx)
Bz (x, z, t) =
c
e
−
→
(Q UpVXPp OH FKDPS PDJQpWLTXH B DVVRFLp j FHWWH RQGH JXLGpH V¶pFULW ⎛
⎞
� �
π
B (x, z, t) = E0 eω
FRV πz
e VLQ(ωt − kx)
−
→ ⎝ x
⎠
By (x, z, t) = 0
B =
� πz �
E0
Bz (x, z, t) = c VLQ e FRV(ωt − kx)
−
2Q SHXW UHPDUTXHU TXH O¶RQGH JXLGpH Q¶HVW SDV WUDQVYHUVH FDU Bx (x, z, t) �= 0 &¶HVW XQ
UpVXOWDW WUqV JpQpUDO SRXU OHV RQGHV JXLGpHV 2Q VH UDSSHOOHUD DLQVL GH QH MDPDLV XWLOLVHU
OD UHODWLRQ GH VWUXFWXUH SRXU OHV RQGHV JXLGpHV
38. Déterminer le champ magnétique d’une onde à partir du champ électrique
227
39
Reconnaître une onde
3FDPOOB®USF
électromagnétique polarisée
VOF POEF ©MFDUSPNBHO©UJRVF
rectilignement
QPMBSJT©F SFDUJMJHOFNFOU
2VBOE PO OF TBJU QBT /¶pWXGH GH OD SRODULVDWLRQ G¶XQH RQGH pOHFWURPDJQpWLTXH FRQVLVWH j GpFULUH O¶pYROXWLRQ
−
→
GH OD SRVLWLRQ GH O¶H[WUpPLWp GX FKDPS pOHFWULTXH E GDQV XQ SODQ G¶RQGH DX FRXUV GH
OD SURSDJDWLRQ GH O¶RQGH pOHFWURPDJQpWLTXH /D GLUHFWLRQ HW OH VHQV G¶REVHUYDWLRQ VRQW
FRQYHQWLRQQHOOHPHQW IL[pV VHORQ XQ YHFWHXU RSSRVp DX YHFWHXU G¶RQGH FHOD UHYLHQW j
REVHUYHU O¶RQGH FRPPH VL HOOH DUULYDLW GDQV O¶°LO GH O¶REVHUYDWHXU HQ LQFLGHQFH QRUPDOH
3RXU IL[HU OHV LGpHV FRQVLGpURQV XQH RQGH pOHFWURPDJQpWLTXH SODQH SURJUHVVLYH PRQR
FKURPDWLTXH VH SURSDJHDQW VHORQ OHV x FURLVVDQWV /¶RQGH pWDQW WUDQVYHUVH OH FKDPS pOHF
WULTXH SHXW V¶pFULUH HQ FRRUGRQQpHV FDUWpVLHQQHV ⎞
⎛
−
→ ⎝ Ex = 0
Ey = Ey0 FRV(ωt − kx − φy ) ⎠
E =
Ez = Ez0 FRV(ωt − kx − φz )
'DQV OH FDV JpQpUDO O¶H[WUpPLWp GX FKDPS pOHFWULTXH GpFULW XQH HOOLSVH HW RQ SDUOH GH
SRODULVDWLRQ HOOLSWLTXH
2Q QRWH φ = φz − φy 'DQV OH FDV SDUWLFXOLHU R φ = 0 RX φ = π FHWWH HOOLSVH GpJpQqUH
HQ XQ VLPSOH VHJPHQW OHV GHX[ FRPSRVDQWHV QRQ QXOOHV GX FKDPS pOHFWULTXH VRQW DORUV
HQ SKDVH &HWWH VLWXDWLRQ HVW DSSHOpH SRODULVDWLRQ UHFWLOLJQH
2VF GBJSF 3RXU pWXGLHU OD SRODULVDWLRQ G¶XQH RQGH pOHFWURPDJQpWLTXH VH SODFHU GDQV XQ SODQ G¶RQGH HQ IL[DQW x j ]pUR SDU H[HPSOH
−
→
UppFULUH OH FKDPS pOHFWULTXH E HQ SRVDQW φ = φz − φy ⎛
⎞
−
→ ⎝ Ex = 0
⎠
Ey = Ey0 FRV(ωt)
E =
Ez = Ez0 FRV(ωt − φ)
228
Physique des ondes
VL φ = 0 RX φ = π FRQFOXUH TXH OD SRODULVDWLRQ HVW UHFWLOLJQH
VLQRQ OD SRODULVDWLRQ GH O¶RQGH pOHFWURPDJQpWLTXH HVW HOOLSWLTXH
$POTFJMT
,O HVW GpFRQVHLOOp GH PpPRULVHU OHV YDOHXUV GH φ TXL FRQGXLVHQW j XQH SRODULVDWLRQ UHFWL
OLJQH PDLV SUpIpUDEOH GH UHSURGXLUH OH UDLVRQQHPHQW j FKDTXH IRLV
&YFNQMF USBJU©
3RODULVDWLRQ UHFWLOLJQH G¶XQH RQGH SODQH SURJUHVVLYH
&RQVLGpURQV GDQV FHW H[HUFLFH XQH RQGH pOHFWURPDJQpWLTXH SODQH SURJUHVVLYH PRQRFKURPD
WLTXH VH SURSDJHDQW GDQV OH YLGH YHUV OHV z FURLVVDQWV
−
→
'RQQHU HQ MXVWLILDQW O¶H[SUHVVLRQ OD SOXV JpQpUDOH GX FKDPS pOHFWULTXH E DWWDFKp j
FHWWH RQGH
2Q VXSSRVH TXH FHWWH RQGH HVW SRODULVpH UHFWLOLJQHPHQW eWDEOLU DORUV O¶H[SUHVVLRQ GX
FKDPS pOHFWULTXH DVVRFLp j FHWWH RQGH
40-65*0/
/¶RQGH pOHFWURPDJQpWLTXH SODQH SURJUHVVLYH HW PRQRFKURPDWLTXH TXL VH GpSODFH GDQV
−
→
OH YLGH HVW WUDQVYHUVH /¶H[SUHVVLRQ OD SOXV JpQpUDOH GX FKDPS pOHFWULTXH E HVW GRQF ⎛
⎞
−
→ ⎝ Ex (z, t) = Ex0 FRV(ωt − kz − φx ) ⎠
Ey (z, t) = Ey0 FRV(ωt − kz − φy )
E =
Ez (z, t) = 0
'DQV OH FDV JpQpUDO O¶H[WUpPLWp GX FKDPS pOHFWULTXH GpFULW XQH HOOLSVH GDQV OH SODQ
G¶RQGH 6L OD SRODULVDWLRQ HVW UHFWLOLJQH DORUV FHWWH HOOLSVH GpJpQqUH HQ XQ VHJPHQW GH
−
→
GURLWH FH TXL VLJQLILH TXH OHV GHX[ FRPSRVDQWHV WUDQVYHUVHV GX FKDPS pOHFWULTXH E VRQW
HQ SKDVH RX HQ RSSRVLWLRQ GH SKDVH (Q SUHQDQW O¶RULJLQH GHV SKDVHV VXU OD FRPSRVDQWH
VXLYDQW x LH HQ SRVDQW φx = 0 OH FKDPS pOHFWULTXH V¶pFULW DORUV ⎛
⎞
−
→ ⎝ Ex (z, t) = Ex0 FRV(ωt − kz) ⎠
Ey (z, t) = εEy0 FRV(ωt − kz)
E =
DYHF ε = ±1
Ez (z, t) = 0
(Q SUHQDQW ε = +1 OHV GHX[ FKDPSV VRQW HQ SKDVH F¶HVWjGLUH φ = φy − φx = 0 VLQRQ LOV VRQW HQ RSSRVLWLRQ GH SKDVH φ = π /HV ILJXUHV DVVRFLpHV GDQV OH SODQ G¶RQGH VRQW OHV VXLYDQWHV 39. Reconnaître une onde électromagnétique polarisée rectilignement
229
&YFSDJDFT
−
→
&9&3$*$& 'pFULUH OD SRODULVDWLRQ j SDUWLU GH O¶H[SUHVVLRQ GH E
'RQQHU OD GLUHFWLRQ GH SURSDJDWLRQ HW GpFULUH O¶pWDW GH SRODULVDWLRQ GHV RQGHV DVVRFLpHV DX[
FKDPSV pOHFWULTXHV VXLYDQWV OHV DPSOLWXGHV VRQW WRXWHV SRVLWLYHV /HV RQGHV VH SURSDJHQW
GDQV OH YLGH KRUV FKDUJH HW FRXUDQW ⎛
⎞
(y,
t)
=
E
FRV(ωt
−
ky)
E
x
0
−
→
⎠
E1 = ⎝ Ey (y, t) = 0
Ez (y, t) = 0
⎛
⎞
(z,
t)
=
E
FRV(ωt
−
kz)
E
x
x0
−
→
E2 = ⎝ Ey (z, t) = Ey0 FRV(ωt − kz − π6 ) ⎠
Ez (z, t) = 0
⎛
⎞
−
→ ⎝ Ex (z, t) = Ex0 FRV(ωt − kz) ⎠
Ey (z, t) = Ey0 FRV(ωt − kz)
E3 =
Ez (z, t) = 0
⎞
⎛
Ex (x, z, t) = 0
−
→
kx+kz
E4 = ⎝ Ey (x, z, t) = E0 FRV(ωt − √2 ) ⎠
Ez (x, z, t) = 0
1PVS WPVT BJEFS
&9&3$*$& E©NBSSFS
−
→ −−→
√
3RXU OD GHUQLqUH RQGH LO HVW XWLOH GH VH VRXYHQLU TXH kx+kz
= k .OM 2
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& 230
/¶RQGH pOHFWURPDJQpWLTXH VH SURSDJH YHUV OHV y FURLVVDQWV /H FKDPS pOHFWULTXH DVVRFLp
Physique des ondes
&9&3$*$& −
→ −−→
√
3RXU OD GHUQLqUH RQGH LO HVW XWLOH GH VH VRXYHQLU TXH kx+kz
= k .OM 2
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& /¶RQGH pOHFWURPDJQpWLTXH VH SURSDJH YHUV OHV y FURLVVDQWV /H FKDPS pOHFWULTXH DVVRFLp
→
j O¶RQGH pOHFWURPDJQpWLTXH HVW XQLTXHPHQW SRUWp SDU OH YHFWHXU −
u x FH TXL VLJQLILH TXH
O¶RQGH HVW SRODULVpH UHFWLOLJQHPHQW VXLYDQW O¶D[H (Ox)
/¶RQGH pOHFWURPDJQpWLTXH VH SURSDJH YHUV OHV z FURLVVDQWV /H GpSKDVDJH HQWUH OHV FRP
→
→
SRVDQWHV VXLYDQW −
u x HW −
u y HVW GH π6 FHWWH RQGH HVW GRQF SRODULVpH HOOLSWLTXHPHQW
/¶RQGH pOHFWURPDJQpWLTXH VH SURSDJH YHUV OHV z FURLVVDQWV HW OHV GHX[ FRPSRVDQWHV
VRQW HQ SKDVH &HWWH RQGH HVW GRQF SRODULVpH HOOLSWLTXHPHQW
−
→
/¶RQGH HVW SRODULVpH UHFWLOLJQHPHQW VXLYDQW O¶D[H (Oy) 'H SOXV OH YHFWHXU G¶RQGH k
−
→ −−→
−
→
→
→
√
YpULILH k .OM = kx+kz
FH TXL VLJQLILH TXH k = √k (−
u +−
u )
2
2
x
z
Solutions
39. Reconnaître une onde électromagnétique polarisée rectilignement
231
40
Déterminer la relation de dispersion
%©UFSNJOFS MB SFMBUJPO
à une
équation d’onde
EF relative
EJTQFSTJPO
SFMBUJWF
VOF ©RVBUJPO EPOEF
2VBOE PO OF TBJU QBT /D UHODWLRQ GH GLVSHUVLRQ HVW XQH pJDOLWp UHOLDQW OD SXOVDWLRQ WHPSRUHOOH ω DX YHFWHXU G¶RQGH
−
→
k SRXU XQH RQGH KDUPRQLTXH RX PRQRFKURPDWLTXH (OOH HVW SURSUH j FKDTXH pTXDWLRQ
G¶RQGH
&HWWH UHODWLRQ SHUPHW GH FDUDFWpULVHU OH OLHQ HQWUH OD SXOVDWLRQ WHPSRUHOOH G¶XQH RQGH HW VD
YLWHVVH GH SURSDJDWLRQ HW DLQVL GH GpWHUPLQHU VRQ PRGH GH SURSDJDWLRQ ² 6L OD YLWHVVH G¶XQH RQGH SODQH QH GpSHQG SDV GH VD SXOVDWLRQ DORUV O¶RQGH VH SURSDJH
VDQV GpIRUPDWLRQ ² $X FRQWUDLUH VL OD YLWHVVH GH FKDTXH FRPSRVDQWH KDUPRQLTXH GH O¶RQGH SODQH VH
SURSDJH j XQH YLWHVVH GLIIpUHQWH DORUV O¶RQGH YD VH GpIRUPHU HW RQ TXDOLILHUD OH
PLOLHX GH GLVSHUVLI
2VF GBJSF 3RXU REWHQLU OD UHODWLRQ GH GLVSHUVLRQ LO H[LVWH GHX[ PpWKRGHV FDOFXO HQ UpHO UHPSODFHU GDQV O¶pTXDWLRQ G¶RQGH O¶H[SUHVVLRQ GX FKDPS VFDODLUH RX
YHFWRULHO SDU XQH VROXWLRQ GH W\SH RQGH SODQH SURJUHVVLYH KDUPRQLTXH HQ QRWDWLRQ
UpHOOH ψ(x, t) = ψ0 FRV(ωt − kx − φ0 )
FDOFXO HQ FRPSOH[H VL O¶pTXDWLRQ G¶RQGH HVW OLQpDLUH UHPSODFHU GDQV O¶pTXDWLRQ
G¶RQGH O¶H[SUHVVLRQ GX FKDPS SDU XQH VROXWLRQ GH W\SH RQGH SODQH SURJUHVVLYH
KDUPRQLTXH HQ QRWDWLRQ FRPSOH[H ψ(x, t) = ψ 0 ej(ωt−kx) DYHF ψ 0 = ψ0 e−jφ0
$POTFJMT
4XDQG O¶pTXDWLRQ HVW OLQpDLUH O¶XWLOLVDWLRQ GH OD QRWDWLRQ FRPSOH[H HVW IRUWHPHQW UHFRP
PDQGpH OHV FDOFXOV VRQW DLQVL EHDXFRXS SOXV VLPSOHV
232
Physique des ondes
&YFNQMF USBJU©
5HODWLRQ GH GLVSHUVLRQ GH O¶pTXDWLRQ G¶RQGH GH G¶$OHPEHUW
¬ WLWUH G¶H[HPSOH RQ VH SURSRVH LFL GH UHWURXYHU OD UHODWLRQ GH GLVSHUVLRQ GH O¶pTXDWLRQ
G¶RQGH GH G¶$OHPEHUW SRXU XQH JUDQGHXU VFDODLUH HQ XWLOLVDQW OHV GHX[ PpWKRGHV GH FDOFXOV
SURSRVpHV SOXV KDXW
'RQQHU O¶H[SUHVVLRQ GH O¶pTXDWLRQ G¶RQGH XQLGLPHQVLRQQHOOH GH G¶$OHPEHUW
(Q pFULWXUH UpHOOH pWDEOLU OD UHODWLRQ GH GLVSHUVLRQ
5HWURXYHU FHWWH UHODWLRQ HQ XWLOLVDQW OD QRWDWLRQ FRPSOH[H
40-65*0/
/¶H[SUHVVLRQ OD SOXV JpQpUDOH GH O¶pTXDWLRQ G¶RQGH GH G¶$OHPEHUW HVW →
Δψ(−
r , t) =
→
r , t)
1 ∂ 2 ψ(−
c2
∂t2
'DQV OH FDV R O¶pTXDWLRQ HVW XQLGLPHQVLRQQHOOH RQ REWLHQW ∂ 2 ψ(x, t)
1 ∂ 2 ψ(x, t)
=
∂x2
c2
∂t2
(Q pFULWXUH UpHOOH XQH VROXWLRQ GH W\SH RQGH SODQH SURJUHVVLYH KDUPRQLTXH V¶pFULW VRXV
OD IRUPH ψ(x, t) = ψ0 FRV(ωt − kx − φ0 ) (Q XWLOLVDQW FHWWH H[SUHVVLRQ GDQV O¶pTXDWLRQ
G¶RQGH LO YLHQW −k 2 ψ0 FRV(ωt − kx − φ0 ) =
−ω 2
ψ0 FRV(ωt − kx − φ0 )
c2
(Q VLPSOLILDQW SDU −ψ0 FRV(ωt − kx − φ0 ) RQ REWLHQW ILQDOHPHQW OD UHODWLRQ k2 =
ω2
c2
LH k = ε
ω
DYHF ε = ±1
c
$YHF OD FRQYHQWLRQ GH SKDVH DGRSWpH ε = 1 FRUUHVSRQG j XQH RQGH pOHFWURPDJQpWLTXH
SODQH SURJUHVVLYH VH GpSODoDQW YHUV OHV x FURLVVDQWV HW ε = −1 FRUUHVSRQG j XQH RQGH
VH GpSODoDQW YHUV OHV x GpFURLVVDQWV
(Q QRWDWLRQ FRPSOH[H XQH VROXWLRQ GH W\SH SODQH SURJUHVVLYH KDUPRQLTXH V¶pFULW VRXV
OD IRUPH ψ(x, t) = ψ 0 ej(ωt−kx) $YHF OHV H[SUHVVLRQV GHV GpULYpHV WHPSRUHOOHV HW VSD
WLDOHV RQ REWLHQW OD UHODWLRQ (−jk)2 ψ 0 ej(ωt−kx) =
(jω)2
ψ 0 ej(ωt−kx)
c2
(Q VLPSOLILDQW SDU −ψ 0 ej(ωt−kx) RQ UHWURXYH OD UHODWLRQ GH GLVSHUVLRQ REWHQXH j OD
TXHVWLRQ SUpFpGHQWH
40. Déterminer la relation de dispersion relative à une équation d’onde
233
&YFSDJDFT
&9&3$*$& 5HODWLRQ GH GLVSHUVLRQ GDQV XQ FRQGXFWHXU
2Q UHSUHQG GDQV FHW H[HUFLFH O¶pTXDWLRQ G¶RQGH GDQV XQ FRQGXFWHXU pWDEOLH GDQV O¶H[HUFLFH
GH OD ILFKH 1ƒ ´'pWHUPLQHU O¶pTXDWLRQ GH SURSDJDWLRQ GX FKDPS pOHFWURPDJQpWLTXH´
2Q FKHUFKH j GpWHUPLQHU OD IRUPH GH OD UHODWLRQ GH GLVSHUVLRQ GDQV GHX[ FDV SDUWLFXOLHUV OH
FRQGXFWHXU RKPLTXH HW OH SODVPD
2Q UDSSHOOH TXH O¶pTXDWLRQ GH SURSDJDWLRQ GX FKDPS pOHFWULTXH DX VHLQ G¶XQ FRQGXFWHXU GH
FRQGXFWLYLWp γ D SULRUL FRPSOH[H V¶pFULW −
→
−
→
−
→−
→
∂E
1 ∂2 E
ΔE = 2
+
μ
γ
0
c ∂t2
∂t
eWDEOLU OD UHODWLRQ GH GLVSHUVLRQ SRXU FHWWH pTXDWLRQ G¶RQGH GDQV OH FDV JpQpUDO G¶XQH
FRQGXFWLYLWp γ FRPSOH[H
&RQGXFWHXU RKPLTXH HW HIIHW GH SHDX
'DQV OH FDV G¶XQ PpWDO UpHO RQ SHXW PRGpOLVHU OD FRQGXFWLYLWp SDU XQH FRQVWDQWH UpHOOH
SRVLWLYH γ 2Q VH SODFH HQ RXWUH HQ EDVVHV IUpTXHQFHV HQ FRQVLGpUDQW TXH ε0γω � 1
B 6LPSOLILHU OD UHODWLRQ GH GLVSHUVLRQ REWHQXH j OD TXHVWLRQ SUpFpGHQWH
C 'pWHUPLQHU DORUV O¶H[SUHVVLRQ GX YHFWHXU G¶RQGH k SRXU XQH RQGH VH GpSODoDQW YHUV
OHV x FURLVVDQWV ([KLEHU XQH FRQVWDQWH FDUDFWpULVWLTXH L0 KRPRJqQH j XQH ORQJXHXU
HW LQWHUSUpWHU VRQ H[SUHVVLRQ
−
→
D (Q GpGXLUH O¶H[SUHVVLRQ GX FKDPS pOHFWULTXH E DVVRFLp j FHWWH RQGH
3ODVPD HW SXOVDWLRQ GH FRXSXUH
2Q SHXW PRQWUHU TXH OD FRQGXFWLYLWp GX SODVPD HVW ELHQ PRGpOLVpH SDU XQH FRQGXFWLYLWp
γ LPDJLQDLUH SXUH GpSHQGDQW GH OD SXOVDWLRQ ω VRXV OD IRUPH γ = −j ωa DYHF a XQH
FRQVWDQWH SRVLWLYH
B 5HPSODFHU O¶H[SUHVVLRQ GH OD FRQGXFWLYLWp γ GDQV OD UHODWLRQ GH GLVSHUVLRQ HW H[KL
EHU XQH SXOVDWLRQ FDUDFWpULVWLTXH TXH O¶RQ QRWHUD ω0 C 'pWHUPLQHU O¶H[SUHVVLRQ GX YHFWHXU G¶RQGH k HQ IRQFWLRQ GH OD SXOVDWLRQ ω GH O¶RQGH
2Q pWXGLHUD HQ SDUWLFXOLHU OHV FDV ω < ω0 HW ω > ω0 −
→
D (Q GpGXLUH SRXU FKDTXH FDV FLGHVVXV O¶H[SUHVVLRQ GX FKDPS pOHFWULTXH E DVVRFLp
j O¶RQGH pOHFWURPDJQpWLTXH FRQVLGpUpH &RPPHQWHU OHV IRUPHV REWHQXHV
1PVS WPVT BJEFS
&9&3$*$& 234
Physique des ondes
/D UHODWLRQ
1−j
√
2
2
E©NBSSFS
= −j SRXUUD rWUH XWLOH
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& 2Q FRQVLGqUH XQH VROXWLRQ GH FHWWH pTXDWLRQ G¶RQGH GH W\SH SODQH SURJUHVVLYH KDUPR
QLTXH VH SURSDJHDQW VHORQ OHV x FURLVVDQWV (Q QRWDWLRQ FRPSOH[H XQH WHOOH RQGH V¶pFULW
−
→ −
→
E = E 0 ej(ωt−kx) (Q LQMHFWDQW FHWWH H[SUHVVLRQ GDQV O¶pTXDWLRQ G¶RQGH YpULILpH SDU OH
FKDPS pOHFWULTXH DX VHLQ G¶XQ FRQGXFWHXU LO YLHQW ω2
−k 2 = − 2 + μ0 γjω
c
2
(Q IDFWRULVDQW SDU ωc2 HW HQ XWLOLVDQW OD UHODWLRQ μ0 ε0 c2 = 1 RQ REWLHQW γ
ω2
2
k = 2 1−j
c
ε0 ω
&RQGXFWHXU RKPLTXH HW HIIHW GH SHDX
B $YHF O¶K\SRWKqVH ε0γω � 1 OD UHODWLRQ GH GLVSHUVLRQ VH VLPSOLILH HQ k 2 = −jμ0 γω
C 2Q D DLQVL GHX[ VROXWLRQV SRXU OH YHFWHXU G¶RQGH k 1−j √
k=± √
μ0 γω
2
Solutions
2Q UHFKHUFKH XQH RQGH
VH SURSDJHDQW VHORQ OHV x FURLVVDQWV GRQF RQ VpOHFWLRQQH OD
VROXWLRQ k = (1 − j) μ02γω GRQW OD SDUWLH UpHOOH HVW SRVLWLYH
/H YHFWHXU G¶RQGH
pWDQW KRPRJqQH j O¶LQYHUVH G¶XQH ORQJXHXU OD FRQVWDQWH L0 Gp
ILQLH SDU L0 = μ02γω HVW KRPRJqQH j XQH ORQJXHXU &¶HVW OD ORQJXHXU FDUDFWpULV
−
→
WLTXH GH SpQpWUDWLRQ GX FKDPS pOHFWULTXH E j O¶LQWpULHXU GX FRQGXFWHXU RKPLTXH
UpHO (OOH GpSHQG GH O¶LQYHUVH GH OD SXOVDWLRQ ω FH TXL VLJQLILH TXH SOXV OD IUpTXHQFH
HVW LPSRUWDQWH PRLQV O¶RQGH SpQqWUH SURIRQGpPHQW GDQV OH FRQGXFWHXU RKPLTXH
(OOH GpSHQG DXVVL GH O¶LQYHUVH GH OD FRQGXFWLYLWp γ FH TXL SHUPHW GH UHWURXYHU OH
PRGqOH OLPLWH GX FRQGXFWHXU SDUIDLW TXDQG γ WHQG YHUV O¶LQILQL
D 2Q UHPSODFH O¶H[SUHVVLRQ GX YHFWHXU G¶RQGH k REWHQXH j OD TXHVWLRQ SUpFpGHQWH
GDQV O¶H[SUHVVLRQ GX FKDPS pOHFWULTXH DVVRFLp j O¶RQGH SODQH SURJUHVVLYH KDUPR
QLTXH (Q QRWDWLRQ FRPSOH[H FHOD FRQGXLW j → j ωt− Lx − Lx
−
→ − x j ωt− Lx
−
→ −
0
0 = E e L0 e
0
E = E0 e
0
$YHF OD PXOWLSOLFDWLRQ SDU j OD SDUWLH UpHOOH GX YHFWHXU G¶RQGH k FRUUHVSRQG DX
WHUPH GH SURSDJDWLRQ H[SRQHQWLHOOH FRPSOH[H HW OD SDUWLH LPDJLQDLUH DX WHUPH
G¶DWWpQXDWLRQ H[SRQHQWLHOOH UpHOOH 40. Déterminer la relation de dispersion relative à une équation d’onde
235
3ODVPD HW SXOVDWLRQ GH FRXSXUH
B (Q UHPSODoDQW O¶H[SUHVVLRQ SURSRVpH SRXU PRGpOLVHU OD FRQGXFWLYLWp GX SODVPD OD
UHODWLRQ GH GLVSHUVLRQ GHYLHQW k2 =
ω2
c2
1−j
γ
ε0 ω
=
ω2
c2
/¶H[SUHVVLRQ REWHQXH LQYLWH j SRVHU ω0 =
GHYLHQW DLQVL k2 =
1−
a
ε0 ω 2
=
ω 2 − εa0
c2
a
ε0 HW O¶H[SUHVVLRQ GX YHFWHXU G¶RQGH
ω 2 − ω0 2
c2
C eWXGLRQV WRXW G¶DERUG OH FDV R ω < ω0 'DQV FH FDV RQ D k 2 < 0 FH TXL VLJQLILH TXH OH YHFWHXU G¶RQGH HVW LPDJLQDLUH SXU
HW GRQF TXH O¶RQGH QH VH SURSDJH SDV RQ HVW HQ SUpVHQFH G¶XQH RQGH pYDQHVFHQWH
/H YHFWHXU G¶RQGH k V¶pFULW DORUV √
ω0 2 − ω 2
k = εj
DYHF ε = ±1
c
−
→
/¶H[SUHVVLRQ GX FKDPS pOHFWULTXH E DVVRFLp j FH YHFWHXU G¶RQGH QRXV SHUPHWWUD GH
WUDQFKHU VXU OD YDOHXU GH ε j OD TXHVWLRQ VXLYDQWH
eWXGLRQV j SUpVHQW OH FDV R ω > ω0 2Q REWLHQW FHWWH IRLVFL k 2 > 0 FH TXL VLJQLILH TXH OH YHFWHXU G¶RQGH k HVW UpHO 2Q
D XQH IRLV GH SOXV GHX[ VROXWLRQV SRVVLEOHV √
ω 2 − ω0 2
k=η
c
DYHF η = ±1
2Q D PRGpOLVp XQH RQGH VH GpSODoDQW VXLYDQW OHV x FURLVVDQWV RQ YD GRQF FKRLVLU OD
VROXWLRQ DYHF η = +1 √
ω 2 − ω0 2
k=+
c
D &DV ω < ω0 6L RQ FKRLVLW OD VROXWLRQ k = +j
VD SpQpWUDWLRQ GDQV OH SODVPD √
ω0 2 −ω 2
DORUV O¶RQGH VHUD DPSOLILpH DX FRXUV GH
c
−
→ −
→
E = E 0 ej(ωt) ex
√
ω0 2 −ω 2
√
ω0 2 −ω 2
c
c
/H WHUPH HQ e
HVW FURLVVDQW DYHF x FH TXL Q¶HVW SDV SRVVLEOH FDU DXFXQH
VRXUFH G¶pQHUJLH Q¶D pWp PRGpOLVpH
x
236
Physique des ondes
√
ω 2 −ω 2
2Q FKRLVLW GRQF OD VROXWLRQ k = −j 0c
HW O¶H[SUHVVLRQ GX FKDPS pOHFWULTXH
DVVRFLp HVW √
−
→ −
→ jωt −x ω0 2 −ω2
c
E = E0 e e
(W HQ UpHO −
→ −
→
E = E 0 FRV(ωt)e−x
√
ω0 2 −ω 2
c
/H WHUPH HQ H[SRQHQWLHOOH UpHOOH HVW FHWWH IRLVFL GpFURLVVDQW DYHF x O¶RQGH VHUD
GRQF DWWpQXpH j VRQ HQWUpH GDQV OH SODVPD 2Q UHPDUTXH GH SOXV OD GLVSDULWLRQ GX
WHUPH GH SURSDJDWLRQ HQ ej(ωt−kx) DX SURILW G¶XQ WHUPH HQ ejωt VLPSOHPHQW RVFLO
ODQW 2Q HVW GRQF ELHQ HQ SUpVHQFH G¶XQH RQGH pYDQHVFHQWH
&DV ω > ω0 2Q D YX TXH GDQV FH FDV OH YHFWHXU G¶RQGH k HVW UpHO /H FKDPS pOHFWULTXH DVVRFLp
V¶pFULW DORUV VLPSOHPHQW √
→ j ωt−x
−
→ −
E = E0 e
ω 2 −ω0 2
c
(W HQ pFULWXUH UpHOOH Solutions
√
−
→ −
→
ω 2 − ω0 2
E = E 0 FRV ωt − x
c
$LQVL SRXU TX¶XQH RQGH VH SURSDJH DX VHLQ G¶XQ SODVPD VD SXOVDWLRQ WHPSRUHOOH
GRLW rWUH VXSpULHXUH j XQH FHUWDLQH SXOVDWLRQ FDUDFWpULVWLTXH DSSHOpH SXOVDWLRQ SODVPD
QRWpH ω0 GDQV FHW H[HUFLFH 40. Déterminer la relation de dispersion relative à une équation d’onde
237
41
Déterminer la vitesse de phase
et la vitesse
de EF
groupe
%©UFSNJOFS
MB WJUFTTF
QIBTF
FU MB WJUFTTF EF HSPVQF
2VBOE PO OF TBJU QBT /¶pTXDWLRQ G¶RQGH GH G¶$OHPEHUW FRPSUHQG XQH FRQVWDQWH c TXH O¶RQ DSSHOOH KDELWXHOOH
PHQW FpOpULWp DILQ GH QH SDV FRQIRQGUH FH SDUDPqWUH DYHF FHOXL GH OD YLWHVVH G¶XQH RQGH
TXL HVW XQH QRWLRQ HQ IDLW DVVH] FRPSOH[H
2Q GpILQLW DLQVL GHX[ YLWHVVHV OD YLWHVVH GH SKDVH QRWpH Vφ TXL HVW OD YLWHVVH GH GpSODFHPHQW G¶XQH RQGH PRQR
FKURPDWLTXH (OOH V¶H[SULPH VRXV OD IRUPH Vφ =
ω
k
OD YLWHVVH GH JURXSH QRWpH VG TXL HVW GpILQLH FRPPH OD YLWHVVH G¶XQ SDTXHW G¶RQGHV
JURXSH G¶RQGHV GH SXOVDWLRQV SURFKHV (OOH V¶REWLHQW HQ GLIIpUHQWLDQW OD UHODWLRQ GH
GLVSHUVLRQ ∂ω
VG =
∂k
6L OH PLOLHX Q¶HVW SDV GLVSHUVLI F¶HVWjGLUH VL Vφ QH GpSHQG SDV GH OD SXOVDWLRQ ω OHV
YLWHVVHV GH SKDVH HW GH JURXSH VRQW pJDOHV FHOD VLJQLILH TXH O¶RQGH SODQH SURJUHVVLYH QH
VH GpIRUPH SDV ORUV GH VD SURSDJDWLRQ GDQV OH PLOLHX FDU WRXWHV VHV FRPSRVDQWHV KDUPR
QLTXHV VRQW DIIHFWpHV GH OD PrPH PDQLqUH ORUV GH OHXU SURSDJDWLRQ GDQV OH PLOLHX
$X FRQWUDLUH VL OH PLOLHX HVW GLVSHUVLI F¶HVWjGLUH VL Vφ GpSHQG GH OD SXOVDWLRQ ω OHV
YLWHVVHV GH SKDVH HW GH JURXSH VRQW GLIIpUHQWHV OD IRUPH GH O¶RQGH SODQH SURJUHVVLYH HVW
PRGLILpH DX FRXUV GH OD WUDYHUVpH GX PLOLHX GLVSHUVLI FDU FKDTXH FRPSRVDQWH KDUPRQLTXH
HVW DIIHFWpH GLIIpUHPPHQW ORUV GH VD SURSDJDWLRQ GDQV OH PLOLHX FRQVLGpUp
2VF GBJSF 3RXU GpWHUPLQHU OHV YLWHVVHV GH SKDVH HW GH JURXSH pWDEOLU OD UHODWLRQ GH GLVSHUVLRQ YRLU ILFKH 1ƒ 'pWHUPLQHU OD UHODWLRQ GH GLVSHU
VLRQ UHODWLYH j XQH pTXDWLRQ G¶RQGH DX EHVRLQ
238
Physique des ondes
GDQV OH FDV R OH YHFWHXU G¶RQGH HVW UpHO GpGXLUH GLUHFWHPHQW OD YLWHVVH GH SKDVH GH OD UHODWLRQ GH GLVSHUVLRQ DYHF OD
IRUPXOH Vφ = ωk
GLIIpUHQFLHU OD UHODWLRQ GH GLVSHUVLRQ SRXU REWHQLU OD YLWHVVH GH JURXSH DYHF
O¶H[SUHVVLRQ VG = ∂ω
∂k
GDQV OH FDV R OH YHFWHXU G¶RQGH HVW FRPSOH[H k = kR + jkI QH FRQVLGpUHU TXH
OD SDUWLH UpHOOH kR GH k pFULUH OD YLWHVVH GH SKDVH VRXV OD IRUPH Vφ = kωR
GLIIpUHQFLHU OD UHODWLRQ GH GLVSHUVLRQ SDU UDSSRUW j kR VHXOHPHQW SRXU REWHQLU
∂ω
OD YLWHVVH GH JURXSH VG = ∂k
R
$POTFJMT
6L OH YHFWHXU G¶RQGH HVW FRPSOH[H LO FRQYLHQW GH ELHQ V¶DVVXUHU TX¶LO HVW H[SULPp VRXV
IRUPH DOJpEULTXH SRXU LGHQWLILHU kR 6L FH Q¶HVW SDV OH FDV PHQHU G¶DERUG OHV FDOFXOV GH
VLPSOLILFDWLRQ DYDQW G¶H[SULPHU YLWHVVH GH SKDVH HW YLWHVVH GH JURXSH
&YFNQMF USBJU©
eTXDWLRQ G¶RQGH GH G¶$OHPEHUW
2Q FKHUFKH GDQV FHW H[HPSOH j LOOXVWUHU OH IDLW TXH O¶pTXDWLRQ G¶RQGH GH G¶$OHPEHUW V¶DS
SOLTXH j GHV SKpQRPqQHV QRQGLVSHUVLIV
'RQQHU O¶H[SUHVVLRQ GH O¶pTXDWLRQ G¶RQGH XQLGLPHQVLRQQHOOH GH G¶$OHPEHUW
eWDEOLU OD UHODWLRQ GH GLVSHUVLRQ
eWDEOLU DORUV O¶H[SUHVVLRQ GH OD YLWHVVH GH SKDVH HW FHOOH GH OD YLWHVVH GH JURXSH &RP
PHQWHU OH UpVXOWDW REWHQX
40-65*0/
/¶H[SUHVVLRQ OD SOXV JpQpUDOH GH O¶pTXDWLRQ G¶RQGH GH G¶$OHPEHUW HVW →
Δψ(−
r , t) =
→
r , t)
1 ∂ 2 ψ(−
2
c
∂t2
'DQV OH FDV R O¶pTXDWLRQ HVW XQLGLPHQVLRQQHOOH RQ REWLHQW ∂ 2 ψ(x, t)
1 ∂ 2 ψ(x, t)
=
∂x2
c2
∂t2
41. Déterminer la vitesse de phase et la vitesse de groupe
239
(Q QRWDWLRQ FRPSOH[H XQH VROXWLRQ j O¶pTXDWLRQ GH G¶$OHPEHUW GH W\SH SODQH SURJUHV
VLYH KDUPRQLTXH VH GpSODoDQW YHUV OHV x FURLVVDQWV V¶pFULW ψ(x, t) = ψ 0 ej(ωt−kx) $YHF OHV H[SUHVVLRQV GHV GpULYpHV WHPSRUHOOHV HW VSDWLDOHV RQ REWLHQW (−jk)2 ψ 0 ej(ωt−kx) =
(jω)2
ψ 0 ej(ωt−kx)
c2
(Q VLPSOLILDQW SDU −ψ 0 ej(ωt−kx) LO YLHQW ILQDOHPHQW k=±
ω
c
2Q UHFKHUFKH XQH RQGH VH GpSODoDQW VHORQ OHV x FURLVVDQWV RQ FKRLVLW GRQF k=
ω
c
/¶H[SUHVVLRQ GH OD YLWHVVH GH SKDVH HVW VLPSOHPHQW Vφ =
ω
=c
k
2Q SHXW HQVXLWH GLIIpUHQFLHU OD UHODWLRQ GH GLVSHUVLRQ Gω = kGc+cGk /D FpOpULWp c pWDQW
XQH FRQVWDQWH GpSHQGDQW VHXOHPHQW GHV SURSULpWpV GX PLOLHX GH SURSDJDWLRQ Gc = 0 ,O
YLHQW GRQF Gω
=c
VG =
Gk
2Q REWLHQW DLQVL TXH OD YLWHVVH GH SKDVH HVW pJDOH j OD YLWHVVH GH JURXSH &H VHUD WRX
MRXUV OH FDV SRXU OHV RQGHV VXLYDQW XQH pTXDWLRQ GH SURSDJDWLRQ GH G¶$OHPEHUW FDU HOOH
PRGpOLVH XQH SURSDJDWLRQ QRQ GLVSHUVLYH
&YFSDJDFT
&9&3$*$& 9LWHVVHV GDQV XQ FRQGXFWHXU RKPLTXH
2Q FRQVLGqUH GDQV FHW H[HUFLFH XQ FRQGXFWHXU RKPLTXH GH FRQGXFWLYLWp FRQVWDQWH UpHOOH γ
DX VHLQ GXTXHO VH SURSDJH XQH RQGH pOHFWURPDJQpWLTXH TXH O¶RQ VXSSRVH VH SURSDJHU VHORQ
OHV x FURLVVDQWV 2Q VH SODFH HQ EDVVHV IUpTXHQFHV HQ FRQVLGpUDQW TXH ε0γω � 1
2Q UDSSHOOH OD UHODWLRQ GH GLVSHUVLRQ VLPSOLILpH VRXV FHV K\SRWKqVHV REWHQXH GDQV O¶H[HUFLFH
GH OD ILFKH SUpFpGHQWH μ0 γω
1−j
=
k = (1 − j)
2
L0
240
eWDEOLU O¶H[SUHVVLRQ GH OD YLWHVVH GH SKDVH YLWHVVH G¶XQH RQGH SODQH SURJUHVVLYH KDUPR
QLTXH VH GpSODoDQW VHORQ OHV x FURLVVDQWV LFL
eWDEOLU O¶H[SUHVVLRQ GH OD YLWHVVH GH JURXSH YLWHVVH GH SURSDJDWLRQ G¶XQ SDTXHW G¶RQGHV
&RPPHQWHU OHV UpVXOWDWV REWHQXV
Physique des ondes
&9&3$*$& 9LWHVVHV GDQV XQ SODVPD
2Q FRQVLGqUH GDQV FHW H[HUFLFH XQ SODVPD GH FRQGXFWLYLWp FRPSOH[H γ = −j ωa DYHF a
XQH FRQVWDQWH SRVLWLYH DX VHLQ GXTXHO VH SURSDJH XQH RQGH pOHFWURPDJQpWLTXH TXH O¶RQ
VXSSRVH VH SURSDJHU
VHORQ OHV x FURLVVDQWV 2Q VH SODFH HQ KDXWHV IUpTXHQFHV HQ FRQVLGpUDQW
TXH ω > ω0 = εa0 GH VRUWH TXH O¶RQ QH VRLW SDV HQ SUpVHQFH G¶XQH RQGH pYDQHVFHQWH
2Q UDSSHOOH OD UHODWLRQ GH GLVSHUVLRQ REWHQXH GDQV O¶H[HUFLFH GH OD ILFKH SUpFpGHQWH k2 =
eWDEOLU O¶H[SUHVVLRQ GH OD YLWHVVH GH SKDVH YLWHVVH G¶XQH RQGH SODQH SURJUHVVLYH KDUPR
QLTXH VH GpSODoDQW VHORQ OHV x FURLVVDQWV LFL
eWDEOLU O¶H[SUHVVLRQ GH OD YLWHVVH GH JURXSH YLWHVVH GH SURSDJDWLRQ G¶XQ SDTXHW G¶RQGHV
&RPPHQWHU OHV UpVXOWDWV REWHQXV
1PVS WPVT BJEFS
E©NBSSFS
&9&3$*$& ,O SHXW rWUH XWLOH GH SUHQGUH OH WHPSV GH ELHQ LGHQWLILHU OD SDUWLH UpHOOH GX
YHFWHXU G¶RQGH
&9&3$*$& $YHF O¶K\SRWKqVH VXU OD SXOVDWLRQ ω OH YHFWHXU G¶RQGH HVW UpHO
Solutions
ω 2 − ω0 2
c2
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& ,FL OH YHFWHXU G¶RQGH HVW FRPSOH[H 2Q QH FRQVLGqUH GRQF TXH VD SDUWLH UpHOOH SRXU OH
FDOFXO GH OD YLWHVVH GH SKDVH &HWWH GHUQLqUH D DLQVL SRXU H[SUHVVLRQ ω
Vφ = 1 = ωL0
L0
/D YLWHVVH GH JURXSH V¶REWLHQW HQ GLIIpUHQWLDQW OD UHODWLRQ GH GLVSHUVLRQ SDU UDSSRUW j OD
SDUWLH UpHOOH GX YHFWHXU G¶RQGH XQLTXHPHQW /D SDUWLH UpHOOH kR GX YHFWHXU G¶RQGH pWDQW
kR =
γμ0 ω
2 FHOD GRQQH GkR =
μ0 γ 1 Gω
× √
2
2 ω
2Q SHXW DLQVL HQ WLUHU OD YLWHVVH GH JURXSH VG Gω
=2×
VG =
GkR
2ω
μ0 γ
41. Déterminer la vitesse de phase et la vitesse de groupe
241
/D YLWHVVH GH SKDVH Vφ GpSHQG GH ω GRQF OD SURSDJDWLRQ HVW GLVSHUVLYH OH SDTXHW
G¶RQGHV VHUD GpIRUPp DX FRXUV GH OD SURSDJDWLRQ
'H SOXV RQ UHPDUTXH TXH OD YLWHVVH GH JURXSH HVW VXSpULHXUH j OD YLWHVVH GH SKDVH RQ
SDUOH GDQV FH FDV GH GLVSHUVLRQ DQRUPDOH
&9&3$*$& /D YLWHVVH GH SKDVH V¶H[SULPH GH PDQLqUH FODVVLTXH Vφ =
ω
c
ω
ωc
=
=
=
>c
2
2
k
ω −ω0
ω0 2
2 × 1 − ω0 2
1
−
2
2
ω
c
ω
ω2
2Q UHPDUTXH TXH OD YLWHVVH GH SKDVH HVW SOXV pOHYpH TXH OD FpOpULWp c GH O¶RQGH
3RXU REWHQLU OD YLWHVVH GH JURXSH RQ GLIIpUHQWLH FRPPH G¶KDELWXGH OD UHODWLRQ GH GLV
2
2
0
SHUVLRQ k 2 = ω −ω
GHYLHQW 2kc2 Gk = 2ωGω /D YLWHVVH GH JURXSH V¶pFULW GRQF c2
kc2
c2
Gω
=
=
×
VG =
Gk
ω
ω
242
√
ω 2 − ω0 2
ω0 2
=c 1−
<c
c
ω
/D YLWHVVH GH JURXSH HVW ELHQ LQIpULHXUH j OD FpOpULWp c GH O¶RQGH
/D YLWHVVH GH SKDVH Vφ GpSHQG GH ω GRQF OD SURSDJDWLRQ HVW GLVSHUVLYH OH SDTXHW
G¶RQGHV VHUD GpIRUPp DX FRXUV GH OD SURSDJDWLRQ
'H SOXV RQ UHPDUTXH TXH OD YLWHVVH GH JURXSH HVW LQIpULHXUH j OD YLWHVVH GH SKDVH FH
TXL FRUUHVSRQG j XQH GLVSHUVLRQ GLWH QRUPDOH
Physique des ondes
Déterminer l’onde réfléchie
%©UFSNJOFS
MPOEFenS©GM©DIJF
TVS VO
sur un conducteur
parfait
incidence
DPOEVDUFVS
FO JODJEFODF
normale
(relationsQBSGBJU
de passage)
OPSNBMF SFMBUJPOT EF QBTTBHF
42
2VBOE PO OF TBJU QBT 'DQV OH PRGqOH GX FRQGXFWHXU SDUIDLW RQ VH SODFH j OD OLPLWH GX PRGqOH GX FRQGXFWHXU
RKPLTXH R O¶HIIHW GH SHDX GHYLHQW QpJOLJHDEOH F¶HVWjGLUH TXDQG OHV FKDPSV pOHFWULTXH
HW PDJQpWLTXH QH SpQqWUHQW SOXV j O¶LQWpULHXU GX FRQGXFWHXU
&H PRGqOH FRUUHVSRQG j OD IRLV j OD OLPLWH GHV KDXWHV IUpTXHQFHV ω → +∞ HW j OD
OLPLWH R OD FRQGXFWLYLWp GX
PDWpULDX GHYLHQW LQILQLH γ → +∞ 'DQV OHV GHX[ FDV
2
RQ UHWURXYH OD OLPLWH δ =
μ0 γω → 0 DYHF δ OD SURIRQGHXU GH SpQpWUDWLRQ GHV RQGHV
pOHFWURPDJQpWLTXHV j O¶LQWpULHXU G¶XQ FRQGXFWHXU RKPLTXH
−
→
−
→
'DQV FH PRGqOH OD GLVWULEXWLRQ GHV FKDUJHV HW FRXUDQWV HVW VXUIDFLTXH j GHYLHQW js HW
ρ GHYLHQW σ
2Q UDSSHOOH SDU DLOOHXUV O¶H[SUHVVLRQ GHV UHODWLRQV GH SDVVDJH SRXU OHV FKDPSV pOHF
−→ HVW OH YHFWHXU QRUPDO
WULTXH HW PDJQpWLTXH j OD WUDYHUVpH G¶XQH VXUIDFH FKDUJpH −
n−1→2
j O¶LQWHUIDFH HQWUH OHV GHX[ PLOLHX[ RULHQWp GX PLOLHX YHUV OH PLOLHX /D FRPSRVDQWH WDQJHQWLHOOH GX FKDPS pOHFWULTXH HVW FRQWLQXH
/D FRPSRVDQWH QRUPDOH GX FKDPS pOHFWULTXH HVW GLVFRQWLQXH HW OD GLVFRQWL
QXLWp V¶pFULW −
→
−
→
σ −−→
E2 − E1 = −
n1→2
ε0
/D FRPSRVDQWH WDQJHQWLHOOH GX FKDPS PDJQpWLTXH HVW GLVFRQWLQXH HW OD GLV
FRQWLQXLWp V¶pFULW −
→
−
→
−
→ −−→
B 2 − B 1 = μ0 j s ∧ −
n1→2
/D FRPSRVDQWH QRUPDOH GX FKDPS PDJQpWLTXH HVW FRQWLQXH
2VF GBJSF 3RXU GpWHUPLQHU O¶RQGH UpIOpFKLH VXU XQ FRQGXFWHXU SDUIDLW HQ LQFLGHQFH QRUPDOH pFULUH O¶H[SUHVVLRQ GH O¶RQGH LQFLGHQWH SRXU OH FKDPS pOHFWULTXH DYHF OD SRODULVD
WLRQ GRQQpH SDU O¶pQRQFp
42. Déterminer l’onde réfléchie sur un conducteur parfait en incidence normale (relations de passage)
243
MXVWLILHU OH IDLW TXH O¶RQGH WUDQVPLVH HVW QXOOH DYHF OH PRGqOH GX FRQGXFWHXU SDUIDLW
XWLOLVHU OD UHODWLRQ GH SDVVDJH SRXU OH FKDPS pOHFWULTXH DILQ GH PRQWUHU O¶H[LVWHQFH
G¶XQH RQGH UpIOpFKLH QRQ QXOOH
XWLOLVHU XQH VHFRQGH IRLV OD UHODWLRQ GH SDVVDJH SRXU OH FKDPS pOHFWULTXH DILQ GH
GpWHUPLQHU O¶H[SUHVVLRQ GH O¶RQGH UpIOpFKLH TXL VH SURSDJH GDQV OH YLGH
OHV RQGHV LQFLGHQWH HW UpIOpFKLH pWDQW SODQHV HW SURJUHVVLYHV XWLOLVHU OD UHODWLRQ GH
VWUXFWXUH SRXU GpWHUPLQHU O¶H[SUHVVLRQ GX FKDPS PDJQpWLTXH DVVRFLp DX[ RQGHV
LQFLGHQWH HW UpIOpFKLH
VL O¶pQRQFp OH GHPDQGH GpWHUPLQHU O¶H[SUHVVLRQ GH OD GHQVLWp VXUIDFLTXH GH FRXUDQW
−
→
js DYHF OD UHODWLRQ GH SDVVDJH SRXU OH FKDPS PDJQpWLTXH
$POTFJMT
,O FRQYLHQW G¶rWUH ELHQ YLJLODQW ORUV GH O¶DSSOLFDWLRQ GHV UHODWLRQV GH SDVVDJH XQH VHXOH
HUUHXU GH VLJQH RX G¶RULHQWDWLRQ GX YHFWHXU QRUPDO HW F¶HVW WRXW O¶H[HUFLFH TXL GHYLHQW
IDX[
%LHQ TX¶LO VRLW SOXV ULJRXUHX[ GH PRQWUHU G¶DERUG O¶H[LVWHQFH G¶XQH RQGH UpIOpFKLH DYDQW
G¶HQ FDOFXOHU O¶H[SUHVVLRQ FHUWDLQV pQRQFpV RPHWWHQW FHWWH pWDSH 2Q SRXUUD DORUV VXSSRVHU
GLUHFWHPHQW TX¶LO H[LVWH XQH RQGH UpIOpFKLH
/HV FDOFXOV SRXUURQW rWUH PHQpV HQ QRWDWLRQ FRPSOH[H VL O¶RQGH LQFLGHQWH FRQVLGpUpH HVW
PRQRFKURPDWLTXH
&YFNQMF USBJU©
5pIOH[LRQ VXU XQ FRQGXFWHXU SDUIDLW HQ LQFLGHQFH QRUPDOH
2Q FRQVLGqUH GDQV FHW H[HPSOH XQ FRQGXFWHXU
SDUIDLW VLWXp GDQV OH GHPLHVSDFH x > 0 PL
OLHX OH YLGH FRQVWLWXDQW O¶DXWUH GHPLHVSDFH
GHV x QpJDWLIV PLOLHX 8QH RQGH pOHFWUR
PDJQpWLTXH SODQH SURJUHVVLYH VH GpSODFH GDQV
OH YLGH VDQV FKDUJH QL FRXUDQW VXLYDQW OHV x
→
FURLVVDQWV SRODULVpH UHFWLOLJQHPHQW VHORQ −
u y
2Q V¶LQWpUHVVH DX SKpQRPqQH GH UpIOH[LRQ GH
FHWWH RQGH j O¶LQWHUIDFH HQWUH OHV GHX[ PLOLHX[
HQ x = 0
244
−
→
'RQQHU O¶H[SUHVVLRQ GX FKDPS pOHFWULTXH DVVRFLp j O¶RQGH LQFLGHQWH TXH O¶RQ QRWH Ei -XVWLILHU O¶DEVHQFH G¶RQGH WUDQVPLVH GDQV OH PLOLHX (Q GpGXLUH O¶H[LVWHQFH G¶XQH RQGH
−
→
UpIOpFKLH DYHF OD UHODWLRQ GH SDVVDJH SRXU OH FKDPS pOHFWULTXH E Physique des ondes
−
→
&DOFXOHU O¶H[SUHVVLRQ GX FKDPS Er DVVRFLp j O¶RQGH UpIOpFKLH DLQVL TXH OD YDOHXU GH OD
GLVWULEXWLRQ VXUIDFLTXH GH FKDUJHV QRWpH σ
�−
→�
'pWHUPLQHU O¶H[SUHVVLRQ GX FKDPS PDJQpWLTXH DVVRFLp j O¶RQGH LQFLGHQWH Bi HW j
�−
→�
O¶RQGH UpIOpFKLH Br (Q GpGXLUH O¶H[SUHVVLRQ GX FRXUDQW VXUIDFLTXH SDUFRXUDQW OH FRQGXFWHXU j O¶LQWHUIDFH
−
→
DYHF OH YLGH QRWp js 40-65*0/
/¶RQGH FRQVLGpUpH pWDQW SODQH HW SURJUHVVLYH OH FKDPS pOHFWULTXH DVVRFLp HVW WUDQVYHUVH
$YHF O¶K\SRWKqVH VXU OD SRODULVDWLRQ GH O¶pQRQFp O¶H[SUHVVLRQ GX FKDPS pOHFWULTXH HVW ⎞
⎛
−
→ ⎝ Ex (x, t) = 0
Ey (x, t) = E0 FRV(ωt − kx) ⎠
Ei =
Ez (x, t) = 0
/H PLOLHX HVW FRQVWLWXp G¶XQ FRQGXFWHXU SDUIDLW OHV FKDPSV pOHFWULTXH HW PDJQpWLTXH
\ VRQW QXOV ,O Q¶H[LVWH GRQF SDV G¶RQGH WUDQVPLVH GDQV OH PLOLHX eFULYRQV OD UHODWLRQ GH SDVVDJH SRXU OH FKDPS pOHFWULTXH j O¶LQWHUIDFH HQWUH OH YLGH HW OH
FRQGXFWHXU SDUIDLW x = 0 j XQ LQVWDQW t TXHOFRQTXH →= σ −
−→ = σ −
→
u
n−1→2
u
−E0 FRV(ωt) −
y
x
ε0
ε0
→ HW −
→ pWDQW RUWKRJRQDX[ OD UHODWLRQ FLGHVVXV LPSOLTXH TXH
/HV YHFWHXUV XQLWDLUHV −
u
u
x
y
σ = 0 HW E0 = 0 $LQVL VRLW OH FKDPS pOHFWULTXH LQFLGHQW HVW QXO FH TXL HVW VDQV LQWpUrW VRLW LO H[LVWH XQH RQGH UpIOpFKLH SDU OH FRQGXFWHXU SDUIDLW TXL VH SURSDJH VHORQ OHV x
GpFURLVVDQWV &¶HVW FHWWH GHUQLqUH VROXWLRQ TXH O¶RQ YD pWXGLHU
/¶RQGH LQFLGHQWH FRQVLGpUpH pWDQW SODQH SURJUHVVLYH HW PRQRFKURPDWLTXH RQ YD UpDOLVHU
OH FDOFXO HQ QRWDWLRQ FRPSOH[H RQ SUHQGUD O¶RULJLQH GHV SKDVHV VXU O¶RQGH LQFLGHQWH /D UHODWLRQ GH SDVVDJH HQ x = 0 V¶pFULW → −
→
→
σ −
−
→ −
→−−
→
0 − Ei − Er = −E0 ejωt −
E0r ejωt =
u
u
y
x
ε0
→
→ = −−
3DU LGHQWLILFDWLRQ RQ GRLW DYRLU σ = 0 HW E0 ejωt −
E0r ejωt (Q VLPSOLILDQW OD
u
y
−→
→ /H FKDPS pOHFWULTXH DVVRFLp j O¶RQGH
VHFRQGH H[SUHVVLRQ RQ WURXYH E0r = −E0 −
u
y
UpIOpFKLH HVW GRQF HQ RSSRVLWLRQ GH SKDVH SDU UDSSRUW DX FKDPS LQFLGHQW
/¶H[SUHVVLRQ GH O¶RQGH UpIOpFKLH HVW ILQDOHPHQW HQ SDVVDQW HQ pFULWXUH UpHOOH ⎛
⎞
(x,
t)
=
0
E
x
−
→
Er = ⎝ Ey (x, t) = −E0 FRV(ωt + kx) ⎠
Ez (x, t) = 0
42. Déterminer l’onde réfléchie sur un conducteur parfait en incidence normale (relations de passage)
245
/HV RQGHV LQFLGHQWH HW UpIOpFKLH VRQW SODQHV HW SURJUHVVLYHV /D UHODWLRQ GH VWUXFWXUH GHV
RQGHV pOHFWURPDJQpWLTXHV HVW GRQF YDODEOH HW O¶RQ SHXW DLVpPHQW FDOFXOHU OHV FKDPSV
PDJQpWLTXHV DVVRFLpV j FKDFXQH GHV RQGHV HQ XWLOLVDQW ω = kc ⎞
⎛
0
−
→
→
−
→ k−
⎠
0
2QGH LQFLGHQWH Bi = uxω∧Ei = ⎝
E0
FRV(ωt
−
kx)
c
⎛
−
→
→
−
→ −k−
2QGH UpIOpFKLH Br = uωx ∧Er = ⎝
⎞
0
⎠
0
E0
FRV(ωt
+
kx)
c
3RXU GpWHUPLQHU OH FRXUDQW VXUIDFLTXH RQ XWLOLVH OD UHODWLRQ GH SDVVDJH SRXU OH FKDPS
PDJQpWLTXH HQ x = 0 →
−
→ −
2E0
→ −−−→
−
→ −
→=μ −
→
FRV(ωt) −
u
− Bi − Br = −
z
0 js ∧ n1→2 = μ0 js ∧ ux
c
⎞ ⎛ ⎞ ⎛
⎞
⎛
1
0
0
−
→ → ⎝
jsy ⎠ ∧ ⎝ 0 ⎠ = ⎝ jsz ⎠
'H SOXV RQ D js ∧ −
ux =
jsz
−jsy
0
2E0
2Q REWLHQW DLQVL jsz = 0 HW jsy = μ0 c FRV(ωt)
&YFSDJDFT
&9&3$*$& 2QGH pOHFWURPDJQpWLTXH GDQV XQ JXLGH G¶RQGH UHFWDQJXODLUH
'DQV FHW H[HUFLFH RQ V¶LQWpUHVVH j OD SURSDJDWLRQ G¶XQH RQGH pOHFWURPDJQpWLTXH GDQV XQ
JXLGH G¶RQGH /H JXLGH G¶RQGH VH FRPSRVH GH GHX[ FRQGXFWHXUV SDUIDLWV SODQV HW LQILQLV GH
→
QRUPDOH −
u z VLWXpV UHVSHFWLYHPHQW HQ z = 0 HW z = e /¶RQGH pOHFWURPDJQpWLTXH pWXGLpH VH
SURSDJH HQWUH FHV GHX[ SODQV GDQV OH YLGH
2Q FKHUFKH GDQV FHW H[HUFLFH j pWDEOLU O¶H[SUHVVLRQ GX FKDPS pOHFWULTXH GH O¶RQGH VH SURSD
→ j O¶LQWpULHXU GX JXLGH G¶RQGH 3RXU FH IDLUH RQ VXSSRVH TXH OH
JHDQW VXLYDQW OD GLUHFWLRQ −
u
x
−
→
→
FKDPS pOHFWULTXH DVVRFLp j FHWWH RQGH SHXW V¶pFULUH E = A(y, z) FRV(ωt − kx)−
u
y
246
Physique des ondes
−
→
'RQQHU OH YHFWHXU G¶RQGH k DVVRFLp j FHWWH RQGH
(Q XWLOLVDQW O¶pTXDWLRQ GH 0D[ZHOO*DXVV PRQWUHU TXH OD IRQFWLRQ A QH GpSHQG SDV GH
OD YDULDEOH y
−
→
(Q WLUDQW SDUWLH GH O¶pTXDWLRQ GH SURSDJDWLRQ YpULILpH SDU OH FKDPS pOHFWULTXH E GDQV OH
YLGH WURXYHU O¶pTXDWLRQ GLIIpUHQWLHOOH YpULILpH SDU OD IRQFWLRQ A
([SOLFLWHU OHV FRQGLWLRQV DX[ OLPLWHV HQ z = 0 HW HQ z = e SRXU OD IRQFWLRQ A
(Q UpDOLVDQW XQH GLVMRQFWLRQ GH FDV VXU OHV YDOHXUV SULVHV SDU k GpWHUPLQHU OD VHXOH IRUPH
SRVVLEOH SRXU OD IRQFWLRQ A RQ VH OLPLWHUD DX SUHPLHU PRGH &RQFOXUH VXU OD QDWXUH GH O¶RQGH pOHFWURPDJQpWLTXH TXL VH SURSDJH GDQV OH JXLGH G¶RQGH
1PVS WPVT BJEFS
&9&3$*$& E©NBSSFS
2Q QpJOLJH ELHQ HQWHQGX OHV FKDPSV FRQVWDQWV FDU RQ VRXKDLWH pWXGLHU
OD SURSDJDWLRQ G¶XQH RQGH
4PMVUJPOT EFT FYFSDJDFT
Solutions
&9&3$*$& '¶DSUqV O¶H[SUHVVLRQ GX FKDPS pOHFWULTXH SURSRVp OH YHFWHXU G¶RQGH DVVRFLp j FHWWH
−
→
→
RQGH HVW k = k −
u x
−
→
/¶pTXDWLRQ GH 0D[ZHOO*DXVV V¶pFULW GLY E = 0 /¶H[SUHVVLRQ GH O¶RSpUDWHXU GLYHU
JHQFH HQ FRRUGRQQpHV FDUWpVLHQQHV FRQGXLW j ∂Ex ∂Ey
∂Ez
∂A(y, z)
+
+
=
=0
∂x
∂y
∂z
∂y
(Q QpJOLJHDQW OHV FKDPS FRQVWDQWV RQ REWLHQW TXH OD IRQFWLRQ A GpSHQG GH OD VHXOH
FRRUGRQQpH z
'DQV OH YLGH OH FKDPS pOHFWULTXH YpULILH O¶pTXDWLRQ G¶RQGH GH G¶$OHPEHUW −
→
−
→−
→
1 ∂2 E
ΔE = 2
c ∂t2
$YHF O¶H[SUHVVLRQ GX ODSODFLHQ YHFWRULHO HQ FRRUGRQQpHV FDUWpVLHQQHV LO YLHQW ∂ 2 Ey
∂ 2 Ey
∂ 2 Ey
1 ∂ 2 Ey
+
+
=
∂x2
∂y 2
∂z 2
c2 ∂t2
(Q XWLOLVDQW OHV H[SUHVVLRQV SURSRVpHV SDU O¶pQRQFp FHWWH pTXDWLRQ GHYLHQW ω2
−k 2 A(z) FRV(ωt − kx) + A (z) FRV(ωt − kx) = − 2 A(z) FRV(ωt − kx)
c
42. Déterminer l’onde réfléchie sur un conducteur parfait en incidence normale (relations de passage)
247
(Q VLPSOLILDQW SDU FRV(ωt − kx) RQ REWLHQW O¶pTXDWLRQ GLIIpUHQWLHOOH UHFKHUFKpH ��
A (z) +
ω2
2
− k A(z) = 0
c2
¬ OD VXUIDFH GX FRQGXFWHXU SDUIDLW HQ z = 0 HW z = e OH FKDPS pOHFWULTXH GDQV OH
JXLGH G¶RQGH pWDQW SXUHPHQW WDQJHQWLHO HW OH FKDPS j O¶LQWpULHXU GX FRQGXFWHXU VXSSRVp
SDUIDLW pWDQW QXO OH FKDPS pOHFWULTXH DVVRFLp j O¶RQGH GRLW V¶DQQXOHU 2Q REWLHQW DLQVL
OHV GHX[ FRQGLWLRQV DX[ OLPLWHV −
→
−
→
−
→
∀x, ∀t, E (x, z = 0, t) = E (x, z = e, t) = 0
&HV FRQGLWLRQV DX[ OLPLWHV VXU OH FKDPS pOHFWULTXH VH WUDGXLVHQW FRPPH FRQGLWLRQV DX[
OLPLWHV SRXU OD IRQFWLRQ A A(z = 0) = A(z = e) = 0
5pDOLVRQV XQH GLVMRQFWLRQ GH FDV VXU OHV YDOHXUV SULVHV SDU k 6L k = ωc RQ D A�� (z) = 0 FH TXL VLJQLILH TXH A HVW XQH IRQFWLRQ DIILQH HQ z HW
V¶pFULW GRQF VRXV OD IRUPH A(z) = αz + β
/¶pFDUW e HQWUH OHV GHX[ FRQGXFWHXUV SDUIDLWV pWDQW QRQ QXO OHV FRQGLWLRQV DX[
−
→
OLPLWHV LPSOLTXHQW TXH α = β = 0 HW GRQF TXH OH FKDPS pOHFWULTXH E HVW QXO
&H FDV HVW GRQF VDQV LQWpUrW
2
6L k > ωc SRVRQV δ12 = k 2 − ωc2 /¶pTXDWLRQ GLIIpUHQWLHOOH VXU A GHYLHQW DORUV
A�� (z) − δ12 A(z) = 0
z
z
&HWWH pTXDWLRQ GLIIpUHQWLHOOH DGPHW GHV VROXWLRQV GH W\SH A(z) = αe δ + βe− δ /HV FRQGLWLRQV DX[ OLPLWHV LPSRVHQW TXH FHWWH IRQFWLRQ A V¶DQQXOH HQ GHX[ SRLQWV
GLVWLQFWV FH TXL HVW LPSRVVLEOH DYHF OD IRUPH GH IRQFWLRQ VROXWLRQ /¶K\SRWKqVH
k > ωc HVW GRQF LPSRVVLEOH
2
(QILQ VL k < ωc RQ SRVH FHWWH IRLVFL δ12 = ωc2 − k 2 /¶pTXDWLRQ GLIIpUHQWLHOOH
GRQW A HVW VROXWLRQ V¶pFULW GpVRUPDLV A�� (z) + δ12 A(z) = 0
/HV VROXWLRQV GH FHWWH pTXDWLRQ GLIIpUHQWLHOOH
G¶RUGUH VRQW GHV IRQFWLRQV KDUPR
QLTXHV GX W\SH A(z) = α FRV zδ + β VLQ zδ /¶H[SORLWDWLRQ GH OD SUHPLqUH FRQGLWLRQ DX[ OLPLWHV HQ z =
0 FRQGXLW j α = 0
/D VHFRQGH FRQGLWLRQ HQ z = e FRQGXLW j O¶pTXDWLRQ VLQ δe = 0
2Q REWLHQW DLQVL XQH TXDQWLILFDWLRQ VXU OD GLVWDQFH FDUDFWpULVWLTXH δ GX SUREOqPH
TXL V¶pFULW DORUV δn = nπ
e DYHF n HQWLHU QRQ QXO
(Q VH OLPLWDQW DX SUHPLHU PRGH FRPPH VXJJpUp SDU O¶pQRQFp F¶HVWjGLUH HQ SUHQDQW
n = 1 RQ REWLHQW ILQDOHPHQW A(z) = E0 VLQ
248
Physique des ondes
πz e
/¶H[SUHVVLRQ GX SUHPLHU PRGH GX FKDPS pOHFWULTXH DVVRFLp j O¶RQGH HVW DLQVL πz −
→
→
E1 = E0 VLQ
FRV(ωt − kx)−
u
y
e
/¶RQGH REWHQXH Q¶HVW DLQVL SDV SODQH FDU HOOH Q¶HVW SDV GH YDOHXU FRQVWDQWH GDQV XQ SODQ
G¶RQGH SHUSHQGLFXODLUH j VD GLUHFWLRQ GH SURSDJDWLRQ /D UHODWLRQ GH VWUXFWXUH GHV RQGHV
pOHFWURPDJQpWLTXHV Q¶HVW GRQF SDV YDODEOH
Solutions
42. Déterminer l’onde réfléchie sur un conducteur parfait en incidence normale (relations de passage)
249
43
Analyser la structure résultante
de l’onde
incidente S©TVMUBOUF
et réfléchie
"OBMZTFS
MB TUSVDUVSF
EF MPOEF(onde
JODJEFOUF
FU S©GM©DIJF
stationnaire)
POEF TUBUJPOOBJSF
2VBOE PO OF TBJU QBT 8QH IRLV TXH OD IRUPH GH O¶RQGH pOHFWURPDJQpWLTXH UpIOpFKLH D pWp GpWHUPLQpH DYHF OHV
UHODWLRQV GH SDVVDJH SRXU OHV FKDPSV pOHFWULTXH HW PDJQpWLTXH RQ GHPDQGH VRXYHQW GH
GpWHUPLQHU OD IRUPH GH O¶RQGH UpVXOWDQWH TXL HVW XQH RQGH VWDWLRQQDLUH
3RXU OHV RQGHV pOHFWURPDJQpWLTXHV VWDWLRQQDLUHV j XQH GLPHQVLRQ FRPPH SRXU OHV RQGHV
VRQRUHV VWDWLRQQDLUHV RX SRXU OHV YLEUDWLRQV OLEUHV RX IRUFpHV G¶XQH FRUGH DX[ H[WUpPLWpV
IL[HV RQ REVHUYH XQ GpFRXSODJH HQWUH OHV YDULDEOHV G¶HVSDFH HW GH WHPSV OH WHUPH
GH SURSDJDWLRQ GLVSDUDvW DX SURILW G¶XQ SURGXLW GH GHX[ IRQFWLRQV GpSHQGDQW VHXOHPHQW
G¶XQH YDULDEOH FKDFXQH &HWWH VLWXDWLRQ HVW FDUDFWpULVWLTXH GHV RQGHV VWDWLRQQDLUHV
&RPPH SRXU OHV RQGHV VRQRUHV OHV RQGHV pOHFWURPDJQpWLTXHV VWDWLRQQDLUHV QH WUDQVSRUWHQW
SDV G¶pQHUJLH FH TXL VH FDUDFWpULVH SDU XQH YDOHXU PR\HQQH WHPSRUHOOH QXOOH SRXU OH YHF
WHXU GH 3R\QWLQJ
2VF GBJSF 3RXU DQDO\VHU OD VWUXFWXUH GH O¶RQGH VWDWLRQQDLUH UpVXOWDQWH FDOFXOHU HQ QRWDWLRQ UpHOOH OHV FKDPSV pOHFWULTXH HW PDJQpWLTXH UpVXOWDQWV HQ VRP
PDQW OHV FKDPSV DVVRFLpV DX[ RQGHV LQFLGHQWH HW UpIOpFKLH
j O¶DLGH GHV IRUPXOHV pOpPHQWDLUHV GH WULJRQRPpWULH UDSSHOpHV FLGHVVRXV DERXWLU j
XQ SURGXLW GH GHX[ IRQFWLRQV SRXU PRQWUHU OH GpFRXSODJH VSDWLRWHPSRUHO
p+q
p−q
FRV
2
2
p+q
p−q
FRV p − FRV q = −2 VLQ
VLQ
2
2
FRV p + FRV q = 2 FRV
p+q
p−q
FRV
2
2
p−q
p+q
VLQ p − VLQ q = 2 VLQ
FRV
2
2
VLQ p + VLQ q = 2 VLQ
UHWURXYHU OD SRVLWLRQ GHV Q°XGV HW GHV YHQWUHV SRXU OHV FKDPSV pOHFWULTXH HW PD
JQpWLTXH HQ GpYHORSSDQW OD FRQGLWLRQ G¶DPSOLWXGH VXU OD IRQFWLRQ GH OD YDULDEOH
G¶HVSDFH O¶LQVWDQW t pWDQW IL[p
DX EHVRLQ FDOFXOHU HQ UpHO O¶H[SUHVVLRQ GX YHFWHXU GH 3R\QWLQJ HW PRQWUHU TXH VD
PR\HQQH WHPSRUHOOH HVW QXOOH
250
Physique des ondes
VL O¶HVSDFH GH SURSDJDWLRQ HVW FRQILQp GpYHORSSHU OHV FRQGLWLRQV DX[ OLPLWHV VXU OH
FKDPS pOHFWULTXH SRXU IDLUH DSSDUDvWUH OHV SXOVDWLRQV GH UpVRQDQFH SDU TXDQWLILFD
WLRQV GX YHFWHXU G¶RQGH RX GH OD SXOVDWLRQ
$POTFJMT
8QH ERQQH FRQQDLVVDQFH GHV IRUPXOHV GH WULJRQRPpWULH HVW LQGLVSHQVDEOH SRXU SRXYRLU
pWDEOLU OD IRUPH GH O¶RQGH VWDWLRQQDLUH
&YFNQMF USBJU©
2QGH VWDWLRQQDLUH GHYDQW XQ FRQGXFWHXU SDUIDLW
2Q FRQVLGqUH GDQV FHW H[HPSOH XQ FRQGXFWHXU
SDUIDLW VLWXp GDQV OH GHPLHVSDFH x > 0 PL
OLHX OH YLGH FRQVWLWXDQW O¶DXWUH GHPLHVSDFH
GHV x QpJDWLIV PLOLHX 8QH RQGH pOHFWUR
PDJQpWLTXH SODQH SURJUHVVLYH VH GpSODFH GDQV
OH YLGH VDQV FKDUJH QL FRXUDQW VXLYDQW OHV x
→
FURLVVDQWV SRODULVpH UHFWLOLJQHPHQW VHORQ −
u y
2Q V¶LQWpUHVVH DX SKpQRPqQH GH UpIOH[LRQ GH
FHWWH RQGH j O¶LQWHUIDFH HQWUH OHV GHX[ PLOLHX[
HQ x = 0
�−
→�
2Q UDSSHOOH OHV H[SUHVVLRQV GX FKDPS pOHFWULTXH DVVRFLp j O¶RQGH LQFLGHQWH Ei HW j O¶RQGH
�−
→�
UpIOpFKLH Er GpWHUPLQpHV GDQV OD ILFKH SUpFpGHQWH ⎛
⎞
−
→ ⎝ Eix (x, t) = 0
Eiy (x, t) = E0 FRV(ωt − kx) ⎠
Ei =
Eiz (x, t) = 0
⎛
⎞
−
→ ⎝ Erx (x, t) = 0
Ery (x, t) = −E0 FRV(ωt + kx) ⎠
Er =
Erz (x, t) = 0
'RQQHU O¶H[SUHVVLRQ GX FKDPS pOHFWULTXH DVVRFLp j O¶RQGH UpVXOWDQWH GDQV OH GHPL
HVSDFH x < 0 &RPPHQWHU OD IRUPH GH O¶RQGH REWHQXH
'pWHUPLQHU O¶H[SUHVVLRQ GX FKDPS PDJQpWLTXH DVVRFLp j O¶RQGH LQFLGHQWH HW j O¶RQGH
UpIOpFKLH (Q GpGXLUH O¶H[SUHVVLRQ GX FKDPS PDJQpWLTXH UpVXOWDQW GDQV OH GHPLHVSDFH
x < 0 &RPPHQWHU
'pWHUPLQHU OD SRVLWLRQ GHV Q°XGV HW GHV YHQWUHV SRXU OHV FKDPSV pOHFWULTXH HW PDJQp
WLTXH
&DOFXOHU O¶H[SUHVVLRQ LQVWDQWDQpH GX YHFWHXU GH 3R\QWLQJ DVVRFLp j O¶RQGH UpVXOWDQWH
,QWHUSUpWHU VD YDOHXU PR\HQQH WHPSRUHOOH
43. Analyser la structure résultante de l’onde incidente et réfléchie (onde stationnaire)
251
40-65*0/
/H FKDPS pOHFWULTXH DVVRFLp j O¶RQGH UpVXOWDQWH HVW OD VRPPH GH O¶RQGH LQFLGHQWH HW GH
O¶RQGH UpIOpFKLH VXU OH FRQGXFWHXU SDUIDLW (Q VRPPDQW O¶H[SUHVVLRQ GHV GHX[ FKDPSV
RQ REWLHQW ⎛
⎞
(x,
t)
=
0
E
WRWDO,x
−
→ −
→
−
→
E WRWDO = Ei + Er = ⎝ EWRWDO,y (x, t) = 2E0 VLQ(ωt) VLQ(kx) ⎠
EWRWDO,z (x, t) = 0
2Q REWLHQW ELHQ O¶H[SUHVVLRQ FDUDFWpULVWLTXH G¶XQ FKDPS pOHFWULTXH DVVRFLp j XQH RQGH
VWDWLRQQDLUH RQ REVHUYH HQ HIIHW TXH OH WHUPH GH SKDVH FDUDFWpULVWLTXH GH OD SURSDJDWLRQ
D GLVSDUX DX SURILW G¶XQ GpFRXSODJH HQWUH OHV YDULDEOHV G¶HVSDFH HW GH WHPSV
/¶RQGH LQFLGHQWH HW O¶RQGH UpIOpFKLH pWDQW SODQHV HW SURJUHVVLYHV RQ YD FDOFXOHU OH FKDPS
→
−
→ −
PDJQpWLTXH DVVRFLp Bi HW Br UHVSHFWLYHPHQW HQ XWLOLVDQW OD UHODWLRQ GH VWUXFWXUH GHV
→ −
→
−
→ −
E
RQGHV pOHFWURPDJQpWLTXHV B = k ∧
ω 2Q REWLHQW ⎞
⎞
⎛
⎛
B (x, t) = 0
Brx (x, t) = 0
−
→ ⎝ ix
−
→
⎠ Br = ⎝ Bry (x, t) = 0
⎠
Biy (x, t) = 0
Bi =
E0
E0
Biz (x, t) = c FRV(ωt − kx)
Brz (x, t) = c FRV(ωt + kx)
3RXU REWHQLU OH FKDPS PDJQpWLTXH UpVXOWDQW LO VXIILW DORUV GH VRPPHU OHV GHX[ FKDPSV
PDJQpWLTXHV REWHQXV ,O YLHQW −
→
2E0
→
B WRWDO =
FRV(ωt) FRV(kx)−
u
z
c
2Q REVHUYH OH PrPH HIIHW GH GpFRXSODJH HQWUH OHV YDULDEOHV G¶HVSDFH HW GH WHPSV SRXU
OH FKDPS PDJQpWLTXH
6RLW XQ LQVWDQW t IL[p
,QWpUHVVRQVQRXV G¶DERUG DX FKDPS pOHFWULTXH OHV Q°XGV VRQW FDUDFWpULVpV SDU
nλ
XQH SRVLWLRQ xNE TXL YpULILH VLQ(kxNE ) = 0 F¶HVWjGLUH xNE = nπ
k = 2 /¶HQWLHU n HVW QpJDWLI FDU O¶HVSDFH DFFHVVLEOH SRXU O¶RQGH HVW OH GHPLHVSDFH GHV
x QpJDWLIV
/HV SRVLWLRQV GHV YHQWUHV GX FKDPS pOHFWULTXH xVE VRQW TXDQW j HOOHV FDUDFWpULVpHV
λ
SDU | VLQ(xVE ) |= 1 FH TXL FRQGXLW j xVE = (2n+1)π
= nλ
2k
2 + 4
(Q UDLVRQQDQW GH OD �PrPH PDQLqUH SRXU
OH FKDPS �PDJQpWLTXH� RQ REWLHQW OHV
�
λ
+
HW
GHV
YHQWUHV xVB = nλ
SRVLWLRQV GHV Q°XGV xNB = nλ
2
4
2 SRXU OH FKDPS
PDJQpWLTXH
−
→
−
→
/HV FKDPSV E WRWDO HW B WRWDO VRQW DLQVL HQ TXDGUDWXUH VSDWLDOH HW WHPSRUHOOH
→
→
−
−
→
−
→ −
/¶H[SUHVVLRQ GX YHFWHXU GH 3R\QWLQJ Π VH GpWHUPLQH JUkFH j O¶H[SUHVVLRQ Π = E WRWDOμ∧0B WRWDO /H FDOFXO FRQGXLW j 2
−
→ 4E02
→ = E0 VLQ(2ωt) VLQ(2kx)−
→
Π =
VLQ(ωt) FRV(ωt) VLQ(kx) FRV(kx)−
u
u
x
x
cμ0
cμ0
252
Physique des ondes
−
→
/D YDOHXU PR\HQQH WHPSRUHOOH Π GX YHFWHXU GH 3R\QWLQJ HVW DLQVL QXOOH 2Q UHWURXYH
ELHQ OH IDLW TX¶XQH RQGH VWDWLRQQDLUH QH SURSDJH SDV G¶pQHUJLH
&YFSDJDFT
&9&3$*$& 0RGHV SURSUHV G¶XQH FDYLWp
&RQVLGpURQV GDQV FHW H[HUFLFH XQH FDYLWp j
RQGH pOHFWURPDJQpWLTXH IRUPpH SDU O¶LQWp
ULHXU G¶XQ IRXU j PLFURRQGHV /¶LQWpULHXU GX
IRXU pWDQW SURFKH GH OD IRUPH G¶XQ FXEH RQ
YD UpGXLUH O¶pWXGH j XQH XQLTXH GLPHQVLRQ
2Q IDLW SDU DLOOHXUV O¶K\SRWKqVH VLPSOLILFD
WULFH TXH OHV RQGHV VH UpIOpFKLVVHQW HQ LQFL
GHQFH QRUPDOH VXU OHV SDURLV GX IRXU TXL VRQW
GHV FRQGXFWHXUV SDUIDLWV 2Q QRWH l OD GLV
WDQFH TXL VpSDUH GHX[ SDURLV RSSRVpHV
2Q VXSSRVH TXH ORUV GX IRQFWLRQQHPHQW GX IRXU j PLFURRQGHV LO V¶pWDEOLW j O¶LQWpULHXU GH OD
FDYLWp HQWUH GHX[ SODQV VpSDUpV G¶XQH GLVWDQFH x = l XQH RQGH pOHFWURPDJQpWLTXH VWDWLRQ
−
→
→
QDLUH GRQW OH FKDPS pOHFWULTXH DVVRFLp HVW GH OD IRUPH E = E0 VLQ(ωt) VLQ(kx)−
u
y
5DSSHOHU OHV FRQGLWLRQV DX[ OLPLWHV LPSRVpHV DX FKDPS pOHFWULTXH VXU XQ FRQGXFWHXU
SDUIDLW HQ LQFLGHQFH QRUPDOH
(Q H[SORLWDQW OD FRQGLWLRQ HQ x = l WURXYHU O¶H[SUHVVLRQ GHV PRGHV SURSUHV GH FHWWH
FDYLWp j RQGHV pOHFWURPDJQpWLTXHV DLQVL TXH OHV ORQJXHXUV G¶RQGHV FRUUHVSRQGDQWHV
2Q GRQQH O¶H[SUHVVLRQ GX FKDPS PDJQpWLTXH DVVRFLp j O¶RQGH pOHFWURPDJQpWLTXH FRQVL
−
→
→ 'pWHUPLQHU O¶H[SUHVVLRQ GX YHFWHXU GH 3R\QWLQJ
GpUpH B = Ec0 FRV(ωt) FRV(kx)−
u
z
([SOLTXHU DORUV O¶LQWpUrW GX SODWHDX WRXUQDQW j O¶LQWpULHXU G¶XQ IRXU j PLFURRQGHV
1PVS WPVT BJEFS
&9&3$*$& E©NBSSFS
,O Q¶HVW SDV QpFHVVDLUH GH UHGpPRQWUHU OD FRQGLWLRQ DX[ OLPLWHV DYHF OD
UHODWLRQ GH SDVVDJH SRXU OH FKDPS pOHFWULTXH
43. Analyser la structure résultante de l’onde incidente et réfléchie (onde stationnaire)
253
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& 3RXU OD UpIOH[LRQ G¶XQH RQGH pOHFWURPDJQpWLTXH VXU XQ FRQGXFWHXU SDUIDLW HQ LQFLGHQFH
QRUPDOH OD UHODWLRQ GH SDVVDJH LPSRVH TXH OH FRQGXFWHXU VRLW XQ Q°XG SRXU OH FKDPS
pOHFWULTXH /HV FRQGLWLRQV DX[ OLPLWHV VRQW GRQF −
→
−
→
−
→
E (x = 0, t) = E (x = l, t) = 0
/D FRQGLWLRQ HQ x = l GRQQH O¶pTXDWLRQ ∀t, E0 VLQ(ωt) VLQ(kl) = 0
&HWWH pTXDWLRQ pWDQW YDODEOH j WRXW LQVWDQW t RQ REWLHQW OD FRQGLWLRQ VLQ(kl) = 0 (Q
GpYHORSSDQW FHWWH FRQGLWLRQ RQ REWLHQW OD TXDQWLILFDWLRQ GX YHFWHXU G¶RQGH UHFKHUFKpH
ω
2π
TXL V¶pFULW kn = nπ
l $YHF OHV UHODWLRQV k = c = λ RQ REWLHQW OHV SXOVDWLRQV HW OHV
ORQJXHXUV G¶RQGH DVVRFLpHV DX[ PRGHV SURSUHV GH OD FDYLWp ωn =
nπc
l
HW λn =
2l
n
(Q XWLOLVDQW O¶H[SUHVVLRQ GX FKDPS PDJQpWLTXH GRQQpH SDU O¶pQRQFp OH FDOFXO GX YHF
WHXU GH 3R\QWLQJ FRQGXLW j 2
−
→
E2
→ = E0 VLQ(2ωt) VLQ(2kx)−
→
u
u
Π = 0 VLQ(ωt) VLQ(kx) FRV(ωt) FRV(kx)−
x
x
μ0 c
4μ0 c
2Q UHWURXYH O¶H[SUHVVLRQ FODVVLTXH SRXU OH YHFWHXU GH 3R\QWLQJ G¶XQH RQGH VWDWLRQQDLUH
GH YDOHXU PR\HQQH WHPSRUHOOH QXOOH &RPPH OHV FKDPSV pOHFWULTXH HW PDJQpWLTXH OH
FKDPS DVVRFLp DX YHFWHXU GH 3R\QWLQJ SUpVHQWH GHV YHQWUHV HW GHV Q°XGV
/H FKDXIIDJH GHV DOLPHQWV VH IDLVDQW SDU H[FLWDWLRQ GHV PROpFXOHV G¶HDX FRQWHQXHV GDQV
OD QRXUULWXUH OH WUDQVIHUW G¶pQHUJLH SDU YRLH pOHFWURPDJQpWLTXH HVW PD[LPDO DXWRXU GHV
YHQWUHV GX YHFWHXU GH 3R\QWLQJ HW QXO DX[ Q°XGV 2Q IDLW GRQF WRXUQHU OHV DOLPHQWV
SRXU REWHQLU XQ FKDXIIDJH XQLIRUPH
254
Physique des ondes
Thermodynamique - Thermique
Utiliser les principes
de6UJMJTFS
la thermodynamique
MFT QSJODJQFT
sous
EF MB
UIFSNPEZOBNJRVF
forme
différentielle
TPVT GPSNF EJGG©SFOUJFMMF
44
2VBOE PO OF TBJU QBT ,O H[LVWH GHX[ W\SHV GH WUDQVIHUWV pQHUJpWLTXHV pOpPHQWDLUHV ² OH WUDYDLO PpFDQLTXH pOpPHQWDLUH δW = P × Gt GH SXLVVDQFH P HQ :DWW
² OH WUDQVIHUW WKHUPLTXH RX FKDOHXU pOpPHQWDLUH δQ = Φ × Gt GH IOX[ WKHUPLTXH Φ
HQ :DWW j WUDYHUV OD VXUIDFH GLDWKHUPH GX V\VWqPH
3RXU XQ V\VWqPH IHUPp G¶pQHUJLH LQWHUQH U G¶pQHUJLH FLQpWLTXH Ec HW G¶pQHUJLH SRWHQ
WLHOOH Ep OH SUHPLHU SULQFLSH GH OD WKHUPRG\QDPLTXH DX FRXUV G¶XQH WUDQVIRUPDWLRQ
LQILQLWpVLPDOH HQWUH OHV GHX[ LQVWDQWV t HW t + Gt V¶pFULW GU + GEc + GEp = δW + δQ
/HV ORLV GH -RXOH VRXV IRUPH GLIIpUHQWLHOOH V¶pFULYHQW *D] SDUIDLW
3KDVH LQFRPSUHVVLEOH HW LQGLODWDEOH
GU = CV × GT
GH = Cp × GT
GU � GH = C × GT
/RUV G¶XQH WUDQVIRUPDWLRQ PRQREDUH OH SUHPLHU SULQFLSH VH VLPSOLILH DYHF O¶HQWKDOSLH H GH + GEc + GEp = δWu + δQ
δWu HVW OH WUDYDLO pOpPHQWDLUH XWLOH F¶HVWjGLUH OH WUDYDLO pOpPHQWDLUH DXWUH TXH FHOXL GHV
IRUFHV SUHVVDQWHV
3RXU XQ V\VWqPH IHUPp OH VHFRQG SULQFLSH GH OD WKHUPRG\QDPLTXH DX FRXUV G¶XQH WUDQV
IRUPDWLRQ LQILQLWpVLPDOH HQWUH OHV GHX[ LQVWDQWV t HW t + Gt V¶pFULW GS = δSech + δSc
δSech = TδQ
HVW O¶HQWURSLH pOpPHQWDLUH pFKDQJpH /¶HQWURSLH pOpPHQWDLUH FUppH δSc
ext
YDXW ! VL OD WUDQVIRUPDWLRQ HVW LUUpYHUVLEOH
δSc
VL OD WUDQVIRUPDWLRQ HVW UpYHUYLEOH
44. Utiliser les principes de la thermodynamique sous forme différentielle
255
2VF GBJSF
3RXU DSSOLTXHU OH SUHPLHU SULQFLSH GpILQLU OH V\VWqPH pWXGLp
H[SOLFLWHU OHV SDUDPqWUHV WKHUPRG\QDPLTXHV j O¶pWDW LQLWLDO HW j O¶pWDW ILQDO
GpILQLU OD QDWXUH GH OD WUDQVIRUPDWLRQ
H[SOLFLWHU OHV GLIIpUHQWV WUDQVIHUWV pQHUJpWLTXHV FKDOHXU HW WUDYDLO pOpPHQWDLUHV
DSSOLTXHU OH SUHPLHU SULQFLSH VRXV IRUPH GLIIpUHQWLHOOH
3RXU VLPSOLILHU OH SUHPLHU SULQFLSH XWLOLVHU OHV ORLV GH -RXOH SRXU FDOFXOHU OD YDULDWLRQ G¶pQHUJLH LQWHUQH RX G¶HQWKDOSLH
WUDQVIRUPHU O¶pTXDWLRQ GLIIpUHQWLHOOH VRXV IRUPH FDQRQLTXH HW UpVRXGUH
3RXU DSSOLTXHU OH VHFRQG SULQFLSH GpILQLU OH V\VWqPH pWXGLp
DSSOLTXHU OH SUHPLHU SULQFLSH VRXV IRUPH GLIIpUHQWLHOOH SRXU H[SULPHU OH WUDQVIHUW
WKHUPLTXH δQ
HQ GpGXLUH O¶HQWURSLH pFKDQJpH δSech pOpPHQWDLUH
H[SULPHU OD YDULDWLRQ pOpPHQWDLUH GH O¶HQWURSLH GS
HQ GpGXLUH O¶HQWURSLH FUppH Sc
$POTFJMT
´G´ WUDGXLW OD YDULDWLRQ pOpPHQWDLUH G¶XQH IRQFWLRQ Gf = f (t + Gt) − f (t)
δ UHSUpVHQWH XQH TXDQWLWp pOpPHQWDLUH
&YFNQMF USBJU©
2Q pWXGLH XQ WKHUPRPqWUH F\OLQGULTXH GH UD\RQ R UHPSOL G¶XQH KDXWHXU H GH PHUFXUH
FRQVLGpUp FRPPH LQFRPSUHVVLEOH GH PDVVH YROXPLTXH ρ HW GH FDSDFLWp FDORULILTXH PDV
VLTXH c 2Q QRWH T (t) OD WHPSpUDWXUH GX PHUFXUH j O¶LQVWDQW t /H WKHUPRPqWUH VH WURXYDLW
GDQV XQH VDOOH GH WHPSpUDWXUH T0 = 20 ƒ& È O¶LQVWDQW t = 0 RQ OH SORQJH GDQV XQ OLTXLGH GH
WHPSpUDWXUH T1 TXH O¶RQ VRXKDLWH PHVXUHU /H WKHUPRPqWUH UHoRLW XQ IOX[ WKHUPLTXH SURSRU
WLRQQHO j OD VXUIDFH ODWpUDOH S = 2πR × H GX F\OLQGUH HW j OD GLIIpUHQFH HQWUH OD WHPSpUDWXUH
H[WpULHXUH Text HW OD WHPSpUDWXUH T GX PHUFXUH Φ = h × S × (Text − T )
256
Thermodynamique - Thermique
2Q pWXGLH OH PHUFXUH 'pWHUPLQHU OHV WUDQVIHUWV pQHUJpWLTXHV pOpPHQWDLUHV UHoXV
(Q GpGXLUH O¶pTXDWLRQ GLIIpUHQWLHOOH YpULILpH SDU OD WHPSpUDWXUH GX WKHUPRPqWUH
,VROHU XQ WHPSV FDUDFWpULVWLTXH (VWLPHU OH WHPSV GH UpSRQVH GX WKHUPRPqWUH
40-65*0/
2Q PRGpOLVH OH PHUFXUH SDU XQH SKDVH LQFRPSUHVVLEOH HW LQGLODWDEOH GH FDSDFLWp FDOR
ULILTXH C = m × c = V × ρ × c = πR2 H × ρ × c ,QLWLDOHPHQW LO VH WURXYH j OD
WHPSpUDWXUH T0 HW j O¶pTXLOLEUH ILQDO LO DWWHLQGUD OD WHPSpUDWXUH GX OLTXLGH T1 /H PHUFXUH HVW HQ pTXLOLEUH PpFDQLTXH HW OD SUHVVLRQ H[WpULHXUH HVW FRQVWDQWH GRQF OD
WUDQVIRUPDWLRQ HVW PRQREDUH /H VHXO WUDQVIHUW pQHUJpWLTXH FRUUHVSRQG DX WUDQVIHUW WKHU
PLTXH pOpPHQWDLUH δQ = Φ × Gt
2Q DSSOLTXH OH SUHPLHU SULQFLSH VRXV IRUPH GLIIpUHQWLHOOH HQWUH OHV GHX[ LQVWDQWV t HW
t + Gt GU = Φ × Gt
2Q XWLOLVH OD ORL GH -RXOH HW RQ VXEVWLWXH O¶H[SUHVVLRQ GX IOX[ WKHUPLTXH c × πR2 Hρ × GT = h × 2πRH × (T1 − T (t))
2Q VLPSOLILH HW RQ WUDQVIRUPH O¶pTXDWLRQ GLIIpUHQWLHOOH VRXV IRUPH FDQRQLTXH GT (t)
2h
2h
+
T (t) =
T1
Gt
cρR
cρR
&¶HVW XQH pTXDWLRQ GLIIpUHQWLHOOH OLQpDLUH GX SUHPLHU RUGUH HW GH WHPSV FDUDFWpULVWLTXH
3×cρR
τ = cρR
2h /H WHPSV GH UpSRQVH GX WKHUPRPqWUH YDXW HQYLURQ 3τ � 2×h &YFSDJDFT
&9&3$*$& eFKDXIIHPHQW G¶XQ JD]
2Q SODFH XQH PROH GH JD] SDUIDLW GH FDSDFLWp FDORULILTXH j YROXPH FRQVWDQW CV HW GH WHP
SpUDWXUH T0 GDQV XQH HQFHLQWH DGLDEDWLTXH HW LQGLODWDEOH GH YROXPH V0 2Q FKDXIIH OH JD]
JUkFH j XQH UpVLVWDQFH /D YDOHXU GH OD UpVLVWDQFH GpSHQG GH OD WHPSpUDWXUH VHORQ OD ORL
R(T ) = R0 × (1 + α (T − T0 )) R α HW R0 VRQW GHV FRQVWDQWHV SRVLWLYHV 2Q DOLPHQWH
OD UpVLVWDQFH DYHF XQH LQWHQVLWp I FRQVWDQWH
5DSSHOHU O¶H[SUHVVLRQ GH OD SXLVVDQFH GLVVLSpH SDU HIIHW -RXOH
'pWHUPLQHU O¶pTXDWLRQ GLIIpUHQWLHOOH YpULILpH SDU OD WHPSpUDWXUH T (t) GX JD]
([SOLFLWHU OD FRQGLWLRQ LQLWLDOH 5pVRXGUH FHWWH pTXDWLRQ GLIIpUHQWLHOOH
44. Utiliser les principes de la thermodynamique sous forme différentielle
257
1PVS WPVT BJEFS
&9&3$*$& E©NBSSFS
/D UpVLVWDQFH GLVVLSH SDU HIIHW -RXOH WRXWH OD SXLVVDQFH pOHFWULTXH UHoXH
R × I 2
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& 2Q LPSRVH XQH LQWHQVLWp GDQV OD UpVLVWDQFH HOOH GLVVLSH SDU HIIHW -RXOH OD SXLVVDQFH
PJ = R × I 2 2Q pWXGLH OH JD] HQWUH OHV LQVWDQWV t HW t + Gt /H YROXPH GH O¶HQFHLQWH HVW FRQVWDQW
GRQF OD WUDQVIRUPDWLRQ HVW LVRFKRUH /H JD] UHoRLW OH WUDQVIHUW WKHUPLTXH pOpPHQWDLUH
δQ = PJ × Gt &RPPH OH YROXPH HVW FRQVWDQW OH WUDYDLO GHV IRUFHV SUHVVDQWHV HVW QXO
2Q DSSOLTXH OH SUHPLHU SULQFLSH DX JD] GU + GEc = δQ
/H PHUFXUH HVW DX UHSRV PDFURVFRSLTXH GRQF OD YDULDWLRQ G¶pQHUJLH FLQpWLTXH HVW QXOOH
2Q XWLOLVH OD ORL GH -RXOH SRXU H[SULPHU OD YDULDWLRQ G¶pQHUJLH LQWHUQH GU = CV × GT $LQVL OH SUHPLHU SULQFLSH GHYLHQW CV × GT = R0 I 2 × (1 + α (T − T0 )) Gt TXH O¶RQ
WUDQVIRUPH VRXV IRUPH FDQRQLTXH GT
R0 I 2 × α
R0 I 2 × α
R0 I 2
−
T =−
T0 +
Gt
CV
CV
CV
&¶HVW XQH pTXDWLRQ GLIIpUHQWLHOOH GX SUHPLHU RUGUH j FRHIILFLHQWV FRQVWDQWV GH VROXWLRQ R0 I 2 α
T (t) = A × e CV
t
+ T0 −
1
α
2Q XWLOLVH OD FRQGLWLRQ LQLWLDOH T (0) = T0 A + T0 − α1 = T0 GRQF A = α1 2Q HQ
GpGXLW O¶pTXDWLRQ KRUDLUH GH OD WHPSpUDWXUH R I2α
0
1
t
CV
− 1 + T0
T (t) = × e
α
258
Thermodynamique - Thermique
45
Étudier un système ouvert
‰UVEJFS
VO TZTU¨NF PVWFSU
2VBOE PO OF TBJU QBT 2Q UHSUpVHQWH XQH JUDQGHXU pQHUJpWLTXH X SDU XQH PDMXVFXOH HW OD JUDQGHXU PDVVLTXH
DVVRFLpH SDU OD PLQXVFXOH GX
x=
Gm
/¶HQWKDOSLH PDVVLTXH h = u + P × v HVW GpILQLH j SDUWLU GH O¶HQWKDOSLH H SDU h = GH
Gm '¶XQH PDFKLQH WKHUPLTXH RQ pWXGLH XQ pOpPHQW DFWLI FRQVWLWXp G¶XQH HQWUpH HW G¶XQH
VRUWLH (Q UpJLPH VWDWLRQQDLUH OH GpELW PDVVLTXH Dm = Gm
Gt HQ HQWUpH HVW LGHQWLTXH j
FHOXL GH VRUWLH 2Q QRWH Gm OD PDVVH TXL HQWUH HW FHOOH TXL VRUW HQWUH OHV GHX[ LQVWDQWV t
HW t + Gt
Dm
wu
q
Dm
2Q LQGLFH OHV JUDQGHXUV pQHUJpWLTXHV SDU 1 ORUVTX¶HOOHV FRQFHUQHQW OH IOXLGH j O¶HQWUpH
GH O¶pOpPHQW HW SDU 2 ORUVTX¶HOOHV FRQFHUQHQW OH IOXLGH j OD VRUWLH GH O¶pOpPHQW /HV GHX[
SULQFLSHV GH OD WKHUPRG\QDPLTXH V¶pFULYHQW Δ21 (h + ec + ep ) = wu + q
HW
Δ21 s = sech + sc
DYHF ² h ec ep HW s O¶HQWKDOSLH PDVVLTXH O¶pQHUJLH FLQpWLTXH PDVVLTXH O¶pQHUJLH SR
WHQWLHOOH PDVVLTXH HW O¶HQWURSLH PDVVLTXH
² wu q sech HW sc OH WUDYDLO XWLOH PDVVLTXH F¶HVWjGLUH OH WUDYDLO PDVVLTXH DXWUH TXH
FHOXL GHV IRUFHV SUHVVDQWHV OH WUDQVIHUW WKHUPLTXH PDVVLTXH O¶HQWURSLH pFKDQJpH
PDVVLTXH HW O¶HQWURSLH FUppH PDVVLTXH
45. Étudier un système ouvert
259
/D SXLVVDQFH PpFDQLTXH HVW REWHQXH j SDUWLU GX WUDYDLO PDVVLTXH wu HW GX GpELW PDVVLTXH P = Dm × w u
/D SXLVVDQFH WKHUPLTXH HVW REWHQXH j SDUWLU GX WUDQVIHUW WKHUPLTXH PDVVLTXH q HW GX GpELW
PDVVLTXH P = Dm × q
3URSULpWpV GX GLDJUDPPH GHV IULJRULVWHV (OQ P, h) ² OHV LVREDUHV VRQW KRUL]RQWDOHV
² OHV LVHQWKDOSLTXHV VRQW YHUWLFDOHV
² OHV LVRWKHUPHV VRQW HQ WUDLWV LQWHUURP
SXV
² OHV LVHQWURSLTXHV VRQW HQ SRLQWLOOpV
² OD YDULDWLRQ GH O¶HQWKDOSLH PDVVLTXH
HVW pJDOH j OD VRPPH GX WUDYDLO XWLOH
PDVVLTXH HW GH OD FKDOHXU PDVVLTXH OQ P
L
L+G
G
h
Δh = wu + q
3URSULpWpV GX GLDJUDPPH HQWURSLTXH (T, s) ² OHV LVHQWURSLTXHV VRQW YHUWLFDOHV
T
² OHV LVRWKHUPHV VRQW KRUL]RQWDOHV
² OHV LVHQWKDOSLTXHV HQ SRLQWLOOpV
² O¶DLUH DOJpEULTXH FRPSULVH VRXV OD
FRXUEH HVW pJDOH j OD FKDOHXU PDV
VLTXH A=q
L
L+G
G
s
2VF GBJSF
Gm1
M (t)
M (t + Gt)
Gm2
260
Thermodynamique - Thermique
3RXU GpPRQWUHU OH SUHPLHU SULQFLSH SRXU XQ V\VWqPH RXYHUW FRQVLGpUHU OH V\VWqPH IHUPp JULVp ¬ O¶LQVWDQW t LO HVW FRQVWLWXp GH OD PDVVH pOpPHQ
WDLUH Gm1 DYDQW TX¶HOOH HQWUH GDQV O¶pOpPHQW HW GH OD PDVVH M (t) GDQV O¶pOpPHQW
DFWLI ¬ O¶LQVWDQW t + Gt FH V\VWqPH HVW FRPSRVp GH OD PDVVH M (t + Gt) GDQV O¶pOp
PHQW DFWLI HW GH OD PDVVH pOpPHQWDLUH Gm2 DSUqV O¶pOpPHQW DFWLI
H[SULPHU OHV GHX[ IRUFHV SUHVVDQWHV
FDOFXOHU OD YDULDWLRQ GH O¶pQHUJLH GX V\VWqPH HQWUH OHV GHX[ LQVWDQWV
DSSOLTXHU OH SUHPLHU SULQFLSH j FH V\VWqPH IHUPp HQ LQWURGXLVDQW O¶HQWKDOSLH PDV
VLTXH
$POTFJMT
(Q UpJLPH VWDWLRQQDLUH OD PDVVH FRQWHQXH GDQV O¶pOpPHQW DFWLI HVW FRQVWDQWH M (t + Gt) = M (t)
2Q XWLOLVH VRXYHQW δWu = wu × Gm HW δQ = q × Gm
&YFNQMF USBJU©
2Q FRQVLGqUH XQ pOpPHQW DFWLI FRQVWLWXp G¶XQH HQWUpH HW G¶XQH VRUWLH 2Q UHSUHQG OH VFKpPD
GH OD SDUWLH 4XH IDLUH " 2Q pWXGLH OH V\VWqPH JULVp HQWUH OHV LQVWDQWV t HW t+Gt 'DQV O¶pOpPHQW
DFWLI HQWUH OHV GHX[ LQVWDQWV t HW t + Gt OH IOXLGH UHoRLW OH WUDYDLO PDVVLTXH wu HW OH WUDQVIHUW
WKHUPLTXH q 2Q LQGLFH SDU 1 OHV JUDQGHXUV pQHUJpWLTXHV UHODWLYHV DX IOXLGH j O¶HQWUpH GH
O¶pOpPHQW HW SDU 2 OHV JUDQGHXUV pQHUJpWLTXHV UHODWLYHV DX IOXLGH j OD VRUWLH GH O¶pOpPHQW
-XVWLILHU TX¶HQ UpJLPH VWDWLRQQDLUH OD PDVVH HQWUDQWH j JDXFKH Gm1 HVW pJDOH j OD PDVVH
VRUWDQWH Gm2 2Q QRWHUD Gm = Gm1 = Gm2 ([SULPHU OHV GHX[ WUDYDX[ GHV IRUFHV SUHVVDQWHV HQ IRQFWLRQ GHV SUHVVLRQV P1 P2 HW GHV
YROXPHV PDVVLTXHV v1 HW v2 &DOFXOHU HQ UpJLPH VWDWLRQQDLUH OD YDULDWLRQ GH O¶pQHUJLH GX V\VWqPH Δ (U + Ec + Ep )
HQ IRQFWLRQ GH Gm GH O¶pQHUJLH LQWHUQH PDVVLTXH u GH O¶pQHUJLH FLQpWLTXH PDVVLTXH ec
HW GH O¶pQHUJLH SRWHQWLHOOH PDVVLTXH ep (Q GpGXLUH O¶H[SUHVVLRQ GX SUHPLHU SULQFLSH SRXU OHV V\VWqPHV RXYHUWV HQ UpJLPH VWD
WLRQQDLUH
45. Étudier un système ouvert
261
40-65*0/
2Q XWLOLVH OD FRQVHUYDWLRQ GH OD PDVVH GX V\VWqPH JULVp M (t)+Gm1 = M (t+Gt)+Gm2 (Q UpJLPH VWDWLRQQDLUH RQ D M (t + Gt) = M (t) 3DU FRQVpTXHQW HQ UpJLPH VWDWLRQQDLUH
RQ D O¶pJDOLWp Gm1 = Gm2 ¬ JDXFKH OH IOXLGH SRXVVH OH V\VWqPH TXL SHUG OH YROXPH v1 × Gm GRQF OH WUDYDLO GH OD
IRUFH SUHVVDQWH HVW δWP (1) = −P1 GV1 = −P1 × (−v1 × Gm) = P1 × v1 × Gm
¬ GURLWH OH V\VWqPH JDJQH OH YROXPH v2 × Gm GRQF OH WUDYDLO GH OD IRUFH SUHVVDQWH HVW δWP (2) = −P2 GV2 = −P2 × v2 × Gm = −P2 × v2 × Gm
/HV JUDQGHXUV pQHUJpWLTXHV pWDQW H[WHQVLYHV RQ OHV GpFRPSRVH ΔU = U (Gm2 ) + U (M (t + Gt)) − U (Gm1 ) − U (M (t))
(Q UpJLPH SHUPDQHQW U (M (t + Gt)) = U (M (t)) GRQF ΔU = U (Gm2 ) − U (Gm1 ) = u2 × Gm − u1 × Gm = Gm × Δ21 u
,O HQ HVW GH PrPH SRXU O¶pQHUJLH SRWHQWLHOOH HW O¶pQHUJLH FLQpWLTXH Δ (U + Ec + Ep ) = Gm × Δ21 (u + ec + ep )
2Q DSSOLTXH OH SUHPLHU SULQFLSH DX V\VWqPH JULVp HQWUH OHV GHX[ LQVWDQWV t HW t + Gt
/HV GLIIpUHQWV pFKDQJHV pQHUJpWLTXHV VRQW OHV WUDYDX[ GHV IRUFHV SUHVVDQWHV δWP (1) HW
δWP (2) OH WUDYDLO XWLOH δWu HW OH WUDQVIHUW WKHUPLTXH δQ /H SUHPLHU SULQFLSH V¶pFULW Δ (U + Ec + Ep ) = δWP (1) + δWP (2) + δWu + δQ
Gm × Δ21 (u + ec + ep ) = (P1 × v1 − P2 × v2 ) × Gm + wu × Gm + q × Gm
Δ21 (u + ec + ep ) = P1 × v1 − P2 × v2 + wu + q
Δ21 (u + P × v + ec + ep ) = wu + q
2Q UHFRQQDLW O¶HQWKDOSLH PDVVLTXH h = u + P × v /H SUHPLHU SULQFLSH GHYLHQW Δ21 (h + ec + ep ) = wu + q
&YFSDJDFT
&9&3$*$& eWXGH G¶XQH FOLPDWLVDWLRQ
/D FOLPDWLVDWLRQ GHV YpKLFXOHV XWLOLVH OH IOXLGH FDORSRUWHXU 5D 2Q DGPHWWUD TX¶LO VH FRP
SRUWH FRPPH XQ JD] SDUIDLW j O¶pWDW JD]HX[ 2Q QRWH r = 85 -NJí1 .í1 OD FRQVWDQWH PDV
VLTXH GH FH JD] SDUIDLW HW γ = 1, 12 O¶H[SRVDQW DGLDEDWLTXH GX IOXLGH /H GpELW PDVVLTXH
YDXW Dm = 0, 13 NJVí1 2Q UDSSHOOH OD UHODWLRQ GH 0D\HU cp ícv = r SRXU OHV JUDQGHXUV
PDVVLTXHV
262
Thermodynamique - Thermique
/H F\FOH WKpRULTXH VXEL SDU OH IOXLGH HVW OH VXLYDQW • GDQV O¶pYDSRUDWHXU OH IOXLGH HVW j O¶pWDW GH YDSHXU VDWXUDQWH j OD SUHVVLRQ p1 = 3, 5 EDU
,O VXELW XQ pFKDXIIHPHQW LVREDUH TXL O¶DPqQH j O¶pWDW GH WHPSpUDWXUH T2 HW G¶HQWKDOSLH
PDVVLTXH h2 = 415 N-NJ
• OD YDSHXU EDVVH SUHVVLRQ HVW FRPSULPpH GH IDoRQ DGLDEDWLTXH HW UpYHUVLEOH SDU OH FRPSUHV
VHXU MXVTX¶j O¶pWDW GH SUHVVLRQ p3 = 10 EDU
• HQWUH HW OD YDSHXU VH FRQGHQVH HQWLqUHPHQW MXVTX¶j O¶pWDW GH OLTXLGH VDWXUDQW GDQV
OH FRQGHQVHXU R HOOH FqGH j O¶DLU H[WpULHXU XQH TXDQWLWp GH FKDOHXU VRXV SUHVVLRQ FRQVWDQWH
• HQ VRUWLH GX FRQGHQVHXU OH OLTXLGH VH UHIURLGLW HQ WUDYHUVDQW OH UpVHUYRLU GpVK\GUDWHXU WRX
MRXUV j SUHVVLRQ FRQVWDQWH SRXU DUULYHU j O¶pWDW GH WHPSpUDWXUH T5 = 32 ƒ&
• HQWUH O¶pWDW HW O¶pWDW OH IOXLGH WUDYHUVH OH GpWHQGHXU FDORULIXJp TXL DEDLVVH OD SUHVVLRQ
j EDU
• OH IOXLGH SpQqWUH DORUV GDQV O¶pYDSRUDWHXU SRXU HQ UHVVRUWLU j O¶pWDW 2Q GRQQH OH GLDJUDPPH (P, h) GX IOXLGH &DOFXOHU OD YDOHXU GH OD FDSDFLWp FDORULILTXH j SUHVVLRQ FRQVWDQWH PDVVLTXH GX IOXLGH
'pWHUPLQHU JUDSKLTXHPHQW OD WHPSpUDWXUH T3 HQ ILQ GH FRPSUHVVLRQ
3ODFHU OHV pWDWV GH j VXU OH GLDJUDPPH HQWKDOSLTXH
'pWHUPLQHU OD IUDFWLRQ PDVVLTXH HQ YDSHXU j O¶HQWUpH GH O¶pYDSRUDWHXU
45. Étudier un système ouvert
263
'pWHUPLQHU JUDSKLTXHPHQW OD SXLVVDQFH PpFDQLTXH IRXUQLH SDU OH FRPSUHVVHXU
'pWHUPLQHU JUDSKLTXHPHQW OH WUDQVIHUW WKHUPLTXH PDVVLTXH pFKDQJp DYHF O¶DLU SXOVp
YHUV O¶KDELWDFOH
(Q GpGXLUH OD SXLVVDQFH IULJRULILTXH GH OD FOLPDWLVDWLRQ
&DOFXOHU O¶HIILFDFLWp GH FHWWH FOLPDWLVDWLRQ
&9&3$*$& &\FOH IULJRULILTXH
2Q pWXGLH XQ F\FOH IULJRULILTXH HOOLSWLTXH GH FHQWUH (s0 , T0 ) HW GH GHPLD[HV GH ORQJXHXU
s0 /2 HW T0 /2 GDQV XQ GLDJUDPPH HQWURSLTXH (T, s)
7UDFHU OH F\FOH HW MXVWLILHU OH VHQV GH SDUFRXUV GX F\FOH
'pWHUPLQHU OD FKDOHXU PDVVLTXH pFKDQJpH SDU OH IOXLGH DX FRXUV G¶XQ F\FOH "
'pWHUPLQHU OD FKDOHXU PDVVLTXH pFKDQJpH HQ FRQWDFW DYHF OD VRXUFH IURLGH
(Q GpGXLUH O¶HIILFDFLWp GH FH F\FOH &RPPHQWHU
1PVS WPVT BJEFS
E©NBSSFS
&9&3$*$& 3RXU OD TXHVWLRQ XWLOLVHU OD UHODWLRQ GH 0D\HU
&9&3$*$& 8Q F\FOH IULJRULILTXH IRXUQLW GH OD FKDOHXU LO D EHVRLQ GH WUDYDLO
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& /H SRLQW D SRXU FRRUGRQQpHV h2 = 415 N-NJ EDU /¶pYROXWLRQ 2 − 3 HVW DGLD
EDWLTXH UpYHUVLEOH GRQF LVHQWURSLTXH /¶pWDW HQ VRUWLH GX FRPSUHVVHXU FRUUHVSRQG j
O¶LQWHUVHFWLRQ GH O¶LVHQWURSLTXH SDVVDQW SDU HW GH O¶LVREDUH p3 = 10 EDU *UDSKLTXH
PHQW RQ OLW T3 � 58 ƒ&
2Q GRQQH OHV FRRUGRQQpHV (h; P ) GHV VL[ SRLQWV RQ VXLW O¶LVHQWURSLTXH SDVVDQW SDU MXVTX¶j OD SUHVVLRQ GH EDU 2Q WURXYH OHV
FRRUGRQQpHV GX SRLQWV OD WUDQVIRUPDWLRQ 3 − 4 HVW LVREDUH GRQF RQ VXLW O¶KRUL]RQWDOH MXVTX¶j OD FRXUEH GH
VDWXUDWLRQ 2Q REWLHQW OHV FRRUGRQQpHV GX SRLQW RQ SRXUVXLW O¶KRUL]RQWDOH MXVTX¶j OD YHUWLFDOH FRQWHQDQW O¶LVRWKHUPH GH WHPSpUDWXUH T5 2Q REWLHQW OHV FRRUGRQQpHV GX SRLQW Thermodynamique - Thermique
OH GpWHQGHXU HVW LVHQWKDOSLTXH GRQF OD WUDQVIRUPDWLRQ 5 − 6 HVW YHUWLFDOH 2Q VXLW OD
YHUWLFDOH MXVTX¶j OD SUHVVLRQ GH EDU 2Q REWLHQW OHV FRRUGRQQpHV GX SRLQW 264
c
'¶DSUqV OD GpILQLWLRQ GX FRHIILFLHQW G¶DGLDEDWLFLWp γ = cvp HW GH OD UHODWLRQ GH 0D\HU RQ
REWLHQW γ×r
cp =
� 793 -NJí1 ..í1
γí1
VDWXUDWLRQ 2Q REWLHQW OHV FRRUGRQQpHV GX SRLQW RQ SRXUVXLW O¶KRUL]RQWDOH MXVTX¶j OD YHUWLFDOH FRQWHQDQW O¶LVRWKHUPH GH WHPSpUDWXUH T5 2Q REWLHQW OHV FRRUGRQQpHV GX SRLQW OH GpWHQGHXU HVW LVHQWKDOSLTXH GRQF OD WUDQVIRUPDWLRQ 5 − 6 HVW YHUWLFDOH 2Q VXLW OD
YHUWLFDOH MXVTX¶j OD SUHVVLRQ GH EDU 2Q REWLHQW OHV FRRUGRQQpHV GX SRLQW *UDSKLTXHPHQW RQ OLW OD IUDFWLRQ PDVVLTXH SDU O¶LVRWLWUH xv � 0, 2
2Q SHXW FDOFXOHU OH WLWUH JUkFH j OD UqJOH GHV PRPHQWV xv =
245í205
h(6)íhl (6)
�
� 0, 205
hv (6)íhl (6)
400í205
2Q DSSOLTXH OH SUHPLHU SULQFLSH SRXU XQ V\VWqPH RXYHUW DX QLYHDX GX FRPSUHVVHXU
DGLDEDWLTXH Δ32 h = wu + q = wu 2U RQ GpWHUPLQH JUDSKLTXHPHQW Δ32 h � 440í415 � 25 N-NJí1
3DU FRQVpTXHQW OH FRPSUHVVHXU IRXUQLW OD SXLVVDQFH PpFDQLTXH Pu =
/H IOXLGH HVW HQ FRQWDFW DYHF O¶DLU SXOVp DX QLYHDX GH O¶pYDSRUDWHXU 2Q DSSOLTXH OH
SUHPLHU SULQFLSH SRXU XQ V\VWqPH RXYHUW HQWUH OHV SRLQWV HW Solutions
Gm × wu
GWu
=
= Dm × wu = Dm × Δ32 h � 3250 :
Gt
Gt
qf = Δ26 h = h2 íh6 � 170 N-NJí1
/D SXLVVDQFH WKHUPLTXH IRXUQLH SDU OD FOLPDWLVHXU YDXW Pf = Dm × qf � 22 N:
/D SXLVVDQFH XWLOH HVW OD SXLVVDQFH WKHUPLTXH IRXUQLH j O¶DLU SXOVp ,O IDXW DSSRUWHU GH OD
SXLVVDQFH DX FRPSUHVVHXU GRQF O¶HIILFDFLWp GX FOLPDWLVHXU YDXW e=
Pf
� 7, 3
Pu
&9&3$*$& 8QH PDFKLQH IULJRULILTXH WUDQVSRUWH GH OD FKDOHXU HOOH D EHVRLQ G¶XQ DSSRUW GH WUDYDLO
w > 0 2Q DSSOLTXH OH SUHPLHU SULQFLSH DX IOXLGH VXU XQ F\FOH ΔH = 0 = q + wu GRQF OD FKDOHXU HVW QpJDWLYH q < 0 2U O¶DLUH FRPSULVH GDQV OH F\FOH GDQV XQ GLDJUDPPH
HQWURSLTXH FRUUHVSRQG j OD FKDOHXU GRQF OH F\FOH HVW SDUFRXUX GDQV OH VHQV WULJRQRPp
WULTXH 45. Étudier un système ouvert
265
e=
Pf
� 7, 3
Pu
&9&3$*$& 8QH PDFKLQH IULJRULILTXH WUDQVSRUWH GH OD FKDOHXU HOOH D EHVRLQ G¶XQ DSSRUW GH WUDYDLO
w > 0 2Q DSSOLTXH OH SUHPLHU SULQFLSH DX IOXLGH VXU XQ F\FOH ΔH = 0 = q + wu GRQF OD FKDOHXU HVW QpJDWLYH q < 0 2U O¶DLUH FRPSULVH GDQV OH F\FOH GDQV XQ GLDJUDPPH
HQWURSLTXH FRUUHVSRQG j OD FKDOHXU GRQF OH F\FOH HVW SDUFRXUX GDQV OH VHQV WULJRQRPp
WULTXH T
T0
A
•
•
B
s
s0
/D FKDOHXU pFKDQJpH SDU OH IOXLGH FRUUHVSRQG j O¶DLUH FRPSULVH GDQV OH F\FOH q=−
πs0 × T0
4
(Q FRQWDFW DYHF OD VRXUFH IURLGH OH IOXLGH UHoRLW GH OD FKDOHXU VRQ HQWURSLH DXJPHQWH
OD FKDOHXU TX¶LO UHoRLW FRUUHVSRQG j O¶DLUH FRPSULVH VRXV OD FRXUEH GXUDQW OH WUDMHW AB q f = s0 × T 0 −
2Q FDOFXOH O¶HIILFDFLWp GX F\FOH e=−
qf
4 1
= − � 0, 77
q
π 2
&HWWH PDFKLQH Q¶HVW SDV GX WRXW HIILFDFH
266
πs0 × T0
8
Thermodynamique - Thermique
Établir l’équation de la chaleur
‰UBCMJS M©RVBUJPO EF MB DIBMFVS
à partir d’un bilan d’énergie interne
QBSUJS EVO CJMBO
E©OFSHJF JOUFSOF
46
2VBOE PO OF TBJU QBT ,O \ D WURLV PRGHV GH WUDQVIHUWV WKHUPLTXHV RX GH WUDQVSRUW GH O¶pQHUJLH WKHUPLTXH ² SDU FRQGXFWLRQ RX GLIIXVLRQ WKHUPLTXH GDQV XQ PLOLHX VDQV GpSODFHPHQW PDFUR
VFRSLTXH GH PDWLqUH
² SDU FRQYHFWLRQ JUkFH DX GpSODFHPHQW G¶XQ IOXLGH TXL DVVXUH OHV pFKDQJHV
² SDU UD\RQQHPHQW pOHFWURPDJQpWLTXH
/H IOX[ WKHUPLTXH j WUDYHUV XQH VXUIDFH S
V¶H[SULPH j SDUWLU GX YHFWHXU GHQVLWp GH
−
→
FRXUDQW WKHUPLTXH jQ (M, t) Φ(t) =
−
→
jQ (M, t)
−
→
GS
−
→
−
→
jQ (M, t).GS
M ∈S
6L OH YHFWHXU GHQVLWp GH FRXUDQW WKHUPLTXH HVW XQLIRUPH HW SHUSHQGLFXODLUH j OD VXUIDFH
DORUV OH IOX[ WKHUPLTXH GHYLHQW Φ(t) = jQ (M, t) × S
/H WUDQVIHUW WKHUPLTXH pOpPHQWDLUH δQ j WUDYHUV XQH VXUIDFH S SHQGDQW O¶LQWHUYDOOH GH
WHPSV pOpPHQWDLUH Gt HVW δQ = Φ(t) × Gt
'DQV XQ PLOLHX GH YROXPH FRQVWDQW GH PDVVH YROXPLTXH ρ HW GH FDSDFLWp FDORULILTXH
PDVVLTXH c V¶LO \ D XQH SXLVVDQFH p(M, t) FUppH SDU XQLWp GH YROXPH HW SDU XQLWp GH
WHPSV DXWRXU GX SRLQW M DORUV O¶pTXDWLRQ ORFDOH XQLGLPHQVLRQQHOOH G¶D[H (Ox) GH
FRQVHUYDWLRQ GH O¶pQHUJLH V¶pFULW ∂jQ (M, t)
∂T (M, t)
+ ρc ×
= p(M, t)
∂x
∂t
46. Établir l’ équation de la chaleur à partir d’un bilan d’ énergie interne
267
(OOH VH JpQpUDOLVH j WURLV GLPHQVLRQV JUkFH j O¶RSpUDWHXU GLYHUJHQFH ∂T (M, t)
−
→
GLYjQ (M, t) + ρc ×
= p(M, t)
∂t
/RUV G¶XQH GLIIXVLRQ WKHUPLTXH OH YHFWHXU GHQVLWp GH FRXUDQW WKHUPLTXH V¶pFULW VHORQ OD
ORL SKpQRPpQRORJLTXH GH )RXULHU −−→
−
→
jQ = −λ × JUDG (T )
λ :P−1 .−1 V¶DSSHOOH OD FRQGXFWLYLWp WKHUPLTXH
λ j .
DLU
3 × 10−2
HDX
6 × 10−1
YHUUH
1
EpWRQ
1−2
/H SKpQRPqQH GH GLIIXVLRQ WKHUPLTXH HVW LUUpYHUVLEOH 6XLYDQW O¶D[H (Ox) LO VH FDUDF
WpULVH SDU O¶pTXDWLRQ GH OD FKDOHXU ∂2T
∂T
=λ×
+p
∂t
∂x2
ρc ×
&HWWH pTXDWLRQ VH JpQpUDOLVH j WURLV GLPHQVLRQV JUkFH j O¶RSpUDWHXU /DSODFLHQ ρc ×
∂T
= λ × �T + p
∂t
2VF GBJSF
3RXU pWDEOLU O¶pTXDWLRQ XQLGLPHQVLRQQHOOH G¶D[H (Ox) GH FRQVHUYDWLRQ GH O¶pQHUJLH δQe
δQs
x
x
x + Gx
FRQVLGpUHU OHV pFKDQJHV G¶pQHUJLH WKHUPLTXH GDQV XQH WUDQFKH G¶pSDLVVHXU Gx GH
VHFWLRQ S FRPSULVH HQWUH OHV GHX[ DEVFLVVHV x HW x + Gx SHQGDQW O¶LQWHUYDOOH GH
WHPSV Gt
H[SULPHU OH WUDQVIHUW WKHUPLTXH pOpPHQWDLUH δQe = jQ (x, t) × S × Gt HQWUDQW SDU
OD IDFH VLWXpH j O¶DEVFLVVH x
H[SULPHU OH WUDQVIHUW WKHUPLTXH pOpPHQWDLUH δQs = jQ (x + Gx, t) × S × Gt VRUWDQW
SDU OD IDFH VLWXpH j O¶DEVFLVVH x + Gx
268
Thermodynamique - Thermique
H[SULPHU OD SXLVVDQFH SURGXLWH Pprod GDQV OH YROXPH SXLV HQ GpGXLUH O¶pQHUJLH
SURGXLWH δEprod = Pprod × Gt SHQGDQW O¶LQWHUYDOOH GH WHPSV pOpPHQWDLUH Gt
UpDOLVHU OH ELODQ pQHUJpWLTXH VXLYDQW JUkFH DX SUHPLHU SULQFLSH DSSOLTXp j OD WUDQFKH
SHQGDQW O¶LQWHUYDOOH GH WHPSV Gt δU (t + Gt) − δU (t) = δQe − δQs + δEprod
δU (t) HVW O¶pQHUJLH LQWHUQH GH OD WUDQFKH j O¶LQVWDQW t
VLPSOLILHU HQ IDLVDQW GHV DSSUR[LPDWLRQV j O¶RUGUH XQ
3RXU HVWLPHU OH WHPSV GH GLIIXVLRQ WKHUPLTXH λ
LQWURGXLUH OD GLIIXVLYLWp WKHUPLTXH RX FRHIILFLHQW GH GLIIXVLRQ WKHUPLTXH a = ρc
2
pFULUH HQ RUGUH GH JUDQGHXU O¶pJDOLWp a � LT R L HVW OD ORQJXHXU GH GLIIXVLRQ HW T
OH WHPSV GH GLIIXVLRQ
LVROHU OD JUDQGHXU L RX T FKHUFKpH
$POTFJMT
/RUV G¶XQH GLIIXVLRQ XQLGLPHQVLRQQHOOH OH ORQJ GH O¶D[H (Ox) OH YHFWHXU GHQVLWp GH FRX
UDQW WKHUPLTXH V¶pFULW ∂T
−
→
→
→
ex
jQ (x, t) = jQ (x, t)−
ex = −λ
(x, t) × −
∂x
2Q LQWURGXLW OD FDSDFLWp FDORULILTXH j YROXPH FRQVWDQW δCV = cv Gm = cv ρGV SRXU
FDOFXOHU OD YDULDWLRQ G¶pQHUJLH LQWHUQH δU (t + Gt) − δU (t) = δCV × T (t + Gt) − δCV × T (t)
= cv × Gm (T (t + Gt) − T (t))
∂T
� cv × ρ × GV ×
∂t
¬ O¶RUGUH XQ RQ SHXW IDLUH O¶DSSUR[LPDWLRQ f (x + Gx, t) − f (x, t) � ∂f
∂x Gx
¬ XQH GLPHQVLRQ HW HQ FRRUGRQQpHV FDUWpVLHQQHV OD GLYHUJHQFH HW OH ODSODFLHQ V¶pFULYHQW Gf
→
GLY (f (x)−
ex ) =
Gx
HW
�(f (x)) =
G2 f
Gx2
−
→
→
→
→
(Q FRRUGRQQpHV FDUWpVLHQQHV OD GLYHUJHQFH GX YHFWHXU V = Vx −
e x + Vy −
ey + V z −
ez V¶pFULW −
→ ∂Vx ∂Vy
∂Vz
GLY V =
+
+
∂x
∂y
∂z
46. Établir l’ équation de la chaleur à partir d’un bilan d’ énergie interne
269
/H ODSODFLHQ VFDODLUH GH OD IRQFWLRQ f (x, y, z) HVW �f =
∂2f
∂2f
∂2f
+
+
∂x2
∂y 2
∂z 2
&YFNQMF USBJU©
3RXU pYDFXHU GH OD FKDOHXU G¶XQH VRXUFH GH WHPSpUDWXUH FRQVWDQWH T0 YHUV O¶DWPRVSKqUH GH
WHPSpUDWXUH Ta RQ D UHFRXUV j XQH DLOHWWH GH UHIURLGLVVHPHQW FRQVWLWXpH G¶XQ F\OLQGUH GH
VHFWLRQ S G¶D[H (Ox) GH FRQGXFWLYLWp WKHUPLTXH λ GH PDVVH YROXPLTXH ρ HW GH FDSDFLWp
FDORULILTXH PDVVLTXH c 2Q VXSSRVHUD TXH OD WHPSpUDWXUH GX EDUUHDX HVW XQLIRUPH VXU XQH
VHFWLRQ GURLWH HW QH GpSHQG TXH GH OD YDULDEOH x FRPSWpH GDQV OH VHQV GH VD ORQJXHXU 2Q
pWXGLH XQH WUDQFKH GH O¶DLOHWWH FRPSULVH HQWUH OHV DEVFLVVHV x HW x + Gx /¶DLOHWWH Q¶HVW SDV
FDORULIXJpH OD VXUIDFH ODWpUDOH GS FqGH j O¶DWPRVSKqUH OD SXLVVDQFH pOpPHQWDLUH VHORQ OD ORL
GH 1HZWRQ δPc = h × (T (x, t) − Ta ) GS
2Q VXSSRVH TXH OD GHQVLWp GH FRXUDQW WKHUPLTXH jQ (x, t) HVW XQLIRUPH VXU OD VHFWLRQ
([SULPHU OH WUDQVIHUW WKHUPLTXH δQe HQWUDQW j O¶DEVFLVVH x SXLV OH WUDQVIHUW WKHUPLTXH
δQs VRUWDQW j O¶DEVFLVVH x + Gx SHQGDQW O¶LQWHUYDOOH GH WHPSV pOpPHQWDLUH Gt
([SULPHU DXVVL OH WUDQVIHUW WKHUPLTXH δQp FpGp j O¶DWPRVSKqUH SDU OD VXUIDFH ODWpUDOH
(Q HIIHFWXDQW XQ ELODQ pQHUJpWLTXH PRQWUHU TXH OD WHPSpUDWXUH YpULILH O¶pTXDWLRQ GLIIp
UHQWLHOOH VXLYDQWH ∂2T
T
Ta
1 ∂T
− 2 =− 2 + ×
2
∂t
δ
δ
a
∂t
δ HW a VRQW GHV SDUDPqWUHV j GpWHUPLQHU TXL GpSHQGHQW GH h λ ρ c DLQVL TXH GHV JUDQ
GHXUV JpRPpWULTXHV GX SUREOqPH
T0
δQp
δQe
δQs
x
x x + Gx
aQm`+2 , JBM2b@SQMi
270
Thermodynamique - Thermique
40-65*0/
$ O¶DEVFLVVH x LO HQWUH OH WUDQVIHUW WKHUPLTXH δQe = jQ (x, t) × SGt HW j O¶DEVFLVVH
x + Gx OH WUDQVIHUW WKHUPLTXH δQs = jQ (x + Gx, t) × SGt
/H WUDQVIHUW WKHUPLTXH SHUGX SDU OD VXUIDFH ODWpUDOH GS = 2πR × Gx V¶H[SULPH JUkFH j
OD ORL GH 1HZWRQ GRQQpH GDQV O¶pQRQFp δQp = Pc Gt = 2πRh × (T (x, t) − Ta ) Gx × Gt
2Q DSSOLTXH OH SUHPLHU SULQFLSH j OD WUDQFKH HQWUH OHV LQVWDQWV t HW t + Gt δU (t + Gt) − δU (t) = δQe + δQs − δQp
2Q DSSUR[LPH JUkFH j OD ORL GH -RXOH SRXU XQH SKDVH LQFRPSUHVVLEOH HW LQGLODWDEOH δU (t + Gt) − δU (t) = δC × T (x, t + Gt) − δC × T (x, t) � δC ×
∂T
Gt
∂t
2Q H[SULPH OD FDSDFLWp FDORULILTXH δC = c × Gm = c × ρ × GV = cρSGx 2Q UHPSODFH
GDQV OH SUHPLHU SULQFLSH HW RQ DSSUR[LPH j O¶RUGUH XQ ρSGx × c
∂T
Gt =jQ (x) × SGt − jQ (x + Gx) × SGt − 2πRh × (T (x, t) − Ta ) GxGt
∂t
∂jQ
(x, t)SGxGt − 2πRh × (T (x, t) − Ta ) GxGt
�−
∂x
*UkFH j OD ORL GH )RXULHU jQ (x, t) = −λ ∂T
∂x RQ WUDQVIRUPH O¶pTXDWLRQ VRXV IRUPH FDQR
QLTXH 2h
2h
ρc ∂T
∂2T
T =−
Ta +
×
−
∂x2
Rλ
Rλ
λ
∂t
λ
2Q LGHQWLILH δ = Rλ
2h HW a = ρc &YFSDJDFT
&9&3$*$& )XVLEOH
8Q ILO pOHFWULTXH G¶D[H (Oz) GH ORQJXHXU L GH UD\RQ a GH FRQGXFWLYLWp pOHFWULTXH σ HW
GH FRQGXFWLYLWp WKHUPLTXH λ HVW SDUFRXUX SDU XQ FRXUDQW pOHFWULTXH GH YHFWHXU GH GHQVLWp
−
→
→
GH FRXUDQW pOHFWULTXH j0 = j0 −
ez XQLIRUPH 2Q VH SODFH HQ UpJLPH VWDWLRQQDLUH /H ILO HVW
VXIILVDPPHQW ORQJ SRXU TXH O¶RQ SXLVVH VXSSRVHU TXH OD WHPSpUDWXUH QH GpSHQG TXH GX UD\RQ
r HQ FRRUGRQQpHV F\OLQGULTXHV 2Q pWXGLH XQH FRXURQQH GH ORQJXHXU L FRPSULVH HQWUH OHV
UD\RQV r HW r + Gr
−
→
([SULPHU OH YHFWHXU GHQVLWp GH FRXUDQW WKHUPLTXH jQ (r)
'pWHUPLQHU OH IOX[ WKHUPLTXH Φ(r) WUDYHUVDQW OD VXUIDFH F\OLQGULTXH GH UD\RQ r HW GH
KDXWHXU L
46. Établir l’ équation de la chaleur à partir d’un bilan d’ énergie interne
271
2Q UDSSHOOH O¶H[SUHVVLRQ GH OD SXLVVDQFH WKHUPLTXH GLVVLSpH SDU HIIHW -RXOH SDU XQLWp GH
YROXPH σ0 'pWHUPLQHU OD SXLVVDQFH FUppH SDU HIIHW -RXOH GDQV OH YROXPH FRQVLGpUp
3DU XQ ELODQ pQHUJpWLTXH GpWHUPLQHU O¶pTXDWLRQ GLIIpUHQWLHOOH YpULILpH SDU OD WHPSpUDWXUH
j2
&9&3$*$& (QWURSLH FUppH GDQV XQ EDUUHDX PpWDOOLTXH
2Q pWXGLH XQ EDUUHDX PpWDOOLTXH F\OLQGULTXH GH UD\RQ R G¶D[H (Ox) GH ORQJXHXU L GH
FRQGXFWLYLWp WKHUPLTXH λ GH PDVVH YROXPLTXH ρ HW GH FDSDFLWp WKHUPLTXH PDVVLTXH c /D
VXUIDFH ODWpUDOH HVW FDORULIXJpH HW RQ LPSRVH XQH WHPSpUDWXUH FRQVWDQWH T0 j O¶H[WUpPLWp GX
EDUUHDX VLWXpH HQ x = 0 2Q QRWH jQ (x, t) OD GHQVLWp GH FRXUDQW WKHUPLTXH VXSSRVpH XQL
IRUPH VXU OD VHFWLRQ GX EDUUHDX
2Q UDSSHOOH O¶H[SUHVVLRQ GH O¶HQWURSLH PDVVLTXH GX EDUUHDX s(T ) = c OQ T + cte /D WHPSp
UDWXUH YpULILH O¶pTXDWLRQ GH OD FKDOHXU ρc ×
∂2T
∂T
=λ×
∂t
∂x2
/H SKpQRPqQH GH WUDQVIHUW WKHUPLTXH HVWLO UpYHUVLEOH -XVWLILHU "
2Q FRQVLGqUH XQH WUDQFKH G¶pSDLVVHXU Gx FRPSULVH HQWUH OHV DEVFLVVHV x HW x + Gx
([SULPHU OH IOX[ WKHUPLTXH Φ(x, t) j WUDYHUV OD VHFWLRQ GX EDUUHDX j O¶DEVFLVVH x HW j
O¶LQVWDQW t 'H PrPH H[SULPHU OH IOX[ WKHUPLTXH Φ(x + Gx, t) j WUDYHUV OD VHFWLRQ GX
EDUUHDX j O¶DEVFLVVH x + Gx
'pWHUPLQHU O¶HQWURSLH pFKDQJpH δSech SDU OD WUDQFKH GX EDUUHDX SHQGDQW O¶LQWHUYDOOH GH
WHPSV pOpPHQWDLUH Gt
4XHOOH HVW OD YDULDWLRQ G¶HQWURSLH GS GX EDUUHDX SHQGDQW FHWWH PrPH GXUpH "
(Q GpGXLUH O¶HQWURSLH FUppH σ SDU XQLWp GH YROXPH HW SDU XQLWp GH WHPSV
aQm`+2 , JBM2b@SQMi
1PVS WPVT BJEFS
272
E©NBSSFS
&9&3$*$& /H YHFWHXU GHQVLWp GH FRXUDQW WKHUPLTXH HVW GRQQp SDU OD ORL GH )RX
ULHU /H IOX[ HVW pJDO DX SURGXLW GH OD VXUIDFH SDU OD GHQVLWp GH FRXUDQW
WKHUPLTXH
&9&3$*$& &RPPH OD GHQVLWp GH FRXUDQW WKHUPLTXH HVW VXSSRVpH XQLIRUPH VXU OD
VHFWLRQ OH IOX[ HVW pJDO DX SURGXLW GH OD VHFWLRQ SDU OD GHQVLWp GH FRXUDQW
WKHUPLTXH
Thermodynamique - Thermique
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& (Q UpJLPH VWDWLRQQDLUH OD WHPSpUDWXUH QH GpSHQG TXH GH OD FRRUGRQQpH r 2Q H[SOLFLWH
−
→
−
→
OH YHFWHXU GHQVLWp GH FRXUDQW WKHUPLTXH j SDUWLU GH OD ORL GH )RXUULHU jQ (r) = −λ GT
Gr er 2Q FRQVLGqUH OD VXUIDFH F\OLQGULTXH S(r) = 2πr×L GH UD\RQ r HW GH KDXWHXU L &RPPH
OH YHFWHXU GHQVLWp GH FRXUDQW WKHUPLTXH HVW XQLIRUPH VXU OD VXUIDFH HW SHUSHQGLFXODLUH j
FHOOHFL DORUV RQ D Φ(r) = S(r) × jQ (r) = −2πrLλ
'DQV OD FRXURQQH GH YROXPH GV = 2πrL × Gr OD SXLVVDQFH YROXPLTXH pOpPHQWDLUH
j2
GT
Gr
j2
OLEpUpH SDU HIIHW -RXOH HVW δP = σ0 × GV = 2π σ0 rL × Gr
2Q DSSOLTXH OH SUHPLHU SULQFLSH j OD FRXURQQH HQWUH OHV GHX[ LQVWDQWV t HW t + Gt HQ
UpJLPH VWDWLRQQDLUH GU = U (t + Gt) − U (t) = 0 = Φ(r)Gt − Φ(r + Gr)Gt + δP Gt
Solutions
2Q VLPSOLILH SDU Gt RQ DSSUR[LPH j O¶RUGUH XQ HW RQ UHPSODFH O¶H[SUHVVLRQ GH OD SXLV
VDQFH GΦ
j2
0 � − (r)Gr + 2π 0 rL × Gr
Gr
σ
2Q VXEVWLWXH O¶H[SUHVVLRQ GX IOX[ Φ(r) RQ VLPSOLILH SXLV RQ PHW O¶pTXDWLRQ GLIIpUHQWLHOOH
VRXV OD IRUPH VXLYDQWH λ
G
GT
j2
×
r×
+ 0 =0
r
Gr
Gr
σ
&9&3$*$& T0
δQe
δQs
x
x x + Gx
/H WUDQVIHUW WKHUPLTXH V¶HIIHFWXH SDU GLIIXVLRQ GRQF OH SKpQRPqQH WKHUPLTXH HVW LUUp
YHUVLEOH
/H IOX[ WKHUPLTXH j O¶DEVFLVVH x V¶pFULW Φ(x, t) = S × jQ (x, t) HW OH IOX[ j O¶DEVFLVVH
x + Gx YDXW Φ(x + Gx, t) = S × jQ (x + Gx, t)
46. Établir l’ équation de la chaleur à partir d’un bilan d’ énergie interne
273
/D WUDQFKH pWXGLpH HVW HQ FRQWDFW DYHF GHX[ WHPSpUDWXUHV H[WpULHXUHV GLIIpUHQWHV GRQF
LO \ D GHX[ pFKDQJHV WKHUPLTXHV /D WUDQFKH UHoRLW OH IOX[ WKHUPLTXH Φ(x, t) j O¶DEVFLVVH
x HW FqGH OH IOX[ WKHUPLTXH Φ(x + Gx, t) j O¶DEVFLVVH x + Gx 2Q XWLOLVH O¶H[SUHVVLRQ GH
O¶HQWURSLH pFKDQJpH δSech =
S × jQ (x, t)
S × jQ (x + Gx, t)
δQ(x, t) δQ(x + Gx, t)
+
=
Gt −
Gt
T (x, t)
T (x + Gx, t)
T (x, t)
T (x + Gx, t)
2Q HIIHFWXH XQH DSSUR[LPDWLRQ j O¶RUGUH XQ HW HQ XWLOLVDQW OD ORL GH )RXULHU LO YLHQW
jQ = −λ ∂T
∂x RQ WURXYH 1
∂
∂T
∂ jQ (x, t)
× SGxGt = λ
×
SGxGt
δSech � −
∂x T (x, t)
∂x T
∂x
(QILQ RQ GpYHORSSH OD GpULYpH δSech = λ
∂2T
1
1
×
− 2
2
T
∂x
T
∂T
∂x
2 SGxGt
2Q GpWHUPLQH OD YDULDWLRQ G¶HQWURSLH GX V\VWqPH GH YROXPH GV = SGx GS = S(x, t + Gt) − S(x, t)
= Gm × (s(x, t + Gt) − s(x, t))
= c × ρ × SGx × (OQ(T (x, t + Gt)) − OQ(T (x, t)))
2Q HIIHFWXH XQH DSSUR[LPDWLRQ j O¶RUGUH XQ ρc ∂T
∂ OQ(T )
× SGxGt =
×
× SGxGt
∂t
T
∂t
3XLV RQ WUDQVIRUPH FHWWH H[SUHVVLRQ JUkFH j O¶pTXDWLRQ GH OD FKDOHXU GS � ρc ×
GS �
λ
∂2T
×
× SGxGt
T
∂x2
2Q DSSOLTXH OH VHFRQG SULQFLSH HQWUH OHV LQVWDQWV t HW t + Gt j OD WUDQFKH GS = δSech + δSc
2Q UHPSODFH λ
∂2T
×
× SGxGt = λ
T
∂x2
3XLV RQ VLPSOLILH ∂2T
1
1
×
− 2
2
T
∂x
T
∂T
∂x
2 × SGxGt + σSGxGt
λ ∂T 2
σ= 2
T
∂x
&HWWH JUDQGHXU HVW VWULFWHPHQW SRVLWLYH j SDUWLU GX PRPHQW R OD WHPSpUDWXUH Q¶HVW SDV
XQLIRUPH
274
Thermodynamique - Thermique
Résoudre l’équation de la chaleur
grâce 3©TPVESF
aux conditions
aux limites
M©RVBUJPO
EF MB DIBMFVS
47
HS¢DF BVY DPOEJUJPOT BVY MJNJUFT
2VBOE PO OF TBJU QBT 3RXU UpVRXGUH O¶pTXDWLRQ GH OD FKDOHXU ρ×c×
∂T
−
→
= −GLYjQ + p
∂t
LO IDXW ² XQH FRQGLWLRQ LQLWLDOH j O¶LQVWDQW t = 0
² GHX[ FRQGLWLRQV DX[ OLPLWHV GX GRPDLQH
(Q UpJLPH VWDWLRQQDLUH OHV JUDQGHXUV ORFDOHV QH GpSHQGHQW SDV GX WHPSV O¶pTXDWLRQ GH
OD FKDOHXU GHYLHQW −
→
GLYjQ = p
(Q UpJLPH VWDWLRQQDLUH ² V¶LO Q¶\ D SDV GH SURGXFWLRQ G¶pQHUJLH (p = 0) DORUV OH IOX[ WKHUPLTXH j WUDYHUV
XQH VXUIDFH IHUPpH HVW FRQVHUYp
² V¶LO \ D SURGXFWLRQ G¶pQHUJLH DORUV WRXWH O¶pQHUJLH SURGXLWH j O¶LQWpULHXU GX V\V
WqPH HVW pYDFXpH SDU WUDQVIHUW WKHUPLTXH j WUDYHUV VD VXUIDFH
(Q UpJLPH VWDWLRQQDLUH OHV GLIIpUHQWHV FRQGLWLRQV DX[ OLPLWHV GX GRPDLQH VRQW ² OD WHPSpUDWXUH HW OH IOX[ WKHUPLTXH TXL VRQW FRQWLQXV j O¶LQWHUIDFH GH GHX[ PLOLHX[
VLqJH GH GLIIXVLRQ WKHUPLTXH
² OD WHPSpUDWXUH TXL HVW FRQWLQXH j OD VXUIDFH G¶XQ V\VWqPH HQ FRQWDFW DYHF XQ WKHU
PRVWDW
² OH IOX[ WKHUPLTXH TXL HVW QXO j OD VXUIDFH G¶XQ V\VWqPH HQ FRQWDFW DYHF XQH SDURL
DGLDEDWLTXH
² OH IOX[ WKHUPLTXH UHoX j OD VXUIDFH G¶XQ V\VWqPH TXL HVW ELHQ GpFULW SDU OD ORL GH
1HZWRQ jQ (VXUIDFH) = −h × TVXUIDFH V\VWqPH − TIOXLGH
ORUVTXH OH V\VWqPH HVW HQ FRQWDFW DYHF XQ IOXLGH GH WHPSpUDWXUH TIOXLGH 47. Résoudre l’ équation de la chaleur grâce aux conditions aux limites
275
2VF GBJSF
3RXU UpVRXGUH O¶pTXDWLRQ GH GLIIXVLRQ VLPSOLILHU GDQV OH FDV GX UpJLPH VWDWLRQQDLUH
LQWpJUHU
GpWHUPLQHU OHV GHX[ FRQVWDQWHV G¶LQWpJUDWLRQ JUkFH DX[ GHX[ FRQGLWLRQV DX[ OLPLWHV
VL OH UpJLPH Q¶HVW SDV VWDWLRQQDLUH XQH FRQGLWLRQ LQLWLDOH VHUD QpFHVVDLUH
$POTFJMT
/D WHPSpUDWXUH Q¶HVW SDV IRUFpPHQW XQH IRQFWLRQ FRQWLQXH
&YFNQMF USBJU©
2Q UHSUHQG O¶H[HPSOH GH OD ILFKH SUpFpGHQWH 3RXU pYDFXHU GH OD FKDOHXU G¶XQH VRXUFH GH
WHPSpUDWXUH T0 YHUV O¶DWPRVSKqUH GH WHPSpUDWXUH Ta RQ D VRXYHQW UHFRXUV j XQH DLOHWWH GH
UHIURLGLVVHPHQW FRQVWLWXpH G¶XQ F\OLQGUH GH VHFWLRQ S G¶D[H (Ox) GH FRQGXFWLYLWp WKHU
PLTXH λ GH PDVVH YROXPLTXH ρ HW GH FDSDFLWp WKHUPLTXH PDVVLTXH c 2Q VXSSRVHUD TXH OD
WHPSpUDWXUH GX EDUUHDX HVW XQLIRUPH VXU XQH VHFWLRQ GURLWH HW QH GpSHQG TXH GH OD YDULDEOH
x FRPSWpH GDQV OH VHQV GH VD ORQJXHXU 2Q pWXGLH XQH WUDQFKH GH O¶DLOHWWH FRPSULVH HQWUH OHV
DEVFLVVHV x HW x + Gx
/¶DLOHWWH Q¶HVW SDV FDORULIXJpH XQ pOpPHQW GH VXUIDFH GS GH O¶DLOHWWH FqGH j O¶DWPRVSKqUH
OD SXLVVDQFH pOpPHQWDLUH δPc = h × (T (x, t) − Ta ) GS 2Q VXSSRVH GH SOXV TXH OD GHQ
VLWp GH FRXUDQW WKHUPLTXH jQ (x, t) HVW XQLIRUPH VXU OD VHFWLRQ 2Q DYDLW REWHQX O¶pTXDWLRQ
GLIIpUHQWLHOOH VXLYDQWH ∂2T
Rλ
λ
T
Ta
1 ∂T
DYHF δ =
HW a =
− 2 =− 2 + ×
2
∂x
δ
δ
a
∂t
2h
ρ×c
3RXU VLPSOLILHU RQ VXSSRVHUD TXH O¶DLOHWWH HVW GH ORQJXHXU LQILQLH
5pVRXGUH O¶pTXDWLRQ GLIIpUHQWLHOOH HQ UpJLPH SHUPDQHQW
'pWHUPLQHU OD SXLVVDQFH IRXUQLH SDU OD VRXUFH GH WHPSpUDWXUH T0 j O¶DWPRVSKqUH
40-65*0/
276
(Q UpJLPH SHUPDQHQW OD WHPSpUDWXUH QH GpSHQG TXH GH OD FRRUGRQQpH VSDWLDOH x O¶pTXD
WLRQ GLIIpUHQWLHOOH GHYLHQW G2 T
T
Ta
− 2 =− 2
2
Gx
δ
δ
&¶HVW XQH pTXDWLRQ GLIIpUHQWLHOOH OLQpDLUH GX VHFRQG RUGUH j FRHIILFLHQWV FRQVWDQWV GH
VROXWLRQ JpQpUDOH x
x
T (x) = Ae− δ + Be δ + Ta
Thermodynamique - Thermique
A HW B VRQW GHV FRQVWDQWHV G¶LQWpJUDWLRQV TXH O¶RQ GpWHUPLQH JUkFH DX[ GHX[ FRQGLWLRQV
DX[ OLPLWHV − OD WHPSpUDWXUH QH SHXW SDV GLYHUJHU ORUVTXH x WHQG YHUV O¶LQILQL GRQF B = 0
− OD WHPSpUDWXUH HVW LPSRVpH SDU OD VRXUFH GH FKDOHXU HQ x = 0 GRQF T0 = A + Ta
)LQDOHPHQW RQ REWLHQW x
T (x) = (T0 − Ta ) e− δ + Ta
(Q UpJLPH SHUPDQHQW OH IOX[ pYDFXp SDU O¶DLOHWWH FRUUHVSRQG DX IOX[ HQWUDQW GDQV O¶DL
OHWWH j O¶DEVFLVVH x = 0 Φ = S × jQ (0) = −πR2 λ ×
λ
GT
(0) = πR2 (T0 − Ta )
Gx
δ
&YFSDJDFT
&9&3$*$& )XVLEOH
2Q UHSUHQG O¶H[HUFLFH GH OD ILFKH SUpFpGHQWH 8Q ILO pOHFWULTXH G¶D[H (Oz) GH ORQJXHXU
L GH UD\RQ a GH FRQGXFWLYLWp pOHFWULTXH σ HW GH FRQGXFWLYLWp WKHUPLTXH λ HVW SDUFRXUX SDU
−
→
→
XQ FRXUDQW pOHFWULTXH GH YHFWHXU GH GHQVLWp GH FRXUDQW pOHFWULTXH j0 = j0 −
ez XQLIRUPH 2Q
VH SODFH HQ UpJLPH VWDWLRQQDLUH /H ILO HVW VXIILVDPPHQW ORQJ SRXU TXH O¶RQ SXLVVH VXSSRVHU
TXH OD WHPSpUDWXUH QH GpSHQG TXH GX UD\RQ r HQ FRRUGRQQpHV F\OLQGULTXHV 2Q DYDLW WURXYp
O¶pTXDWLRQ GLIIpUHQWLHOOH VXLYDQWH λ
G
GT
j2
×
r
+ 0 =0
r
Gr
Gr
σ
5pVRXGUH O¶pTXDWLRQ GLIIpUHQWLHOOH VDQV GpWHUPLQHU OHV FRQVWDQWHV G¶LQWpJUDWLRQ
-XVWLILHU TXH O¶XQH GHV FRQVWDQWHV G¶LQWpJUDWLRQ HVW QXOOH
/¶DWPRVSKqUH LPSRVH XQH WHPSpUDWXUH T0 (Q GpGXLUH O¶H[SUHVVLRQ GH OD WHPSpUDWXUH
&9&3$*$& 7HPSpUDWXUH GDQV XQ EDUUHDX PpWDOOLTXH
2Q UHSUHQG O¶H[HUFLFH GH OD ILFKH SUpFpGHQWH 2Q pWXGLH XQ EDUUHDX PpWDOOLTXH F\OLQGULTXH
GH UD\RQ R G¶D[H (Ox) GH ORQJXHXU L GH FRQGXFWLYLWp WKHUPLTXH λ GH PDVVH YROXPLTXH
ρ HW GH FDSDFLWp WKHUPLTXH PDVVLTXH c /D VXUIDFH ODWpUDOH HVW FDORULIXJpH 2Q LPSRVH XQH
WHPSpUDWXUH T0 FRQVWDQWH j O¶DEVFLVVH x = 0 GX EDUUHDX 2Q QRWH jQ (x, t) OD GHQVLWp GH
FRXUDQW WKHUPLTXH VXSSRVp KRPRJqQH VXU OD VHFWLRQ GX EDUUHDX 2Q D DGPLV GDQV OD ILFKH
SUpFpGHQWH TXH OD WHPSpUDWXUH YpULILH O¶pTXDWLRQ GH OD FKDOHXU ρc ×
∂2T
∂T
=λ×
∂t
∂x2
(VWLPHU OD GXUpH FDUDFWpULVWLTXH GX UpJLPH WUDQVLWRLUH
47. Résoudre l’ équation de la chaleur grâce aux conditions aux limites
277
SUpFpGHQWH TXH OD WHPSpUDWXUH YpULILH O¶pTXDWLRQ GH OD FKDOHXU ∂2T
∂T
=λ×
∂t
∂x2
ρc ×
(VWLPHU OD GXUpH FDUDFWpULVWLTXH GX UpJLPH WUDQVLWRLUH
2Q VH SODFH HQ UpJLPH SHUPDQHQW
B 0RQWUHU TXH OH IOX[ WKHUPLTXH HVW FRQVWDQW OH ORQJ GX EDUUHDX 'pWHUPLQHU O¶pTXDWLRQ
GLIIpUHQWLHOOH YpULILpH SDU OD WHPSpUDWXUH
C 2Q LPSRVH XQ WKHUPRVWDW GH WHPSpUDWXUH T1 j OD EDVH G¶DEVFLVVH x = L (Q GpGXLUH
O¶H[SUHVVLRQ GH OD WHPSpUDWXUH T (x)
D 2Q HQOqYH OH WKHUPRVWDW GH WHPSpUDWXUH T1 TXH O¶RQ UHPSODFH SDU XQH SDURL DGLD
EDWLTXH (Q GpGXLUH OD WHPSpUDWXUH GX EDUUHDX HQ UpJLPH SHUPDQHQW
1PVS WPVT BJEFS
E©NBSSFS
&9&3$*$& ,QWpJUHU O¶pTXDWLRQ GLIIpUHQWLHOOH SXLV XWLOLVHU OHV FRQGLWLRQV DX[ OLPLWHV
SRXU GpWHUPLQHU OHV FRQVWDQWHV G¶LQWpJUDWLRQ
&9&3$*$& 5ppFULUH O¶pTXDWLRQ GLIIpUHQWLHOOH HQ XWLOLVDQW OHV RUGUHV GH JUDQGHXUV
FDUDFWpULVWLTXHV GHV YDULDWLRQV WHPSRUHOOHV HW VSDWLDOHV 3XLV VLPSOLILHU
O¶pTXDWLRQ GLIIpUHQWLHOOH HQ UpJLPH SHUPDQHQW
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& 2Q PXOWLSOLH O¶pTXDWLRQ GLIIpUHQWLHOOH SDU r/λ G
Gr
GT
r
Gr
+
j02
×r =0
λσ
2Q LQWqJUH XQH IRLV HQ LQWURGXLVDQW XQH FRQVWDQWH G¶LQWpJUDWLRQ A r
GT
j2
r2
+ 0 ×
=A
Gr
λσ
2
j2
r
A
0
2Q GLYLVH SDU OD FRRUGRQQpH r GT
Gr + λσ × 2 = r SXLV RQ LQWqJUH GH QRXYHDX r2
j2
+ A OQ(r) + B
T (r) = − 0 ×
λσ
4
/RUVTXH OH UD\RQ WHQG YHUV ]pUR OD WHPSpUDWXUH QH SHXW SDV GLYHUJHU GRQF A = 0
/D WHPSpUDWXUH j OD VXUIDFH GX IXVLEOH HVW LPSRVpH SDU FHOOH GH O¶DWPRVSKqUH a2
j2
+ B = T0
T (a) = − 0 ×
λσ
4
278
Thermodynamique - Thermique
r
j
+ A OQ(r) + B
T (r) = − 0 ×
λσ
4
/RUVTXH OH UD\RQ WHQG YHUV ]pUR OD WHPSpUDWXUH QH SHXW SDV GLYHUJHU GRQF A = 0
/D WHPSpUDWXUH j OD VXUIDFH GX IXVLEOH HVW LPSRVpH SDU FHOOH GH O¶DWPRVSKqUH a2
j2
+ B = T0
T (a) = − 0 ×
λσ
4
(Q
(QUHPSODoDQW
UHPSODoDQWRQRQWURXYH
WURXYH
j 2 j 2 2 2 2 2 a −
a r− r+ T0+ T0
T (r)
T (r)
= = 0 0× ×
4λσ4λσ
&9&3$*$&
&9&3$*$& 2Q
2QQRWH
QRWHτ τOHOHWHPSV
WHPSVFDUDFWpULVWLTXH
FDUDFWpULVWLTXH
GHVGHV
YDULDWLRQV
YDULDWLRQV
WHPSRUHOOHV
WHPSRUHOOHV
GH ODGH
WHPSpUDWXUH
OD WHPSpUDWXUH
ORUV GHORUV GH
ODODGLIIXVLRQ
GLIIXVLRQWKHUPLTXH
WKHUPLTXH
VXUVXU
OD OD
ORQJXHXU
ORQJXHXU
L GX
L EDUUHDX
GX EDUUHDX
(Q RUGUH
(Q RUGUH
GH JUDQGHXU
GH JUDQGHXU
O¶pTXDWLRQ
O¶pTXDWLRQ
GH
GHODODFKDOHXU
FKDOHXUGHYLHQW
GHYLHQW
ρc ρc T T T T
× ×� �
λ λ τ τ L2 L2
2Q
2QVLPSOLILH
VLPSOLILHSXLV
SXLVRQRQ
LVROH
LVROH
OH OH
WHPSV
WHPSV
FDUDFWpULVWLTXH
FDUDFWpULVWLTXH
ρc ρc
τ �τ � × L×2 L2
λ λ
−
→−
→
GjQ GjQ
FKDOHXU
FKDOHXUGHYLHQW
GHYLHQWGLY
GLY
jQjQ= =
0 0
&RPPH
&RPPH
OD GLIIXVLRQ
OD GLIIXVLRQ
HVW XQLGLPHQVLRQQHOOH
HVW XQLGLPHQVLRQQHOOH
DORUV DORUV
0 = 0
Gx =Gx
GΦ GΦ
2U
2U OHOHIOX[
IOX[WKHUPLTXH
WKHUPLTXHV¶pFULW
V¶pFULW
Φ(x)
Φ(x)
==
S ×S j×
jQ (x)
'RQF
'RQF
RQ REWLHQW
RQ REWLHQW
HW SDU
0 HW SDU
Q (x)
Gx =Gx0 =
FRQVpTXHQW
FRQVpTXHQWOHOHIOX[
IOX[WKHUPLTXH
WKHUPLTXH
OH ORQJ
OH ORQJ
GX GX
EDUUHDX
EDUUHDX
HVW FRQVWDQW
HVW FRQVWDQW
G2 T G2 T
(Q
(QUpJLPH
UpJLPHVWDWLRQQDLUH
VWDWLRQQDLUH
OD OD
WHPSpUDWXUH
WHPSpUDWXUH
YpULILH
YpULILH
O¶pTXDWLRQ
O¶pTXDWLRQ
GLIIpUHQWLHOOH
GLIIpUHQWLHOOH
= 0
= 0
Gx2 Gx
2 T (0) T
=(0)
T0 = T0
2Q
2QLQWqJUH
LQWqJUHGHX[
GHX[IRLV
IRLV
T (x)
T (x)
==
Ax+B
Ax+B
*UkFH
*UkFH
DX[DX[
GHX[GHX[
FRQGLWLRQV
FRQGLWLRQV
DX[ OLPLWHV
DX[ OLPLWHV
T (L) T=(L)
T1 = T1
1 −T
0 0
RQ
RQREWLHQW
REWLHQWTT(x)
(x)==T1T−T
x+
xT
+0 T0 L L ××
2Q
2QLQWqJUH
LQWqJUHGHX[
GHX[IRLV
IRLV
T (x)
T (x)
==
AxAx
+ B
+ B
&HWWH
&HWWH
IRLVIRLV
OHV GHX[
OHV GHX[
FRQGLWLRQV
FRQGLWLRQV
DX[ OLPLWHV
DX[ OLPLWHV
VRQW VRQW T (0)
T (0)
= T=
0 T0
Φ(L)
Φ(L)
= 0= 0
GRQF
GRQF BB
==
T0 T0
B =B
T0= T0
F¶HVWjGLUH
F¶HVWjGLUH
GT
A
=
A
0 =0
−Sλ
−Sλ
××GT
(L)
(L)
=
=
−SλA
−SλA
=
0
=
0
Gx Gx
'DQV
'DQVOHOHEDUUHDX
EDUUHDXODODWHPSpUDWXUH
WHPSpUDWXUH
HVWHVW
FRQVWDQWH
FRQVWDQWH
T (x)
T (x)
= T=
0 T0 47. Résoudre l’ équation de la chaleur grâce aux conditions aux limites
279
Solutions
(Q
(QUpJLPH
UpJLPHVWDWLRQQDLUH
VWDWLRQQDLUH
OD OD
WHPSpUDWXUH
WHPSpUDWXUH
QH GpSHQG
QH GpSHQG
SOXVSOXV
GX WHPSV
GX WHPSV
GRQFGRQF
O¶pTXDWLRQ
O¶pTXDWLRQ
GH OD GH OD
48
Utiliser les résistances thermiques
6UJMJTFS
en régimeUIFSNJRVFT
stationnaire
MFT S©TJTUBODFT
FO S©HJNF TUBUJPOOBJSF
2VBOE PO OF TBJU QBT 2Q QRWH φ12 OH IOX[ WKHUPLTXH GH OD IDFH YHUV OD IDFH j WUDYHUV XQ PDWpULDX HW RQ DS
SHOOH T1 HW T2 OHV WHPSpUDWXUHV VXU OHV GHX[
IDFHV (Q UpJLPH SHUPDQHQW OD UpVLVWDQFH
WKHUPLTXH .:−1 HVW GpILQLH SDU T 1 − T2
Rth =
φ12
φ12
T1
T2
x
L
$QDORJLH DYHF O¶pOHFWURFLQpWLTXH GHQVLWp GH FRXUDQW
pTXDWLRQ ORFDOH GH FRQVHUYDWLRQ
UpVLVWDQFH
FRQGXFWLRQ WKHUPLTXH
−−→
−
→
jQ = −λJUDGT
−
→
ρ × c × ∂T
∂t + GLYjQ = 0
FRQGXFWLRQ pOHFWULTXH
−−→
−
→
jel = −γ JUDGV
−
→
∂ρ
∂t + GLYjel = 0
2
Rth = T1φ−T
12
2
R = V1 −V
I
(Q UpJLPH SHUPDQHQW V¶LO \ D GLIIXVLRQ WKHUPLTXH OH ORQJ GH O¶D[H G¶XQ F\OLQGUH GH
FRQGXFWLYLWp WKHUPLTXH λ GH VHFWLRQ S HW GH ORQJXHXU L OD UpVLVWDQFH WKHUPLTXH GX PD
WpULDX HVW L
Rth =
λS
/HV ORLV G¶DVVRFLDWLRQ GHV UpVLVWDQFHV pOHFWULTXHV HQ VpULH RX HQ SDUDOOqOH HQ UpJLPH SHU
PDQHQW VRQW JpQpUDOLVDEOHV DX[ UpVLVWDQFHV WKHUPLTXHV
280
Thermodynamique - Thermique
2VF GBJSF
3RXU XWLOLVHU OHV UpVLVWDQFHV WKHUPLTXHV YpULILHU O¶K\SRWKqVH ´UpJLPH SHUPDQHQW´
PRGpOLVHU FKDTXH PDWpULDX SDU XQH UpVLVWDQFH
XWLOLVHU OHV ORLV G¶DVVRFLDWLRQ GHV UpVLVWDQFHV VL QpFHVVDLUH
$POTFJMT
/D UpVLVWDQFH pTXLYDOHQWH GH GHX[ UpVLVWDQFHV R1 HW R2 HQ VpULH HVW Req = R1 + R2 /D UpVLVWDQFH pTXLYDOHQWH GH GHX[ UpVLVWDQFHV R1 HW R2 HQ SDUDOOqOH HVW Req =
1
1
+
R1 R2
−1
&YFNQMF USBJU©
2Q UHOLH XQ EORF G¶HDX FKDXGH j ƒ& j XQ EORF GH JODFH j ƒ& SDU GLIIpUHQWHV EDUUHV
PpWDOOLTXHV 6L RQ XWLOLVH XQH EDUUH G¶DFLHU OH EORF GH JODFH IRQG HQ K 2Q SHXW DXVVL XWLOLVHU
XQH EDUUH LGHQWLTXH PDLV HQ FXLYUH 'DQV WRXW O¶H[HUFLFH RQ QRWH Racier HW RCu OD UpVLVWDQFH
WKHUPLTXH GH OD EDUUH G¶DFLHU HW GH OD EDUUH GH FXLYUH UHVSHFWLYHPHQW 2Q D Racier = 2×RCu 'pWHUPLQHU OD GpSHQGDQFH GX WHPSV GH IXVLRQ GX EORF GH JODFH HQ IRQFWLRQ GH OD UpVLV
WDQFH WKHUPLTXH GHV EORFV
(Q FRPELHQ GH WHPSV OH EORF GH JODFH IRQGLO VL RQ XWLOLVH XQH EDUUH GH FXLYUH "
(Q FRPELHQ GH WHPSV OH EORF GH JODFH IRQGLO VL RQ SODFH XQH EDUUH GH FXLYUH VXLYLH
G¶XQH EDUUH G¶DFLHU HQWUH OHV GHX[ EORFV "
(Q FRPELHQ GH WHPSV OH EORF GH JODFH IRQGLO VL RQ UHOLH OHV GHX[ EORFV SDU XQH EDUUH
G¶DFLHU HW XQH EDUUH GH FXLYUH HQ SDUDOOqOH "
40-65*0/
/H WHPSV GH IXVLRQ HVW LQYHUVHPHQW SURSRUWLRQQHO DX IOX[ WKHUPLTXH GRQF OH WHPSV GH
IXVLRQ HVW SURSRUWLRQQHO j OD UpVLVWDQFH WKHUPLTXH
/D UpVLVWDQFH WKHUPLTXH GX FXLYUH pWDQW IRLV SOXV SHWLWH TXH FHOOH GH O¶DFLHU OH WHPSV
GH IXVLRQ HVW DXVVL GHX[ IRLV SOXV SHWLW LO IDXW GRQF PLQXWHV
/HV EDUUHV VH VXLYHQW GRQF OH IOX[ WKHUPLTXH HVW FRQVHUYp OHV EDUUHV VRQW HQ VpULH 2Q
DGGLWLRQQH OHV UpVLVWDQFHV Rth = Racier + RCu = 3RCu /H WHPSV GH IXVLRQ HVW pJDO j
WURLV IRLV FHOXL REWHQX DYHF OD EDUUH GH FXLYUH F¶HVWjGLUH KHXUH PLQXWHV
48. Utiliser les résistances thermiques en régime stationnaire
281
&HWWH IRLV OHV EDUUHV VRQW HQ SDUDOOqOH OHV IOX[ WKHUPLTXHV V¶DMRXWHQW RQ DGGLWLRQQH O¶LQ
YHUVH GHV UpVLVWDQFHV WKHUPLTXHV SRXU REWHQLU O¶LQYHUVH GH OD UpVLVWDQFH pTXLYDOHQWH Rth =
1
1
+
RCu Racier
−1
2
= RCu
3
'RQF OH WHPSV GH IXVLRQ YDXW GHX[ WLHUV GH FHOXL REWHQX DYHF XQH VHXOH EDUUH GH FXLYUH
F¶HVWjGLUH PLQXWHV
&YFSDJDFT
5pVLVWDQFH WKHUPLTXH G¶XQ F\OLQGUH
2Q HQWRXUH XQ WX\DX GH ORQJXHXU L GH UD\RQ r1 FRQWHQDQW GH O¶HDX FKDXGH GH WHPSpUDWXUH
FRQVWDQWH T1 SDU XQ LVRODQW WKHUPLTXH G¶pSDLVVHXU e /D VXUIDFH H[WpULHXUH HVW GH WHPSpUDWXUH
FRQVWDQWH T2 < T1 2Q VH SODFH HQ UpJLPH SHUPDQHQW HW RQ QRWH λ OD FRQGXFWLYLWp WKHUPLTXH
GH O¶LVRODQW
-XVWLILHU TXH OH IOX[ WKHUPLTXH j WUDYHUV XQH VXUIDFH IHUPpH HVW FRQVWDQW
([SOLFLWHU OH IOX[ WKHUPLTXH φ j WUDYHUV XQH VXUIDFH F\OLQGULTXH GH UD\RQ r HW GH ORQJXHXU
L HQ IRQFWLRQ GH OD GHQVLWp GH FRXUDQW WKHUPLTXH j(r) HW GHV GRQQpHV JpRPpWULTXHV
(Q GpGXLUH OD UHODWLRQ VXLYDQWH &9&3$*$& GT = −
Gr
φ
×
2πλL
r
(Q LQWpJUDQW GpWHUPLQHU O¶H[SUHVVLRQ GH OD UpVLVWDQFH WKHUPLTXH
(IIHFWXHU XQH DSSUR[LPDWLRQ j O¶RUGUH XQ HQ re1 4XH UHWURXYH WRQ "
,QWpUrW G¶XQ GRXEOH YLWUDJH
2Q pWXGLH XQH SLqFH GH WHPSpUDWXUH T0 O¶H[WpULHXU pWDQW j OD WHPSpUDWXUH Te < T0 /D
SLqFH HVW VpSDUpH GH O¶H[WpULHXU SDU XQ PXU GH VXUIDFH Sm GH FRQGXFWLYLWp WKHUPLTXH λm
HW G¶pSDLVVHXU em SHUFp G¶XQH IHQrWUH HQ YHUUH GH VHFWLRQ Sv � Sm GH FRQGXFWLYLWp WKHU
PLTXH λv � λm HW G¶pSDLVVHXU ev � em &9&3$*$& 2Q V¶LQWpUHVVH j XQ VLPSOH YLWUDJH &RPSDUHU OD UpVLVWDQFH WKHUPLTXH GH OD YLWUH HW FHOOH
GX PXU ([SULPHU OD UpVLVWDQFH WKHUPLTXH GH OD SDURL
2Q LQVWDOOH GX GRXEOH YLWUDJH FRPSRVp GH GHX[ YHUUHV GH VHFWLRQ Sv GH FRQGXFWLYLWp
WKHUPLTXH λv HW G¶pSDLVVHXU ev HQWUH OHVTXHOV VH WURXYH GH O¶DLU GH FRQGXFWLYLWp WKHU
�
PLTXH λa � λv HW G¶pSDLVVHXU ea � ev ([SULPHU OD QRXYHOOH UpVLVWDQFH WKHUPLTXH Rth
GH OD YLWUH &RQFOXUH
aQm`+2 , **S
282
Thermodynamique - Thermique
5pVLVWDQFH WKHUPLTXH
2Q UHIURLGLW XQ FLUFXLW pOHFWULTXH G¶pSDLVVHXU d HW GH VXUIDFH S JUkFH j XQ YHQWLODWHXU 2Q
DSSHOOH λ OD FRQGXFWLYLWp WKHUPLTXH GX FLUFXLW /D VXUIDFH GX FLUFXLW VH WURXYH j OD WHPSpUD
WXUH T1 = 30 ƒ& /H YHQWLODWHXU HQYRLH GH O¶DLU GH WHPSpUDWXUH T2 = 20 ƒ& /D SXLVVDQFH
VXUIDFLTXH pFKDQJpH HQWUH O¶DLU HW OH FLUFXLW HVW ELHQ GpFULWH SDU OD ORL GH 1HZWRQ &9&3$*$& P = h × TIOXLGH − TFRPSRVDQW
'pWHUPLQHU OD UpVLVWDQFH WKHUPLTXH GX FLUFXLW
'pWHUPLQHU OD UpVLVWDQFH WKHUPLTXH pTXLYDOHQWH DX[ pFKDQJHV WKHUPLTXHV GX FLUFXLW YHUV
O¶DLU
(Q GpGXLUH OD UpVLVWDQFH WKHUPLTXH pTXLYDOHQWH GX V\VWqPH
1PVS WPVT BJEFS
E©NBSSFS
&9&3$*$& 8WLOLVHU O¶pTXDWLRQ GH OD FKDOHXU HQ UpJLPH SHUPDQHQW
&9&3$*$& 8WLOLVHU OHV UpVLVWDQFHV WKHUPLTXHV HQ VpULH RX HQ SDUDOOqOH
&9&3$*$& 8WLOLVHU OD GpILQLWLRQ GH OD UpVLVWDQFH WKHUPLTXH
Solutions
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& −
→
(Q UpJLPH SHUPDQHQW O¶pTXDWLRQ GH OD FKDOHXU V¶pFULW GLY j = 0 GRQF G¶DSUqV OD ILFKH
SUpFpGHQWH OH IOX[ j WUDYHUV XQH VXUIDFH IHUPpH HVW FRQVWDQW
/D V\PpWULH HVW F\OLQGULTXH GRQF OH YHFWHXU GHQVLWp GH FRXUDQW WKHUPLTXH V¶pFULW VRXV
−
→
−
→
OD IRUPH j (r) = −λ GT
Gr er &H YHFWHXU HVW SHUSHQGLFXODLUH j OD VXUIDFH F\OLQGULTXH GH
UD\RQ r HW GH ORQJXHXU L HW GH QRUPH KRPRJqQH VXU FHOOHFL GRQF φ = j(r) × S(r) = 2πr × L × j(r)
2Q XWLOLVH OD ORL GH )RXULHU SRXU H[SOLFLWHU OH YHFWHXU GHQVLWp GH FRXUDQW WKHUPLTXH 3XLV
RQ VpSDUH OHV YDULDEOHV φ = −λ
GT
φ
Gr
× 2πr × L =⇒ GT = −
×
Gr
2πλL
r
48. Utiliser les résistances thermiques en régime stationnaire
283
2Q LQWqJUH OD UHODWLRQ SUpFpGHQWH VXU O¶pSDLVVHXU GH O¶LVRODQW T2
φ
GT = −
2πλL
T1
2Q REWLHQW T2 − T 1 = −
r2
r1
Gr
r
r2
φ
OQ
2πλL r1
(QILQ RQ XWLOLVH OD GpILQLWLRQ GH OD UpVLVWDQFH WKHUPLTXH Rth =
1
r2
T 1 − T2
=
OQ
φ
2πλL r1
2Q HIIHFWXH O¶DSSUR[LPDWLRQ j O¶RUGUH XQ VXJJpUp SDU O¶pQRQFp r1 + e
e
e
1
1
OQ
OQ 1 +
�
=
Rth =
2πλL
r1
2πλL
r1
2πr1 Lλ
2Q UHWURXYH O¶H[SUHVVLRQ GH OD UpVLVWDQFH WKHUPLTXH SRXU XQH GLIIXVLRQ UHFWLOLJQH
&9&3$*$& 2Q FRPSDUH OHV GHX[ UpVLVWDQFHV WKHUPLTXHV Rmur
λ v Sv e m
=
�1
Rvitre
λ m Sm e v
/H PXU HW OD YLWUH VRQW HQ SDUDOOqOH GRQF OD UpVLVWDQFH WKHUPLTXH YDXW Rth =
1
Rmur
+
1
Rvitre
−1
� Rvitre �
ev
λ v Sv
2Q FDOFXOH OD QRXYHOOH UpVLVWDQFH WKHUPLTXH GH OD YLWUH �
= Rvitre + Rair + Rvitre = 2 ×
Rvitre
ev
ea
ea
+
�
λ v Sv
λ a Sv
λ a × Sv
/D UpVLVWDQFH WKHUPLTXH GH OD YLWUH D DXJPHQWp JUkFH DX GRXEOH YLWUDJH LO \ D GRQF
PRLQV GH SHUWHV WKHUPLTXHV
&9&3$*$& 284
5pVLVWDQFH WKHUPLTXH
d
(Q UpJLPH SHUPDQHQW OD UpVLVWDQFH WKHUPLTXH GX FLUFXLW YDXW R1 = Sλ
Thermodynamique - Thermique
/D UpVLVWDQFH WKHUPLTXH GH OD YLWUH D DXJPHQWp JUkFH DX GRXEOH YLWUDJH LO \ D GRQF
PRLQV GH SHUWHV WKHUPLTXHV
&9&3$*$& 5pVLVWDQFH WKHUPLTXH
d
(Q UpJLPH SHUPDQHQW OD UpVLVWDQFH WKHUPLTXH GX FLUFXLW YDXW R1 = Sλ
2Q FDOFXOH OH IOX[ WKHUPLTXH GH FLUFXLW YHUV O¶DWPRVSKqUH φ = −P × S = hS × (T2 − T1 )
3XLV RQ HQ GpGXLW OD UpVLVWDQFH WKHUPLTXH pTXLYDOHQWH R2 =
/HV pFKDQJHV WKHUPLTXHV VH VXLYHQW GRQF OH IOX[ HVW FRQVHUYp HW OHV UpVLVWDQFHV WKHU
PLTXHV VRQW HQ VpULH /D UpVLVWDQFH WKHUPLTXH pTXLYDOHQWH YDXW GRQF Rth = R1 + R2 =
d
1
+
Sλ hS
Solutions
1
T 2 − T1
=
φ
hS
48. Utiliser les résistances thermiques en régime stationnaire
285
Mécanique quantique
49
Écrire l’équation de Schrödinger
&DSJSF M©RVBUJPO EF 4DIS¶EJOHFS
2VBOE PO OF TBJU QBT &RQVLGpURQV XQH SDUWLFXOH M VLWXpH GDQV O¶HVSDFH 6D SRVLWLRQ j O¶LQVWDQW t pWDQW UHSpUpH
→
SDU OH YHFWHXU SRVLWLRQ −
r RQ SRXUUD GpFULUH VRQ pWDW SDU XQH IRQFWLRQ j YDOHXUV FRPSOH[HV
→
HW GH FDUUp VRPPDEOH DSSHOpH IRQFWLRQ G¶RQGH ψ(−
r , t)
8QH SDUWLFXOH TXDQWLTXH Q¶pWDQW SDV ORFDOLVpH VD SRVLWLRQ QH SHXW rWUH FRQQXH DYHF XQH
SUpFLVLRQ LQILQLH RQ SHXW FDOFXOHU VD SUREDELOLWp Gp GH SUpVHQFH GDQV OH YROXPH GV VLWXp
→
DXWRXU GH OD SRVLWLRQ −
r &HWWH SUREDELOLWp SHXW rWUH OLpH DX PRGXOH DX FDUUp GH OD IRQFWLRQ
G¶RQGH 2
→
Gp = |ψ(−
r , t)| GV
2Q DSSHOOHUD GHQVLWp GH SUREDELOLWp GH SUpVHQFH OH FDUUp GX PRGXOH GH OD IRQFWLRQ G¶RQGH
2
→
&RPPH
Gp = 1 RQ HQ GpGXLW
|ψ(−
r , t)| GV = 1
espace
espace
'DQV OH FDGUH GX SURJUDPPH RQ QH FRQVLGqUHUD TXH GHV SUREOqPHV XQLGLPHQVLRQQHOV RQ
SRXUUD GRQF UHSpUHU OD SRVLWLRQ GH OD SDUWLFXOH DYHF OD VHXOH YDULDEOH x /D IRQFWLRQ G¶RQGH
V¶pFULUD GRQF SOXV VLPSOHPHQW ψ(x, t) HW OD SUREDELOLWp Gp = |ψ(x, t)|2 Gx 2Q VH SODFH
GDQV FH FDV SRXU OD VXLWH
/D SDUWLFXOH pWXGLpH SRVVqGH XQH pQHUJLH WRWDOH E TXH O¶RQ SHXW GpFRPSRVHU HQ pQHUJLHV
FLQpWLTXH Ec HW SRWHQWLHOOH Ep &HWWH GHUQLqUH pQHUJLH HVW D SULRUL GpSHQGDQWH GX WHPSV HW
GH OD SRVLWLRQ (Q QRWDQW p OD TXDQWLWp GH PRXYHPHQW GH OD SDUWLFXOH RQ D 2
p
E = Ec + Ep (x, t) = 2m
+ Ep (x, t)
*UkFH j OD UHODWLRQ GH GH %URJOLH RQ D Ec = 2m
k2 2
−
→
3RXU pWXGLHU OHV RQGHV pOHFWURPDJQpWLTXHV RQ D XWLOLVp O¶RSpUDWHXU ∇ SRXU SDU H[HPSOH
UHPSODFHU O¶pTXDWLRQ GH 0D[ZHOO*DXVV SDU
−
→ −
−
→ −
→
→ ∂Ex ∂Ey
∂Ez
∇ · E =ik · E =
+
+
∂x
∂y
∂z
286
Mécanique quantique
(Q VH SODoDQW GDQV XQ SUREOqPH XQLGLPHQVLRQQHO PXOWLSOLHU XQH IRQFWLRQ f (x) SDU −k 2
UHYLHQGUD GRQF j HIIHFWXHU XQH GpULYpH VHFRQGH SDU UDSSRUW j x 0XOWLSOLHU SDU XQH pQHUJLH
FLQpWLTXH UHYLHQW GRQF j UpDOLVHU O¶RSpUDWLRQ Ec f (x) = − 2m
2
∂2f
∂x2
/¶pYROXWLRQ GH OD IRQFWLRQ G¶RQGH HVW UpJLH SDU O¶pTXDWLRQ GH 6FKU|GLQJHU i
2
∂ψ
2 ∂ ψ
= − 2m
+ Ep (x, t)ψ
∂t
∂x2
2Q SHXW UHFRQQDvWUH GDQV OH WHUPH GH GURLWH XQHSDUWLH DVVRFLpH
j O¶pQHUJLH SRWHQWLHOOH
2ψ
∂
2
Ep ψ HW XQH DXWUH DVVRFLpH j O¶pQHUJLH FLQpWLTXH − 2m
∂x2
&HWWH pTXDWLRQ HVW OLQpDLUH 7RXWH FRPELQDLVRQ OLQpDLUH GH VHV VROXWLRQV VHUD GRQF VROXWLRQ
GH O¶pTXDWLRQ
/RUVTXH O¶pQHUJLH SRWHQWLHOOH RX SRWHQWLHO GDQV OD VXLWH HVW LQGpSHQGDQWH GX WHPSV
O¶RQGH GH PDWLqUH DVVRFLpH j OD SDUWLFXOH HVW VWDWLRQQDLUH DQDORJLH DYHF OD FRUGH YLEUDQWH
YXH HQ SUHPLqUH DQQpH /HV YDULDEOHV x HW t VHURQW DORUV GpFRXSOpHV HW OD IRQFWLRQ
G¶RQGH V¶pFULUD VRXV OD IRUPH ψ(x, t) = φ(x) × g(t)
/¶pTXDWLRQ GH 6FKU|GLQJHU V¶pFULW GDQV FH FDV G φ
iφ Gg
Gt = − 2m Gx2 g + Ep (x)φg
2
RX HQFRUH 2
1 G φ
i g1 Gg
Gt = − φ 2m Gx2 + Ep (x) = E
2
2
/¶pJDOLWp GHV GHX[ PHPEUHV LPSRVH TX¶LOV VRLHQW pJDX[ j XQH FRQVWDQWH E TXL VH WURXYH
rWUH O¶pQHUJLH GX V\VWqPH LFL
/D SDUWLH WHPSRUHOOH g(t) GH OD IRQFWLRQ G¶RQGH YpULILH i g1 Gg
Gt = E
E
Gg
E
E
g = i Gt = −i Gt
g(t) = Ae−i t DYHF A XQH FRQVWDQWH G¶LQWpJUDWLRQ
/D SDUWLH VSDWLDOH φ(x) GH OD IRQFWLRQ G¶RQGH YpULILH G φ
+ Ep (x)φ = Eφ
− 2m
Gx2
2
2
G φ
− 2m
+ (Ep (x) − E) φ = 0
Gx2
2
2
/D VROXWLRQ GH FHWWH pTXDWLRQ GpSHQG GH O¶H[SUHVVLRQ GH Ep (x)
49. Écrire l’ équation de Schrödinger
287
2VF GBJSF
5HOLHU OH FDUUp GX PRGXOH GH OD IRQFWLRQ G¶RQGH j OD SUREDELOLWp GH SUpVHQFH DXWRXU G¶XQ
SRLQW
(FULUH O¶pTXDWLRQ GH 6FKU|GLQJHU SRXU XQH SDUWLFXOH HW HQ SDUWLFXOLHU 6DYRLU IDLUH OH OLHQ HQWUH FKDTXH WHUPH GH O¶pTXDWLRQ HW XQH pQHUJLH
6pSDUHU OHV YDULDEOHV VSDWLDOH HW WHPSRUHOOH ORUVTXH O¶pQHUJLH SRWHQWLHOOH HVW LQGpSHQ
GDQWH GX WHPSV
$POTFJMT
5HSUpVHQWHU O¶DOOXUH GH O¶pQHUJLH SRWHQWLHOOH DYDQW G¶pFULUH O¶pTXDWLRQ GH 6FKU|GLQJHU
&YFNQMF USBJU©
/D SRVLWLRQ GH O¶pOHFWURQ G¶XQ DWRPH G¶K\GURJqQH HVW UHSpUpH SDU VHV FRRUGRQQpHV F\OLQ
GULTXHV (R, θ) 2Q VXSSRVH TXH O¶pOHFWURQ GpFULW FRQIRUPpPHQW DX PRGqOH GH %RKU XQH
RUELWH FLUFXODLUH GH UD\RQ R DXWRXU GX QR\DX GH O¶DWRPH
'H TXHOOHV YDULDEOHV OD IRQFWLRQ G¶RQGH GH O¶pOHF
WURQ GpSHQGHOOH "
3RXUTXRL SHXWRQ FRQVLGpUHU TXH O¶RQGH GH PDWLqUH
DVVRFLpH j O¶pOHFWURQ HVW VWDWLRQQDLUH "
4XHOOH HVW O¶pQHUJLH SRWHQWLHOOH GH O¶pOHFWURQ VXU
VRQ RUELWH FLUFXODLUH "
(FULUH O¶pTXDWLRQ GH 6FKU|GLQJHU YpULILpH SDU OD
SDUWLH VSDWLDOH GH OD IRQFWLRQ G¶RQGH GH O¶pOHFWURQ
4XHO HVW OH OLHQ HQWUH O¶pQHUJLH SRWHQWLHOOH GH O¶pOHF
WURQ HW VRQ pQHUJLH PpFDQLTXH "
6LPSOLILHU O¶pFULWXUH GH O¶pTXDWLRQ GH 6FKU|GLQJHU
y
O
−
→
eθ −
→
er
R
M
θ
x
aQm`+2 , /ǶT`ĕb **S
40-65*0/
/D IRQFWLRQ G¶RQGH GpSHQG GHV YDULDEOHV VSDWLDOHV R HW θ HW GH OD YDULDEOH WHPSRUHOOH t
,FL R HVW FRQVWDQW ψ QH GpSHQG GRQF TXH GH θ HW t
/D SRVLWLRQ GH O¶pOHFWURQ HW GRQF VRQ pQHUJLH SRWHQWLHOOH QH GpSHQG TXH GH OD YDOHXU GH
θ /¶RQGH GH PDWLqUH TXL OXL HVW DVVRFLpH HVW ELHQ VWDWLRQQDLUH
/¶pQHUJLH SRWHQWLHOOH pOHFWURVWDWLTXH FRUUHVSRQGDQW j O¶LQWHUDFWLRQ HQWUH O¶pOHFWURQ GH
2
FKDUJH −e HW OH SURWRQ GH FKDUJH e HVW Ep (θ) = − 4π�e 0 R /¶pTXDWLRQ GH 6FKU|GLQJHU DVVRFLpH j OD SDUWLH VSDWLDOH φ(θ) GH OD IRQFWLRQ G¶RQGH HVW
− 2me R2 GGθφ2 + Ep (θ)φ = Eφ
2
288
Mécanique quantique
2
'DQV OH FDV G¶XQ PRXYHPHQW FLUFXODLUH RQ D Ep = 2E DYHF E O¶pQHUJLH PpFDQLTXH GH
O¶pOHFWURQ
/¶pTXDWLRQ GH 6FKU|GLQJHU V¶pFULW DORUV − 2me R2 GGθφ2 + 2Eφ = Eφ
2
2
− 2me R2 GGθφ2 + (2E − E) φ = 0
2
2
− 2me R2 GGθφ2 + Eφ = 0
2
2
φ=0
− GGθφ2 + 2meER
2
2
2
2
G2 φ
ee R
+m
φ=0
Gθ 2
2π�0 2
&YFSDJDFT
&9&3$*$& 2Q pWXGLH O¶pYROXWLRQ G¶XQ TXDQWRQ GH PDVVH m TXL DERUGH DYHF XQH pQHUJLH E > 0 XQH
IDODLVH GH SRWHQWLHO GH KDXWHXU V0 FRQVWDQWH VLWXpH HQ x = 0 SRWHQWLHO QXO SRXU x > 0 /¶pWXGH HVW XQLGLPHQVLRQQHOOH FRQGXLWH VXU XQ D[H (Ox)
5HSUpVHQWHU O¶DOOXUH GX SRWHQWLHO HQ IRQFWLRQ GH x
(FULUH O¶pTXDWLRQ GH 6FKU|GLQJHU YpULILpH SDU OD SDUWLH VSDWLDOH φ(x) GH OD IRQFWLRQ G¶RQGH
GX TXDQWRQ SRXU x ≤ 0
(FULUH O¶pTXDWLRQ GH 6FKU|GLQJHU YpULILpH SDU OD SDUWLH VSDWLDOH φ(x) GH OD IRQFWLRQ G¶RQGH
GX TXDQWRQ SRXU x > 0
&9&3$*$& /D ILVVLRQ QXFOpDLUH HVW OH SKpQRPqQH SDU OHTXHO XQ QR\DX ORXUG VH IUDJPHQWH HQ QXFOpLGHV
SOXV OpJHUV &HWWH UpDFWLRQ VH WUDGXLW SDU O¶pPLVVLRQ GH QHXWURQV HW XQ GpJDJHPHQW G¶pQHUJLH
WUqV FRQVpTXHQW 2Q QRWHUD r OD GLVWDQFH HQWUH OHV GHX[ IUDJPHQWV GX QR\DX DSUqV ILVVLRQ
/¶pQHUJLH GHV IUDJPHQWV DSUqV ILVVLRQ HVW Qf 3RXU GHV pQHUJLHV VHXLO GH ILVVLRQ LQVWDQWD
QpH Es UHODWLYHPHQW IDLEOHV OD EDUULqUH GH SRWHQWLHO HQWUH OHV DEVFLVVHV r1 HW r2 SHXW rWUH
DSSUR[LPpH SDU XQH SDUDEROH GX W\SH V (r) = H − 12 K(r − rm )2 (QHUJLH SRWHQWLHOOH V (r)
Es
H
Qf
r1rm
r2
r GLVWDQFH HQWUH IUDJPHQWV
49. Écrire l’ équation de Schrödinger
289
5HSUpVHQWHU O¶DOOXUH GX PRGqOH GX SRWHQWLHO HQ IRQFWLRQ GH r
2Q QRWH Qf = H − Es OH ELODQ pQHUJpWLTXH GX SURFHVVXV SDUDPqWUH LPSRUWDQW SRXU TXH
OD ILVVLRQ SXLVVH DYRLU OLHX ([SULPHU O¶pSDLVVHXU a = r2 − r1 GH OD EDUULqUH HQ IRQFWLRQ
GH Es HW K
(QWUH r1 HW r2 pFULUH O¶pTXDWLRQ GH 6FKU|GLQJHU YpULILpH SDU OD SDUWLH VSDWLDOH φ(r) GH OD
IRQFWLRQ G¶RQGH G¶XQ QXFOpLGH
1PVS WPVT BJEFS
E©NBSSFS
&9&3$*$& 8WLOLVHU OD UHSUpVHQWDWLRQ GH V (x) SRXU pFULUH O¶pTXDWLRQ GDQV FKDTXH
]RQH
&9&3$*$& 8WLOLVHU OH IDLW TX¶HQ r1 HW r2 V (r) = Qf 6LPSOLILHU O¶pTXDWLRQ GH
6FKU|GLQJHU REWHQXH HQVXLWH
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& /H SRWHQWLHO D O¶DOOXUH VXLYDQWH V
V0
x
'DQV OD ]RQH x ≤ 0 V = V0 GRQF O¶pTXDWLRQ GH 6FKU|GLQJHU V¶pFULW G φ
+ V0 φ = Eφ
− 2m
Gx2
2
2
'DQV OD ]RQH x ≥ 0 V = 0 GRQF O¶pTXDWLRQ GH 6FKU|GLQJHU GHYLHQW G φ
= Eφ
− 2m
Gx2
2
290
Mécanique quantique
2
&9&3$*$& 2Q PRGpOLVH OH SRWHQWLHO SDU XQH SDUDEROH FHQWUpH VXU rm HQWUH r1 HW r2 /¶DOOXUH GX
SRWHQWLHO HVW DORUV V
Qf
r1
rm
r2
r
3RXU r1 HW r2 RQ D (ri − rm )2 = 2 EKs
ri = rm ± 2 EKs
GRQF a = 2 2 EKs
Solutions
V (ri ) = Qf = H − 12 K(ri − rm )2
1
2
2 K(ri − rm ) = H − Qf = Es
HW K2 = 4 Ea2s
3RXU r1 ≤ r ≤ r2 O¶pTXDWLRQ GH 6FKU|GLQJHU YpULILpH SDU OD SDUWLH VSDWLDOH GH OD IRQFWLRQ
G¶RQGH HVW G φ
+ V (r)φ = Qf φ
− 2m
Gr2
2
2
G φ
− 2m
+ H − 12 K(r − rm )2 φ = Qf φ
Gr2
2 G2 φ
− 2m
+ H − Qf − 12 K(r − rm )2 φ = 0
Gr2
2 G2 φ
− 2m
+ Es − 12 K(r − rm )2 φ = 0
Gr2
2 G2 φ
2 φ=0
s
− 2m
+ Es − 4E
2 (r − rm )
Gr 2
a
2 2(r−rm )
2 G2 φ
− 2m Gr2 + Es 1 −
φ=0
a
2
2
49. Écrire l’ équation de Schrödinger
291
50
Décrire l’état d’une particule libre
%©DSJSF M©UBU EVOF QBSUJDVMF MJCSF
2VBOE PO OF TBJU QBT 8QH SDUWLFXOH M HVW GLWH OLEUH VL HOOH Q¶D DXFXQH pQHUJLH SRWHQWLHOOH /¶pTXDWLRQ GH
6FKU|GLQJHU V¶pFULW GDQV FH FDV i
2
Gψ
2 G ψ
= − 2m
Gt
Gx2
&RPPH YX GDQV OD ILFKH Qƒ © (FULUH O¶pTXDWLRQ GH 6FKU|GLQJHU ª OHV YDULDEOHV G¶HVSDFH
x HW GH WHPSV t VRQW GpFRXSOpHV HW OD IRQFWLRQ G¶RQGH SHXW V¶pFULUH ψ(x, t) = φ(x)g(t)
E
DYHF g(t) = At e−i t 2Q SHXW DVVRFLHU XQH SXOVDWLRQ ω = E j FHWWH SDUWLH GH OD IRQFWLRQ
G¶RQGH
/D SDUWLH VSDWLDOH YpULILH GH SOXV − 2m
2
G2 φ
= Eφ
Gx2
G2 φ 2mE
+ 2 φ = 0
Gx2
G2 φ
+ k2 φ = 0
Gx2
DYHF k =
2Q SHXW GRQF HQ GpGXLUH TXH φ(x) HVW GH OD IRUPH 2mE
2
RX φ(x) = A�x FRV kx + Bx� VLQ kx
φ(x) = Ax eikx + Bx e−ikx
/D IRQFWLRQ G¶RQGH FRPSOqWH V¶pFULUD DORUV E
E
E
E
ψ(x, t) = At Ax e−i( t−kx) + At Bx e−i( t+kx) = Ae−i( t−kx) + Be−i( t+kx)
2Q UHFRQQDvW√ OD VXSHUSRVLWLRQ GH GHX[ RQGHV SODQHV PRQRFKURPDWLTXHV GH YHFWHXU
G¶RQGH k = 2mE
O¶XQH VH SURSDJHDQW YHUV OHV x FURLVVDQWV SUHPLHU WHUPH HW O¶DXWUH
VH SURSDJHDQW YHUV OHV x GpFURLVVDQWV VHFRQG WHUPH /HV FRQGLWLRQV DX[ OLPLWHV SHU
PHWWHQW HQVXLWH GH GpWHUPLQHU OHV FRQVWDQWHV G¶LQWpJUDWLRQ A HW B
292
Mécanique quantique
/H YHFWHXU G¶RQGH k YpULILH E = k2m
2 2
k 2 = 2mE
2
&RPPH OD SDUWLFXOH Q¶D DXFXQH pQHUJLH SRWHQWLHOOH VRQ pQHUJLH HVW XQLTXHPHQW VRXV IRUPH
G¶pQHUJLH FLQpWLTXH G¶R 2
p
= k2m
E = 2m
2 2
2Q UHWURXYH OD UHODWLRQ GH GH %URJOLH p = k 2Q SHXW DORUV GpILQLU SDU DQDORJLH DYHF XQ YHFWHXU GHQVLWp GH FRXUDQW pOHFWULTXH
−
→
→
→
j = ρel −
v el OD YLWHVVH GH FHV SRU
v el ρel pWDQW XQH GHQVLWp GH SRUWHXU GH FKDUJHV HW −
WHXUV GH FKDUJHV XQ YHFWHXU GHQVLWp GH FRXUDQW GH SUREDELOLWp
→
−
−
→
p
Gp −
→
j = GV
v = |ψ(x, t)|2 m
→
−
−
→
j = |ψ(x, t)|2 mk
Gp
GV pWDQW OD SUREDELOLWp YROXPLTXH GH SUpVHQFH GH OD SDUWLFXOH pWXGLpH GpILQLH GDQV OD
ILFKH Qƒ © (FULUH O¶pTXDWLRQ GH 6FKU|GLQJHU ª 2Q SHXW UHPDUTXHU TXH OD IRQFWLRQ G¶RQGH ψ1 (x, t) = Ae−i(ωt−kx) Q¶HVW SDV QRUPDOL
VDEOH (Q HIIHW O¶LQWpJUDOH GX FDUUp GX PRGXOH GH ψ1 GLYHUJH +∞
2
−∞ |ψ1 (x, t)| Gx =
+∞
−∞ Adx
3K\VLTXHPHQW OD SUREDELOLWp GH SUpVHQFH GDQV O¶HVSDFH QH SHXW SDV GLYHUJHU /D VXSHUSR
VLWLRQ GH GHX[ RQGHV SODQHV PRQRFKURPDWLTXHV Q¶HVW GRQF SDV XQH VROXWLRQ SK\VLTXHPHQW
VDWLVIDLVDQWH SRXU UHSUpVHQWHU O¶pWDW G¶XQH SDUWLFXOH OLEUH (Q UpDOLWp OH SUREOqPH YLHQW GX
IDLW TX¶XQH SDUWLFXOH GH YHFWHXU G¶RQGH GpILQL LQILQLPHQW SUpFLVpPHQW HW TXL QH GpSHQG
GH OD YDULDEOH G¶HVSDFH TXH YLD XQ WHUPH HQ e±ikx Q¶HVW SDV VDWLVIDLVDQWH 3RXU TXH OD
IRQFWLRQ G¶RQGH VRLW QRUPDOLVDEOH HOOH GRLW WHQGUH YHUV SRXU x → ±∞ /D YDOHXU GX
YHFWHXU G¶RQGH QH SHXW GRQF SDV rWUH XQLTXH (Q UHYDQFKH XQH VXSHUSRVLWLRQ G¶RQGHV
SODQHV PRQRFKURPDWLTXHV GH YHFWHXUV G¶RQGH GLIIpUHQWV RX SDTXHW G¶RQGHV SHUPHW OD
QRUPDOLVDWLRQ
3RXU SUHQGUH HQ FRPSWH WRXWHV OHV YDOHXUV SRVVLEOHV GH k RQ pFULW OD IRQFWLRQ G¶RQGH
VRXV IRUPH GH SDTXHW G¶RQGHV HQ LQWpJUDQW VXU WRXWHV OHV YDOHXUV SRVVLEOHV GH k +∞
−iωt +∞
ψ(x, t) = √12π −∞ A(k)e−i(ωt−kx) dk = e√2π −∞ A(k)eikx dk
50. Décrire l’ état d’une particule libre
293
8Q H[HPSOH GH SDTXHW G¶RQGHV SHXW VH UHSUpVHQWHU j t = 0 SDU H[HPSOH VRXV OD IRUPH 6SHFWUH GH ψ
Re(ψ(x, t = 0))
x
k
Δx
Δk
(Q QRWDQW Δx OD ODUJHXU GH OD ]RQH G¶HVSDFH VXU ODTXHOOH OH SDTXHW G¶RQGHV SHXW rWUH
FRQVLGpUp FRPPH QRQ QXO ]RQH G¶HVSDFH GDQV ODTXHOOH OD SDUWLFXOH pWXGLpH HVW ORFDOL
VpH HW Δk OD ODUJHXU GH OD SODJH GH YHFWHXU G¶RQGH GDQV OH VSHFWUH GH ψ RQ REVHUYH
TXH Δx × Δk 1 2Q UHWLHQGUD FHWWH UHODWLRQ DSSHOpH LQpJDOLWp GH +HLVHQEHUJ VRXV OD
IRUPH Δx × Δp 8QH SDUWLFXOH WUqV ELHQ ORFDOLVpH Δx IDLEOH HVW GRQF GpFULWH SDU XQH IRQFWLRQ G¶RQGH GRQW
OH VSHFWUH HVW WUqV ULFKH Δk GRQF Δp JUDQGV $ O¶LQYHUVH XQH SDUWLFXOH GRQW OH VSHFWUH
HVW SDXYUH Δk HW Δp IDLEOHV RQGH TXDVL PRQRFKURPDWLTXH QH SRXUUD SDV rWUH ORFDOLVpH
DYHF SUpFLVLRQ
2VF GBJSF
3RXU UpVRXGUH O¶pTXDWLRQ GH 6FKU|GLQJHU GDQV OH FDV G¶XQH SDUWLFXOH OLEUH LO IDXW VDYRLU TX¶XQH SDUWLFXOH OLEUH Q¶D SDV G¶pQHUJLH SRWHQWLHOOH
FRQQDvWUH HW VDYRLU UHWURXYHU OD UHODWLRQ GH GH %URJOLH
UpVRXGUH O¶pTXDWLRQ HQ WHQDQW FRPSWH GHV FRQGLWLRQV DX[ OLPLWHV
'pILQLU XQ YHFWHXU GHQVLWp GH SUREDELOLWp GH FRXUDQW
$ SURSRV GH O¶LQpJDOLWp G¶+HLVHQEHUJ FRQQDvWUH O¶LQpJDOLWp G¶+HLVHQEHUJ
MXVWLILHU O¶XWLOLVDWLRQ G¶XQ SDTXHW G¶RQGHV
$POTFJMT
([SOLFLWHU OHV FRQGLWLRQV DX[ OLPLWHV SRXU GpWHUPLQHU OHV FRQVWDQWHV G¶LQWpJUDWLRQ
/D IRQFWLRQ G¶RQGH HVW FRQWLQXH DLQVL TXH VD GpULYpH SDU UDSSRUW j x ORUV G¶XQ FKDQJHPHQW
GH PLOLHX FKDQJHPHQW GH OD YDOHXU GX SRWHQWLHO 294
Mécanique quantique
&YFNQMF USBJU©
3RXU OH GHPL HVSDFH x ≤ 0 XQH SDUWLFXOH GH PDVVH m HW G¶pQHUJLH E D XQH pQHUJLH
SRWHQWLHOOHQXOOH )LFKH1ƒ©(FULUHO¶pTXDWLRQGH6FKU|GLQJHUªH[HUFLFH 6DIRQFWLRQG¶RQGHVSDWLDOHYpULILHDORUVO¶pTXDWLRQGH6FKU|GLQJHU
G φ
− 2m
= Eφ
Gx2
2
2
2Q GRQQH m = 1, 0 × 10−30 NJ E = 1 H9 HW = 1, 1 × 10−34 -V
4XHOOHHVWO¶H[SUHVVLRQGXYHFWHXUG¶RQGHGHFHWWHSDUWLFXOH"
(QGpGXLUHODYLWHVVHGHODSDUWLFXOH
40-65*0/
/¶pTXDWLRQGH6FKU|GLQJHUV¶pFULW
G2 φ
+ 2mE
φ=0
Gx2
2
2
G φ
+ k2 φ = 0
Gx2
3DU LGHQWLILFDWLRQ OH YHFWHXU G¶RQGH V¶pFULW k = ±
√
2mE
/D UHODWLRQ GH GH %URJOLH GRQQH p = k = mv
2E
6
−1
v = k
=
m
m = 6 × 10 PV
&YFSDJDFT
&9&3$*$& /D SDUWLFXOH GH O¶H[HUFLFH SUpFpGHQW SURYLHQW SRXU x < 0 G¶XQH IDODLVH GH SRWHQWLHO (OOH
HVW pPLVH HQ −∞ HW VH GpSODFH YHUV OHV x FURLVVDQWV $SUqV x = 0 HOOH QH UHQFRQWUH DXFXQ
REVWDFOH VRQ pQHUJLH UHVWH QXOOH
4XHOOH HVW OD IRUPH GHV VROXWLRQV GH FHWWH pTXDWLRQ RQ QH FKHUFKHUD SDV j GpWHUPLQHU
OHV FRQVWDQWHV G¶LQWpJUDWLRQ "
4XHOOH HVW OD IRUPH GH OD IRQFWLRQ G¶RQGH ψ(x, t) "
/DTXHOOH GH FHV VROXWLRQV FRUUHVSRQG j OD VLWXDWLRQ SK\VLTXH GpFULWH FLGHVVXV " (Q Gp
GXLUH XQH GHV FRQVWDQWHV G¶LQWpJUDWLRQ
50. Décrire l’ état d’une particule libre
9782340-033252_001_468.indd 295
295
02/08/2019 14:51
1PVS WPVT BJEFS
&9&3$*$& E©NBSSFS
'DQV TXHOOH GLUHFWLRQ O¶RQGH VH SURSDJHWHOOH "
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& /HV VROXWLRQV GH FHWWH pTXDWLRQ VRQW GH OD IRUPH φ(x) = Ae−ikx + Beikx /D IRQFWLRQ G¶RQGH V¶pFULW E
E
ψ(x, t) = φ(x)e−i t = Ae−i(kx+ t) + Be−i( t−kx)
E
296
E
/D SDUWLFXOH VH GpSODFH YHUV OHV x FURLVVDQWV VHXOH OD SDUWLH Be−i( t−kx) FRUUHVSRQG j
FHWWH VLWXDWLRQ O¶DXWUH SDUWLH FRUUHVSRQG j XQH RQGH VH SURSDJHDQW YHUV OHV x GpFURLV
VDQWV 2Q HQ GpGXLW A = 0
Mécanique quantique
Déterminer les états stationnaires
d’une
particule
%©UFSNJOFS
MFTpour
©UBUTunTUBUJPOOBJSFT
puits
EVOFdeQBSUJDVMF
potentielQPVS
infiniVO QVJUT EF
QPUFOUJFM JOGJOJ
51
2VBOE PO OF TBJU QBT 2Q GLW TX¶XQH SDUWLFXOH VH WURXYH GDQV XQ SXLWV GH SRWHQWLHO VL HOOH HVW GDQV XQH ]RQH GH
IDLEOH pQHUJLH SRWHQWLHOOH HQFDGUpH SDU GHX[ ]RQHV GH IRUWH pQHUJLH SRWHQWLHOOH
6L GDQV OHV ]RQHV GH IRUWH pQHUJLH SRWHQWLHOOH Ep → +∞ RQ GLW TXH OH SXLWV GH SRWHQWLHO
HVW LQILQL
'DQV OHV ]RQHV SRXU OHVTXHOOHV Ep → +∞ DXFXQH RQGH QH VH SURSDJH OD SDUWLFXOH QH
SHXW SDV DWWHLQGUH FHV ]RQHV RQ D GRQF Φ(x, t) = 0
$X[ OLPLWHV G¶XQ SXLWV GH SRWHQWLHO LQILQL OD IRQFWLRQ G¶RQGH HVW FRQWLQXH 2Q XWLOLVH
FHWWH FRQWLQXLWp SRXU GpWHUPLQHU OHV FRQVWDQWHV G¶LQWpJUDWLRQ
3RXU XQ SXLWV GH SRWHQWLHO LQILQL VLWXp HQWUH x = −L HW x = L OD IRQFWLRQ G¶RQGH V¶DQQXOH
HQ x = −L HW x = L &HV SRVLWLRQV SHXYHQW rWUH FRPSDUpHV DX[ QRHXGV G¶XQH FRUGH
YLEUDQWH /HV ORQJXHXUV G¶RQGH λ = k SHUPHWWDQW GH YpULILHU OHV FRQGLWLRQV DX[ OLPLWHV
VRQW DXVVL DSSHOpHV PRGHV SURSUHV
/RUVTX¶XQH SDUWLFXOH HVW FRQILQpH HQWUH x = L HW x = −L OD ODUJHXU GH OD ]RQH G¶HVSDFH
R SHXW VH WURXYHU OD SDUWLFXOH HVW Δx = 2L 2Q SHXW j O¶DLGH GH O¶LQpJDOLWp G¶+HLVHQEHUJ
HQ GpGXLUH Δp ≥ Δx
GRQF
Δp ≥ 2L
&HWWH H[SUHVVLRQ SHXW SHUPHWWUH GH GpWHUPLQHU XQ RUGUH GH JUDQGHXU GH O¶pQHUJLH IRQ
GDPHQWDOH GH OD SDUWLFXOH FRQILQpH GDQV OH SXLWV RX pQHUJLH GH FRQILQHPHQW (Q HIIHW 2
p
E = 2m
E�
Δp2min
2
2m � 8mL2
51. Déterminer les états stationnaires d’une particule pour un puits de potentiel infini
297
2VF GBJSF
3RXU GpWHUPLQHU OHV pWDWV VWDWLRQQDLUHV VDYRLU TXH OD IRQFWLRQ G¶RQGH HVW FRQWLQXH DX[ ERUQHV G¶XQ SXLWV GH SRWHQWLHO LQILQL
XWLOLVHU OHV FRQGLWLRQV DX[ OLPLWHV SRXU UpVRXGUH O¶pTXDWLRQ GH 6FKU|GLQJHU
3RXU GpWHUPLQHU O¶pQHUJLH G¶XQH SDUWLFXOH GDQV XQ SXLWV GH SRWHQWLHO H[SOLTXHU O¶DQDORJLH HQWUH XQH SDUWLFXOH FRQILQpH HW XQH FRUGH YLEUDQWH
H[SORLWHU FHWWH DQDORJLH
$POTFJMT
5HSUpVHQWHU O¶DOOXUH GX SXLWV GH SRWHQWLHO SRXU IL[HU OHV LGpHV
6L Ep → +∞ OD IRQFWLRQ G¶RQGH HVW QXOOH
&YFNQMF USBJU©
8QH SDUWLFXOH GH PDVVH m HVW FRQILQpH GDQV XQ SXLWV GH SRWHQWLHO LQILQL UHFWDQJXODLUH R VRQ
pQHUJLH HVW Ep = 0 SRXU −a < x < a HW Ep = +∞ VLQRQ /D SDUWLFXOH VH GpSODFH VXU
O¶D[H GHV x HW RQ SRVH φ(x) XQH IRQFWLRQ G¶RQGH VWDWLRQQDLUH GH OD SDUWLFXOH HW E VRQ pQHUJLH
DVVRFLpH
5DSSHOHU O¶pTXDWLRQ GH 6FKU|GLQJHU
-XVWLILHU TXH SRXU x < −a HW x > a OD VHXOH VROXWLRQ SRVVLEOH HVW φ(x) = 0
$ SDUWLU GH OD UHFKHUFKH GHV VROXWLRQV GH O¶pTXDWLRQ GH 6FKU|GLQJHU GpWHUPLQHU OHV QL
YHDX[ G¶pQHUJLH E SRXU −a < x < a
([SULPHU OHV IRQFWLRQV G¶RQGH
5HSUpVHQWHU OD IRQFWLRQ G¶RQGH SRXU OHV GHX[ SUHPLHUV QLYHDX[
(Q DSSOLTXDQW O¶LQpJDOLWp G¶+HLVHQEHUJ MXVWLILHU TXH O¶pQHUJLH QH SHXW SDV rWUH QXOOH
aQm`+2 , **S
40-65*0/
/¶pTXDWLRQ GH 6FKU|GLQJHU V¶pFULW G φ
− 2m
+ Ep φ = Eφ
Gx2
2
298
2
/D SDUWLFXOH QH SHXW SDV VRUWLU GX SXLWV /D SUREDELOLWp TX¶HOOH VH WURXYH HQ x < −a RX
x > a pWDQW SURSRUWLRQQHOOH j |φ(x)|2 RQ D IRUFpPHQW φ(x) = 0 GDQV FHV ]RQHV
Mécanique quantique
3RXU −a < x < a RQ D Ep = 0 GRQF G2 φ
+ 2mE
φ=0
Gx2
2
2
G φ
2
+k φ=0
Gx2
/HV VROXWLRQV VRQW GH OD IRUPH φ(x) = A FRV kx + B VLQ kx
3RXU x = −a HW x = a φ(x) = 0 GRQF 0 = A FRV ka + B VLQ ka
0 = A FRV ka − B VLQ ka
0 = 2A FRV ka
0 = 2B VLQ ka
A = 0 RX ka = (2n + 1) π2
B = 0 RX ka = nπ = 2n π2
A = 0 RX ka = N π2 DYHF N LPSDLU
B = 0 RX ka = N π2 DYHF N SDLU
2 k 2
π )LQDOHPHQW SRXU N SDLU RX LPSDLU RQ D EN = 2mN = N 2 8ma
2
πx
6L ka = (2n + 1) π2 B = 0 HW φ2n+1 = A FRV 2n+1
2
a π
πx
6L ka = nπ = 2n 2 A = 0 HW φ2n = B VLQ n a /HV IRQFWLRQV G¶RQGH SRXU OHV GHX[ SUHPLHUV QLYHDX[ RQW O¶DOOXUH VXLYDQWH PRGH N = 1
PRGH N = 2
φ(x)
−a
2 2
x
a
,FL OD SDUWLFXOH HVW FRQILQpH HQWUH x = −a HW x = a GRQF Δx = 2a /¶LQpJDOLWp G¶+HL
VHQEHUJ GRQQH Δp ≥ 2a
2
E ≥ Δp
2m
E ≥ 8ma
2
2
/¶pQHUJLH GH OD SDUWLFXOH QH SHXW GRQF SDV rWUH QXOOH
51. Déterminer les états stationnaires d’une particule pour un puits de potentiel infini
299
&YFSDJDFT
&9&3$*$& 8Q pOHFWURQ GH PDVVH me � 10−30 NJ HVW FRQILQp VHORQ XQH GLPHQVLRQ UHSUpVHQWpH SDU OD
SRVLWLRQ x GDQV XQ SXLWV G¶pQHUJLH SRWHQWLHOOH Ep WUqV SURIRQG PRGqOH GX SXLWV LQILQL GH
ODUJHXU L 2Q QRWH h � 7 × 10−34 -V OD FRQVWDQWH GH 3ODQFN HW e � 2 × 10−19 & OD FKDUJH
pOHFWULTXH pOpPHQWDLUH
5HSUpVHQWHU O¶DOOXUH GX SXLWV
4XHOOHV VRQW OHV YDOHXUV kn SRVVLEOHV SRXU OH QRPEUH G¶RQGH GDQV OH SXLWV n pWDQW XQ
HQWLHU QDWXUHO "
'pWHUPLQHU OHV YDOHXUV En GHV QLYHDX[ G¶pQHUJLH GH O¶pOHFWURQ GDQV OH SXLWV
/¶pOHFWURQ HVW FRQILQp GDQV XQ DWRPH pGLILFH PDWpULHO TX¶RQ DVVLPLOH j XQ SXLWV LQIL
QLPHQW SURIRQG GH ODUJHXU L = 0, 1 QP &DOFXOHU OD YDOHXU QXPpULTXH GH O¶pQHUJLH GX
QLYHDX IRQGDPHQWDO GH O¶pOHFWURQ
aQm`+2 , 1L*
1PVS WPVT BJEFS
&9&3$*$& E©NBSSFS
(Q FDV GH GRXWH FRQVLGpUHU TXH OH SXLWV FRPPHQFH HQ x = 0 HW TXH
Ep = 0 GDQV OH SXLWV
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& /H SXLWV GH SRWHQWLHO D O¶DOOXUH VXLYDQWH Ep
0
L
x
/¶pTXDWLRQ GH 6FKU|GLQJHU GDQV OH SXLWV V¶pFULW G2 φ
+ 2m2e E φ = 0
Gx2
G2 φ
+ k2 φ = 0
Gx2
300
Mécanique quantique
/HV VROXWLRQV VRQW GH OD IRUPH φ(x) = A FRV kx + B VLQ kx
3RXU x = 0 HW x = L φ(x) = 0 FDU O¶pOHFWURQ QH SHXW SDV VRUWLU GX SXLWV HW OD IRQFWLRQ
G¶RQGH HVW FRQWLQXH GRQF 0=A
0 = A FRV kL + B VLQ kL
0=A
0 = B VLQ kL
2Q HQ GpGXLW B = 0 φ �= 0 GDQV OH SXLWV RX kL = nπ SOXV GH VHQV SK\VLTXH /HV
YHFWHXUV G¶RQGH SRVVLEOHV VRQW kn = n Lπ 'DQV OH SXLWV RQ D kn2 = 2me2En
π
En = 2mken = 4πh2 Ln2 ×2m
= n2 8mhe L2
e
2 2
2
1XPpULTXHPHQW RQ WURXYH E1 � 6 × 10−18 - � 31 H9
Solutions
2 2 2
51. Déterminer les états stationnaires d’une particule pour un puits de potentiel infini
301
52
Déterminer les états stationnaires d’une
%©UFSNJOFS MFT ©UBUT TUBUJPOOBJSFT
particule pour une marche de potentiel
EVOF QBSUJDVMF QPVS VOF NBSDIF
EF QPUFOUJFM
2VBOE PO OF TBJU QBT 2Q GLW TX¶XQH SDUWLFXOH IUDQFKLW XQH PDUFKH GH SRWHQWLHO VL HOOH SDVVH G¶XQH ]RQH GH IDLEOH
pQHUJLH SRWHQWLHOOH j XQH ]RQH GH IRUWH pQHUJLH SRWHQWLHOOH RX LQYHUVHPHQW (OOH SHUPHW
SDU H[HPSOH G¶pWXGLHU OH FRPSRUWHPHQW G¶XQ pOHFWURQ G¶XQ PpWDO pQHUJLH IDLEOH GDQV OH
PpWDO pQHUJLH IRUWH HQ GHKRUV V0 V
x
$X SDVVDJH G¶XQH PDUFKH GH SRWHQWLHO OD IRQFWLRQ G¶RQGH φ HW VD GpULYpH SUHPLqUH SDU
UDSSRUW j x VRQW FRQWLQXHV 2Q XWLOLVH FHWWH FRQWLQXLWp SRXU GpWHUPLQHU OHV FRQVWDQWHV
G¶LQWpJUDWLRQ
&ODVVLTXHPHQW XQH SDUWLFXOH G¶pQHUJLH E DUULYDQW VXU XQH PDUFKH GH SRWHQWLHO GHSXLV OHV
x < 0 SHXW DYRLU GHX[ FRPSRUWHPHQWV ² VL E < V0 HOOH HVW UpIOpFKLH YHUV OHV x < 0
² VL E > V0 HOOH HVW WUDQVPLVH YHUV OHV x > 0 DYHF XQH pQHUJLH FLQpWLTXH PRLQGUH
'DQV OH FDV G¶XQH SDUWLFXOH DUULYDQW GHSXLV OHV x > 0 HOOH VHUD WRXMRXUV WUDQVPLVH YHUV OHV
x < 0
8QH SDUWLFXOH TXDQWLTXH DXUD XQ FRPSRUWHPHQW GLIIpUHQW G¶XQH SDUWLFXOH FODVVLTXH PDLV
FH FRPSRUWHPHQW QH GpSHQGUD SDV GH VD SURYHQDQFH x > 0 RX x < 0 ² HOOH VHUD HQ SDUWLH WUDQVPLVH HW HQ SDUWLH UpIOpFKLH VL E > V0 2Q SRXUUD DORUV FDOFXOHU GHV FRHIILFLHQWV GH WUDQVPLVVLRQ t = φφtransmise
HW
incidente
φref lechie GH UpIOH[LRQ r = φincidente
SRXU O¶RQGH DVVRFLpH j OD SDUWLFXOH 'DQV OH FDV
FODVVLTXH RQ DXUDLW t = 1 HW r = 0
² HOOH GRQQHUD QDLVVDQFH j XQH RQGH pYDQHVFHQWH RQGH GRQW O¶DPSOLWXGH GpFURvW
ORUVTX¶RQ V¶pORLJQH GH OD GLVFRQWLQXLWp VL E < V0 &HWWH RQGH HVW FDUDFWpULVpH SDU
XQH SURIRQGHXU GH SpQpWUDWLRQ δ RX pSDLVVHXU GH SHDX VXU ODTXHOOH OD SUREDELOLWp
GH GpWHFWHU OD SDUWLFXOH HVW VXIILVDQWH $XGHOj G¶XQH GLVWDQFH δ GH OD GLVFRQWLQXLWp
GH SRWHQWLHO OD SUREDELOLWp GH GpWHFWHU OD SDUWLFXOH FKXWH 'DQV OH FDV FODVVLTXH
RQ DXUDLW δ = 0
302
Mécanique quantique
/¶pTXDWLRQ GH 6FKU|GLQJHU V¶pFULW SRXU OD ]RQH GH IRUW SRWHQWLHO Ep = V0
G φ
+ V0 φ = Eφ
− 2m
Gx2
2
2
G φ
− 2m
+ (V0 − E)φ = 0
Gx2
2
2
G2 φ
0)
+ 2m(E−V
φ=0
Gx2
2
G2 φ
+ k2 φ = 0
Gx2
0)
k 2 = 2m(E−V
2
6L k 2 > 0 F¶HVWjGLUH E > V0 k HVW UpHO HW RQ GpWHUPLQHUD GHV FRHIILFLHQWV GH WUDQV
PLVVLRQ HW GH UpIOH[LRQ 6L k 2 < 0 F¶HVWjGLUH E < V0 k HVW FRPSOH[H HW O¶DPSOLWXGH
GH O¶RQGH GpFURvUD HQ V¶pORLJQDQW GH OD GLVFRQWLQXLWp /¶RQGH VHUD pYDQHVFHQWH
2VF GBJSF
3RXU UpVRXGUH O¶pTXDWLRQ GH 6FKU|GLQJHU GDQV OH FDV G¶XQH PDUFKH GH SRWHQWLHO LO IDXW VDYRLU TXH OD IRQFWLRQ G¶RQGH HW VD GpULYpH SUHPLqUH VRQW FRQWLQXHV DX SDVVDJH G¶XQH
GLVFRQWLQXLWp
XWLOLVHU OHV FRQGLWLRQV DX[ OLPLWHV SRXU UpVRXGUH O¶pTXDWLRQ GH 6FKU|GLQJHU
VL E > V0 UpVRXGUH O¶pTXDWLRQ GH 6FKU|GLQJHU HW GpWHUPLQHU OHV FRHIILFLHQWV GH
WUDQVPLVVLRQ HW GH UpIOH[LRQ
VL E < V0 UpVRXGUH O¶pTXDWLRQ GH 6FKU|GLQJHU HW VDYRLU UHFRQQDvWUH XQH RQGH pYD
QHVFHQWH
$POTFJMT
6H VRXYHQLU TX¶XQH SDUWLFXOH TXDQWLTXH VHUD HQ SDUWLH UpIOpFKLH HW HQ SDUWLH WUDQVPLVH VL
k 2 > 0 PrPH VL HOOH GHVFHQG XQH PDUFKH GH SRWHQWLHO FRQWUDLUHPHQW j XQH SDUWLFXOH
FODVVLTXH
6DYRLU TXH VL k 2 < 0 DORUV XQH RQGH pYDQHVFHQWH H[LVWH
&YFNQMF USBJU©
2Q pWXGLH O¶pYROXWLRQ G¶XQ TXDQWRQ GH PDVVH m TXL DERUGH DYHF XQH pQHUJLH E > V0 XQH
PDUFKH GH SRWHQWLHO GH KDXWHXU V0 FRQVWDQWH VLWXpH HQ x = 0 SRWHQWLHO QXO SRXU x < 0 /¶pWXGH HVW XQLGLPHQVLRQQHOOH FRQGXLWH VXU XQ D[H (Ox)
V
V0
x
52. Déterminer les états stationnaires d’une particule pour une marche de potentiel
303
/¶pTXDWLRQ GH 6FKU|GLQJHU V¶pFULW SRXU FHWWH SDUWLFXOH
G φ
− 2m
= Eφ
Gx2
2
2
VL x < 0
2
− 2m GGxφ2 + V0 φ = Eφ
2
VL x ≥ 0
5pVRXGUH O¶pTXDWLRQ GH 6FKU|GLQJHU GDQV OD ]RQH x < 0 2Q QRWHUD k1 OH YHFWHXU G¶RQGH
DSSDUDLVVDQW GDQV O¶pTXDWLRQ GH 6FKU|GLQJHU
5pVRXGUH O¶pTXDWLRQ GH 6FKU|GLQJHU GDQV OD ]RQH x ≥ 0 2Q QRWHUD k2 OH YHFWHXU G¶RQGH
DSSDUDLVVDQW GDQV O¶pTXDWLRQ GH 6FKU|GLQJHU
2Q QRWHUD A0 O¶DPSOLWXGH GH O¶RQGH LQFLGHQWH At FHOOH GH O¶RQGH WUDQVPLVH HW Ar FHOOH
GH O¶RQGH UpIOpFKLH (Q XWLOLVDQW OHV FRQGLWLRQV DX[ OLPLWHV GpWHUPLQHU OHV FRHIILFLHQWV
At
r
HW GH UpIOH[LRQ r = A
GH WUDQVPLVVLRQ t = A
A0 0
(Q GpGXLUH OD IRUPH GH OD IRQFWLRQ G¶RQGH SRXU x < 0 HQ IRQFWLRQ GH A0 k1 HW r
(Q GpGXLUH OD IRUPH GH OD IRQFWLRQ G¶RQGH SRXU x ≥ 0 HQ IRQFWLRQ GH A0 k2 HW t
40-65*0/
3RXU x < 0 RQ D G2 φ
+ 2mE
φ=0
Gx2
2
G2 φ
2
+ k1 φ = 0
Gx2
DYHF k12 = 2mE
,FL E > V0 > 0 GRQF k1 =
2
/HV VROXWLRQV VRQW GH OD IRUPH √
2mE
φ(x) = A0 eik1 x + Ar e−ik1 x
3RXU x ≥ 0 RQ D G2 φ
0
− 2mV
φ = − 2mE
φ
Gx2
2
2
2
2m(E−V0 )
G φ
+
φ=0
Gx2
2
2
G φ
+ k22 φ = 0
Gx2
√
2m(E−V0 )
0)
,FL
E
>
V
GRQF
k
=
/HV VROXWLRQV VRQW GH OD
DYHF k22 = 2m(E−V
0
2
2
ik
x
−ik
x
2
2
+ Be
IRUPH φ(x) = At e
$SUqV x = 0 OD SDUWLFXOH QH UHQFRQWUH DXFXQH GLVFRQWLQXLWp GH SRWHQWLHO HOOH Q¶D GRQF
DXFXQH UDLVRQ G¶rWUH UpIOpFKLH DSUqV x = 0 /D SDUWLH Be−ik2 x Q¶D GRQF SDV GH VHQV
SK\VLTXH HW DLQVL B = 0 2Q D HQVXLWH FRQWLQXLWp GH φ(x) HQ x = 0 GRQF A0 + Ar = At
304
Mécanique quantique
'H SOXV Gφ
Gx HVW FRQWLQXH HQ x = 0 2Q D � ∂φ
ik1 x − ik A e−ik1 x
1 r
∂x (x < 0) = ik1 A0 e
∂φ
ik
2x
(x
≥
0)
=
ik
A
e
2 t
∂x �
ik1 A0 − ik1 Ar = ik2 At
k1 (A0 − Ar ) = k2 At
2Q HQ GpGXLW �
�
A0 + Ar = At
A0 − Ar = kk21 At
⎧
�
�
⎨ 2A0 = At 1 + k2
�
�k1
⎩ 2Ar = 1 − k2 At
k1
�
k2 +k1
2A0 = At k1
2
2Ar = k1k−k
At
1
1
At = k22k
+k1 A0
−k2
2
Ar = k12k
At = kk12 −k
+k1 A0
1
�
At
1
= k22k
t= A
+k1
0
k1 −k2
Ar
r = A0 = k2 +k1
3RXU x < 0 OD IRQFWLRQ G¶RQGH V¶pFULW �
�
φ(x) = A0 eik1 x + Ar e−ik1 x = A0 eik1 x + Re−ik1 x
3RXU x ≥ 0 OD IRQFWLRQ G¶RQGH V¶pFULW φ(x) = At eik2 x = A0 T eik2 x
&YFSDJDFT
&9&3$*$& /D SDUWLFXOH pWXGLpH GDQV O¶H[HUFLFH SUpFpGHQW D PDLQWHQDQW XQH pQHUJLH 0 < E < V0 5pVRXGUH O¶pTXDWLRQ GH 6FKU|GLQJHU GDQV OD ]RQH x < 0 2Q QRWHUD k1 OH YHFWHXU G¶RQGH
DSSDUDLVVDQW GDQV O¶pTXDWLRQ GH 6FKU|GLQJHU
5pVRXGUH O¶pTXDWLRQ GH 6FKU|GLQJHU GDQV OD ]RQH x ≥ 0 2Q QRWHUD k2 OH YHFWHXU G¶RQGH
DSSDUDLVVDQW GDQV O¶pTXDWLRQ GH 6FKU|GLQJHU
'DQV OD ]RQH x ≥ 0 TXHO W\SH G¶RQGH REVHUYHWRQ "
52. Déterminer les états stationnaires d’une particule pour une marche de potentiel
305
6XU TXHOOH SURIRQGHXU FDUDFWpULVWLTXH FHWWH RQGH VXEVLVWHWHOOH " (VWLPHU FHWWH SURIRQ
GHXU δ SRXU XQ pOHFWURQ GH PDVVH me � 10−30 NJ HW G¶pQHUJLH E = 5 H9 DERUGDQW XQH
PDUFKH G¶pQHUJLH V0 = 6 H9 2Q GRQQH � 10−34 -V HW e � 2 × 10−19 &
&9&3$*$& 8QH SDUWLFXOH GH PDVVH m DERUGH DYHF XQH pQHUJLH E > 0 XQH IDODLVH GH SRWHQWLHO GH KDXWHXU
V0 VLWXpH HQ x = 0 2Q VXSSRVH E < V0 /¶pTXDWLRQ GH 6FKU|GLQJHU YpULILpH SDU OD SDUWLFXOH
V¶pFULW
E
V
2 G2 φ
x
VL x < 0
− 2m Gx2 = Eφ
G φ
− 2m
− V0 φ = Eφ
Gx2
2
2
VL x ≥ 0
−V0
'DQV OH FDV R OD SDUWLFXOH DUULYH GHSXLV x → −∞ pWDEOLU OHV H[SUHVVLRQV GH OD IRQFWLRQ
G¶RQGH φ1 (x) SRXU x < 0 HW φ2 (x) SRXU x > 0 ,O Q¶HVW SDV QpFHVVDLUH GH GpWHUPLQHU OHV
FRQVWDQWHV G¶LQWpJUDWLRQ
(WDEOLU O¶H[SUHVVLRQ GX FRHIILFLHQW r UDSSRUW GH O¶DPSOLWXGH GH OD IRQFWLRQ G¶RQGH VSD
WLDOH FRUUHVSRQGDQW j O¶RQGH UpIOpFKLH HW GH FHOOH FRUUHVSRQGDQW j O¶RQGH LQFLGHQWH 'H OD
PrPH PDQLqUH pWDEOLU O¶H[SUHVVLRQ GX FRHIILFLHQW t UDSSRUW GH O¶DPSOLWXGH GH OD IRQF
WLRQ G¶RQGH VSDWLDOH FRUUHVSRQGDQW j O¶RQGH WUDQVPLVH HW GH FHOOH FRUUHVSRQGDQW j O¶RQGH
LQFLGHQWH
(Q GpGXLUH OHV FRHIILFLHQWV R HW T GH UpIOH[LRQ HW GH WUDQVPLVVLRQ GH OD GHQVLWp GH FRXUDQW
GH SUREDELOLWp )DLUH O¶DSSOLFDWLRQ QXPpULTXH ORUVTXH 8E = V0 aQm`+2 , JBM2b@SQMib
1PVS WPVT BJEFS
E©NBSSFS
&9&3$*$& 6L OH YHFWHXU G¶RQGH HVW FRPSOH[H OD SDUWLH UpHOOH HVW DVVRFLpH j XQH
SURSDJDWLRQ HW OD SDUWLH LPDJLQDLUH j XQH DWWpQXDWLRQ
&9&3$*$& 8WLOLVHU OH OLHQ HQWUH OHV FRHIILFLHQWV r HW R G¶XQH SDUW HW t HW T G¶DXWUH
SDUW
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& 3RXU x < 0 RQ D FRPPH GDQV O¶H[HPSOH WUDLWp φ(x) = A0 eik1 x + Ar e−ik1 x DYHF
k12 = 2mE
,FL E > 0 GRQF k1 =
2
306
Mécanique quantique
√
2mE
&9&3$*$& 8WLOLVHU OH OLHQ HQWUH OHV FRHIILFLHQWV r HW R G¶XQH SDUW HW t HW T G¶DXWUH
SDUW
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& 3RXU x < 0 RQ D FRPPH GDQV O¶H[HPSOH WUDLWp φ(x) = A0 eik1 x + Ar e−ik1 x DYHF
k12 = 2mE
,FL E > 0 GRQF k1 =
2
√
2mE
3RXU x ≥ 0 RQ D FRPPH SUpFpGHPPHQW G2 φ
0)
+ 2m(E−V
φ=0
Gx2
2
G2 φ
+ k22 φ = 0
Gx2
0)
DYHF k22 = 2m(E−V
,FL E < V0 GRQF k2 = i
2
√
/HV VROXWLRQV VRQW GH OD IRUPH 2m(V0 −E)
= δi HQ SRVDQW δ = √ 2m(V0 −E)
x
x
φ(x) = Ae eik2 x + A�e e−ik2 x = Ae e− δ + A�e e δ
|φ(x)| QH GLYHUJH SDV HQ x → +∞ GRQF A�e = 0 /D IRQFWLRQ G¶RQGH VHUD GRQF x
&HWWH RQGH HVW XQH RQGH pYDQHVFHQWH
&HWWH RQGH VXEVLVWH VXU XQH SURIRQGHXU
δ=√
Solutions
φ(x) = Ae e− δ
� 2 × 10−10 P
2m(V0 −E)
&9&3$*$& 3RXU x < 0 RQ D FRPPH GDQV O¶H[HPSOH WUDLWp φ1 (x) = A0 eik1 x + Ar e−ik1 x
√
DYHF k12 = 2mE
,FL E > 0 GRQF k1 = 2mE
2
3RXU x ≥ 0 RQ D FRPPH SUpFpGHPPHQW G2 φ
0
+ 2mV
φ = − 2mE
φ
Gx2
2
2
2
2m(E+V
)
G φ
0
+
φ=0
Gx2
2
G2 φ
2
+ k2 φ = 0
Gx2
√
2m(E+V0 )
0)
DYHF k22 = 2m(E+V
,FL
E
+
V
>
0
GRQF
k
=
/HV VROXWLRQV VRQW GH OD
0
2
2
IRUPH 52. Déterminer les états stationnaires d’une particule pour une marche de potentiel
φ2 (x) = At eik2 x + Be−ik2 x
307
φ1 (x) = A0 eik1 x + Ar e−ik1 x
√
DYHF k12 = 2mE
,FL E > 0 GRQF k1 = 2mE
2
3RXU x ≥ 0 RQ D FRPPH SUpFpGHPPHQW G2 φ
0
+ 2mV
φ = − 2mE
φ
Gx2
2
2
2
2m(E+V
)
G φ
0
+
φ=0
Gx2
2
2
G φ
2
+ k2 φ = 0
Gx2
0)
DYHF k22 = 2m(E+V
,FL E + V0 > 0 GRQF k2 =
2
IRUPH √
2m(E+V0 )
/HV VROXWLRQV VRQW GH OD
φ2 (x) = At eik2 x + Be−ik2 x
$SUqV x = 0 OD SDUWLFXOH Q¶HVW SDV UpIOpFKLH GRQF B = 0 2Q D DORUV φ2 (x) = At eik2 x
(Q XWLOLVDQW OD FRQWLQXLWp GH φ(x) HW ∂φ
∂x HQ x = 0 RQ WURXYH FRPPH GDQV O¶H[HPSOH
WUDLWp �
A0 + Ar = At
A0 − Ar = kk21 At
8Q FDOFXO DQDORJXH j FHOXL GH O¶H[HPSOH WUDLWp GRQQH �
At
1
t= A
= k22k
+k1
0
k1 −k2
r
r=A
A0 = k2 +k1
/D GHQVLWp GH SUREDELOLWp GH FRXUDQW V¶pFULW →
−
−
→
j = |φ(x)|2 mk
/HV DPSOLWXGHV GHV GHQVLWpV GH SUREDELOLWp GH FRXUDQW SRXU O¶RQGH LQFLGHQWH J0 SRXU
O¶RQGH UpIOpFKLH Jr HW SRXU O¶RQGH WUDQVPLVH Jt V¶pFULYHQW 1
J0 = A20 k
m
1
Jr = A2r k
m
2
Jt = A2t k
m
308
/HV FRHIILFLHQWV GH WUDQVPLVVLRQ HW GH UpIOH[LRQ VRQW DORUV �
T = JJ0t = t2 kk21
R = JJr0 = r2
⎧
⎨ T = 4k12 k2
(k1 +k2 )2 k1
2
⎩ R = (k1 −k2 )2
(k1 +k2 )
Mécanique quantique
�
1 k2
T = (k4k
2
1 +k2 )
1
Jr = A2r k
m
2
Jt = A2t k
m
/HV FRHIILFLHQWV GH WUDQVPLVVLRQ HW GH UpIOH[LRQ VRQW DORUV �
T = JJ0t = t2 kk21
R = JJr0 = r2
⎧
⎨ T = 4k12 k2
(k1 +k2 )2 k1
2
⎩ R = (k1 −k2 )2
(k1 +k2 )
�
1 k2
T = (k4k
2
1 +k2 )
2
1 −k2 )
R = (k
(k1 +k2 )2
⎧
√
E(E+V0 )
⎪
⎨ T = 4×2m
√
√
2m( E+ E+V )2
0
√
√
⎪
⎩ R = 2m(√E−√E+V0 )2
2m( E+ E+V0 )2
⎧
√
⎪
4 E(E+V0 )
⎪
⎪
2
T = ⎪
⎪
V
⎪
E 1+ 1+ E0
⎨
2
V
1− 1+ E0
⎪
⎪
⎪
⎪
2
R= ⎪
⎪
V
⎩
1+ 1+ E0
Solutions
⎧
V
⎪
4
1+ E0
⎪
⎪
2 = 75 T
=
⎪
⎪
V
⎪
1+ 1+ E0
⎨
2
V
⎪
1− 1+ E0
⎪
⎪
⎪
2 = 25 R
=
⎪
⎪
V0
⎩
(1+
1+ E
52. Déterminer les états stationnaires d’une particule pour une marche de potentiel
309
53
Déterminer les états
stationnaires
d’une
particule
%©UFSNJOFS
MFT ©UBUT
TUBUJPOOBJSFT
EVOF
QPVS VOF
CBSSJ¨SF
pourQBSUJDVMF
une barrière
de potentiel
EF QPUFOUJFM
2VBOE PO OF TBJU QBT 2Q DSSHOOH EDUULqUH GH SRWHQWLHO XQH ]RQH GH IRUWH pQHUJLH SRWHQWLHOOH HQFDGUpH SDU GHX[
]RQHV GH IDLEOH pQHUJLH SRWHQWLHOOH 3RXU XQH SDUWLFXOH SDVVHU XQH EDUULqUH GH SRWHQWLHO
UHYLHQW j PRQWHU SXLV GHVFHQGUH XQH PDUFKH GH SRWHQWLHO
V0
V
a
x
$X SDVVDJH G¶XQH EDUULqUH GH SRWHQWLHO OD IRQFWLRQ G¶RQGH φ HW VD GpULYpH SUHPLqUH SDU
UDSSRUW j x VRQW FRQWLQXHV 2Q XWLOLVH FHWWH FRQWLQXLWp SRXU GpWHUPLQHU OHV FRQVWDQWHV
G¶LQWpJUDWLRQ
/RUVTXH O¶pQHUJLH E GH OD SDUWLFXOH pWXGLpH HVW VXSpULHXUH j OD KDXWHXU V0 GH OD EDUULqUH
OD SDUWLFXOH HVW HQ SDUWLH WUDQVPLVH HW HQ SDUWLH UpIOpFKLH j FKDTXH SDVVDJH GH GLVFRQWLQXLWp
GX SRWHQWLHO
2Q FDOFXOH FRPPH GDQV OH FDV GH OD PDUFKH GH SRWHQWLHO OHV FRHIILFLHQWV GH WUDQVPLVVLRQ
t HW GH UpIOH[LRQ r GpILQLV SDU
φref lechie r
=
t = φφtransmise
φincidente incidente
/RUVTXH O¶pQHUJLH E GH OD SDUWLFXOH pWXGLpH HVW LQIpULHXUH j OD KDXWHXU V0 GH OD EDUULqUH OD
IRQFWLRQ G¶RQGH GDQV OD EDUULqUH GH SRWHQWLHO HVW XQH RQGH pYDQHVFHQWH TXL V¶DWWpQXH VXU
XQH SURIRQGHXU FDUDFWpULVWLTXH δ 6L O¶pSDLVVVHXU a GH OD EDUULqUH HVW VXIILVDPPHQW IDLEOH
a < δ O¶DPSOLWXGH GH OD IRQFWLRQ G¶RQGH HQ VRUWLH GH OD EDUULqUH HVW VXIILVDQWH SRXU
TX¶XQH RQGH WUDQVPLVH H[LVWH DSUqV OD EDUULqUH F¶HVW O¶HIIHW WXQQHO 8QH SDUWLFXOH FODVVLTXH
QH SHXW SDV WUDYHUVHU XQH EDUULqUH GH KDXWHXU V0 > E PDLV XQH SDUWLFXOH TXDQWLTXH SHXW
OH IDLUH j FRQGLWLRQ TXH OD KDXWHXU GH OD EDUULqUH HWRX VRQ pSDLVVHXU VRLHQW VXIILVDPPHQW
IDLEOHV
310
Mécanique quantique
2VF GBJSF
3RXU UpVRXGUH O¶pTXDWLRQ GH 6FKU|GLQJHU GDQV OH FDV G¶XQH EDUULqUH GH SRWHQWLHO LO IDXW VDYRLU TXH OD IRQFWLRQ G¶RQGH HW VD GpULYpH SUHPLqUH VRQW FRQWLQXHV DX SDVVDJH G¶XQH
GLVFRQWLQXLWp GX SRWHQWLHO
XWLOLVHU OHV FRQGLWLRQV DX[ OLPLWHV SRXU UpVRXGUH O¶pTXDWLRQ GH 6FKU|GLQJHU
VL E > V0 UpVRXGUH O¶pTXDWLRQ GH 6FKU|GLQJHU HW GpWHUPLQHU OHV FRHIILFLHQWV GH
WUDQVPLVVLRQ HW GH UpIOH[LRQ
VL E < V0 UpVRXGUH O¶pTXDWLRQ GH 6FKU|GLQJHU HW H[SOLTXHU O¶HIIHW WXQQHO
6DYRLU H[SOLTXHU O¶LQIOXHQFH GH OD KDXWHXU HW GH O¶pSDLVVHXU G¶XQH EDUULqUH VXU O¶HIIHW WXQQHO
$POTFJMT
6H VRXYHQLU TX¶XQH SDUWLFXOH TXDQWLTXH SHXW rWUH WUDQVPLVH PrPH VL VRQ pQHUJLH HVW LQIp
ULHXUH j OD KDXWHXU GH OD EDUULqUH
&YFNQMF USBJU©
8QH VRXUFH VLWXpH GDQV OD UpJLRQ pPHW DYHF XQ GpELW qs = 105 V−1 FRQVWDQW GHV REMHWV
SK\VLTXHV G¶pQHUJLH E HW GH PDVVH m GDQV OH VHQV G¶XQ D[H (Ox) GpFURLVVDQW ,OV VRQW VRXPLV
j XQH EDUULqUH G¶pQHUJLH SRWHQWLHOOH Ep (x) GH KDXWHXU E0 > E VWDWLRQQDLUH GH ODUJHXU L
Ep
E0
1
2
3
L
E
x
2Q FKHUFKH OHV pWDWV VWDWLRQQDLUHV G¶pQHUJLH VRXV OD IRUPH φ DYHF
φ1 (x) = A1 eikx + B1 e−ikx SRXU x < 0
φ2 (x) = A2 eαx + B2 e−αx SRXU 0 ≤ x ≤ L
φ3 = A3 eikx + B3 e−ikx SRXU x > L
4XHOOHV VRQW OHV UpJLRQV FODVVLTXHPHQW DFFHVVLEOHV "
([SULPHU k HW α
3DUPL OHV FRQVWDQWHV Ai HW Bi ODTXHOOH HVW QXOOH "
1
/H UDSSRUW GHV DPSOLWXGHV B
B3 YDXW B1
2e−ikL
1
B3 = eαL +e−αL +iM (eαL −e−αL ) DYHF M = 2
α
k
k − α
53. Déterminer les états stationnaires d’une particule pour une barrière de potentiel
311
2
1
/H IDFWHXU GH WUDQVPLVVLRQ T = B
B3 HQ LQWHQVLWp j WUDYHUV XQH EDUULqUH pSDLVVH αL � 1
VH PHW VRXV OD IRUPH T = T0 eηαL ([SULPHU T0 HQ IRQFWLRQ GH M HW GpWHUPLQHU OD YDOHXU
GH η
0 −E)
2Q SHXW PRQWUHU TXH T0 = 16E(E
6DFKDQW TXH eηαL = 10−4 T = 0, 04 HW
E02
E = 5 H9 GpWHUPLQHU O¶H[SUHVVLRQ GH E0 HW FDOFXOHU VD YDOHXU
4XHO HVW DORUV OH GpELW qf G¶REMHWV SK\VLTXHV WUDYHUVDQW OD EDUULqUH "
aQm`+2 , /ǶT`ĕb A*L
40-65*0/
/HV SDUWLFXOHV VRQW pPLVHV GDQV OD ]RQH DYHF XQH pQHUJLH E < E0 &ODVVLTXHPHQW
HOOHV GHYUDLHQW rWUH UpIOpFKLHV VXU OD EDUULqUH HW Q¶DFFpGHU TX¶j OD ]RQH 3RXU x > L RQ D G φ
= Eφ
− 2m
Gx2
2
2
G2 φ
+ 2mE
φ=0
Gx2
2
G2 φ
+ k2 φ = 0
Gx2
√
DYHF k = 2mE
3RXU 0 < x ≤ L RQ D G φ
+ E0 φ = Eφ
− 2m
Gx2
2
2
G2 φ
0)
+ 2m(E−E
φ=0
Gx2
2
G2 φ
2
+ k2 φ = 0
Gx2
0)
DYHF k22 = 2m(E−E
,FL E
2
√
2m(E0 −E)
α=
< E0 GRQF k2 = i
2m(E0 −E)
= iα 2Q D GRQF LFL
$SUqV x = 0 OD SDUWLFXOH QH UHQFRQWUH DXFXQH GLVFRQWLQXLWp GH SRWHQWLHO HOOH Q¶D GRQF
DXFXQH UDLVRQ G¶rWUH UpIOpFKLH DSUqV x = 0 /D SDUWLH A1 eikx Q¶D GRQF SDV GH VHQV
SK\VLTXH HW DLQVL A1 = 0
2Q D T
=
=
=
=
=
312
√
Mécanique quantique
|2e−ikL |
2
|eαL +e−αL +iM (eαL −e−αL )|2
4
|2FK(αL)+2iM VK(αL)|2
4
4(FK2 (αL)+M 2 VK2 (αL))
1
1+VK2 (αL)+M 2 VK2 (αL)
1
1+(1+M 2 )VK2 (αL)
2αL
&RPPH VK2 (αL) � e 4 VL αL � 1
T =
1
2αL
1+(1+M 2 ) e 4
�
1
2αL
(1+M 2 ) e 4
4
−2αL
= 1+M
2e
4
2Q LGHQWLILH T0 = 1+M
2 HW η = −2
2 E0
2
E ( −1)
E0
&RPPH T0 = 16 EE2
= 16 EE0
E − 1 RQ D 0
E
E0
E
E0
2 E
E0
2
2 E0
E −1
E0
E −1
= T160
= 16eTηαL = 14
− 2 EE0 × 12 + 14 = 0
2
E
1
−
=0
E0
2
E0 = 2E = 10 H9
/H GpELW G¶REMHWV WUDYHUVDQW OD EDUULqUH HVW qf = T qs = 40 V−1
&YFSDJDFT
&9&3$*$& /D VRXUFH GH O¶H[HUFLFH SUpFpGHQW pPHW j SUpVHQW GHV SDUWLFXOHV G¶pQHUJLH E > E0 5pVRXGUH O¶pTXDWLRQ GH 6FKU|GLQJHU GDQV OD ]RQH 2Q QRWHUD k3 OH YHFWHXU G¶RQGH
DSSDUDLVVDQW GDQV O¶pTXDWLRQ GH 6FKU|GLQJHU
5pVRXGUH O¶pTXDWLRQ GH 6FKU|GLQJHU GDQV OD ]RQH 2Q QRWHUD k2 OH YHFWHXU G¶RQGH
DSSDUDLVVDQW GDQV O¶pTXDWLRQ GH 6FKU|GLQJHU
5pVRXGUH O¶pTXDWLRQ GH 6FKU|GLQJHU GDQV OD ]RQH 2Q QRWHUD k1 OH YHFWHXU G¶RQGH
DSSDUDLVVDQW GDQV O¶pTXDWLRQ GH 6FKU|GLQJHU 4XH UHPDUTXHWRQ SRXU k1 "
(Q H[SORLWDQW OD FRQWLQXLWp GH φ HW Gφ
Gx GpWHUPLQHU OHV FRHIILFLHQWV GH UpIOH[LRQ r HW GH
WUDQVPLVVLRQ t HQ DPSOLWXGH
&9&3$*$& 2Q VRXKDLWH pWXGLHU O¶LQIOXHQFH GH O¶pSDLVVHXU GH OD EDUULqUH GDQV O¶H[HUFLFH SUpFpGHQW VXU OHV
FRHIILFLHQWV GH WUDQVPLVVLRQ T HW GH UpIOH[LRQ R SRXU OD GHQVLWp GH SUREDELOLWp GH FRXUDQW
(FULUH OD GHQVLWp GH SUREDELOLWp GH FRXUDQW SRXU O¶RQGH LQFLGHQWH ]RQH O¶RQGH UpIOp
FKLH ]RQH HW O¶RQGH WUDQVPLVH ]RQH 53. Déterminer les états stationnaires d’une particule pour une barrière de potentiel
313
(WDEOLU O¶H[SUHVVLRQ GHV FRHIILFLHQWV T HW R
4XHOOHV VRQW OHV YDOHXUV H[WUpPDOHV GH T " &RPPHQWHU
1PVS WPVT BJEFS
E©NBSSFS
&9&3$*$& 8WLOLVHU OHV GpILQLWLRQV GH FRV x HW VLQ x SRXU VLPSOLILHU OHV H[SUHVVLRQV
&9&3$*$& )DLUH OH OLHQ DYHF OHV FRHIILFLHQWV GH UpIOH[LRQ HW GH WUDQVPLVVLRQ HQ DP
SOLWXGH
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& 'DQV OD ]RQH RQ D DYHF k3 =
√
G2 φ
+ 2mE
φ=0
Gx2
2
2
G φ
2
+ k3 φ = 0
Gx2
2mE
/D IRQFWLRQ G¶RQGH V¶pFULW GRQF φ3 (x) = A3 eik3 x + B3 e−ik3 x
'DQV OD ]RQH RQ D DYHF k2 =
√
G2 φ
0)
+ 2m(E−E
φ=0
Gx2
2
G2 φ
2
+ k2 φ = 0
Gx2
2m(E−E0 )
/D IRQFWLRQ G¶RQGH V¶pFULW GRQF φ2 (x) = A2 eik2 x + B2 e−ik2 x
'DQV OD ]RQH RQ D DYHF k1 =
√
G2 φ
+ 2mE
φ=0
Gx2
2
G2 φ
2
+ k1 φ = 0
Gx2
2mE
/D IRQFWLRQ G¶RQGH V¶pFULW GRQF φ1 (x) = A1 eik1 x + B1 e−ik1 x
2Q UHPDUTXH TXH k1 = k3 'H SOXV OD SDUWLFXOH Q¶HVW SDV UpIOpFKLH HQ x < 0 GRQF RQ
D A1 = 0
314
Mécanique quantique
3RXU x = 0 HW x = L φ HVW FRQWLQXH GRQF φ1 (0) = φ2 (0)
GRQF
B1 = A2 + B2
φ2 (L) = φ3 (L)
A2 eik2 L + B2 e−ik2 L = A3 eik3 L + B3 e−ik3 L
3RXU x = 0 HW x = L Gφ
Gx HVW FRQWLQXH GRQF Gφ1
Gφ2
Gx (0) = Gx (0)
Gφ2
Gφ3
Gx (L) = Gx (L)
HW
−ik1 B1 = ik2 A2 − ik2 B2
GRQF
ik2 A2 eik2 L − ik2 B2 e−ik2 L = ik3 A3 eik3 L − ik3 B3 e−ik3 L
2Q D DORUV DYHF k1 = k3 ⎧
B1 = A2 + B2
⎪
⎪
⎨ A eik2 L + B e−ik2 L = A eik3 L + B e−ik3 L
2
k
2
3
3
− 3 B1 = A2 − B2
⎪
⎪
⎩ k2 k2 ik2 L
− B2 e−ik2 L ) = A3 eik3 L − B3 e−ik3 L
k3 (A2 e
�
�
⎧
k3
⎪
=
1
−
2A
2
⎪
k2 � B 1
⎪
�
⎪
⎨
2B2 = 1 + kk32 B1
⎪
⎪
2A3 eik3 L = (1 + kk23 )A2 eik2 L + (1 − kk23 )B2 e−ik2 L
⎪
⎪
⎩
2B3 e−ik3 L = (1 − kk23 )A2 eik2 L + (1 + kk23 )B2 e−ik2 L
Solutions
⎧
−k3
B1
A2 = k22k
⎪
⎪
2
⎪
k
⎪ B2 = 2 +k3 B1
⎨
2k2 �
�
e−ik3 L k2 +k3 k2 −k3
ik2 L + k3 −k2 k2 +k3 B e−ik2 L
A
=
B
e
3
1
1
⎪
2 �
k3
2k2
k3
2k2
⎪
�
⎪
⎪
⎩ B = eik3 L k3 −k2 k2 −k3 B eik2 L + k3 +k2 k2 +k3 B e−ik2 L
3
1
1
2
k3
2k2
k3
2k2
⎧
k2 −k3
A2 = 2k2 B1
⎪
⎪
⎪
+k3
⎨
B2 = k22k
B1
2
ik L
−ik2 L
e−ik3 L
⎪
A3 = 2k2 k3 B1 (k22 − k32 ) e 2 −e
⎪
2
⎪
�
�
⎩
eik3 L
2 eik2 L + (k + k )2 e−ik2 L
B3 = 4k
B
−
k
)
−(k
1
3
2
2
3
k
2 3
⎧
k2 −k3
⎪
=
B
A
2
1
⎪
2k2
⎪
⎪
⎨ B2 = k2 +k3 B1
2k2
e−ik3 L
2
2
A
=
⎪
3
2k2 k3 (k2� − k3 )B1 i VLQ k2 L
⎪
�
⎪
ik
L
⎪
⎩ B3 = e 3 B1 −(k 2 + k 2 ) eik2 L −e−ik2 L + 2k3 k2 eik2 L +e−ik2 L
2
3
2k2 k3
2
2
⎧
k2 −k3
A2 = 2k2 B1
⎪
⎪
⎪
⎨ B2 = k2 +k3 B1
2k2
−ik L
⎪ A3 = e2k2 k33 (k22 − k32 )B1 i VLQ k2 L
⎪
⎪
�
�
⎩
eik3 L
B3 = 2k
B1 −i(k22 + k32 ) VLQ k2 L + 2k3 k2 FRV k2 L
2 k3
53. Déterminer les états stationnaires d’une particule pour une barrière de potentiel
315
⎧
−k3
B1
A2 = k22k
⎪
⎪
2
⎪
k
+k
⎪
2
3
⎨ B2 = 2k B1
2
e−ik3 L
2
2
A
=
3 � 2k
⎪
� 2 k3 (k2 − k3 )B1 i VLQ k2 L
⎪
⎪
⎪
1�
⎩ t = �� B
√ 2 2 2 22k2 k3 2 2 2
B3 � =
(k2 +k3 ) VLQ k2 L+4k3 k2 FRV k2 L
⎧
k2 −k3
A2 = 2k2 B1
⎪
⎪
⎪
+k3
⎪
⎨ B2 = k22k
B1
2
−ik
3L
e
2
2
A3 =
⎪
� 2k� 2 k3 (k2 − k3 )B1 i VLQ k2 L
⎪
⎪
⎪
1�
⎩ t = �� B
√ 2 2 2 2 2k2 k3 2 2
B3 � =
(k2 +k3 ) VLQ k2 L+4k3 k2 (1−VLQ2 k2 L)
⎧
−k3
A2 = k22k
B1
⎪
⎪
2
⎪
k
+k3
⎪
⎨ B2 = 22k
B1
2
e−ik3 L
A3 =
(k22 − k32 )B1 i VLQ k2 L
⎪
2k
�
�
2 k3
⎪
⎪
⎪
1�
⎩ t = �� B
√ 4 4 2 2 2k2 k23 2 2
2 2
B �=
3
(k +k +2k k −4k k ) VLQ k L+4k k
2
2
3
2 3
2 3
3 2
⎧
k2 −k3
=
B
A
⎪
2
1
2k2
⎪
⎪
⎪
k2 +k3
⎪
B
=
B
2
⎨
� 2 � 1 �� �
� 2k
� A3 � � A3 � � B1 � k22 −k32 √
2k2 k3
r = � B3 � = � B1 � � B3 � = 2k2 k3
VLQ k2 L
2 −k 2 )2 VLQ2 k L+4k 2 k 2
⎪
(k
⎪
2
2
3
3 2
�
�
⎪
⎪
⎪
1�
⎩ t = �� B
√ 2 2 22k2 k23
2 2
B3 � =
(k2 −k3 ) VLQ k2 L+4k3 k2
&9&3$*$& /D GHQVLWp GH SUREDELOLWp GH FRXUDQW V¶pFULW →
−
−
→
j = |φ(x)|2 mk
/HV DPSOLWXGHV GHV GHQVLWpV GH SUREDELOLWp GH FRXUDQW SRXU O¶RQGH LQFLGHQWH J0 SRXU
O¶RQGH UpIOpFKLH Jr HW SRXU O¶RQGH WUDQVPLVH Jt V¶pFULYHQW 1
J0 = |A3 |2 k
m
1
Jr = |B3 |2 k
m
1
Jt = |A1 |2 k
m
/HV FRHIILFLHQWV GH WUDQVPLVVLRQ HW GH UpIOH[LRQ VRQW DORUV ⎧
� �2
⎨ T = �� A1 �� = t2
� B3 �
⎩ R = �� A3 ��2 = r2
B3
316
Mécanique quantique
T V¶pFULW DXVVL 4k2 k2
T = (k2 −k2 )2 VLQ22 k3 L+4k2 k2
2
3
2
3 2
$X PLQLPXP RQ D VLQ2 k2 L = 0 GRQF Tmax = 1 $X PD[LPXP RQ D VLQ2 k2 L = 1
4k2 k2
4k2 k2
GRQF Tmin = 2 2 22 3 2 2 = 2 2 23 2 /D SDUWLFXOH VHUD GRQF WRXMRXUV WUDQVPLVH
k
−k
+4k
k
k
( 2 3)
( 2 +k3 )
2 3
HQ SDUWLH SXLVTXH VRQ pQHUJLH HVW VXSpULHXUH j OD KDXWHXU GH OD EDUULqUH
Solutions
53. Déterminer les états stationnaires d’une particule pour une barrière de potentiel
317
54
Décrire l’état non stationnaire
d’une particule
%©DSJSF M©UBU OPO TUBUJPOOBJSF
EVOF QBSUJDVMF
2VBOE PO OF TBJU QBT 3RXU XQ V\VWqPH TXDQWLTXH LO HVW SRVVLEOH GH GpWHUPLQHU OHV pWDWV VWDWLRQQDLUHV φ(x) RX
PRGHV SURSUHV GX V\VWqPH /D IRQFWLRQ G¶RQGH DVVRFLpH j FKDTXH pWDW VWDWLRQQDLUH V¶pFULW
E
ψ(x, t) = Aφ(x)e−i t
*UkFH DX WKpRUqPH GH VXSHUSRVLWLRQ RQ VDLW TXH WRXWH FRPELQDLVRQ OLQpDLUH G¶pWDWV
VWDWLRQQDLUHV HVW DXVVL VROXWLRQ GH O¶pTXDWLRQ GH 6FKU|GLQJHU FRPPH XQH RQGH OH ORQJ
G¶XQH FRUGH SHXW rWUH pFULWH FRPPH XQH VRPPH GH PRGHV SURSUHV 6L FKDFXQ GHV pWDWV
HVW VWDWLRQQDLUH OHXU VRPPH QH O¶HVW D SULRUL SDV
&9&.1-& &RQVLGpURQV XQ V\VWqPH GRQW OHV SUHPLHUV pWDWV VWDWLRQQDLUHV VRQW φ1 (x) pQHU
JLH E1 HW φ2 (x) pQHUJLH E2 /D IRQFWLRQ G¶RQGH DVVRFLpH j OD VRPPH GH FHV pWDWV HVW
ψ(x, t)
=
=
=
E1
E2
−i t
−i t
Aφ1 (x)e
+ Bφ2 (x)e E1
E2 −E1
e−i t Aφ1 (x) + Bφ2 (x)e−i t
E1 2
2
t + iBφ2 (x) VLQ E1 −E
t
e−i t Aφ1 (x) + Bφ2 (x) FRV E1 −E
|ψ(x, t)| GpSHQGUD GRQF GX WHPSV HW SDU FRQVpTXHQW OD GHQVLWp GH SUREDELOLWp GH SUpVHQFH
|ψ(x, t)|2 DXVVL
/D GHQVLWp GH SUREDELOLWp GH SUpVHQFH GH OD SDUWLFXOH GpSHQGUD HOOH DXVVL GX WHPSV 2Q
YHUUD DSSDUDvWUH XQ WHUPH DQDORJXH j XQ WHUPH G¶LQWHUIpUHQFHV HQ FDOFXODQW |ψ(x, t)|2 2VF GBJSF
3RXU pWXGLHU O¶pWDW QRQ VWDWLRQQDLUH G¶XQH SDUWLFXOH LO IDXW
VDYRLU TX¶XQH FRPELQDLVRQ OLQpDLUH G¶pWDWV VWDWLRQQDLUHV HVW DXVVL VROXWLRQ GH O¶pTXD
WLRQ GH 6FKU|GLQJHU
VDYRLU TX¶XQH FRPELQDLVRQ OLQpDLUH G¶pWDWV VWDWLRQQDLUHV Q¶HVW SDV VWDWLRQQDLUH
318
Mécanique quantique
$POTFJMT
)DLUH DSSDUDvWUH OHV SDUWLHV UpHOOH HW LPDJLQDLUH GH OD IRQFWLRQ G¶RQGH DYDQW GH FDOFXOHU
|ψ(x, t)|2 &YFNQMF USBJU©
/HV pWDWV VWDWLRQQDLUHV G¶XQH SDUWLFXOH SLpJpH GDQV XQ SXLWV GH SRWHQWLHO LQILQL Ep = 0 SRXU
−a < x < a V¶pFULYHQW φ2n (x) = A VLQ n πx
a
φN (x) = A VLQ N πx
2a N SDLU
πx
φ2n+1 (x) = B FRV 2n+1
2
a
πx
φN (x) = B FRV N2a
N LPSDLU
π HW O¶pQHUJLH DVVRFLpH HVW EN = N 2 8ma
2 SRXU N SDLU RX LPSDLU
a
2
(Q XWLOLVDQW OD FRQGLWLRQ GH QRUPDOLVDWLRQ −a |φm (x)| Gx = 1 GpWHUPLQHU O¶H[SUHVVLRQ
GH B
(FULUH OD IRQFWLRQ G¶RQGH ψ(x, t) = √1 (φ1 (x, t) + φ3 (x, t))
2
2 2
'pWHUPLQHU O¶H[SUHVVLRQ GH OD GHQVLWp GH SUREDELOLWp GH SUpVHQFH ρ(x, t) = |ψ(x, t)|2 5HSUpVHQWHU ρ(x, t) = f (x) j GLIIpUHQWV LQVWDQWV
40-65*0/
3RXU N LPSDLU RQ D
a
−a |φN |
2Q D DORUV B =
2
Gx
=
=
=
=
=
a
B 2 −a FRV2 N πx
Gx
a 1+FRV 2N2aπx
2
2a
B −a
Gx
2
B2 a
2 −a Gx
B2
2 2a
1
1
a
/D IRQFWLRQ G¶RQGH ψ V¶pFULW π2 9π 2 −i
t
−i
t
1
2
2
ψ(x, t) = √2 φ1 (x)e 8ma + φ3 (x)e 8ma
2
2
−i π 2 t
−i 9π 2 t
1
πx
3πx
√
8ma
8ma
=
FRV 2a × e
+ FRV 2a × e
2a
2
2
2
−i π t
i π 2 − 9π 2 t
e √8ma2
πx
3πx
8ma
8ma
FRV 2a + FRV 2a × e
=
2a
2
2
−i π t
−i π 2 t
e √8ma2
πx
3πx
FRV 2a + FRV 2a × e 8ma
=
2a
=
2
−i π t
e √8ma2
2a
3πx
π2 π2 +
FRV
t
−
i
VLQ
t
FRV πx
FRV
2a
2a
8ma2
8ma2
54. Décrire l’ état non stationnaire d’une particule
319
/D GHQVLWp GH SUREDELOLWp GH SUpVHQFH V¶pFULW DORUV ρ
2
|ψ(x,
t)|
2
2 π2 1
πx
3πx
π2 3πx
2
FRV 2a + FRV 2a FRV 8ma2 t + FRV 2a VLQ 8ma2 t
2a
=
=
2
2
2
FRV2 πx
+2 FRV πx
FRV 3πx
FRV π 2 t+FRV2 3πx
FRV2 π 2 t+FRV2 3πx
VLQ2 π 2 t
2a
2a
2a
2a
2a
8ma
8ma
8ma
2a
2
1
πx
3πx
π 2 πx
2 3πx
2a FRV 2a + 2 FRV 2a FRV 2a FRV 8ma2 t + FRV 2a
=
=
/¶DOOXUH GH OD GHQVLWp GH SUREDELOLWp GH SUpVHQFH HQ IRQFWLRQ GH x HVW ρ
t1
t2
x
a
−a
ρ Q¶HVW SDV VWDWLRQQDLUH
&YFSDJDFT
&9&3$*$& /¶pOHFWURQ pWXGLp GDQV O¶H[HUFLFH GH OD ILFKH Qƒ © 'pWHUPLQHU OHV pWDWV VWDWLRQQDLUHV
G¶XQH SDUWLFXOH SRXU XQ SXLWV GH SRWHQWLHO LQILQL ª Ep = 0 SRXU 0 < x < L D XQH IRQFWLRQ
G¶RQGH ψ(x, t) = √12 (φ1 (x, t) + φ−2 (x, t)) DYHF φn (x) = B VLQ nπx
L
2
'pWHUPLQHU O¶H[SUHVVLRQ GH OD FRQVWDQWH B
'RQQHU O¶H[SUHVVLRQ GH ψ(x, t)
(WDEOLU O¶H[SUHVVLRQ GH ρ(x, t)
1PVS WPVT BJEFS
&9&3$*$& 320
En = n2 8me L2 E©NBSSFS
8WLOLVHU OD FRQGLWLRQ GH QRUPDOLVDWLRQ SRXU GpWHUPLQHU B
Mécanique quantique
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& (Q XWLOLVDQW OD QRUPDOLVDWLRQ RQ D L
2
0 |φn | Gx
2Q D GRQF B =
2
L
/D IRQFWLRQ G¶RQGH V¶pFULW ψ(x, t)
=
=
=
=
L
B 2 0 VLQ2 nπx
L Gx
B2 L
2nπx
(1
−
FRV
22 0
L )Gx
B
2 L
1
=
=
=
=
√1
L
e
−i
t
8me L2
e
−i
−i
t
−4i
t
8me L2 − VLQ 2πx e
8me L2
VLQ πx
L e
L
−i
t
−i 4 2 − 2 t
e L2
e 8m
πx
2πx
8me L
8me L
√
VLQ L − VLQ L e
L
√
L
t
8me L2
√
L
3
2πx −i 8me L2 t
VLQ πx
L − VLQ L e
Solutions
2πx
3
3
−
VLQ
t
−
i
VLQ
t
VLQ πx
FRV
2
2
L
L
8me L
8me L
/D GHQVLWp GH SUREDELOLWp GH SUpVHQFH V¶pFULW ρ(x, t)
=
=
=
|ψ|2
1
L
1
L
2
2πx
3
VLQ πx
L − VLQ L FRV 8me L2 t
2
3
+ VLQ2 2πx
L VLQ 8me L2 t
2 2πx
πx
2πx
3
VLQ2 πx
L − 2 VLQ L VLQ L FRV 8me L2 t + VLQ L
54. Décrire l’ état non stationnaire d’une particule
321
Thermodynamique statistique
55 Utiliser le modèle
6UJMJTFS
NPE¨MF
de MF
l’atmosphère
isotherme
EF MBUNPTQI¨SF JTPUIFSNF
2VBOE PO OF TBJU QBT /D PDWLqUH SHXW rWUH GpFULWH j GLIIpUHQWH pFKHOOHV ² O¶pFKHOOH PLFURVFRSLTXH HVW O¶pFKHOOH GHV SDUWLFXOHV LQGLYLGXHOOHV 8Q V\VWqPH PL
FURVFRSLTXH FRPSRUWH WUqV SHX GH SDUWLFXOHV PRLQV G¶XQH GL]DLQH RQ SHXW GRQF
pWXGLHU OH FRPSRUWHPHQW GH FKDTXH SDUWLFXOH LQGLYLGXHOOHPHQW
² O¶pFKHOOH PDFURVFRSLTXH HVW O¶pFKHOOH GX PRQGH TXL QRXV HQWRXUH 8Q V\VWqPH PD
FURVFRSLTXH FRPSRUWH XQ JUDQG QRPEUH GH SDUWLFXOHV GH O¶RUGUH GX QRPEUH G¶$YR
JDGUR NA � 6×1023 PRO−1 O¶pWXGH GH FKDTXH SDUWLFXOH LQGLYLGXHOOHPHQW LPSOLTXH
GH WUDLWHU WURS GH GRQQpHV 2Q XWLOLVHUD SRXU O¶pWXGH GH FHWWH pFKHOOH GHV RXWLOV VWD
WLVWLTXHV
² O¶pFKHOOH PpVRVFRSLTXH HVW XQH pFKHOOH LQWHUPpGLDLUH 8Q V\VWqPH PpVRVFRSLTXH
FRPSRUWH XQ QRPEUH ´PR\HQ´ GH SDUWLFXOHV GH j SDU H[HPSOH O¶pWXGH
GX FRPSRUWHPHQW LQGLYLGXHO GH FKDTXH SDUWLFXOH Q¶HVW SDV UpDOLVDEOH FRPPH SRXU
O¶pFKHOOH PLFURVFRSLTXH PDLV O¶XWLOLVDWLRQ GH VWDWLVWLTXHV Q¶HVW SDV WRWDOHPHQW MXVWL
ILpH OH QRPEUH GH SDUWLFXOHV Q¶HVW SDV DVVH] JUDQG 8Q H[HPSOH FODVVLTXH GH V\VWqPH PDFURVFRSLTXH TXH O¶RQ SHXW
−
→
G F pz+
pWXGLHU HQ SK\VLTXH VWDWLVWLTXH HVW O¶DWPRVSKqUH WHUUHVWUH
2Q PRGpOLVH O¶DWPRVSKqUH SDU XQ JD] SDUIDLW j OD WHPSpUDWXUH
T VXSSRVpH FRQVWDQWH HW XQLIRUPH &H JD] HVW FRQVWLWXp GH SDUWL
FXOHV GH PDVVH m PDVVH PRODLUH M HW D SRXU PDVVH YROXPLTXH
ρ 8Q YROXPH Gτ = GxGyGz G¶DWPRVSKqUH HVW VRXPLV j VRQ SRLGV
−
→
−
→
→
G P = −Gτ ρg −
e z HW j GHV IRUFHV GH SUHVVLRQ G F p 2Q VXSSRVH
−
→
→
e z G−
GDQV FH PRGqOH TXH OD SUHVVLRQ QH GpSHQG TXH GH O¶DOWLWXGH z
F pz−
−
→
→
ey
3RXU OHV IDFHV SDUDOOqOHV j −
e z OHV FHQWUHV GHV IDFHV VH WURXYHQW
−
→
ex
j O¶DOWLWXGH z + Gz
2 HW OD SUHVVLRQ pc HQ FHV SRLQWV HVW OD PrPH
−
→
→
G F px− = pc GyGz −
ex
−
→
→
G F py− = pc GxGz −
ey
−
→
−
→
→
G F px+ = −pc GyGz −
e x = −G F px−
−
→
−
→
→
G F py+ = −pc GxGz −
e y = −G F py−
→
3RXU OHV IDFHV SHUSHQGLFXODLUHV j −
e z
−
→
−
→
G F pz− = p(z)GyGx e z
−
→
→
G F pz+ = −p(z + Gz)GyGx−
ez
/H 3)' DSSOLTXp DX YROXPH Gτ HQ pTXLOLEUH V¶pFULW GRQF 322
Thermodynamique statistique
−
→
−
→
−
→
−
→
−
→
−
→
−
→
−
→
0 = G F px− + G F py− + G F pz− + G F px+ + G F py+ + G F pz+ + G P
−
→
−
→
−
→
→
G F pz− = p(z)GyGx−
ez
−
→
→
G F pz+ = −p(z + Gz)GyGx−
ez
/H 3)' DSSOLTXp DX YROXPH Gτ HQ pTXLOLEUH V¶pFULW GRQF −
→
−
→
−
→
−
→
−
→
−
→
−
→
−
→
0 = G F px− + G F py− + G F pz− + G F px+ + G F py+ + G F pz+ + G P
−
→
→
0 = [p(z)GyGx − p(z + Gz)GyGx − ρgGxGyGz] −
e
p(z) − p(z + Gz) − ρgGz = 0
Gp
Gz = −ρg
z
/D ORL GHV JD] SDUIDLWV V¶pFULW GH SOXV pV = nRT
m
ρ
p = Vn RT = Mgaz
V RT = M RT
M
ρ = RT
p
2Q HQ GpGXLW Gp
Mg
Gz = − RT p
Mg
p(z) = p0 e− RT z
DYHF p0 OD SUHVVLRQ j OD VXUIDFH GH OD 7HUUH
2Q GpILQLW OD FRQVWDQWH GH %ROW]PDQQ kB = NRA � 1, 38×10−23 -.−1 ,FL M = mNA
GRQF
p = p0 e
−
− kmgT z
B
E
/H IDFWHXU H[SRQHQWLHO e kB T DYHF E = mgz GDQV O¶H[HPSOH SUpFpGHQW HVW DSSHOp
IDFWHXU GH %ROW]PDQQ &H IDFWHXU SHUPHW GH FRPSDUHU O¶pQHUJLH E G¶XQH SDUWLFXOH j
O¶pQHUJLH kB T OLpH j O¶DJLWDWLRQ WKHUPLTXH j OD WHPSpUDWXUH T 2VF GBJSF
(WDEOLU O¶pYROXWLRQ GH OD SUHVVLRQ GDQV OH PRGqOH GH O¶DWPRVSKqUH LVRWKHUPH
,GHQWLILHU OH IDFWHXU GH %ROW]PDQQ
$POTFJMT
9pULILHU O¶KRPRJpQpLWp GX WHUPH kBET GDQV OH IDFWHXU GH %ROW]DPQQ DSUqV OHV FDOFXOV 55. Utiliser le modèle de l’atmosphère isotherme
323
&YFNQMF USBJU©
&RQVLGpURQV O¶DWPRVSKqUH DX UHSRV F¶HVWjGLUH HQ O¶DEVHQFH GH PRXYHPHQW DWPRVSKpULTXH
G¶HQVHPEOH VDQV YHQW (OOH HVW VXSSRVpH rWUH GH WHPSpUDWXUH T FRQVWDQWH HW GH FRPSRVLWLRQ
FRQVWDQWH /D PDVVH PRODLUH PR\HQQH GHV PROpFXOHV G¶DLUH HVW QRWpH Ma = 29 JPRO−1 2Q
QRWH (Oz) O¶D[H YHUWLFDO DVFHQGDQW DYHF z = 0 O¶DOWLWXGH GX VRO 2Q QRWH p(z) HW ρ(z) OD
SUHVVLRQ HW OD PDVVH YROXPLTXH GH O¶DLU j XQH DOWLWXGH z /¶DLU HVW DVVLPLOp j XQ JD] SDUIDLW
2Q GRQQH R = 8, 31 -.−1 PRO−1 NA = 6 × 1023 PRO−1 g = 9, 8 PV−1 p0 = 105 3D HW
T = 288 .
([SOLTXHU SRXUTXRL OHV PROpFXOHV G¶DLU QH ILQLVVHQW SDV SDU WRXWHV UHWRPEHU DX VRO
'RQQHU OH OLHQ HQWUH OD PDVVH YROXPLTXH ρ(z) OD SUHVVLRQ p(z) OD WHPSpUDWXUH T HW OD
PDVVH PRODLUH Ma GHV SDUWLFXOHV G¶DLU
(Q GpGXLUH O¶pTXDWLRQ GLIIpUHQWLHOOH j ODTXHOOH REpLW OD SUHVVLRQ p(z) 0RQWUHU TXH OD VR
OXWLRQ GH FHWWH pTXDWLRQ HVW p(z) = p0 e z0 R z0 HVW O¶pSDLVVHXU W\SLTXH GH O¶DWPRVSKqUH
TXH O¶RQ H[SULPHUD HQ IRQFWLRQ GHV GRQQpHV GX SUREOqPH
&DOFXOHU z0 &RPPHQWHU
−z
0RQWUHU TXH OD FRQFHQWUDWLRQ HQ PROpFXOHV G¶DLU SHXW V¶pFULUH c(z) = c0 e
Ep (z) HVW O¶pQHUJLH SRWHQWLHOOH GH SHVDQWHXU G¶XQH PROpFXOH G¶DLU
E (z)
− kp T
B
R
aQm`+2 , 1SAh ASa
40-65*0/
/HV PROpFXOHV VRQW j XQH WHPSpUDWXUH QRQ QXOOH HW SRVVqGH GRQF XQH YLWHVVH OLpH j O¶DJL
WDWLRQ WKHUPLTXH TXL OHXU SHUPHW G¶DWWHLQGUH GHV DOWLWXGHV z > 0
/D ORL GHV JD] SDUIDLWV GRQQH pV = nRT VRLW RT
p = Mma V RT = M
ρ
a
/D SUHVVLRQ YpULILH Gp
Gz = −ρg
Gp
Ma g
Gz = − RT p
Ma g
−z
p(z) = p0 e− RT z = p0 e z0
RT
DYHF z0 = M
ag
324
1XPpULTXHPHQW RQ REWLHQW z0 = 8, 4 NP 3RXU GHV DOWLWXGHV FRPSDUDEOHV j z0 PRQ
WDJQH RQ FRPPHQFH j UHVVHQWLU OHV HIIHWV GH OD FKXWH GH SUHVVLRQ (Q GHVVRXV FHV HIIHWV
QH VRQW SDV SHUFHSWLEOHV
/D FRQFHQWUDWLRQ V¶pFULW c(z) = Vn = p(z)
RT
Thermodynamique statistique
Ma g
1XPpULTXHPHQW RQ REWLHQW z0 = 8, 4 NP 3RXU GHV DOWLWXGHV FRPSDUDEOHV j z0 PRQ
WDJQH RQ FRPPHQFH j UHVVHQWLU OHV HIIHWV GH OD FKXWH GH SUHVVLRQ (Q GHVVRXV FHV HIIHWV
QH VRQW SDV SHUFHSWLEOHV
/D FRQFHQWUDWLRQ V¶pFULW c(z) = Vn = p(z)
RT
Ma gz
p0 − RT
c(z) = RT
e
= c0 e −
mgzNA
RT
= c0 e
− kmgz
T
B
E
= c0 e
− k pT
B
&YFSDJDFT
&9&3$*$& 2EVHUYpH HQ OXPLqUH EODQFKH OD FRXURQQH VRODLUH V¶pWHQG DVVH] ORLQ GX OLPEH VRODLUH /D
FRXURQQH HVW FRQVWLWXpH G¶XQ SODVPD DVVLPLOp j XQ JD] SDUIDLW GH PDVVH PRODLUH Mp /D PDVVH
M
PR\HQQH G¶XQH SDUWLFXOH GX PLOLHX HVW QRWpH m = NAp = 8×10−28 NJ DYHF NA OD FRQVWDQWH
G¶$YRJDGUR 2Q PRGpOLVH OD FRXURQQH SDU XQH DWPRVSKqUH LVRWKHUPH j OD WHPSpUDWXUH T HW
j O¶pTXLOLEUH VRXV O¶HIIHW GX FKDPS GH SHVDQWHXU VRODLUH /H FKDPS GH SHVDQWHXU HVW VXSSRVp
XQLIRUPH GH QRUPH gs = 274 PV−2 /D GHQVLWp YROXPLTXH GH SDUWLFXOHV n1 (z) j O¶DOWLWXGH
−
Ep (z)
z PHVXUpH SDU UDSSRUW j OD EDVH GH OD FRXURQQH D SRXU H[SUHVVLRQ n1 (z) = n0 e kB T R Ep
HVW O¶pQHUJLH SRWHQWLHOOH G¶XQH SDUWLFXOH GH PDVVH m HW n0 OD GHQVLWp YROXPLTXH GH SDUWLFXOHV
j O¶DOWLWXGH z = 0
'RQQHU O¶H[SUHVVLRQ GH Ep (z)
z
(Q GpGXLUH TXH n1 (z) = n0 e− H R H HVW OD KDXWHXU G¶pFKHOOH GRQW RQ GRQQHUD O¶H[
SUHVVLRQ HQ IRQFWLRQ GH m kB T HW gs 'HV PHVXUHV G¶LQWHQVLWp OXPLQHXVH GH OD FRXURQQH FRQGXLVHQW j HVWLPHU XQH GHQVLWp
YROXPLTXH GH SDUWLFXOHV j O¶DOWLWXGH z2 = Rs = 7 × 108 P R Rs HVW OH UD\RQ GX 6ROHLO
HQYLURQ 103 SOXV IDLEOH TX¶j O¶DOWLWXGH z1 = 0 (Q GpGXLUH OD YDOHXU QXPpULTXH GH H
SXLV pYDOXHU OD WHPSpUDWXUH GH OD FRXURQQH
aQm`+2 , /ǶT`ĕb *2Mi`H2
&9&3$*$& (Q UpDOLWp OH FKDPS GH SHVDQWHXU GDQV OD FRXURQQH VRODLUH pWXGLp GDQV O¶H[HUFLFH SUpFpGHQW
2
Q¶HVW SDV XQLIRUPH ,O V¶pFULW g(r) = gs Rr2s /D SUHVVLRQ p j O¶pTXLOLEUH YpULILH OD UHODWLRQ
Gp
Gr = −ρ(r)g(r) DYHF ρ OD PDVVH YROXPLTXH
(Q GpGXLUH OD QRXYHOOH H[SUHVVLRQ GH OD GHQVLWp YROXPLTXH GH SDUWLFXOHV n2 'HV REVHUYDWLRQV RQW SHUPLV GH GpWHUPLQHU HQ IRQFWLRQ GH r OD GHQVLWp YROXPLTXH G¶pOHF
WURQV GDQV OD FRXURQQH ´FDOPH´ 9pULILHU OD SHUWLQHQFH GX PRGqOH j O¶DLGH GHV GRQQpHV
r
Rs
ne P−3
3, 5 × 1014
2 × 1014
9 × 1013
5 × 1013
3 × 1013
(VWLPHU OD WHPSpUDWXUH GH OD FRXURQQH HW OD FRPSDUHU j FHOOH WURXYpH GDQV O¶H[HUFLFH
SUpFpGHQW
aQm`+2 , /ǶT`ĕb *2Mi`H2
55. Utiliser le modèle de l’atmosphère isotherme
325
ne
r
Rs
P−3
3, 5 × 1014
2 × 1014
9 × 1013
5 × 1013
3 × 1013
(VWLPHU OD WHPSpUDWXUH GH OD FRXURQQH HW OD FRPSDUHU j FHOOH WURXYpH GDQV O¶H[HUFLFH
SUpFpGHQW
aQm`+2 , /ǶT`ĕb *2Mi`H2
1PVS WPVT BJEFS
E©NBSSFS
&9&3$*$& ,GHQWLILHU O¶H[SUHVVLRQ GH H GDQV OH IDFWHXU GH %ROW]PDQQ
&9&3$*$& (VVD\HU GH VH UDPHQHU j XQH UpJUHVVLRQ OLQpDLUH
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& /¶pQHUJLH SRWHQWLHOOH V¶pFULW Ep (z) = mgs z
/D GHQVLWp YROXPLTXH GH SDUWLFXOHV GHYLHQW E
n1 (z) = n0 e
− k pT
B
= n0 e
− kmgTs z
B
z
= n0 e− H
BT
DYHF H = kmg
s
3RXU z = Rs OD GHQVLWp YDXW n = n0 × 10−3 2Q HQ GpGXLW GRQF Rs
10−3 = e− H
OQ 10−3 = − RHs
Rs
8
H = − −3ROQs 10 = 3 OQ
10 � 10 P
/D WHPSpUDWXUH GH OD FRXURQQH HVW T = mgkBs H � 1, 6 × 106 .
&9&3$*$& /D ORL GHV JD] SDUIDLWV GRQQH pV = nRT GRQF p
A
ne = nN
V = kB T
326
Thermodynamique statistique
Gp
Gr = −ρg(r)
2
Gne
kB T Gr = −ne mgs Rr2s
mgs Rs2 1
Gne
Gr = −ne kB T r 2
ρ = ne m
T = mgkBs H � 1, 6 × 106 .
&9&3$*$& /D ORL GHV JD] SDUIDLWV GRQQH pV = nRT GRQF p
A
ne = nN
V = kB T
ρ = ne m
Gp
Gr = −ρg(r)
Rs2
e
kB T Gn
Gr = −ne mgs r 2
mgs Rs2 1
Gne
Gr = −ne kB T r 2
mgs Rs2 Gr
Gne
n e = − kB T r 2
2
OQ nn0e = RHs 1r − R1s
2
Rs
1
− R1
H
r
s
ne = n0 e
/D GHQVLWp YROXPLTXH GH SDUWLFXOHV V¶pFULW DXVVL Rs Rs
ne = n0 e H ( r −1)
OQ ne = RHs Rrs − 1 + OQ n0
Solutions
/HV GRQQpHV GX WDEOHDX SHUPHWWHQW GH FDOFXOHU G¶XQH SDUW OQ ne HW G¶DXWUH SDUW Rrs HQ
LQYHUVDQW 2Q SHXW DLQVL WUDFHU OD FRXUEH OQ ne = f ( Rrs ) j OD PDLQ RX ELHQ JUkFH j XQ
WDEOHXU
2Q REWLHQW XQH GURLWH GH SHQWH α � 10, 4 /D SHQWH V¶LGHQWLILH j RHs GRQW RQ DYDLW WURXYp
XQH HVWLPDWLRQ /¶RUGUH GH JUDQGHXU UHVWH OH PrPH OH PRGqOH HVW ELHQ FRKpUHQW
3DU LGHQWLILFDWLRQ RQ D s Rs
α = mg
kB T
6
s Rs
T = mg
kB α � 10 .
&HWWH YDOHXU HVW ELHQ FRKpUHQWH DYHF FHOOH WURXYpH SUpFpGHPPHQW
55. Utiliser le modèle de l’atmosphère isotherme
327
56
Étudier un système à spectre
&UVEJFS VOd’énergies
TZTU¨NF discret
TQFDUSF
E©OFSHJF EJTDSFU
2VBOE PO OF TBJU QBT /D SUREDELOLWp SRXU TX¶XQ V\VWqPH HQ pTXLOLEUH j OD WHPSpUDWXUH T DLW XQH pQHUJLH E
V¶pFULW − E
− E
DYHF
Z = e kB T
p(E) = Z1 e kB T
E
Z HVW DSSHOpH IRQFWLRQ GH SDUWLWLRQ
3OXV O¶pQHUJLH E HVW pOHYpH SOXV OD SUREDELOLWp SRXU OH V\VWqPH G¶DYRLU FHWWH pQHUJLH HVW
IDLEOH FDU LO IDXW FRQWUHEDODQFHU O¶pQHUJLH kB T OLpH j O¶DJLWDWLRQ WKHUPLTXH
/H UDSSRUW GH GHX[ SUREDELOLWpV V¶pFULW DORUV p(E2 )
p(E1 ) = e
E1 −E2
kB T
2Q SHXW FDOFXOHU O¶pQHUJLH PR\HQQH �E� HW O¶pFDUW TXDGUDWLTXH PR\HQ σ HQ XWLOLVDQW OHV
SUREDELOLWpV − E
σ 2 = �E 2 � − �E�2
�E� = E × p(E) = Z1 Ee kB T
E
E
(Q SRVDQW β = kB1T RQ D
−βE
�E� = Z1 Ee−βE = Z1 − ∂(e∂β ) = − Z1
E
E
∂ OQ Z
�E� = − Z1 ∂Z
∂β = − ∂β
−βE
e
)
∂(
E
∂β
'H PrPH RQ PRQWUH TXH σ 2 = ∂ ∂βOQ2Z 2
OQ Z
�E� = − ∂ ∂β
328
Thermodynamique statistique
σ 2 = ∂ ∂βOQ2Z
2
3RXU XQ V\VWqPH FRPSRVp GH N SDUWLFXOHV LQGpSHQGDQWHV O¶pQHUJLH PR\HQQH WRWDOH GX
V\VWqPH �EΣ � HVW OD VRPPH GHV pQHUJLHV PR\HQQHV �Ei � GHV SDUWLFXOHV FRPSRVDQW OH V\V
2 VXU O¶pQHUJLH GX V\VWqPH HVW OD VRPPH GHV pFDUWV
WqPH HW O¶pFDUW TXDGUDWLTXH PR\HQ σΣ
2
TXDGUDWLTXHV PR\HQV σi GHV SDUWLFXOHV 3RXU GHV SDUWLFXOHV LGHQWLTXHV FHV VRPPHV VH
VLPSOLILHQW 2 = Σσ = N σ 2
σΣ
i
�EΣ � = Σ�Ei � = N �E�
i
i
/D YDULDWLRQ UHODWLYH G¶pQHUJLH V¶pFULW GRQF σΣ
√1 σ
�EΣ � = N �E�
3OXV OH V\VWqPH FRPSRUWH GH SDUWLFXOHV SOXV OHV IOXFWXDWLRQV UHODWLYHV G¶pQHUJLH VRQW
IDLEOHV 2Q SRXUUD FRQVLGpUHU TX¶j OD OLPLWH WKHUPRG\QDPLTXH N → +∞ OHV
JUDQGHXUV WKHUPRG\QDPLTXHV O¶pQHUJLH QRWDPPHQW VRQW FRQQXHV GH PDQLqUH TXDVL
FHUWDLQH
8Q H[HPSOH FODVVLTXH GH V\VWqPH j VSHFWUH G¶pQHUJLH GLVFUHW HVW OH V\VWqPH j GHX[ QLYHDX[
&H FDV VLPSOLILp SHUPHW GH GpFULUH XQ PRGqOH VLPSOLILp GH /$6(5 SDU H[HPSOH RX HQFRUH
OHV DWRPHV SRVVpGDQW XQ XQLTXH pOHFWURQ FpOLEDWDLUH
2VF GBJSF
([SULPHU OD SUREDELOLWp G¶RFFXSDWLRQ G¶XQ pWDW DX IDFWHXU GH %ROW]PDQQ
/LHU O¶pQHUJLH PR\HQQH HW O¶pFDUW TXDGUDWLTXH PR\HQ j OD IRQFWLRQ GH SDUWLWLRQ
3RXU XQ V\VWqPH GH N SDUWLFXOHV LQGpSHQGDQWHV H[SOLTXHU SRXUTXRL OHV IOXFWXDWLRQV UHOD
WLYHV G¶pQHUJLH GLPLQXHQW ORUVTXH OD WDLOOH GX V\VWqPH DXJPHQWH
$POTFJMT
&DOFXOHU H[SOLFLWHPHQW OD IRQFWLRQ GH SDUWLWLRQ DYDQW GH FKHUFKHU j GpWHUPLQHU �E� σ RX
XQH DXWUH JUDQGHXU
&YFNQMF USBJU©
→
6RLW XQ GLS{OH PDJQpWLTXH GH PRPHQW −
μ SODFp HQ O GDQV XQ FKDPS PDJQpWLTXH H[WpULHXU
−
→
−
→
XQLIRUPH SHUPDQHQW B0 = B0 e z /¶pQHUJLH SRWHQWLHOOH G¶LQWHUDFWLRQ HQWUH OH GLS{OH HW OH
−
→
→
FKDPS V¶pFULW Ep = −−
μ · B0 2Q GRQQH kB � 1, 4 × 10−23 -.−1 OD FRQVWDQWH GH %ROW]PDQQ
4XHOOHV VRQW OHV GHX[ SRVLWLRQV G¶pTXLOLEUH G¶XQ PRPHQW GLSRODLUH PDJQpWLTXH SODFp
−
→
GDQV B0 " 2Q QRWH UHVSHFWLYHPHQW E+ HW E− OHV pQHUJLHV SRWHQWLHOOHV DVVRFLpHV j FHV
SRVLWLRQV E+ > E− 56. Étudier un système à spectre d’ énergies discret
329
(YDOXHU OD GLIIpUHQFH G¶pQHUJLH HQWUH OHV GHX[ FRQILJXUDWLRQV G¶pTXLOLEUH G¶XQ QR\DX
G¶K\GURJqQH μ = 1, 4 × 10−26 -7−1 VRXPLV j XQ FKDPS PDJQpWLTXH B0 = 1 7
RUGUH GH JUDQGHXU W\SLTXH HQ 501
&RPSDUHU FHWWH YDOHXU j O¶pQHUJLH WKHUPLTXH j T = 310 . WHPSpUDWXUH GX FRUSV KX
PDLQ /H SURWRQ SHXWLO SDVVHU G¶XQ pWDW G¶pTXLOLEUH j O¶DXWUH "
2Q FRQVLGqUH PDLQWHQDQW XQH SRSXODWLRQ GH GLS{OHV SODFpV GDQV XQ FKDPS PDJQpWLTXH
H[WpULHXU B0 = 1 7 HQ pTXLOLEUH j OD WHPSpUDWXUH T HW REpLVVDQW j OD VWDWLVWLTXH GH
%ROW]PDQQ
4XHOOH HVW OD SUREDELOLWp SRXU XQ SURWRQ G¶RFFXSHU XQ pWDW G¶pQHUJLH Ei "
$ TXHOOH RULHQWDWLRQ FRUUHVSRQG OD SRSXODWLRQ OD SOXV QRPEUHXVH j O¶pTXLOLEUH WKHU
PLTXH "
N+
(YDOXHU OH UDSSRUW GHV SRSXODWLRQV N
HQ pTXLOLEUH WKHUPLTXH j OD WHPSpUDWXUH T N+
−
pWDQW OD GHQVLWp YROXPLTXH GH GLS{OHV G¶pQHUJLH E+ HW N− FHOOH GH GLS{OHV G¶pQHUJLH
E− 6LPSOLILHU FH UDSSRUW HQ HIIHFWXDQW XQH DSSUR[LPDWLRQ j O¶RUGUH − −N+
([SULPHU OD GLIIpUHQFH UHODWLYH η0 = N
N− +N+ HQ IRQFWLRQ GH μ kB T HW B0 &DOFXOHU
VD YDOHXU QXPpULTXH SRXU GHV SURWRQV j T = 310 . HW FRPPHQWHU
aQm`+2 , **S
40-65*0/
8Q GLS{OH VHUD HQ pTXLOLEUH ORUVTXH O¶pQHUJLH SRWHQWLHOOH VHUD H[WUpPDOH Ep HVW PD[LPDOH
ORUVTXH Ep = E+ = μB0 GLS{OH DOLJQp DYHF OH FKDPS PDJQpWLTXH PDLV DQWLSDUDOOqOH
pTXLOLEUH LQVWDEOH HW Ep HVW PLQLPDOH ORUVTXH Ep = E− = −μB0 GLS{OH DOLJQp DYHF
OH FKDPS PDJQpWLTXH HW SDUDOOqOH pTXLOLEUH VWDEOH /D GLIIpUHQFH G¶pQHUJLH HQWUH FHV GHX[ FRQILJXUDWLRQV HVW
ΔE = E+ − E− = 2μp B0 � 2, 8 × 10−26 -
/¶pQHUJLH WKHUPLTXH HVW ET = kB T � 4, 3×10−21 - &HWWH pQHUJLH HVW WUqV VXSpULHXUH j
OD GLIIpUHQFH G¶pQHUJLH HQWUH OHV GHX[ QLYHDX[ OH SURWRQ SHXW GRQF SDVVHU G¶XQH SRVLWLRQ
G¶pTXLOLEUH j O¶DXWUH VRXV O¶HIIHW GH O¶DJLWDWLRQ WKHUPLTXH
/D SUREDELOLWp G¶RFFXSHU XQ pWDW G¶pQHUJLH Ei V¶pFULW p(Ei )
=
=
Ei
kB T
μp B0
μp B0
−
e kB T +e kB T
e
−
/D SUREDELOLWp G¶RFFXSDWLRQ OD SOXV JUDQGH FRUUHVSRQG j O¶pQHUJLH E− = −μp B0 OD
SRSXODWLRQ OD SOXV QRPEUHXVH HVW FHOOH RFFXSDQW OD SRVLWLRQ G¶pTXLOLEUH VWDEOH Ep = E− /H UDSSRUW GHV SRSXODWLRQV V¶pFULW DYHF μp B0 � kB T −
μp B0
N+
e kB T
μp B0
N− =
e kB T
330
Ei
1 − kB T
Ze
Thermodynamique statistique
μ B
=e
−2 kp T0
B
μ B
� 1 − 2 kpB T0
/D GLIIpUHQFH UHODWLYH η0 V¶pFULW μp B0
k T
−
μp B0
k T
B
e B −e
1−e
− −N+
η0 = N
μp B0 =
N− +N+ = μp B0
−
−2
−2
e kB T +e kB T
1+e
μp B 0
η0 = kB T � 3 × 10−6
μp B0
kB T
μp B0 �
kB T
μ B
2 kp T0
B
2
/D GLIIpUHQFH HQWUH OHV GHX[ SRSXODWLRQV HVW WUqV IDLEOH OHV SURWRQV VRQW UpSDUWLV HQ SUR
SRUWLRQV TXDVLPHQW pJDOHV HQWUH OHV GHX[ QLYHDX[
&YFSDJDFT
&9&3$*$& 2Q UHSUHQG OD SRSXODWLRQ GH N GLS{OHV pWXGLpH GDQV O¶H[HUFLFH SUpFpGHQW
'pWHUPLQHU O¶pQHUJLH PR\HQQH G¶XQ GLS{OH
'DQV OD OLPLWH EDVVH WHPSpUDWXUH TXH YDXW O¶pQHUJLH PR\HQQH " &RPPHQWHU
'DQV OD OLPLWH KDXWH WHPSpUDWXUH TXH YDXW O¶pQHUJLH PR\HQQH " &RPPHQWHU
'pWHUPLQHU O¶pFDUW TXDGUDWLTXH PR\HQ VXU O¶pQHUJLH G¶XQ GLS{OH
(WDEOLU O¶H[SUHVVLRQ GH OD YDULDWLRQ UHODWLYH GH O¶pQHUJLH GH OD SRSXODWLRQ &RPPHQWHU
VRQ pYROXWLRQ ORUVTXH OD WDLOOH GH OD SRSXODWLRQ DXJPHQWH
&9&3$*$& 2Q UHSUHQG OD SRSXODWLRQ GH N GLS{OHV pWXGLpH GDQV O¶H[HUFLFH SUpFpGHQW
5DSSHOHU OD GpILQLWLRQ GH OD FDSDFLWp WKHUPLTXH G¶XQ V\VWqPH WKHUPRG\QDPLTXH G¶pQHU
JLH LQWHUQH U /¶pQHUJLH PR\HQQH GH OD SRSXODWLRQ GH GLS{OHV GpWHUPLQpH GDQV O¶H[HUFLFH SUpFpGHQW
WLHQW OLHX G¶pQHUJLH LQWHUQH SRXU OH V\VWqPH 'pWHUPLQHU OD FDSDFLWp WKHUPLTXH GH OD
SRSXODWLRQ GH GLS{OHV
1PVS WPVT BJEFS
E©NBSSFS
&9&3$*$& 2Q SDUOH GH OLPLWH EDVVH WHPSpUDWXUH ORUVTXH O¶pQHUJLH WKHUPLTXH HVW
IDLEOH GHYDQW O¶pQHUJLH SRWHQWLHOOH HW GH OLPLWH KDXWH WHPSpUDWXUH ORUVTXH
O¶pQHUJLH WKHUPLTXH HVW JUDQGH GHYDQW O¶pQHUJLH SRWHQWLHOOH
&9&3$*$& 8WLOLVHU OD GpILQLWLRQ GH OD FDSDFLWp WKHUPLTXH
56. Étudier un système à spectre d’ énergies discret
331
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& 1RWRQV β = kB1T /D IRQFWLRQ GH SDUWLWLRQ V¶pFULW
Z
=
=
e−βμp B0 + eβμp B0
2 FRVK (βμp B0 )
/¶pQHUJLH PR\HQQH G¶XQ GLS{OH HVW �E�
=
=
=
=
μ B
∂ OQ [2 FRVK (βμp B0 )]
∂β
VLQK (βμ B )
−2μp B0 2 FRVK (βμpp B00 )
−
−μp B0 WDQK (βμp B0 )
6L kpB T0 � 1 WDQK (βμp B0 ) → 0 GRQF �E� → 0 /¶pQHUJLH PR\HQQH GX GLS{OH HVW
QXOOH ,O SHXW HQ HIIHW SDVVHU JUkFH j O¶DJLWDWLRQ WKHUPLTXH G¶XQ pWDW G¶pQHUJLH μp B0 j
XQ pWDW G¶pQHUJLH −μp B0 μ B
6L kpB T0 � 1 WDQK (βμp B0 ) → 1 GRQF �E� → −μp B0 /H GLS{OH UHVWH GDQV O¶pWDW
G¶pTXLOLEUH VWDEOH O¶DJLWDWLRQ WKHUPLTXH HVW LQVXIILVDQWH SRXU OH IDLUH FKDQJHU G¶pWDW
/¶pFDUW TXDGUDWLTXH PR\HQ VXU O¶pQHUJLH V¶pFULW σ2
=
=
=
=
OQ Z
− ∂ ∂β
∂ 2 OQ Z
∂β 2
− ∂�E�
∂β
∂ WDQK (βμp B0 )
μp B 0
∂β
(μp B0 )2
FRVK2 (βμp B0 )
3RXU OD SRSXODWLRQ O¶pQHUJLH PR\HQQH HVW �EΣ � = N �E� HW O¶pFDUW TXDGUDWLTXH PR\HQ
2 = N σ 2 OD YDULDWLRQ UHODWLYH GH O¶pQHUJLH GH OD SRSXODWLRQ HVW DORUV
HVW σΣ
σΣ
�EΣ �
=
=
=
√1 × σ
�E�
N
μ B
− √1N μp B0 FRVK (βμppB00) WDQK (βμp B0 )
− √N VLQK1(βμ B )
p 0
σΣ
6L N → +∞ �E
→ 0 OD YDULDWLRQ UHODWLYH G¶pQHUJLH PR\HQQH GHYLHQW TXDVLPHQW
Σ�
QXOOH
&9&3$*$& 332
/D FDSDFLWp WKHUPLTXH G¶XQ V\VWqPH G¶pQHUJLH U HVW C = ∂U
∂T 2Q SDUOH GH FDSDFLWp
WKHUPLTXH j YROXPH FRQVWDQW RX j SUHVVLRQ FRQVWDQWH VL V UHVSHFWLYHPHQW p UHVWH
FRQVWDQW ORUV GX FDOFXO GH FHWWH GpULYpH SDUWLHOOH
Thermodynamique statistique
N VLQK (βμp B0 )
σΣ
6L N → +∞ �E
→ 0 OD YDULDWLRQ UHODWLYH G¶pQHUJLH PR\HQQH GHYLHQW TXDVLPHQW
Σ�
QXOOH
&9&3$*$& /D FDSDFLWp WKHUPLTXH G¶XQ V\VWqPH G¶pQHUJLH U HVW C = ∂U
∂T 2Q SDUOH GH FDSDFLWp
WKHUPLTXH j YROXPH FRQVWDQW RX j SUHVVLRQ FRQVWDQWH VL V UHVSHFWLYHPHQW p UHVWH
FRQVWDQW ORUV GX FDOFXO GH FHWWH GpULYpH SDUWLHOOH
,FL OD FDSDFLWp WKHUPLTXH GH O¶HQVHPEOH GH GLS{OHV HVW
=
=
=
=
∂EΣ ∂T
∂β ∂E
N ∂T
∂β
(μ B )2
N
− kB T 2 − FRVK2 p(βμ0 B )
p 2 0
βμp B0
N kB FRVK (βμp B0 )
Solutions
C
56. Étudier un système à spectre d’ énergies discret
333
57
Déterminer la capacité thermique
%©UFSNJOFS
MB DBQBDJU©
d’un gaz
ou d’un UIFSNJRVF
solide
EVO HB[ PV EVO TPMJEF
2VBOE PO OF TBJU QBT /D FDSDFLWp WKHUPLTXH G¶XQ V\VWqPH G¶pQHUJLH PR\HQQH �E� V¶pFULW
C = ∂�E�
∂T
/D YDOHXU PR\HQQH GH O¶pQHUJLH G¶XQ V\VWqPH SHXW VH FDOFXOHU UDSLGHPHQW JUkFH DX WKpR
UqPH G¶pTXLSDUWLWLRQ GH O¶pQHUJLH 7RXW GHJUp GH OLEHUWp TXDGUDWLTXH LQGpSHQGDQW FRQWULEXH SRXU kB2T j O¶pQHUJLH PR\HQQH
GX V\VWqPH
&9&.1-& 3RXU XQ V\VWqPH PDVVHUHVVRUW ORQJXHXU j YLGH l0 UDLGHXU k QH SRXYDQW VH
GpSODFHU TXH GDQV XQ SODQ (xOy) O¶pQHUJLH PpFDQLTXH V¶pFULW 2
2
0)
Em = m2ẋ + m2ẏ + k(l−l
2
2
/¶pQHUJLH FRPSRUWH WURLV WHUPHV TXDGUDWLTXHV j SUHQGUH HQ FRPSWH SRXU OH FDOFXO GH OD
PR\HQQH GH O¶pQHUJLH
3RXU XQ JD] SDUIDLW PRQRDWRPLTXH OHV SDUWLFXOHV VRQW VXSSRVpHV LQGpSHQGDQWHV HW SRQF
WXHOOHV /¶pQHUJLH WRWDOH G¶XQ V\VWqPH FRPSRUWDQW N SDUWLFXOHV HVW GRQF OD VRPPH GHV
pQHUJLHV FLQpWLTXHV GHV SDUWLFXOHV &KDTXH SDUWLFXOH SRXYDQW VH GpSODFHU VHORQ OHV GL
UHFWLRQV GH O¶HVSDFH HOOH FRQWULEXH SRXU 3 kB2T j O¶pQHUJLH WRWDOH /¶pQHUJLH PR\HQQH VHUD
GRQF
�E� = N × 3 kB2T = 32 nNA kB T = 32 nRT
DYHF n OD TXDQWLWp GH PDWLqUH FRQWHQXH GDQV OH V\VWqPH R OD FRQVWDQWH GHV JD] SDUIDLWV
NA OH QRPEUH G¶$YRJDGUR HW kB = NRA OD FRQVWDQWH GH %ROW]PDQQ
/D FDSDFLWp WKHUPLTXH j YROXPH FRQVWDQW G¶XQ JD] SDUIDLW PRQRDWRPLTXH VHUD GRQF
3
CV = ∂�E�
∂T = 2 nR
334
Thermodynamique statistique
3RXU XQ JD] SDUIDLW GLDWRPLTXH OHV SDUWLFXOHV VRQW VXSSRVpHV LQGpSHQGDQWHV PDLV QH VRQW
SOXV SRQFWXHOOHV 2Q PRGpOLVH XQH PROpFXOH SDU XQ UHVVRUW OLDQW GHX[ PDVVHV /¶pQHUJLH
WRWDOH G¶XQ V\VWqPH FRPSRUWDQW N SDUWLFXOHV HVW GRQF OD VRPPH GHV pQHUJLH FLQpWLTXHV
GHV SDUWLFXOHV &KDTXH SDUWLFXOH SRVVqGH WURLV GHJUpV GH OLEHUWp GH WUDQVODWLRQ PDLV pJDOH
2
PHQW XQ GHJUp GH OLEHUWp GH URWDWLRQ WHUPH GX W\SH J2θ̇ HW XQ GHJUp GH YLEUDWLRQ WHUPH
G¶pQHUJLH SRWHQWLHOOH pODVWLTXH &KDTXH SDUWLFXOH FRQWULEXH GRQF SRXU 5 kB2T j O¶pQHUJLH
WRWDOH /¶pQHUJLH PR\HQQH VHUD GRQF �E� = N × 5 kB2T = 52 nNA kB T = 52 nRT
DYHF n OD TXDQWLWp GH PDWLqUH FRQWHQXH GDQV OH V\VWqPH R OD FRQVWDQWH GHV JD] SDUIDLWV
NA OH QRPEUH G¶$YRJDGUR HW kB = NRA OD FRQVWDQWH GH %ROW]PDQQ
/D FDSDFLWp WKHUPLTXH j YROXPH FRQVWDQW G¶XQ JD] SDUIDLW GLDWRPLTXH VHUD GRQF 5
CV = ∂E
∂T = 2 nR
3RXU XQ VROLGH FULVWDOOLQ RQ SHXW PRGpOLVHU OHV OLDLVRQV HQWUH SDUWLFXOHV SDU GHV LQWHUDF
WLRQV GX W\SH PDVVHUHVVRUW &KDTXH SDUWLFXOH SRVVqGH WURLV GHJUpV GH OLEHUWp GH WUDQVODWLRQ
HW WURLV GHJUpV GH OLEHUWp GH YLEUDWLRQ HOOH FRQWULEXH GRQF SRXU 6 kB2T j O¶pQHUJLH WRWDOH
/¶pQHUJLH PR\HQQH VHUD GRQF �E� = N × 6 kB2T = 3nRT
/D FDSDFLWp WKHUPLTXH G¶XQ VROLGH VHUD GRQF C = ∂E
∂T = 3nR
&HWWH UHODWLRQ DSSHOpH ORL GH 'XORQJ HW 3HWLW Q¶HVW HQ UpDOLWp YDOLGH TXH SRXU OHV KDXWHV
WHPSpUDWXUHV 7RXV OHV GHJUpV GH OLEHUWp VRQW DORUV GpJHOpV
2VF GBJSF
&RQQDvWUH OH WKpRUqPH G¶pTXLSDUWLWLRQ GH O¶pQHUJLH
'pQRPEUHU OHV GHJUpV GH OLEHUWp TXDGUDWLTXH G¶XQ V\VWqPH SRXU GpWHUPLQHU VD FDSDFLWp
WKHUPLTXH
$POTFJMT
1H SDV RXEOLHU TXH OHV PRXYHPHQWV VH IRQW HQ WURLV GLPHQVLRQV ORUV GX GpFRPSWH GHV
GHJUpV GH OLEHUWp
57. Déterminer la capacité thermique d’un gaz ou d’un solide
335
&YFNQMF USBJU©
2Q FRQVLGqUH XQH PROpFXOH GLDWRPLTXH GRQW OHV DWRPHV A HW B VRQW OLpV SDU XQH OLDLVRQ
FRYDOHQWH O¶pQHUJLH SRWHQWLHOOH G¶LQWHUDFWLRQ HQWUH OHV GHX[ DWRPHV HVW DWWUDFWLYH j ORQJXH
SRUWpH HW UpSXOVLYH j FRXUWH SRUWpH /D PROpFXOH HVW VXSSRVpH LVROpH HW RQ QpJOLJH O¶LQWHUDFWLRQ
JUDYLWDWLRQQHOOH HQWUH OHV GHX[ DWRPHV GHYDQW O¶LQWHUDFWLRQ FRQGXLVDQW j OD OLDLVRQ FRYDOHQWH
→
v i OD YLWHVVH GH FKDTXH
2Q QRWH l OD ORQJXHXU GH OD OLDLVRQ mi OD PDVVH GH FKDTXH DWRPH i HW −
DWRPH /D PDVVH WRWDOH GH OD PROpFXOH HVW QRWpH m HW OD YLWHVVH GH VRQ EDU\FHQWUH HVW QRWpH
−
→
v G /HV FRRUGRQQpHV GX EDU\FHQWUH G GH OD PROpFXOH VRQW (r, θ, φ)
7UDFHU O¶DOOXUH GH O¶pQHUJLH SRWHQWLHOOH G¶LQWHUDFWLRQ HQWUH OHV GHX[ DWRPHV 2Q IHUD IL
JXUHU O¶pQHUJLH GH OLDLVRQ El VXU FH VFKpPD
-XVWLILHU TXH OD OLDLVRQ FRYDOHQWH SHXW rWUH DVVLPLOpH j XQ UHVVRUW GH UDLGHXU k HW GH ORQ
JXHXU j YLGH le j IDLUH ILJXUHU VXU OH VFKpPD SUpFpGHQW 2Q SHXW PRQWUHU TXH O¶pQHUJLH PpFDQLTXH GH OD PROpFXOH V¶pFULW VRXV OD IRUPH
→ 2 1
er
1
1 mA mB ˙2
1 mA mB 2 G−
2
2
Em = 2 mvG + −El + 2 k[l − le ] + 2 mA +mB l + 2 mA +mB l
Gt
→
−
→
→
er
DYHF G Gt
= θ−
e θ +VLQ θφ̇−
e φ ,GHQWLILHU FKDFXQ GHV WHUPHV HQWUH SDUHQWKqVH j O¶pQHUJLH
FLQpWLTXH GH WUDQVODWLRQ O¶pQHUJLH GH YLEUDWLRQ RX j O¶pQHUJLH FLQpWLTXH GH URWDWLRQ GH OD
PROpFXOH
(QRQFHU OH WKpRUqPH G¶pTXLSDUWLWLRQ GH O¶pQHUJLH
([SULPHU DORUV O¶pQHUJLH PR\HQQH �Em � GH OD PROpFXOH HQ IRQFWLRQ GH OD FRQVWDQWH GH
%ROW]PDQQ kB HW GH OD WHPSpUDWXUH T aQm`+2 , /ǶT`ĕb JBM2b@SQMib
40-65*0/
/¶DOOXUH GH O¶pQHUJLH SRWHQWLHOOH G¶LQWHUDFWLRQ HVW OD VXLYDQWH
Ep
le
l
−El
2Q SHXW PRGpOLVHU OH SXLWV GH SRWHQWLHO SDU XQ SXLWV SDUDEROLTXH DSSUR[LPDWLRQ KDUPR
QLTXH /D OLDLVRQ SHXW DLQVL rWUH PRGpOLVpH SDU XQ UHVVRUW GH UDLGHXU k =
ORQJXHXU j YLGH le 336
Thermodynamique statistique
G2 Ep
HW GH
Gr 2
/H SUHPLHU WHUPH FRUUHVSRQG j O¶pQHUJLH FLQpWLTXH GH WUDQVODWLRQ vG HVW OD YLWHVVH GX
EDU\FHQWUH OH VHFRQG j O¶pQHUJLH GH YLEUDWLRQ LQWHUDFWLRQ HQWUH DWRPHV PRGpOLVpH SDU
XQ UHVVRUW HW OH GHUQLHU j O¶pQHUJLH FLQpWLTXH GH URWDWLRQ OD YLWHVVH DQJXODLUH GH URWDWLRQ
→
−
er
LQWHUYLHQW GDQV G Gt
&KDTXH GHJUp GH OLEHUWp TXDGUDWLTXH GH O¶pQHUJLH FRQWULEXH SRXU kB2T j O¶pQHUJLH PR\HQQH
/HV PROpFXOHV SHXYHQW ERXJHU VHORQ WURLV GLUHFWLRQV GDQV O¶HVSDFH OH SUHPLHU WHUPH GH
O¶pQHUJLH DSSRUWH GRQF 3 × kB2T j O¶pQHUJLH PR\HQQH /H WHUPH HQ (l − le )2 DSSRUWH kB2T
j O¶pQHUJLH PR\HQQH GH PrPH TXH FHOXL HQ l˙2 HW FKDFXQH GHV FRPSRVDQWHV GH FHOXL HQ
→
G−
er
Gt /¶pQHUJLH PR\HQQH GH OD PROpFXOH HVW DORUV �Em � = 3 × kB2T + 2 × kB2T + 2 × kB2T = 72 kB T
&YFSDJDFT
&9&3$*$& 2Q V¶LQWpUHVVH PDLQWHQDQW j XQ JD] SDUIDLW GH N PROpFXOHV GLDWRPLTXHV LGHQWLTXHV 2Q
FKHUFKH j GpWHUPLQHU O¶H[SUHVVLRQ GH OD FDSDFLWp WKHUPLTXH GH FH JD] HQ H[SORLWDQW OH PRGqOH
GpYHORSSp GDQV O¶H[HUFLFH SUpFpGHQW
'pWHUPLQHU O¶pQHUJLH PR\HQQH LQWHUQH U GH FHW HQVHPEOH GH SDUWLFXOHV HQ IRQFWLRQ GH
N kB HW T 0RQWUHU TXH GDQV OH PRGqOH GpYHORSSp FLGHVVXV OD FDSDFLWp WKHUPLTXH PRODLUH cV,m GX
JD] HVW XQH FRQVWDQWH TXH O¶RQ H[SULPHUD HQ IRQFWLRQ GH R OD FRQVWDQWH GHV JD] SDUIDLWV
/D FDSDFLWp WKHUPLTXH PRODLUH GX GLFKORUH JD]HX[ &O2 D pWp PHVXUpH j GLYHUVHV WHPSp
UDWXUHV T HQ K cV,m
R
3.5
3
2.5
2
1.5
1
0.5
0
1
2
ORJ T
3
/H PRGqOH SUpFpGHQW SHUPHWLO G¶H[SOLTXHU O¶DOOXUH GH FHWWH FRXUEH "
-XVWLILHU O¶H[LVWHQFH GH FKDTXH SDOLHU VXU OD FRXUEH H[SpULPHQWDOH
aQm`+2 , /ǶT`ĕb JBM2b@SQMib
57. Déterminer la capacité thermique d’un gaz ou d’un solide
337
1PVS WPVT BJEFS
&9&3$*$& E©NBSSFS
4XHOOH HVW OD FRQWULEXWLRQ GH FKDTXH WHUPH GH O¶pQHUJLH WUDQVODWLRQ YL
EUDWLRQ URWDWLRQ j OD FDSDFLWp WKHUPLTXH "
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& /¶pQHUJLH LQWHUQH GH O¶HQVHPEOH GH SDUWLFXOHV HVW U = N Em = 72 N kB T
'DQV FH PRGqOH OD FDSDFLWp WKHUPLTXH GX JD] HVW 7
7
CV = ∂U
∂T = 2 N kB = 2 nR
HW OD FDSDFLWp WKHUPLTXH PRODLUH YDXW cV,m = CnV = 72 R
338
/H PRGqOH GRQQH XQH FDSDFLWp WKHUPLTXH PRODLUH pJDOH j 3, 5R TXHOOH TXH VRLW OD WHP
SpUDWXUH FH TXL Q¶HVW SDV HQ DFFRUG DYHF O¶DOOXUH JpQpUDOH GH OD FRXUEH 2Q UHWURXYH
QpDQPRLQV FHWWH YDOHXU VXU OH GHUQLHU SDOLHU
6L RQ QH SUHQG HQ FRPSWH TXH O¶pQHUJLH FLQpWLTXH GH WUDQVODWLRQ OD FDSDFLWp WKHUPLTXH
PRODLUH GHYUDLW rWUH cV,m = 1, 5R $ EDVVH WHPSpUDWXUH ORUVTXH OHV GHJUpV GH OLEHUWp
GH URWDWLRQ HW GH YLEUDWLRQ VRQW JHOpV FHOD FRUUHVSRQG ELHQ j OD FRXUEH H[SpULPHQWDOH
SUHPLHU SDOLHU 6L OD WHPSpUDWXUH DXJPHQWH OD YLEUDWLRQ Q¶HVW SOXV JHOpH RQ SUHQG GRQF HQ FRPSWH
O¶pQHUJLH FLQpWLTXH GH YLEUDWLRQ /D FDSDFLWp WKHUPLTXH PRODLUH GHYUDLW GRQF rWUH pJDOH
j cV,m = 2, 5R FH TXL HVW FRKpUHQW DYHF OH VHFRQG SDOLHU
(QILQ HQ DXJPHQWDQW HQFRUH OD WHPSpUDWXUH OD URWDWLRQ Q¶HVW SOXV JHOpH HW OD FRXUEH
H[SpULPHQWDOH FRUUHVSRQG ELHQ DX PRGqOH GpWDLOOp SUpFpGHPPHQW
Thermodynamique statistique
Chimie
Étudier la cinétique d’une réaction
&UVEJFS MB DJO©UJRVF EVOF S©BDUJPO58
d’oxydoréduction
avec les courbes
EšPYZEPS©EVDUJPO BWFD MFT
courant-potentiel
DPVSCFT DPVSBOUQPUFOUJFM
2VBOE PO OF TBJU QBT /HV FRXUEHV FRXUDQWSRWHQWLHO VRQW UpDOLVpHV JUkFH j XQ PRQWDJH j WURLV pOHFWURGHV TXL
SHUPHW GH PHVXUHU VLPXOWDQpPHQW OH SRWHQWLHO GH O¶pOHFWURGH GH WUDYDLO DLQVL TXH O¶LQWHQVLWp
GH FRXUDQW pOHFWULTXH TXL OD WUDYHUVH
JpQpUDWHXU GH WHQVLRQ YDULDEOH
9
*
U
$
i
pOHFWURGH GH UpIpUHQFH
pOHFWURGH GH WUDYDLO
FRQWUHpOHFWURGH
pOHFWURO\WH
/H SRWHQWLHO E HVW PHVXUp JUkFH j OD WHQVLRQ U HQWUH O¶pOHFWURGH GH WUDYDLO HW O¶pOHFWURGH
GH UpIpUHQFH E = U + EUHI /¶LQWHQVLWp GX FRXUDQW pOHFWULTXH i HVW SULVH GDQV OH VHQV GH
O¶pOHFWURGH YHUV OD VROXWLRQ /HV FRXUEHV FRXUDQWSRWHQWLHO VRQW OH UHOHYp GH O¶LQWHQVLWp GX
FRXUDQW i HQ IRQFWLRQ GX SRWHQWLHO E
/¶LQWHQVLWp GH FRXUDQW HVW OLpH j OD YLWHVVH GH UpDFWLRQ j OD VXUIDFH GH O¶pOHFWURGH
i = io + ir = n × F (vo − vr )
R vo HVW OD YLWHVVH GH OD UpDFWLRQ G¶R[\GDWLRQ HW vr FHOOH GH OD UpDFWLRQ GH UpGXFWLRQ 8QH
LQWHQVLWp pOHYpH FRUUHVSRQG j XQH UpDFWLRQ UDSLGH HW LQYHUVHPHQW
58. Étudier la cinétique d’une réaction d’oxydoréduction avec les courbes courant-potentiel
339
/H VLJQH GX FRXUDQW i HVW OLp DX VHQV GH OD UpDFWLRQ
&9&.1-& &RXSOH 2[(DT) 5HG(DT) HQ VROXWLRQ DTXHXVH
FRXUDQW G¶R[\GDWLRQ
i
+ 2(O) −→ 2 (J)
i'R[
5HG(DT) −→ 2[(DT)
FRXUDQW GH UpGXFWLRQ
EHT
5HG(DT) ←− 2[(DT)
i'UHG
E
+ (J) ←− + 2(O)
'DQV O¶H[HPSOH RQ FRQVLGqUH XQ FRXSOH G¶R[\GRUpGXFWLRQ SRXU OHTXHO OH UpGXF
WHXU HW O¶R[\GDQW VRQW SUpVHQWV HQ VROXWLRQ DTXHXVH /H SRWHQWLHO EHT SRXU OHTXHO
i = 0 HVW OH SRWHQWLHO G¶pTXLOLEUH GH OD VROXWLRQ WHO TXH GpILQL SDU OD ORL GH 1HUQVW
6L E > EHT XQH UpDFWLRQ G¶R[\GDWLRQ VH SURGXLW 5HG(DT) → 2[(DT) + n H− 'HV pOHFWURQV VRQW GRQF OLEpUpV GH OD VROXWLRQ YHUV O¶pOHFWURGH FH TXL FRUUHVSRQG
HIIHFWLYHPHQW j XQ FRXUDQW pOHFWULTXH YHUV OD VROXWLRQ i SRVLWLI
6L E < EHT XQH UpDFWLRQ GH UpGXFWLRQ VH SURGXLW 2[(DT) + n H− → 5HG(DT) 'HV pOHFWURQV VRQW GRQF FDSWpV GH O¶pOHFWURGH YHUV OD VROXWLRQ FH TXL FRUUHVSRQG
HIIHFWLYHPHQW j XQ FRXUDQW pOHFWULTXH YHUV OD VROXWLRQ i QpJDWLI
&HUWDLQHV FRXUEHV SUpVHQWHQW XQ SDOLHU GH O¶LQWHQVLWp G€ j OD GLIIXVLRQ
'DQV O¶H[HPSOH ORUVTXH OH SRWHQWLHO E DXJPHQWH SDU UDSSRUW DX SRWHQWLHO G¶pTXL
OLEUH GH OD VROXWLRQ EHT OD YLWHVVH GH OD UpDFWLRQ G¶R[\GDWLRQ DXJPHQWH DX IXU HW j
PHVXUH TXH OH SRWHQWLHO V¶pFDUWH GX SRWHQWLHO G¶pTXLOLEUH OD UpDFWLRQ G¶R[\GDWLRQ j
OD VXUIDFH GH O¶pOHFWURGH OLPLWH OD YDOHXU GX FRXUDQW PHVXUp 'DQV XQ VHFRQG WHPSV
OD UpDFWLRQ G¶R[\GDWLRQ GHYLHQW VXIILVDPPHQW UDSLGH SRXU TXH FH VRLW OD GLIIXVLRQ
GX UpGXFWHXU YHUV O¶pOHFWURGH TXL OLPLWH OD YDOHXU GX FRXUDQW PHVXUp O¶LQWHQVLWp
DWWHLQW DORUV XQH YDOHXU OLPLWpH SDU OD GLIIXVLRQ iD,red 'DQV OH FDV R O¶R[\GDQW HVW DXVVL XQH HVSqFH HQ VROXWLRQ LO H[LVWH pJDOHPHQW XQ
FRXUDQW OLPLWH GH GLIIXVLRQ SRXU OHV LQWHQVLWpV QpJDWLYHV i'UHG TXL FRUUHVSRQG j OD
GLIIXVLRQ GH O¶R[\GDQW 2[(DT) GH OD VROXWLRQ YHUV OD VXUIDFH GH O¶pOHFWURGH
340
Chimie
'DQV O¶H[HPSOH OH UpGXFWHXU GX FRXSOH 5HG(V) HVW HQ SKDVH VROLGH LO SHXW SDU
H[HPSOH V¶DJLU G¶XQ PpWDO TXL FRQVWLWXH DORUV O¶pOHFWURGH GH WUDYDLO /¶R[\GDQW 2[(DT)
UHVWH XQH HVSqFH HQ VROXWLRQ ,O Q¶\ D SOXV GH GLIIXVLRQ GX UpGXFWHXU 5HG(V) HW OH SOD
WHDX GH GLIIXVLRQ GLVSDUDLW SRXU OHV SRWHQWLHOV VXSpULHXUV DX[ SRWHQWLHOV G¶pTXLOLEUH
&9&.1-& &RXSOH 2[(DT) 5HG(V) HQ VROXWLRQ DTXHXVH
i
5HG(V) −→ 2[(DT)
EHT
5HG(V) ←− 2[(DT)
i'UHG
E
+ (J) ←− + 2(O)
&RPPH O¶HDX HVW LPSOLTXpH GDQV GHX[ FRXSOHV G¶R[\GRUpGXFWLRQ + 2(O) 2 (J) HW
+ (J) + 2(O) HOOH GRQQH OLHX HOOH DXVVL j GHV FRXUDQWV G¶R[\GDWLRQ HW GH UpGXFWLRQ
6¶DJLVVDQW GX VROYDQW OHV PROpFXOHV G¶HDX j SUR[LPLWp LPPpGLDWH GH O¶pOHFWURGH GH
WUDYDLO VRQW H[WUrPHPHQW QRPEUHXVHV OHV FRXUDQWV G¶R[\GDWLRQ RX GH UpGXFWLRQ
GX VROYDQW QH VHURQW GRQF MDPDLV OLPLWpV SDU OD GLIIXVLRQ 2Q SDUOH j OHXU VXMHW GH
© PXU GX VROYDQW ª FDU LOV FRUUHVSRQGHQW j GHV YDOHXUV GH SRWHQWLHO TXL QH VRQW SDV
GpSDVVDEOHV H[SpULPHQWDOHPHQW
/RUV GHV UpDFWLRQV j OD VXUIDFH GH O¶pOHFWURGH OD YLWHVVH GH UpDFWLRQ GpSHQG GH OD
VXUIDFH LPPHUJpH S 3DU FRQVpTXHQW OHV LQWHQVLWpV i PHVXUpHV GpSHQGHQW GH FHWWH
VXUIDFH 3RXU V¶HQ DIIUDQFKLU RQ SHXW XWLOLVHU O¶LQWHQVLWp VXUIDFLTXH j TXL GpSHQG
GH OD YLWHVVH VXUIDFLTXH GH OD UpDFWLRQ &HOD QpFHVVLWH GH FRQQDvWUH OD YDOHXU GH OD
VXUIDFH LPPHUJpH GH O¶pOHFWURGH PDLV IDFLOLWH OD FRPSDUDLVRQ HQWUH GHV GRQQpHV
H[SpULPHQWDOHV REWHQXHV GDQV GHV FRQGLWLRQV GLIIpUHQWHV
/D KDXWHXU GX SDOLHU GH GLIIXVLRQ HVW SURSRUWLRQQHOOH j OD FRQFHQWUDWLRQ GX UpDFWLI
/HV FRXUEHV FRXUDQWSRWHQWLHO SHXYHQW GRQF SHUPHWWUH GH VXLYUH O¶pYROXWLRQ G¶XQH
FRQFHQWUDWLRQ HQ VROXWLRQ FRPPH RQ OH YRLW GDQV O¶H[HPSOH /D FRXUEH HQ WLUHWV
HVW REWHQXH VL O¶R[\GDQW D pWp HQ SDUWLH UpGXLW LO \ D SOXV GH UpGXFWHXU HW
HVW REWHQXH VL OH Up
PRLQV G¶R[\GDQW $ O¶LQYHUVH OD FRXUEH HQ SRLQWLOOpV
GXFWHXU D pWp HQ SDUWLH R[\Gp LO \ D SOXV G¶R[\GDQW HW PRLQV GH UpGXFWHXU
58. Étudier la cinétique d’une réaction d’oxydoréduction avec les courbes courant-potentiel
341
&9&.1-& (IIHW GH OD YDULDWLRQ GHV FRQFHQWUDWLRQV
i
[5HG] ↑
[5HG] ↑
[2[] ↑
[2[] ↑
E
R[\GDQW WUDQVIRUPp HQ UpGXFWHXU
WUDFp LQLWLDO
UpGXFWHXU WUDQVIRUPp HQ R[\GDQW
/H OLHQ HQWUH OD YLWHVVH GH UpDFWLRQ G¶R[\GRUpGXFWLRQ HW O¶LQWHQVLWp GX FRXUDQW PHVXUpH
SHUPHW G¶DFFpGHU j OD FLQpWLTXH GH OD UpDFWLRQ G¶R[\GRUpGXFWLRQ 2Q VpSDUH OHV FRXSOHV
UHGR[ HQ GHX[ FDWpJRULHV OHV FRXSOHV UDSLGHV HW OHV FRXSOHV OHQWV
/HV FRXSOHV GLWV UDSLGHV VRQW FDUDFWpULVpV SDU XQH IRUWH DXJPHQWDWLRQ GH OD YLWHVVH
GH UpDFWLRQ GqV TXH OH SRWHQWLHO V¶pFDUWH GX SRWHQWLHO G¶pTXLOLEUH OD SHQWH HVW pOHYpH
DXWRXU GX SRWHQWLHO G¶pTXLOLEUH (Q UqJOH JpQpUDOH FHV FRXSOHV QH SUpVHQWHQW SDV GH
UpDUUDQJHPHQW GH VWUXFWXUH HW SHXYHQW UpDOLVHU GHV pFKDQJHV pOHFWURQLTXHV UDSLGHV
3DU H[HPSOH OH FRXSOH )H (DT) )H (DT) HVW XQ FRXSOH UDSLGH
8Q FRXSOH HVW TXDOLILp GH OHQW ORUVTXH OH FRXUDQW HVW TXDVLQXO RX WUqV IDLEOH VXU XQH
SODJH GH SRWHQWLHO KRUVpTXLOLEUH OD SHQWH HVW WUqV IDLEOH DXWRXU GX SRWHQWLHO G¶pTXL
OLEUH &HV FRXSOHV FRQQDLVVHQW VRXYHQW G¶LPSRUWDQWHV PRGLILFDWLRQV GH VWUXFWXUH DF
FRPSDJQDQW OH WUDQVIHUW pOHFWURQLTXH /D QDWXUH GH O¶pOHFWURGH HQWUH pJDOHPHQW HQ
MHX OH FRXSOH + 2 (DT) + (J) HVW SOXV UDSLGH VXU XQH pOHFWURGH GH SODWLQH TXH VXU
XQH pOHFWURGH GH PHUFXUH
3RXU XQ FRXSOH OHQW RQ GpILQLW OD VXUWHQVLRQ DQRGLTXH ηa HW OD VXUWHQVLRQ FDWKRGLTXH
ηc FRPPH OD VXUWHQVLRQ j DSSOLTXHU DX SRWHQWLHO G¶pTXLOLEUH Eaq SRXU REWHQLU XQH
LQWHQVLWp G¶R[\GDWLRQ RX GH UpGXFWLRQ VLJQLILFDWLYH
&9&.1-& DOOXUHV GHV FRXUEHV SRXU XQ FRXSOH UDSLGH HW XQ FRXSOH OHQW
i
i
Eeq + ηc
E
FRXSOH UDSLGH
342
Chimie
Eeq + ηa
FRXSOH OHQW
E
/RUVTXH SOXVLHXUV FRXSOHV pOHFWURDFWLIV VRQW SUpVHQWV OHXUV FRXUEHV FRXUDQWSRWHQWLHO V¶DG
GLWLRQQHQW H[HPSOH $ORUV TXH O¶LQWHQVLWp GX FRXUDQW G¶R[\GDWLRQ GX UpGXFWHXU 5HG (DT)
D DWWHLQW VRQ SDOLHU GH GLIIXVLRQ OH FRXUDQW G¶R[\GDWLRQ G¶XQH GHX[LqPH HVSqFH 5HG (DT)
V¶DMRXWH GRQQDQW OLHX D XQH LQWHQVLWp SOXV pOHYpH
&9&.1-& DGGLWLYLWp GHV FRXUEHV FRXUDQWSRWHQWLHO
i
5HG VHXO
5HG(DT) −→ 2[(DT)
5HG VHXO
PpODQJH 5HG HW 5HG
5HG(DT) −→ 2[(DT) 5HG(DT) −→ 2[(DT)
E
2VF GBJSF 1RWHU SRXU PpPRLUH VXU OH JUDSKLTXH OH VHQV GHV UpDFWLRQV G¶R[\GDWLRQ HW GH UpGXFWLRQ
SDU UDSSRUW DX VLJQH GX FRXUDQW
5HSpUHU OD QDWXUH GHV HVSqFHV pOHFWURDFWLYHV OHV HVSqFHV HQ VROXWLRQ OH VROYDQW OD QDWXUH
GHV pOHFWURGHV
5HWURXYHU OHV SRWHQWLHOV G¶pTXLOLEUHV GHV FRXSOHV j SDUWLU GH OD ORL GH 1HUQVW HQ WHQDQW
FRPSWH GHV FRQGLWLRQV H[SpULPHQWDOHV
$POTFJMT
,O IDXW SRXYRLU V¶DSSX\HU VXU OHV FRQQDLVVDQFHV GH SUHPLqUH DQQpH VL F¶HVW QpFHVVDLUH
UHYRLU FRPPHQW H[SORLWHU OD IRUPXOH GH 1HUQVW HW OHV GLDJUDPPHV GH SUpGRPLQDQFH
,O HVW LQGLVSHQVDEOH GH VDYRLU pFULUH OHV GHPLpTXDWLRQV G¶pFKDQJH pOHFWURQLTXH UHYRLU OH
FRXUV GH SUHPLqUH DQQpH VL EHVRLQ
5HWHQLU OHV LQIRUPDWLRQV TXH O¶RQ SHXW H[WUDLUH GHV FRXUEHV FRXUDQWSRWHQWLHO
482, "
&200(17 "
SRWHQWLHO G¶pTXLOLEUH
E SRXU i = 0
FLQpWLTXH G¶XQ FRXSOH
SHQWH GH OD FRXUEH DXWRXU GH i = 0
VXUWHQVLRQ
SRXU XQ FRXSOH OHQW GLIIpUHQFH HQWUH OH SRWHQWLHO
G¶pTXLOLEUH HW OH SRWHQWLHO R O¶LQWHQVLWp HVW VLJQLILFD
WLYHPHQW GLIIpUHQWH GH ]pUR
pWDW SK\VLFRFKLPLTXH
SUpVHQFH G¶XQ SDOLHU GH GLIIXVLRQ SRXU OHV VROXWpV
FRPSRVLWLRQ GH O¶pOHFWURO\WH
YDJXHV VXFFHVVLYHV SRXU FKDTXH R[\GDQW HW FKDTXH Up
GXFWHXU
FRQFHQWUDWLRQV
KDXWHXU GX SDOLHU GH GLIIXVLRQ HW SRVLWLRQ GX SRWHQWLHO
G¶pTXLOLEUH
58. Étudier la cinétique d’une réaction d’oxydoréduction avec les courbes courant-potentiel
343
&YFNQMF USBJU©
2Q GRQQH OD FRXUEH FRXUDQWSRWHQWLHO VXU pOHFWURGH G¶DUJHQW SRXU XQH FRQFHQWUDWLRQ HQ LRQV
$J pJDOH j c0 = 10−2 PRO./−1 2Q LQGLTXH E o ($J+ (DT) /$J(V) ) = 0, 8 9
i
$J(V) −→ $J+ (DT)
E 9
$J(V) ←− $J+ (DT)
/H V\VWqPH $J (DT) $J(V) VXU pOHFWURGH G¶DUJHQW HVWLO UDSLGH RX OHQW "
3RXUTXRL OD FRXUEH i = f (E) FRXSHWHOOH O¶D[H GHV DEVFLVVHV SRXU E = 0, 68 9 "
3RXUTXRL Q¶REVHUYHWRQ SDV GH SDOLHU GH GLIIXVLRQ DQRGLTXH "
40-65*0/
/H FRXSOH $J (DT) $J(V) HVW XQ FRXSOH UDSLGH SXLVTXH OD FRXUEH FRXUDQWSRWHQWLHO D XQH
SHQWH pOHYpH ORUVTX¶HOOH FRXSH O¶D[H GHV DEVFLVVHV SRXU i = 0 DX SRWHQWLHO G¶pTXLOLEUH
GX FRXSOH
/D GHPLpTXDWLRQ GX FRXSOH HVW $J(V) = $J+ (DT) + H−
/H SRWHQWLHO GH OD VROXWLRQ SRXU i = 0 HVW OH SRWHQWLHO G¶pTXLOLEUH GRQQp SDU OH SRWHQWLHO
GH 1HUQVW E = Eƒ + 0, 06 × ORJ [$J+ ] = 0, 8 + 0, 06 × ORJ 10−2 = 0, 68 9
344
2Q UHWURXYH ELHQ OD YDOHXU GX JUDSKLTXH
2Q Q¶REVHUYH SDV GH SDOLHU GH GLIIXVLRQ DQRGLTXH SXLVTXH OH FRXUDQW Q¶HVW SDV OLPLWp SDU
OD GLIIXVLRQ GDQV OH VHQV GH O¶R[\GDWLRQ HQ HIIHW OH UpGXFWHXU GX FRXSOH HVW O¶DUJHQW
$J(V) TXL HVW OH PpWDO TXL FRQVWLWXH O¶pOHFWURGH
Chimie
&YFSDJDFT
&9&3$*$& $QDO\VH G¶XQH FRXUEH FRXUDQWSRWHQWLHO
i μ$
E 9 (6+
2Q GRQQH FLGHVVXV O¶DOOXUH GH OD FRXUEH FRXUDQWSRWHQWLHO REWHQXH j O¶DLGH G¶XQ PRQWDJH j
WURLV pOHFWURGHV O¶pOHFWURGH GH WUDYDLO HVW HQ SODWLQH SORQJHDQW GDQV XQH VROXWLRQ DFLGLILpH
FRQWHQDQW ± GH O¶LRGXUH GH SRWDVVLXP . , ± (DT) j OD FRQFHQWUDWLRQ c1 = 1, 00 PRO./−1
± GX WULLRGXUH GH SRWDVVLXP . , ± (DT) j OD FRQFHQWUDWLRQ c1 = 1, 00.10−2 PRO./−1
Eƒ(+ 2+ (DT) /+ (J) ) = 0, 00 9
Eƒ(2 (J) /+ 2(O) ) = 1, 23 9
Eƒ(, − (DT) /,− (DT) ) = 0, 54 9
α=
RT
OQ(10) = 0, 06 9
F
,QGLTXHU VXU OD FRXUEH FRXUDQWSRWHQWLHO OHV pTXDWLRQV GHV GHPL UpDFWLRQV G¶R[\GRUp
GXFWLRQ GDQV OH VHQV R HOOHV VH SURGXLVHQW
3UpFLVHU ± HQ MXVWLILDQW EULqYHPHQW OD UpSRQVH ± VL OH FRXSOH , ± (DT) , ± (DT) HVW UDSLGH RX
OHQW VXU O¶pOHFWURGH GH WUDYDLO FKRLVLH
1RPPHU OH SKpQRPqQH SK\VLTXH UHVSRQVDEOH GX SDOLHU REVHUYp
5HWURXYHU SDU OH FDOFXO OH SRWHQWLHO j FRXUDQW QXO GH O¶pOHFWURGH GH SODWLQH
aQm`+2 , #M[m2 Sh kyRe
&9&3$*$& 2Q DGPHW TX¶XQ GpJDJHPHQW JD]HX[ HVW HIIHFWLI TXDQG OD SUHVVLRQ SDUWLHOOH GX JD] YDXW EDU
7UDFHU O¶DOOXUH GH OD FRXUEH FRXUDQWSRWHQWLHO SRXU XQH pOHFWURGH GH SODWLQH SORQJHDQW GDQV
XQH VROXWLRQ GpVDpUpH GH S+ = 5 2Q GRQQH ηa = 0, 5 9 HW ηc = −0, 2 9 OHV VXUWHQVLRQV
DQRGLTXH HW FDWKRGLTXH GH O¶HDX GDQV FHV FRQGLWLRQV
'RQQpHV Eƒ(+ 2+ (DT) /+ (J) ) = 0, 00 9
Eƒ(2 (J) /+ 2(O) ) = 1, 23 9
58. Étudier la cinétique d’une réaction d’oxydoréduction avec les courbes courant-potentiel
345
1PVS WPVT BJEFS
E©NBSSFS
&9&3$*$& (FULUH OHV GHPLpTXDWLRQV pOHFWURQLTXHV GHV FRXSOHV j FRQVLGpUHU 8WL
OLVHU OHV SRWHQWLHOV VWDQGDUGV SRXU OHV VLWXHU OHV XQV SDU UDSSRUW DX[ DXWUHV
8Q FRXUDQW SRVLWLI FRUUHVSRQG j XQH R[\GDWLRQ
&9&3$*$& (FULUH OHV GHPLpTXDWLRQV pOHFWURQLTXHV GHV FRXSOHV GH O¶HDX GpWHUPLQHU
OH SRWHQWLHO G¶pTXLOLEUH GH FKDFXQ SRXU XQH SUHVVLRQ SDUWLHOOH GH EDU WHQLU FRPSWH GHV VXUWHQVLRQV SRXU WUDFHU OD FRXUEH FRXUDQWSRWHQWLHO
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& /D GHPLpTXDWLRQ pOHFWURQLTXH GX FRXSOH , ± (DT) , ± (DT) HVW 3,− (DT) = , − (DT) + 2H−
/D GHPL pTXDWLRQ pOHFWURQLTXH GX FRXSOH + 2 (DT) + (J) HVW + (J) + 2+ 2(O) = 2+ 2+ (DT) + 2H−
/H SRWHQWLHO GX FRXSOH 2 (J) + 2(O) HVW WURS pOHYp SRXU TX¶LO DSSDUDLVVH VXU OH JUDSKLTXH
i μ$
3,− (DT) −→ , − (DT)
E 9 (6+
3,− (DT) ←− , − (DT)
+ (J) ←− 2++ DT
346
/H FRXSOH , ± (DT) , ± (DT) HVW UDSLGH FDU OH FRXUDQW HVW QXO HQ XQ SRLQW VHXOHPHQW GqV
TXH OH SRWHQWLHO HVW GLIIpUHQW GX SRWHQWLHO G¶pTXLOLEUH O¶LQWHQVLWp PHVXUpH HVW QRQ QXOOH
,O Q¶\ D SDV GH VXUWHQVLRQ
Chimie
,O V¶DJLW G¶XQ SDOLHU GH GLIIXVLRQ /HV FRXUEHV FRXUDQWSRWHQWLHO WUDGXLVHQW OD FLQpWLTXH
GHV UpDFWLRQV G¶R[\GRUpGXFWLRQ HW VXU OH SDOLHU OD YLWHVVH GH OD UpDFWLRQ HVW OLPLWpH SDU
OD GLIIXVLRQ GHV LRQV WULRGXUH , ± (DT) YHUV OD VXUIDFH GH O¶pOHFWURGH GH SODWLQH
3RXU i = 0 RQ OLW E = 0, 48 9 4XDQG OH FRXUDQW HVW QXO F¶HVW TXH OD YLWHVVH GH OD
UpDFWLRQ HVW QXOOH HW GRQF TX¶RQ HVW j O¶pTXLOLEUH /H SRWHQWLHO GH O¶pOHFWURGH HVW GRQQp
SDU OD IRUPXOH GH 1HUQVW GX FRXSOH , ± (DT) , ± (DT) E = Eƒ +
α
[, − ]
10−2
0, 06
ORJ − 3 = 0, 54 +
ORJ 3 = 0, 48 9
2
2
1
[, ]
2Q UHWURXYH ELHQ OD ERQQH YDOHXU
&9&3$*$& 3RXU OD FRXUEH GX F{Wp GHV LQWHQVLWpV QpJDWLYHV GRQF HQ UpGXFWLRQ OH FRXSOH j FRQVLGpUHU HVW
+ (DT) + (J) GRQW OD GHPLpTXDWLRQ pOHFWURQLTXH HVW + (J) = 2++ (DT) + 2H−
/H SRWHQWLHO G¶pTXLOLEUH HVW GRQQp SDU OH SRWHQWLHO GH 1HUQVW FRPSWHWHQX GH OD VXUWHQVLRQ
FDWKRGLTXH OH SRWHQWLHO R O¶LQWHQVLWp GH FRXUDQW HVW QRQ QpJOLJHDEOH HVW E = Eeq + ηc = Eƒ − 0, 06 × S+ + ηc = 0, 0 − 0, 06 × 5 − 0, 2 = −0, 5 9
Solutions
3RXU OD FRXUEH GX F{Wp GHV LQWHQVLWpV SRVLWLYHV GRQF HQ R[\GDWLRQ OH FRXSOH j FRQVLGpUHU HVW
2 (J) + 2(O) GRQW OD GHPLpTXDWLRQ pOHFWURQLTXH HVW 2+ 2(O) = 2 (DT) + 2++ (DT) + 2H−
/H SRWHQWLHO G¶pTXLOLEUH HVW GRQQp SDU OH SRWHQWLHO GH 1HUQVW FRPSWHWHQX GH OD VXUWHQVLRQ
DQRGLTXH OH SRWHQWLHO R O¶LQWHQVLWp GH FRXUDQW HVW QRQ QpJOLJHDEOH HVW E = Eeq + ηa = Eƒ − 0, 06 × S+ + ηa = 1, 23 − 0, 06 × 5 + 0, 5 = 1, 43 9
i
E HQ 9
58. Étudier la cinétique d’une réaction d’oxydoréduction avec les courbes courant-potentiel
347
Interpréter un phénomène
de corrosion
humide
*OUFSQS©UFS
VO QI©OPN¨OF
EF DPSSPTJPO IVNJEF
59 2VBOE PO OF TBJU QBT /D FRUURVLRQ HVW XQ FDV SDUWLFXOLHU GH WUDQVIRUPDWLRQ VSRQWDQpH R XQ PpWDO HVW R[\Gp (OOH
HVW GLWH KXPLGH ORUVTXH OHV DJHQWV R[\GDQWV VRQW HQ SKDVH DTXHXVH
'DQV OH FDV GH OD FRUURVLRQ KXPLGH OH UpGXFWHXU 5HG HVW XQ PpWDO /¶R[\GDQW 2[ VHUD
VRLW OH GLR[\JqQH GLVVRXV 2 (DT) VRLW O¶LRQ K\GURQLXP + (DT) HQ PLOLHX DFLGH QRWDPPHQW /HV FRXUEHV FRXUDQWSRWHQWLHO SHUPHWWHQW GH FODVVHU OHV WUDQVIRUPDWLRQV HQ FDWpJRULHV 5pDFWLRQV WKHUPRG\QDPLTXHPHQW LPSRVVLEOHV OH UpGXFWHXU 5HG D XQ SRWHQWLHO
SOXV pOHYp TXH O¶R[\GDQW 2[ E1 > E2 ,O Q¶\ D SDV GH UpDFWLRQ SRVVLEOH HQWUH
5HG HW 2[ /H PpWDO HVW DORUV LQHUWH YLVjYLV GH O¶R[\GDQW RQ SDUOH SDUIRLV GH
PpWDO QREOH FRPPH SRXU O¶RU $X RX OH SODWLQH 3W &9&.1-& i
UpDFWLRQ WKHUPRG\QDPLTXHPHQW LPSRVVLEOH
i
$X(V) −→ $X+ (DT)
5HG −→ 2[
E
E2
5HG ←− 2[
348
Chimie
E
E1
+ 2(O) ←− 2 (J)
5pDFWLRQV WKHUPRG\QDPLTXHPHQW HW FLQpWLTXHPHQW SRVVLEOHV O¶R[\GDQW 2[ D XQ
SRWHQWLHO SOXV pOHYp TXH OH UpGXFWHXU 5HG /H SRWHQWLHO PL[WH Em HVW OH SRWHQWLHO
TXL DVVXUH O¶pJDOLWp HQWUH LQWHQVLWp HQ R[\GDWLRQ HW HQ UpGXFWLRQ 3OXV O¶LQWHQVLWp DX
SRWHQWLHO PL[WH HVW JUDQGH SOXV OD UpDFWLRQ HVW UDSLGH
'DQV OH FDV GH OD FRUURVLRQ OH SRWHQWLHO PL[WH HVW DSSHOp SRWHQWLHO GH FRUURVLRQ HW
O¶LQWHQVLWp HVW O¶LQWHQVLWp GX FRXUDQW GH FRUURVLRQ
&9&.1-& UpDFWLRQ OHQWH
&9&.1-& i
UpDFWLRQ UDSLGH
i
5HG −→ 2[
5HG −→ 2[
Em
E1
5HG ←− 2[
Em
E
E2
E1
E
E2
5HG ←− 2[
2Q SHXW FLWHU O¶H[HPSOH GX IHU HQ PLOLHX DFLGH DpUp OD FRUURVLRQ HVW SOXV UDSLGH
TX¶HQ PLOLHX GpVDpUp FRPPH RQ SHXW OH UHPDUTXHU HQ FRPSDUDQW OHV FRXUEHV FL
GHVVRXV ic,d < ic,a &9&.1-& IHU HQ VROXWLRQ DpUpH RX GpVDpUpH
i
)H −→ )H+
ic,a
ic,d
E
+ 2 ←− 2
+ ←− ++
PLOLHX DpUp
PLOLHX GpVDpUp
59. Interpréter un phénomène de corrosion humide
349
5pDFWLRQ WKHUPRG\QDPLTXHPHQW SRVVLEOH PDLV FLQpWLTXHPHQW EORTXpH XQ GHV GHX[
FRXSOHV RX OHV GHX[ HVW XQ FRXSOH OHQW HW OD VXUWHQVLRQ HVW SOXV JUDQGH TXH OD GLI
IpUHQFH HQWUH OHV SRWHQWLHOV &¶HVW OH FDV GX ]LQF SXU HQ PLOLHX DFLGH OH ]LQF Q¶HVW
SDV VWDEOH HQ PLOLHX DFLGH PDLV OH FRXSOH + (DT) + (J) HVW WUqV OHQW VXU XQH pOHFWURGH
GH ]LQF ,O Q¶\ D GRQF SDV G¶R[\GDWLRQ PDOJUp OH FDUDFWqUH LQVWDEOH GX ]LQF HQ PLOLHX
DFLGH SUpYX SDU OD WKHUPRG\QDPLTXH
&9&.1-& UpDFWLRQ FLQpWLTXHPHQW EORTXpH
i
=Q(V) −→ =Q+
E2 + η c
E2
E
E1
+ (J) ←− ++ (DT)
2Q SDUOH GH FRUURVLRQ GLIIpUHQWLHOOH ORUVTXH HQ SUpVHQFH G¶KpWpURJpQpLWp XQH SDUWLH GX
PpWDO MRXH OH U{OH GH FDWKRGH WDQGLV TX¶XQH DXWUH MRXH OH U{OH G¶DQRGH HW VH WURXYH R[\GpH
,O \ D DORUV XQ FRXUDQW pOHFWULTXH TXL FLUFXOH GDQV OH PpWDO HQWUH OHV GHX[ W\SHV GH ]RQHV
&9&.1-& 5HG
2[
2[
H
±
FRUURVLRQ GLIIpUHQWLHOOH
VROXWLRQ
PpWDO
5HG
FDWKRGH
DQRGH
/¶KpWpURJpQpLWp SHXW rWUH GXH DX FRQWDFW HQWUH GHX[ PpWDX[ H[HPSOH XQH ODPH
GH ]LQF VHXOH GDQV XQH VROXWLRQ DFLGH Q¶HVW SDV R[\GpH 3DU FRQWUH VL XQ ILO GH SODWLQH
HVW SODFp DX FRQWDFW GH OD ODPH RQ REVHUYH XQ GpJDJHPHQW GH GLK\GURJqQH VXU OH
ILO GH SODWLQH WDQGLV TXH GHV LRQV ]LQF VH IRUPHQW GDQV OD VROXWLRQ /H ILO GH SODWLQH
HVW OD FDWKRGH DYHF OD UpGXFWLRQ GHV LRQV K\GURJqQH WDQGLV TXH OD ODPH GH ]LQF HVW
O¶DQRGH R OH ]LQF HVW R[\Gp
350
Chimie
&9&.1-& FRUURVLRQ GLIIpUHQWLHOOH GX ]LQF
i
=Q(V) → =Q+ (DT)
ic
E
+ (J) ←− ++ (DT)
+ (J) ←− ++ (DT)
VXU =Q
VXU 3W
/D VXUWHQVLRQ FDWKRGLTXH GX FRXSOH + (DT) + (J) HVW LQIpULHXUH HQ YDOHXU DEVROXH
SXLVTXH OHV GHX[ VRQW QpJDWLYHV VXU OH SODWLQH SDU UDSSRUW DX ]LQF /HV pOHFWURQV
OLEpUpV SDU O¶R[\GDWLRQ GX ]LQF FLUFXOHQW GRQF GHSXLV OD ODPH GH ]LQF YHUV OH ILO GH
SODWLQH R D OLHX OD UpGXFWLRQ GHV LRQV K\GURJqQH
+ (J)
+ (DT)
=Q (DT)
H±
SODWLQH
VROXWLRQ
]LQF
=Q(V)
/¶KpWpURJpQpLWp SHXWrWUH GXH j XQ PLOLHX KpWpURJqQH F¶HVW OH FDV GH OD FRUURVLRQ
SDU DpUDWLRQ GLIIpUHQWLHOOH H[HPSOH 8Q PRUFHDX GH IHU DX FRQWDFW VLPXOWDQp
G¶XQH ]RQH ELHQ DpUpH HW PRLQV DpUpH YD V¶R[\GHU GDQV OD SDUWLH PRLQV DpUpH R LO
MRXH OH U{OH G¶DQRGH WDQGLV TX¶LO MRXH OH U{OH GH FDWKRGH GDQV VD SDUWLH DpUpH R OH
GLR[\JqQH GLVVRXV HVW UpGXLW 2Q SHXW VH UHSRUWHU pJDOHPHQW DX[ FRXUEHV FRXUDQW
SRWHQWLHO GH O¶H[HPSOH 59. Interpréter un phénomène de corrosion humide
351
&9&.1-&
&9&.1-&
VROXWLRQ
VROXWLRQ
ELHQ DpUpH
DpUpH
FRUURVLRQ
FRUURVLRQGX
GXIHU
IHUSDU
SDUDpUDWLRQ
DpUDWLRQGLIIpUHQWLHOOH
GLIIpUHQWLHOOH
+
+2
2(DT)
(DT)
)H
)H(DT)
(DT)
22(J)
(J)
±±
HH
VROXWLRQ
VROXWLRQ
PRLQV
PRLQVDpUpH
DpUpH
IHU
IHU
)H)H
(V)
(V)
/HV IDFWHXUV DJUDYDQWV
DJUDYDQWV GH
GH OD
OD FRUURVLRQ
FRUURVLRQVRQW
VRQWG¶XQH
G¶XQHSDUW
SDUWOHV
OHVIDFWHXUV
IDFWHXUVDXJPHQWDQW
DXJPHQWDQWOHOHFDUDFWqUH
FDUDFWqUH
R[\GDQW O¶DXJPHQWDWLRQ
O¶DXJPHQWDWLRQ GH
GH OD
OD FRQFHQWUDWLRQ
FRQFHQWUDWLRQHQ
HQGLR[\JqQH
GLR[\JqQHGLVVRXV
GLVVRXVRXRXOHOHFDUDFWqUH
FDUDFWqUHDFLGH
DFLGH
GH OD VROXWLRQ '¶DXWUH
'¶DXWUH SDUW
SDUW OHV
OHV KpWpURJpQpLWpV
KpWpURJpQpLWpV IDFLOLWHQW
IDFLOLWHQWODODFRUURVLRQ
FRUURVLRQGLIIpUHQWLHOOH
GLIIpUHQWLHOOH OHOH
FRQWDFW HQWUH GHV PpWDX[
PpWDX[ GLIIpUHQWV
GLIIpUHQWV GHV
GHV JUDGLHQWV
JUDGLHQWVGH
GHFRPSRVLWLRQ
FRPSRVLWLRQSRXU
SRXUOHV
OHVDOOLDJHV
DOOLDJHVGHGH
FRQFHQWUDWLRQ HQ GLR[\JqQH
GLR[\JqQHGLVVRXV
GLVVRXVGH
GHWHPSpUDWXUH
WHPSpUDWXUH OHV
OHVLUUpJXODULWpV
LUUpJXODULWpVHWHWGpIDXWV
GpIDXWVGHGHVXUIDFH
VXUIDFH
(QILQ OHV GLIIpUHQFHV
GLIIpUHQFHV GH
GH VXUIDFH
VXUIDFH DYHF
DYHFQRWDPPHQW
QRWDPPHQWGHV
GHVFDWKRGHV
FDWKRGHVGHGHJUDQGH
JUDQGHVXUIDFH
VXUIDFHFDXVHQW
FDXVHQW
GHV LQWHQVLWpV VXUIDFLTXHV
VXUIDFLTXHV GH
GH FRXUDQW
FRXUDQW pOHYpH
pOHYpHDX
DXQLYHDX
QLYHDXGH
GHO¶DQRGH
O¶DQRGHHWHWGRQF
GRQFXQH
XQHFRUURVLRQ
FRUURVLRQ
WUqV UDSLGH GX PpWDO FRQVWLWXDQW
FRQVWLWXDQW O¶DQRGH
O¶DQRGH
2VF
2VF GBJSF
GBJSF
,GHQWLILHU OH PpWDO HW
HW OH
OH VV R[\GDQW
R[\GDQW VV SRWHQWLHO
SRWHQWLHOVV VRLW
VRLWHQ
HQFRUURVLRQ
FRUURVLRQKXPLGH
KXPLGH22
HWRX
(J)
(J)HWRX
VL
VL
OH
OH
PLOLHX
PLOLHX
HVW
HVW
DFLGH
DFLGH
eFULUH
eFULUH
OHV
OHV
GHPLpTXDWLRQV
GHPLpTXDWLRQV
pOHFWURQLTXHV
pOHFWURQLTXHV
GHV
GHV
+ 2(O) YRLUH +(DT)
(DT)
FRXSOHV PLV HQ MHX
5HOHYHU OHV GRQQpHV WKHUPRG\QDPLTXHV
WKHUPRG\QDPLTXHVOHV
OHVSRWHQWLHOV
SRWHQWLHOVVWDQGDUGV
VWDQGDUGVRX
RXXQ
XQGLDJUDPPH
GLDJUDPPHSRWHQWLHO
SRWHQWLHO
S+
5HOHYHU OHV GRQQpHV
GRQQpHV FLQpWLTXHV
FLQpWLTXHV OHV
OHV FRXUEHV
FRXUEHVFRXUDQWSRWHQWLHO
FRXUDQWSRWHQWLHORX
RXGHV
GHVLQGLFDWLRQV
LQGLFDWLRQVGHGHVXU
VXU
WHQVLRQ
$POTFJMT
$POTFJMT
/¶pWXGH GH OD FRUURVLRQ
FRUURVLRQ V¶DSSXLH
V¶DSSXLH VXU
VXUOHV
OHVQRWLRQV
QRWLRQVWKHUPRG\QDPLTXHV
WKHUPRG\QDPLTXHVYXHV
YXHVHQHQSUHPLqUH
SUHPLqUHDQ
DQ
QpH WHOOHV TXH OHV GLDJUDPPHV
GLDJUDPPHV SRWHQWLHOS+
SRWHQWLHOS+DLQVL
DLQVLTXH
TXHVXU
VXUO¶DSSRUW
O¶DSSRUWGHV
GHVFRXUEHV
FRXUEHVFRXUDQW
FRXUDQW
SRWHQWLHO SRXU OD FLQpWLTXH
FLQpWLTXH HQ
HQ GHX[LqPH
GHX[LqPHDQQpH
DQQpH/HV
/HVUHYRLU
UHYRLUVLVLQpFHVVDLUH
QpFHVVDLUH
5HWHQLU TX¶j O¶DQRGH
O¶DQRGH LOLO \\ DD XQH
XQHR[\GDWLRQ
R[\GDWLRQWDQGLV
WDQGLVTX¶XQH
TX¶XQHUpGXFWLRQ
UpGXFWLRQVHVHGpURXOH
GpURXOHj jODODFDWKRGH
FDWKRGH OH PpWDO HVW GRQF FRUURGp
FRUURGp jj O¶DQRGH
O¶DQRGH
&YFNQMF
&YFNQMF USBJU©
USBJU©
2Q V¶LQWpUHVVH j OD FRUURVLRQ
FRUURVLRQGLIIpUHQWLHOOH
GLIIpUHQWLHOOHGX
GXIHU
IHUSDU
SDUXQH
XQHVROXWLRQ
VROXWLRQDFLGH
DFLGHHQHQSUpVHQFH
SUpVHQFHGHGHFXLYUH
FXLYUH
8Q ILO GH IHU SORQJp GDQV
GDQV XQH
XQH VROXWLRQ
VROXWLRQ DFLGH
DFLGHFDXVH
FDXVHXQ
XQGpJDJHPHQW
GpJDJHPHQWJD]HX[
JD]HX[GHGHGLK\GURJqQH
GLK\GURJqQH
6L XQH SODTXH GH FXLYUH
FXLYUH HVW
HVW DMRXWpH
DMRXWpH DX
DXFRQWDFW
FRQWDFWGX
GXILO
ILORQ
RQREVHUYH
REVHUYHTXH
TXHOHOHGpJDJHPHQW
GpJDJHPHQWJD]HX[
JD]HX[
VH GpSODFH VXU OH ILO GH FXLYUH
FXLYUH HW
HW GHYLHQW
GHYLHQWSOXV
SOXVLPSRUWDQW
LPSRUWDQW
352
Chimie
i
)H(V) → )H+ (DT)
&X(V) → &X+ (DT)
E
+(J) ←− ++ (DT)
VXU &X
+(J) ←− + (DT)
+
VXU )H
6XU OHV FRXUEHV FRXUDQWSRWHQWLHO IRXUQLHV UHSpUHU OH SRWHQWLHO GH FRUURVLRQ HW OH FRXUDQW
GH FRUURVLRQ G¶XQ ILO GH IHU GDQV XQH VROXWLRQ DFLGH
6XU OHV FRXUEHV FRXUDQWSRWHQWLHO IRXUQLHV UHSpUHU OH SRWHQWLHO GH FRUURVLRQ HW OH FRXUDQW
GH FRUURVLRQ G¶XQ ILO GH IHU DX FRQWDFW G¶XQH SODTXH GH FXLYUH GDQV XQH VROXWLRQ DFLGH
(Q GpGXLUH XQH LQWHUSUpWDWLRQ GHV REVHUYDWLRQV H[SpULPHQWDOHV
40-65*0/
6XU OD ILJXUH O¶LQWHQVLWp GX FRXUDQW GH FRUURVLRQ HVW QRWpH ic1 HW OH SRWHQWLHO GH FRUURVLRQ
HVW QRWp Em1 LO V¶DJLW G¶XQH VLWXDWLRQ GH FRUURVLRQ XQLIRUPH
)H(V) → )H+ (DT)
Em1
i
ic2
ic1 E
Em2
+ (J) ←− ++ (DT)
+ (J) ←− ++ (DT)
VXU &X
VXU )H
6XU OD ILJXUH O¶LQWHQVLWp GX FRXUDQW GH FRUURVLRQ HVW QRWpH ic2 HW OH SRWHQWLHO GH FRUURVLRQ
HVW QRWp Em2 LO V¶DJLW G¶XQH VLWXDWLRQ GH FRUURVLRQ GLIIpUHQWLHOOH R OH FXLYUH HVW OD
FDWKRGH HW OH IHU O¶DQRGH
/D UpGXFWLRQ GHV LRQV K\GURQLXP HVW SOXV UDSLGH VXU OH FXLYUH TXH VXU OH IHU FRPPH O¶LQ
GLTXH OD FRPSDUDLVRQ GHV FRXUEHV FRXUDQWSRWHQWLHO R OD VXUWHQVLRQ FDWKRGLTXH GLPL
QXH (Q RXWUH OD SODTXH GH FXLYUH D XQH VXUIDFH VXSpULHXUH DX ILO GH IHU 3DU FRQVpTXHQW
59. Interpréter un phénomène de corrosion humide
353
HQ SUpVHQFH GH FXLYUH OD UpGXFWLRQ VH GpSODFH VXU OD SODTXH GH FXLYUH HW VD YLWHVVH HVW
DXJPHQWpH O¶DQDO\VH GHV FRXUEHV SUpYRLW XQH LQWHQVLWp GH FRXUDQW GH FRUURVLRQ DXJ
PHQWpH ic2 > ic1 /D SODTXH GH FXLYUH HVW OD FDWKRGH WDQGLV TXH OH ILO GH IHU GH O¶DQRGH
HVW R[\Gp
&YFSDJDFT
&9&3$*$& /D FDUERQDWDWLRQ GX EpWRQ SHXW LQLWLHU OD FRUURVLRQ GHV DUPDWXUHV PpWDOOLTXHV LQWHUQHV HQ
GLPLQXDQW OH S+ GHV VROXWLRQV LQWHUVWLWLHOOHV /¶pWXGH HVW PHQpH j SDUWLU GH FRXUEHV GHQVLWp
GH FRXUDQWSRWHQWLHO /D ILJXUH VXLYDQWH UHSUpVHQWH OHV FRXUEHV UHODWLYHV j O¶R[\GDWLRQ GX IHU
HQ LRQV )H HW j OD UpGXFWLRQ GH O¶HDX HQ GLK\GURJqQH
$VVRFLHU j FKDTXH FRXUEH OH SKpQRPqQH FRUUHVSRQGDQW -XVWLILHU QRWDPPHQW SDU O¶pFULWXUH
GH GHPLpTXDWLRQV G¶R[\GRUpGXFWLRQ )DLUH ILJXUHU OD SRVLWLRQ GX SRWHQWLHO GH FRUURVLRQ Ecor
HW GH OD GHQVLWp GH FRXUDQW GH FRUURVLRQ jcor aQm`+2 , +QM+Qm`b +QKKmM JBM2b SQMi kyRe- }HBĕ`2 JS
&9&3$*$& 8Q DPDOJDPH GHQWDLUH RX ©SORPEDJHª HVW XQ VROLGH REWHQX HQ PpODQJHDQW GX PHUFXUH
DYHF XQ RX SOXVLHXUV DOOLDJHV HQ SRXGUH &HV DOOLDJHV FRQWLHQQHQW HQ JpQpUDO GH O¶DUJHQW GH
O¶pWDLQ GX FXLYUH HW GX ]LQF 1RXV pWXGLRQV OD FRUURVLRQ GX SOXV UpGXFWHXU GH FHV VROLGHV 6Q +J(V) HW QRXV VXSSRVRQV TX¶DXFXQ DXWUH FRPSRVp SUpVHQW GDQV O¶DPDOJDPH GHQWDLUH QH
VXELW GH FRUURVLRQ &¶HVW SRXUTXRL QRXV DVVLPLORQV XQ DPDOJDPH GHQWDLUH j GX 6Q +J(V)
SXU
354
Chimie
(Q XWLOLVDQW OHV FRXUEHV FRXUDQWSRWHQWLHO GRQQpHV GpFULUH FH TXL VH SDVVH TXDQG XQ
PRUFHDX G¶DOXPLQLXP WRXFKH XQ DPDOJDPH GHQWDLUH $WRQ FRUURVLRQ GH O¶DPDOJDPH
GHQWDLUH " /¶DPDOJDPH HVWLO XQH DQRGH RX XQH FDWKRGH "
(Q XWLOLVDQW OHV FRXUEHV FRXUDQWSRWHQWLHO GRQQpHV GpFULUH FH TXL VH SDVVH TXDQG XQH
GHQW HQ RU WRXFKH XQ DPDOJDPH GHQWDLUH $WRQ FRUURVLRQ GH O¶DPDOJDPH GHQWDLUH "
/¶DPDOJDPH HVWLO XQH DQRGH RX XQH FDWKRGH "
aQm`+2 , +QM+Qm`b +QKKmM JBM2b TQMi kyRy- }HBĕ`2 SaA
&9&3$*$& 8QH W{OH HQ DFLHU pOHFWUR]LQJXpH HVW SORQJpH GDQV XQH VROXWLRQ DTXHXVH GH S+
SDU XQ EDUERWDJH GH JD] DUJRQ DILQ GH FKDVVHU OH GLR[\JqQH GH O¶DLU GLVVRXV
'RQQpHV Eƒ(=Q+ (DT) /=Q(V) ) = −0, 76 9
ηc (++ (DT) /+ (J) VXU ]LQF) = −0, 75 9
GpVDpUpH
Eƒ(++ (DT) /+ (J) ) = 0, 00 9
P (+ ) = 1 EDU
[=Q+ ] = 10−6 PRO./−1
(FULUH OHV pTXDWLRQV GHV GHX[ GHPLUpDFWLRQV pOHFWURQLTXHV TXH O¶RQ SHXW SUpYRLU j OD
VXUIDFH GH OD W{OH SXLV LQGLTXHU OD UpDFWLRQ FKLPLTXH JOREDOH
'RQQHU OHV YDOHXUV GH SRWHQWLHOV G¶R[\GRUpGXFWLRQ SRXU FKDFXQH GH FHV GHX[ GHPL
pTXDWLRQV pOHFWURQLTXHV j S+ (Q IDLW DXFXQ GpJDJHPHQW JD]HX[ Q¶HVW REVHUYp ([SOLTXHU FH FRQVWDW HQ FDOFXODQW OH
SRWHQWLHO GH GpEXW GH GpJDJHPHQW JD]HX[ j SDUWLU GH OD YDOHXU GH OD VXUWHQVLRQ
aQm`+2 , +QM+Qm`b +QKKmM TQHvi2+?MB[m2 RNN3- }HBĕ`2 JS
59. Interpréter un phénomène de corrosion humide
355
1PVS WPVT BJEFS
E©NBSSFS
&9&3$*$& 8WLOLVHU OH VLJQH GH OD GHQVLWp GH FRXUDQW SRXU LGHQWLILHU R[\GDWLRQ HW
UpGXFWLRQ /H SRWHQWLHO GH FRUURVLRQ HVW OH SRWHQWLHO PL[WH SRXU OHTXHO
OHV GHQVLWpV GH FRXUDQW G¶R[\GDWLRQ HW GH UpGXFWLRQ VRQW pJDOHV
&9&3$*$& ,O V¶DJLW GH GHX[ H[HPSOHV GH FRUURVLRQ GLIIpUHQWLHOOH SDU FRQWDFW HQWUH
GHX[ PpWDX[ GLIIpUHQWV
&9&3$*$& ,GHQWLILHU O¶HVSqFH R[\GDQWH 8WLOLVHU OHV SUHVVLRQV SDUWLHOOHV HW FRQFHQ
WUDWLRQ HQ VROXWp GH O¶pQRQFp SRXU GpWHUPLQHU OHV SRWHQWLHOV /HV FRXUEHV
FRXUDQWSRWHQWLHO QH VRQW SDV IRXUQLHV PDLV OD YDOHXU GH OD VXUWHQVLRQ
FDWKRGLTXH GH + (DT) + (J) HVW GRQQpH
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& /D UpGXFWLRQ GH O¶HDX HQ GLK\GURJqQH V¶pFULW 2++ (DT) + 2H− = + (J) /¶R[\GDWLRQ GX IHU
HQ LRQV IHU ,, V¶pFULW )H(V) = )H+ (DT) + 2H− /D GHQVLWp GH FRXUDQW HVW SULVH SRVLWLYH SRXU
O¶R[\GDWLRQ QpJDWLYH HQ UpGXFWLRQ /H SRWHQWLHO GH FRUURVLRQ Ecor HVW FHOXL TXL DVVXUH O¶pJD
OLWp HQWUH OD GHQVLWp GH FRXUDQW G¶R[\GDWLRQ TXL HVW jcor HW OD GHQVLWp GH FRXUDQW GH UpGXFWLRQ
)H(V) −→ )H+ (DT)
jcor
Ecor
+ (J) ←− 2++ (DT)
356
Chimie
&9&3$*$& ic1
Ec1
ic2
4XDQG XQ PRUFHDX G¶DOXPLQLXP WRXFKH XQ DPDOJDPH GHQWDLUH O¶HDX HVW UpGXLWH VXU
O¶DPDOJDPH WDQGLV TXH O¶DOXPLQLXP HVW R[\Gp /¶DPDOJDPH MRXH OH U{OH GH FDWKRGH HW
QH VXELW DORUV SDV GH FRUURVLRQ
4XDQG O¶DPDOJDPH WRXFKH XQH GHQW HQ RU O¶HDX HVW UpGXLWH VXU O¶RU WDQGLV TXH O¶DPDO
JDPH HVW R[\Gp ,O \ D XQH FRUURVLRQ GH O¶DPDOJDPH TXL MRXH OH U{OH G¶DQRGH &HWWH
UpDFWLRQ HVW PRLQV UDSLGH TXH OD SUpFpGHQWH SXLVTXH ic2 < ic1 Solutions
Ec2
&9&3$*$& 3RXU OH ]LQF =Q+ (DT) + 2H− = =Q(V)
3RXU O¶LRQ K\GURQLXP 2++ (DT) + 2H− = + (J)
/D UpDFWLRQ JOREDOH DWWHQGXH HVW GRQF =Q(V) + 2++ (DT) = =Q+ (DT) + + (J)
3RXU OH FRXSOH =Q (DT) =Q(V) E1 = Eƒ1 +
0, 06
ORJ[=Q+ ] = −0, 76 + 0, 03 × (−6) = −0, 94 9
2
3RXU OH FRXSOH + (DT) + (J) E2 = Eƒ2 +
0, 06
ORJ[++ ]2 = Eƒ − 0, 06S+ = 0, 00 − 0, 06 × 6 = −0, 36 9
2
/D UpDFWLRQ HVW GRQF WKHUPRG\QDPLTXHPHQW SRVVLEOH
/H SRWHQWLHO GH GpJDJHPHQW JD]HX[ HVW FHOXL R O¶LQWHQVLWp GH UpGXFWLRQ GHYLHQW QRQ
QpJOLJHDEOH LO HVW GRQQp SDU Eg = E2 + ηc = −0, 36 − 0, 75 = −1, 11 9 &H
SRWHQWLHO HVW LQIpULHXU j FHOXL GX FRXSOH =Q (DT) =Q(V) E2 + ηc < E1 /D UpDFWLRQ HVW
GRQF FLQpWLTXHPHQW EORTXpH
59. Interpréter un phénomène de corrosion humide
357
Expliquer les méthodes
de
protection
contre la corrosion
&YQMJRVFS
MFT N©UIPEFT
EF QSPUFDUJPO DPOUSF MB DPSSPTJPO
60 2VBOE PO OF TBJU QBT /HV PpWKRGHV GH SURWHFWLRQ VRQW GH GHX[ W\SHV VRLW RQ HPSrFKH O¶R[\GDQW G¶DWWHLQGUH OH
PpWDO VRLW RQ IDLW HQ VRUWH TXH OD UpDFWLRQ j OD VXUIDFH GX PpWDO QH VRLW SDV XQH R[\GDWLRQ
/H PpWDO j SURWpJHU SHXW rWUH UHFRXYHUW SDU XQ UHYrWHPHQW QRQ PpWDOOLTXH FRPPH GH OD SHLQWXUH XQH ODTXH XQ ILOP SODV
WLTXH RX FpUDPLTXH XQH KXLOH RX XQ OXEULILDQW QRQ DTXHX[ &HV UHYrWHPHQWV RQW
XQH IRQFWLRQ GH EDUULqUH TXL GRLW HPSrFKHU OH FRQWDFW DYHF O¶R[\GDQW /RUVTX¶LOV
IRUPHQW XQH LVRODWLRQ pOHFWULTXH OHXU HIILFDFLWp HVW pWHQGXH
&9&.1-& SULQFLSH G¶XQH SURWHFWLRQ SDU XQ UHYrWHPHQW
PLOLHX R[\GDQW
UHYrWHPHQW
PpWDO j SURWpJHU
/D OLPLWH GH FH W\SH GH SURWHFWLRQ HVW TXH OD PLVH j QXH SDUWLHOOH GH OD SLqFH j
SURWpJHU OD SODFH HQ VLWXDWLRQ GH FRUURVLRQ GLIIpUHQWLHOOH SDU H[HPSOH SDU DpUDWLRQ
GLIIpUHQWLHOOH TXL SHXW FDXVHU XQH FRUURVLRQ QRQ YLVLEOH GH OD SDUWLH HQFRUH UHFRX
YHUWH
&RUURVLRQ GLIIpUHQWLHOOH VXU XQ UHYrWHPHQW LQWHUURPSX
PLOLHX R[\GDQW
UHYrWHPHQW
PpWDO j SURWpJHU
FDWKRGH R[\GDQW UpGXLW
DQRGH PpWDO FRUURGp
GpSODFHPHQW GHV pOHFWURQV
SDU OD IRUPDWLRQ G¶XQH FRXFKH G¶R[\GH LVRODQWH HW VROLGH OD SDVVLYDWLRQ
358
Chimie
&9&.1-& E
GLDJUDPPH (S+ GX ]LQF HW VD SDVVLYDWLRQ
SDU OD IRUPDWLRQ G¶XQH FRXFKH G¶R[\GH LVRODQWH HW VROLGH OD SDVVLYDWLRQ
&9&.1-& GLDJUDPPH (S+ GX ]LQF HW VD SDVVLYDWLRQ
=Q (DT)
FRUURVLRQ
=Q 2+ (V)
SDVVLYDWLRQ
E
=Q 2+ ± (DT)
FRUURVLRQ
=Q(V)
GRPDLQH GH VWDELOLWp RX LPPXQLWp
S+
'¶DSUqV VRQ GLDJUDPPH SRWHQWLHOS+ OH ]LQF HVW SDVVLYp SDU OD SUpVHQFH G¶XQH
FRXFKH LVRODQWH GH =Q 2+ (V) GDQV OH GRPDLQH G¶H[LVWHQFH GH FHOXLFL
/D SDVVLYDWLRQ G¶XQ DFLHU FKURPp DOOLDJH GH IHU HW GH FDUERQH FRQWHQDQW GX FKURPH
SHXW VH YRLU VXU OHV FRXUEHV FRXUDQWSRWHQWLHO DX SRWHQWLHO GH SDVVLYDWLRQ O¶LQWHQ
VLWp GX FRXUDQW G¶R[\GDWLRQ DWWHLQW XQ PD[LPXP Ep TXL FRUUHVSRQG j OD IRUPDWLRQ
GH OD FRXFKH G¶R[\GH j SDUWLU GX PpWDO /¶LQWHQVLWp GpFURLW j GHV SRWHQWLHOV VXSp
ULHXUV HQ UDLVRQ GX FDUDFWqUH SURWHFWHXU GH O¶R[\GH GH FKURPH IRUPp
&9&.1-& FRXUEH GH SDVVLYDWLRQ G¶XQ DFLHU FKURPp
i
ip
E
Ep
&HUWDLQV PpWDX[ VH SUrWHQW j OD SDVVLYDWLRQ PDLV FH Q¶HVW SDV JpQpUDOLVDEOH j WRXV
OHV PpWDX[ &HOD GpSHQG DXVVL GHV FRQGLWLRQV G¶XWLOLVDWLRQ GH OD SLqFH j SURWpJHU
3DU H[HPSOH O¶DQRGLVDWLRQ GH O¶DOXPLQLXP QH IRQFWLRQQH SDV HQ SUpVHQFH G¶LRQV
FKORUXUH OD FRXFKH G¶DOXPLQH $O 2 (V) j OD VXUIDFH SHUG VRQ FDUDFWqUH SURWHFWHXU
HQ SUpVHQFH GH FHV LRQV
60. Expliquer les méthodes de protection contre la corrosion
359
SDU XQH FRXFKH G¶XQ DXWUH PpWDO &HWWH FRXFKH SHXW rWUH IRUPpH SDU pOHFWURO\VH RX
SDU WUHPSDJH GH OD SLqFH GDQV XQ EDLQ GH PpWDO IRQGX /H PpWDO GH UHYrWHPHQW SHXW
rWUH SOXV UpGXFWHXU TXH FHOXL j SURWpJHU SDU H[HPSOH OH ]LQF JDOYDQLVDWLRQ RX
pOHFWUR]LQJDJH RX O¶pWDLQ pWDPDJH VXU GX IHU (Q FDV G¶pUDIOXUH OH PpWDO R[\Gp
VHUD OH PpWDO GH OD FRXFKH SURWHFWULFH FRPPH OH PRQWUH OD FRXUEH FRXUDQWSRWHQWLHO
3URWHFWLRQ SDU JDOYDQLVDWLRQ
&9&.1-& PLOLHX R[\GDQW
i
FDWKRGH R[\GDQW UpGXLW
]LQF
DQRGH ]LQF FRUURGp
IHU
GpSODFHPHQW GHV pOHFWURQV
=Q(V) −→ =Q+ (DT)
)H(V) −→ )H+ (DT)
E
5HG ←− 2[
/H PpWDO GH UHYrWHPHQW FKRLVL SHXW rWUH PRLQV UpGXFWHXU TXH FHOXL j SURWpJHU F¶HVW
OH FDV GX FKURPDJH RX GX QLFNHODJH 2Q WLUH DORUV SDUWL GH OD VWDELOLWp GX PpWDO GH
FRXYHUWXUH RX GH VD WHQGDQFH j IRUPHU GHV VXUIDFHV SDVVLYpHV &HSHQGDQW HQ FDV
G¶pUDIOXUH GH OD VXUIDFH OH PpWDO TXL VHUD FRUURGp HVW DORUV OH PpWDO TXH O¶RQ FKHUFKH
j SURWpJHU /D FRUURVLRQ HVW DJJUDYpH SDU OD GLIIpUHQFH GH VXUIDFH HQWUH OD VXUIDFH
GH OD FDWKRGH OH PpWDO SURWHFWHXU TXL UHFRXYUH OD VXUIDFH HW GH O¶DQRGH OH PpWDO j
SURWpJHU SDUWLHOOHPHQW GpFRXYHUW &9&.1-& 3URWHFWLRQ SDU QLFNHODJH
PLOLHX R[\GDQW
360
Chimie
FDWKRGH R[\GDQW UpGXLW
QLFNHO
DQRGH IHU FRUURGp
IHU
GpSODFHPHQW GHV pOHFWURQV
i
1L(V) −→ 1L+ (DT)
)H(V) −→ )H+ (DT)
E
5HG ←− 2[
/D SURWHFWLRQ pOHFWURFKLPLTXH FRQVLVWH j LPSRVHU TXH OH PpWDO j SURWpJHU VRLW OD FDWKRGH
F¶HVWjGLUH TXH OD UpDFWLRQ j VD VXUIDFH VRLW XQH UpGXFWLRQ
/D SUHPLqUH SRVVLELOLWp FRQVLVWH j XWLOLVHU XQH DQRGH VDFULILFLHOOH OD SLqFH j SURWpJHU
HVW PLVH DX FRQWDFW G¶XQ PpWDO SOXV UpGXFWHXU TXL FRQVWLWXH O¶DQRGH &¶HVW OH FDV GH OD
SURWHFWLRQ GHV FRTXHV GHV EDWHDX[ HQ DFLHU SDU GHV DQRGHV VDFULILFLHOOHV HQ ]LQF /HV
FRXUEHV FRXUDQWSRWHQWLHO VRQW DORUV OHV PrPHV TXH GDQV OH FDV GH OD JDOYDQLVDWLRQ
GH O¶H[HPSOH &9&.1-& 2[
DFLHU SURWpJp
5HG
FDWKRGH R[\GDQW UpGXLW
DQRGH ]LQF FRUURGp
PLOLHX R[\GDQW
=Q (DT)
8WLOLVDWLRQ G¶XQH DQRGH VDFULILFLHOOH
GpSODFHPHQW GHV pOHFWURQV
]LQF
&HWWH PpWKRGH D O¶LQFRQYpQLHQW GH FRQVRPPHU OH PpWDO GH O¶DQRGH VDFULILFLHOOH HW
HOOH Q¶HVW HIILFDFH TXH WDQW TXH OH PpWDO GH O¶DQRGH VDFULILFLHOOH HVW SUpVHQW 3RXU
TXH FHWWH SURWHFWLRQ VRLW HIILFDFH LO IDXW DVVXUHU XQ ERQ FRQWDFW pOHFWULTXH HQWUH OH
PpWDO j SURWpJHU HW O¶DQRGH
60. Expliquer les méthodes de protection contre la corrosion
361
/D GHX[LqPH SRVVLELOLWp HVW G¶LPSRVHU XQ FRXUDQW OD SLqFH j SURWpJHU HVW UHOLpH j
OD ERUQH QpJDWLYH G¶XQ JpQpUDWHXU 2Q SDUOH SDUIRLV GH SURWHFWLRQ FDWKRGLTXH
&9&.1-& 3URWHFWLRQ SDU FRXUDQW LPSRVp
FDWKRGH
DQRGH HQWHUUpH
FDQDOLVDWLRQ
GpSODFHPHQW GHV pOHFWURQV
PLOLHX R[\GDQW
i
5HG −→ 2[
)H(V) −→ )H+ (DT)
iG
E
uG
5HG ←− 2[
&HWWHPpWKRGHHVWXWLOLVpHSRXUODSURWHFWLRQGHVRXYUDJHVHQWHUUpVRXLPPHUJpV
(OOHFRQVRPPHGHO¶pQHUJLHSXLVTX¶HOOHQpFHVVLWHOHIRQFWLRQQHPHQWG¶XQJpQpUD
WHXUHQSHUPDQHQFH2QVHWURXYHDORUVGDQVXQHVLWXDWLRQFRPSDUDEOHjXQpOHF
WURO\VHXURXjODFKDUJHG¶XQDFFXPXODWHXU FI)LFKH1ƒ /¶HVSqFHR[\GpHSHXW
rWUHOHPpWDOGHO¶DQRGHRXELHQOHUpGXFWHXUG¶XQDXWUHFRXSOHWHOOHTXHO¶HDXGDQV
2(J)+2(O)
3RXUpYLWHUXQHFRUURVLRQGLIIpUHQWLHOOHSDUFRQWDFWHQWUHGHX[PpWDX[GLIIpUHQWVXQHLVR
ODWLRQpOHFWULTXH MRLQW SHXWrWUHUpDOLVpHHQWUHOHVGHX[(QHPSrFKDQWOHVpOHFWURQV
GHSDVVHUG¶XQPpWDOjO¶DXWUHHOOHUDOHQWLWODFRUURVLRQ
2VF GBJSF
,OV¶DJLWG¶XQHVLWXDWLRQGHFRUURVLRQLGHQWLILHUOHPpWDOO¶R[\GDQWSRWHQWLHOUHOHYHUOHV
GRQQpHVWKHUPRG\QDPLTXHHWFLQpWLTXH FI)LFKH1ƒ ,GHQWLILHUOHW\SHGHSURWHFWLRQPLVHQMHXUHYrWHPHQWGHVXUIDFHDQRGHVDFULILFLHOOHRX
FRXUDQWLPSRVp
/HPpWDOHVWSURWpJpVLXQHUpGXFWLRQDOLHXjVDVXUIDFHHWTX¶LOHVWXQHFDWKRGHLO\D
FRUURVLRQV¶LOHVWR[\GpHWMRXHOHU{OHGHO¶DQRGH
362
Chimie
$POTFJMT
&RPSUHQGUHODSURWHFWLRQFRQWUHODFRUURVLRQQpFHVVLWHGHVDYRLULQWHUSUpWHUODFRUURVLRQ
FI)LFKH1ƒ &YFNQMF USBJU©
2Q V¶LQWpUHVVH j OD FRUURVLRQ GX FKURPH HW GHV DFLHUV LQR[\GDEOHV FRQWHQDQW GX FKURPH /D
ILJXUH SUpVHQWH XQ GLDJUDPPH VLPSOLILp SRWHQWLHOS+ GX FKURPH j . /D FRQFHQWUDWLRQ
GHV HVSqFHV GLVVRXWHV HVW GH 1 PRO./−1 /H FKURPH IDLW LQWHUYHQLU HVSqFHV &U(V) &U (DT) &U (DT) &U 2 (V) &U 2 ± (DT) HW &U2 ± (DT) E 9
%
$
&
'
S+
(
)
,QGLTXHU SRXU FKDFXQ GHV GRPDLQHV $ % & ' ( ) GX GLDJUDPPH O¶HVSqFH FKLPLTXH
SUpGRPLQDQWH RX H[LVWDQWH
6XU FH GLDJUDPPH RQW pWp SRUWpHV GHX[ GURLWHV HQ SRLQWLOOpV GpOLPLWDQW OH GRPDLQH GH VWDELOLWp
WKHUPRG\QDPLTXH GH O¶HDX
'LVFXWHU GX FRPSRUWHPHQW GX FKURPH PpWDOOLTXH GDQV XQH HDX GpVDpUpH HW GDQV XQH HDX
DpUpH
8QH FRXFKH GH SDVVLYDWLRQ GLWH QDWLYH VH IRUPH WRXMRXUV j OD VXUIDFH G¶XQ DFLHU LQR[\GDEOH
FRQWHQDQW GX FKURPH /RUVTXH FHOXLFL HVW HQ SUpVHQFH G¶XQH VROXWLRQ GRQW OD YDOHXU GX S+
HVW pJDOH j O¶DFLHU LQR[\GDEOH UpVLVWH WRXMRXUV WUqV ELHQ j O¶R[\GDWLRQ
4XHO R[\GH GH FKURPH HVW UHVSRQVDEOH GH OD SDVVLYDWLRQ "
60. Expliquer les méthodes de protection contre la corrosion
363
DpUpH
8QH FRXFKH GH SDVVLYDWLRQ GLWH QDWLYH VH IRUPH WRXMRXUV j OD VXUIDFH G¶XQ DFLHU LQR[\GDEOH
FRQWHQDQW GX FKURPH /RUVTXH FHOXLFL HVW HQ SUpVHQFH G¶XQH VROXWLRQ GRQW OD YDOHXU GX S+
HVW pJDOH j O¶DFLHU LQR[\GDEOH UpVLVWH WRXMRXUV WUqV ELHQ j O¶R[\GDWLRQ
3RXU
pWXGLHU
OH FRPSRUWHPHQW
DFLHU FRQWHQDQW
GH" FKURPH RQ SORQJH XQ pFKDQ
4XHO
R[\GH
GH FKURPH HVWG¶XQ
UHVSRQVDEOH
GH OD SDVVLYDWLRQ
WLOORQ GH PDWpULDX GDQV XQH VROXWLRQ DTXHXVH DFLGH HW RQ IDLW YDULHU OHQWHPHQW OH SRWHQWLHO
3RXU pWXGLHU OH FRPSRUWHPHQW G¶XQ DFLHU FRQWHQDQW GH FKURPH RQ SORQJH XQ pFKDQ
3RXU
OH FRPSRUWHPHQW
FRQWHQDQW
LVVX
GHGHV
FKURPH
RQ SORQJH
XQ pFKDQ TXL
WRXWpWXGLHU
HQ PHVXUDQW
O¶LQWHQVLWpG¶XQ
GX DFLHU
FRXUDQW
pOHFWULTXH
UpDFWLRQV
pOHFWURFKLPLTXHV
WLOORQ GH PDWpULDX GDQV XQH VROXWLRQ DTXHXVH DFLGH HW RQ IDLW YDULHU OHQWHPHQW OH SRWHQWLHO
WLOORQ
GH PDWpULDX2Q
GDQV
XQH VROXWLRQ
DFLGHFRXUDQWSRWHQWLHO
HW RQ IDLW YDULHU OHQWHPHQW
OH SRWHQWLHO
VXU ODTXHOOH VH SURGXLVHQW
REWLHQW
OH WUDFp DTXHXVH
GH OD FRXUEH
ja = f (E)
WRXW
HQ PHVXUDQW
O¶LQWHQVLWp
GX FRXUDQW
pOHFWULTXH
LVVX UpDFWLRQV
GHV UpDFWLRQV
pOHFWURFKLPLTXHV
TXL
WRXW
HQ PHVXUDQW
O¶LQWHQVLWp
GX FRXUDQW
pOHFWULTXH
LVVX GHV XQH
pOHFWURFKLPLTXHV
TXL ]RQH
]RQHV
VH GLVWLQJXHQW
QHWWHPHQW
XQH ]RQH
GH FRUURVLRQ
]RQH GH
SDVVLYDWLRQ HW XQH
=
f
(E)
VXU
ODTXHOOH
VH
SURGXLVHQW
2Q
REWLHQW
OH
WUDFp
GH
OD
FRXUEH
FRXUDQWSRWHQWLHO
j
a
VH GLWH
SURGXLVHQW
2Q REWLHQW OH WUDFp GH OD FRXUEH FRXUDQWSRWHQWLHO ja = f (E) VXU ODTXHOOH WUDQVSDVVLYH
]RQHV
VH
GLVWLQJXHQW
QHWWHPHQW
XQH
]RQH
GH
FRUURVLRQ
XQH
]RQH
GH
SDVVLYDWLRQ
HW
XQH
]RQH
]RQHV VH GLVWLQJXHQW QHWWHPHQW XQH ]RQH GH FRUURVLRQ XQH ]RQH GH SDVVLYDWLRQ HW XQH ]RQH
GLWH
WUDQVSDVVLYH
GLWH
WUDQVSDVVLYH
ja μ$FP−2
−2 −2
μ$FP
ja jaμ$FP
E
P9pOHFWURGH
VWDQGDUG
j
K\GURJqQH
E P9pOHFWURGH VWDQGDUG j K\GURJqQH
E P9pOHFWURGH VWDQGDUG j K\GURJqQH
3RXU TXHOOH V YDOHXU V GH SRWHQWLHO FHW DFLHU HVWLO SDVVLYp " (FULUH OD GHPLpTXDWLRQ
3RXU
TXHOOH V YDOHXU
V GH SRWHQWLHO
FHW DFLHU GH
HVWLO
SDVVLYpGH
" (FULUH
OD GHPLpTXDWLRQ
pOHFWURQLTXH
FRUUHVSRQGDQW
j OD IRUPDWLRQ
OD FRXFKH
SDVVLYDWLRQ
pOHFWURQLTXH
3RXU TXHOOH
V YDOHXU V jGHOD SRWHQWLHO
FHW
DFLHU
HVWLOGHSDVVLYp
" (FULUH OD GHPLpTXDWLRQ
FRUUHVSRQGDQW
IRUPDWLRQ
GH
OD
FRXFKH
SDVVLYDWLRQ
'DQV
OD ]RQHFRUUHVSRQGDQW
WUDQVSDVVLYH jODODFRXFKH
GH SDVVLYDWLRQ
j VH GLVVRXGUH HW XQ
pOHFWURQLTXH
IRUPDWLRQ
GH OD FRXFKHFRPPHQFH
GH SDVVLYDWLRQ
'DQV
OD ]RQH WUDQVSDVVLYH
FRXFKH GHrWUH
SDVVLYDWLRQ
FRPPHQFH FHV
j VHIDLWV
GLVVRXGUH
HW XQ
GpJDJHPHQW
JD]HX[ SHXWODpJDOHPHQW
REVHUYp ,QWHUSUpWHU
H[SpULPHQWDX[
GpJDJHPHQW
'DQV OD ]RQH
WUDQVSDVVLYH
OD FRXFKH
GH SDVVLYDWLRQ
FRPPHQFH
j VH GLVVRXGUH HW XQ
JD]HX[
SHXW pJDOHPHQW
rWUH REVHUYp
,QWHUSUpWHU
FHV
IDLWV
H[SpULPHQWDX[
aQm`+2
, *QM+Qm`b
*QKKmMb FHV
SQHvi2+?MB[m2b
kyR8- }HBĕ`2 JS
GpJDJHPHQW JD]HX[ SHXW pJDOHPHQW
rWUH
REVHUYp
,QWHUSUpWHU
IDLWV H[SpULPHQWDX[
aQm`+2 , *QM+Qm`b *QKKmMb SQHvi2+?MB[m2b kyR8- }HBĕ`2 JS
aQm`+2 , *QM+Qm`b *QKKmMb SQHvi2+?MB[m2b kyR8- }HBĕ`2 JS
40-65*0/
40-65*0/
/H
PpWDO FKURPH &U(V) D SRXU QRPEUH G¶R[\GDWLRQ HW VH WURXYH GDQV OH GRPDLQH )
40-65*0/
/H PpWDO FKURPH &U(V) D SRXU QRPEUH G¶R[\GDWLRQ HW VH WURXYH GDQV OH GRPDLQH )
G¶R[\GDWLRQ
,, LOV VH
VH WURXYH
WURXYHQW
GDQV
GRPDLQH
(
/HVPpWDO
LRQV &U (DT) RQW
DQRPEUH
QRPEUH
SRXUG¶R[\GDWLRQ
QRPEUH
G¶R[\GDWLRQ
GDQV
OH OH
GRPDLQH
(V)SRXU
RQW&U
SRXU
,, LOV VHHWWURXYHQW
GDQV
OH GRPDLQH
( )
/HV/HLRQV
&U FKURPH
(DT)
&U
HW OHQRPEUH
VROLGH &U
SRXU
QRPEUH
G¶R[\GDWLRQ
,,,
'DQV
OHV &U
LRQV
G¶R[\GDWLRQ
,, LOVD VH
WURXYHQW
GDQV
OH GRPDLQH
(
/HVOHV
LRQV
2 (V) OH FKURPH
(DT)SRXU
(DT) RQW
'DQV
LRQV &U
(DT) HW OH VROLGH &U 2 (V) OH FKURPH D SRXU QRPEUH G¶R[\GDWLRQ ,,,
2Q
SHXW
GpILQLU
OH
FRXSOH
DFLGHEDVH
VXLYDQW
2Q'DQV
SHXW OHV
GpILQLU
OH FKURPH D SRXU QRPEUH G¶R[\GDWLRQ ,,,
HW OH VROLGHVXLYDQW
&U 2 (V)
LRQVOH&UFRXSOH
(DT) DFLGHEDVH
2Q SHXW GpILQLU OH FRXSOH+
DFLGHEDVH VXLYDQW +
+
(DT) + 3+ 2(O) = &U 2 (V) ++6+ (DT)
2&U2&U
(DT) + 3+ 2(O) = &U 2 (V) + 6+ (DT)
2&U+ (DT) + 3+ 2(O) = &U 2 (V) + 6++ (DT)
364
Chimie
/HV LRQV &U (DT) VRQW GRQF GDQV OH GRPDLQH & HW OH VROLGH &U 2 (V) GDQV OH GRPDLQH '
'DQV OHV LRQV &U2 ± (DT) HW &U 2 ± (DT) OH FKURPH D SRXU QRPEUH G¶R[\GDWLRQ 9,
2Q SHXW GpILQLU OH FRXSOH DFLGHEDVH VXLYDQW &U 2 − (DT) + + 2(O) = 2&U2 − (DT) + 2++ (DT)
/HV LRQV &U 2 ± (DT) VRQW GRQF GDQV OH GRPDLQH $ HW OHV LRQV &U2 ± (DT) GDQV OH GR
PDLQH %
/H FKURPH PpWDOOLTXH &U HVW LQVWDEOH j OD IRLV GDQV XQH HDX DpUpH HW GDQV XQH HDX GpVDp
UpH SXLVTXH VRQ GRPDLQH HVW HQ GHVVRXV GH OD GHX[LqPH GURLWH GX GRPDLQH GH O¶HDX
'DQV GH O¶HDX DpUpH OHV HVSqFHV VWDEOHV VRQW OHV GHX[ IRUPHV GH QRPEUH G¶R[\GDWLRQ
9, OHV LRQV &U2 ± (DT) HW &U 2 ± (DT) 'DQV GH O¶HDX GpVDpUpH OHV HVSqFHV VWDEOHV
VRQW GHX[ IRUPHV GH QRPEUH G¶R[\GDWLRQ ,,, OHV LRQV &U (DT) HW OH VROLGH &U 2 (V) /D IRUPH R[\GpH VROLGH HW VWDEOH j S+ GX FKURPH HVW &U 2 (V) F¶HVW GRQF FHW R[\GH
TXL HVW UHVSRQVDEOH GH OD SDVVLYDWLRQ GX FKURPH
/¶DFLHU HVW SDVVLYp HQWUH HW P9 SDU UDSSRUW j O¶pOHFWURGH VWDQGDUG j K\GURJqQH
SDU OD UpDFWLRQ GH IRUPDWLRQ GH O¶R[\GH VXLYDQWH 2&U(V) + 3+ 2(O) = &U 2 (V) + 6++ (DT) + 6H−
/D WUDQVSDVVLYDWLRQ FRUUHVSRQG j O¶R[\GDWLRQ HQ PLOLHX DFLGH GX VROLGH &U 2 (V) IRUPDQW
OD FRXFKH SURWHFWULFH HQ LRQ &U 2 ± (DT) VHORQ O¶pTXDWLRQ &U 2 (V) + 4+ 2(O) = 2&U 2 − + 8++ (DT) + 6H−
/H GpJDJHPHQW JD]HX[ REVHUYp HVW O¶R[\GDWLRQ GH O¶HDX HQ GLR[\JqQH 2+ 2(O) = 2 (J) + 4++ (DT) + 4H−
&YFSDJDFT
&9&3$*$& 2Q GRQQH O¶DOOXUH GX GLDJUDPPH (S+ GX PDJQpVLXP SRXU XQH FRQFHQWUDWLRQ GH WUDYDLO HQ
HVSqFHV GLVVRXWHV CWU = 10−2 PRO./−1 3RXU FH GLDJUDPPH OHV HVSqFHV FRQVLGpUpHV VRQW
0J 2+ (V) 0J(V) HW 0J (DT) E 9
S+
'
'
−2, 48 9
'
60. Expliquer les méthodes de protection contre la corrosion
365
3UpFLVHU OHV QRPEUHV G¶R[\GDWLRQ GH O¶pOpPHQW PDJQpVLXP 0J GDQV FKDFXQH GHV HV
SqFHV FRQVLGpUpHV HW DWWULEXHU j FKDFXQ GHV GRPDLQHV ' ' ' XQH HVSqFH FKL
PLTXH
'pILQLU HQ TXHOTXHV PRWV OHV WHUPHV GH FRUURVLRQ SDVVLYDWLRQ HW LPPXQLWp ,QGLTXHU
GDQV TXHOOH V ]RQH V GX GLDJUDPPH LQWHUYLHQW FKDFXQ GH FHV SKpQRPqQHV
$SSOLFDWLRQ j OD SURWHFWLRQ G¶XQH FDQDOLVDWLRQ /HV FDQDOLVDWLRQV HQ IRQWH DOOLDJH j EDVH GH IHU VRQW JpQpUDOHPHQW HQWHUUpHV GDQV OH VRO
3RXU OHV SURWpJHU GH OD FRUURVLRQ RQ OHV UHOLH j O¶DLGH G¶XQ ILO FRQGXFWHXU j XQH pOHFWURGH
GH PDJQpVLXP DQRGH VDFULILFLHOOH HOOHDXVVL HQWHUUpH &HW HQVHPEOH FRQVWLWXH XQH SLOH
6RXVVRO
&DQDOLVDWLRQ
HQ IRQWH
0DJQpVLXP
,QGLTXHU R VRQW O¶DQRGH HW OD FDWKRGH ,QGLTXHU pJDOHPHQW OH VHQV GX FRXUDQW GH FRU
URVLRQ HW OH VHQV GH GpSODFHPHQW GHV pOHFWURQV ([SOLTXHU FRPPHQW OH FLUFXLW pOHFWULTXH
HVW IHUPp 4XHO DJHQW VH UpGXLW j OD FDWKRGH " (FULUH OD UpDFWLRQ pOHFWURFKLPLTXH JOREDOH
SRXU XQ S+ YRLVLQ GH aQm`+2 , *QM+Qm`b *QKKmMb SQHvi2+?MB[m2b kyRe- }HBĕ`2 SaA
&9&3$*$& /D UpVLVWDQFH PpFDQLTXH GX EpWRQ DUPp HVW GXH j OD SUpVHQFH GHV DUPDWXUHV HQ IHU TXL \
VRQW LQVpUpHV DYDQW OD SULVH 2Q V¶LQWpUHVVH j OHXU FRUURVLRQ /H EpWRQ HVW FRQVWLWXp G¶XQ
PpODQJH GH FLPHQW GH VDEOH HW GH JUDQXODWV SLHUUHV HW JUDYLHUV /HV FLPHQWV FRQWLHQQHQW
GLYHUV FRQVWLWXDQWV GRQW GHV VLOLFDWHV GH FDOFLXP &HX[FL SHXYHQW rWUH REWHQXV SDU UpDFWLRQ
HQWUH GHX[ VROLGHV OH GLR[\GH GH VLOLFLXP HW OH PRQR[\GH GH FDOFLXP OD FKDX[ /H VLOLFDWH
GH FDOFLXP PDLV DXVVL OD FKDX[ UpVLGXHOOH WRXMRXUV SUpVHQWH FRQIqUHQW j O¶HDX G¶LQILOWUDWLRQ
GDQV OHV EpWRQV XQ FDUDFWqUH EDVLTXH PDUTXp
2Q GRQQH OH GLDJUDPPH SRWHQWLHOS+ GX V\VWqPH IHUHDX WUDFp HQ SUHQDQW HQ FRPSWH WURLV
VROLGHV )H(V) )H22+(V) )H 2+ (V) HW WURLV HVSqFHV LRQLTXHV GLVVRXWHV )H (DT) )H (DT) HW
+)H2 ± (DT) 366
Chimie
E 9(6+
S+
'LDJUDPPH SRWHQWLHOS+ GX V\VWqPH IHUHDX j ƒ& WUDFp SRXU XQH FRQFHQWUDWLRQ GHV HVSqFHV
GLVVRXWHV GX IHU ,, HW GX IHU ,,, GH 1 × 10−6 PRO./−1 3RWHQWLHO GH O¶pOHFWURGH DX FDORPHO VDWXUpH j . E = +0, 25 9(6+ pOHFWURGH VWDQGDUG
j K\GURJqQH
$VVRFLHU j FKDFXQ GHV GRPDLQHV j OD IRUPXOH GH O¶HVSqFH TXL \ H[LVWH RX \ SUpGRPLQH
4XHO FRPSRVp VROLGH VH IRUPH VXU GX IHU j S+
GLR[\JqQH GLVVRXV "
DX FRQWDFW G¶XQH HDX VDWXUpH HQ
&H FRPSRVp UHQG OH IHU SDVVLI j S+ /HV DUPDWXUHV GX EpWRQ DUPp VRQW GRQF SURWpJpHV
FRQWUH OD FRUURVLRQ &HSHQGDQW RQ REVHUYH TXH OD FRUURVLRQ VH GpYHORSSH DSUqV XQ FHUWDLQ
WHPSV GH YLH TXDQG OH S+ GH O¶HDX G¶LQILOWUDWLRQ D EDLVVp MXVTX¶j HQYLURQ /H FRPSRVp TXL
VH IRUPH VXU OD VXUIDFH GX IHU HVW DORUV GLIIpUHQW LO V¶DJLW GH WULK\GUR[\GH GH IHU )H 2+ (V)
QRQ SULV HQ FRPSWH GDQV OH WUDFp GX GLDJUDPPH SRWHQWLHOS+
0RQWUHU HQ pFULYDQW XQH WUDQVIRUPDWLRQ FKLPLTXH VLPSOH TX¶RQ SHXW FRQVLGpUHU FH GHU
QLHU FRPPH XQH IRUPH K\GUDWpH GX SUpFpGHQW
&H FRPSRVp FRQWUDLUHPHQW DX SUpFpGHQW QH UHQG SDV OH IHU SDVVLI &LWHU GHX[ DGMHFWLIV
FDUDFWpULVDQW XQ SURGXLW GH FRUURVLRQ VROLGH DSSRUWDQW XQH SDVVLYLWp GH TXDOLWp
&HUWDLQV HQYLVDJHQW GH VRXPHWWUH GDQV OH IXWXU OHV DUPDWXUHV PpWDOOLTXHV GHV FRQVWUXF
WLRQV HQ EpWRQ DUPp j XQH SURWHFWLRQ FDWKRGLTXH DYHF XQH VXUWHQVLRQ GH P9 'p
GXLUH GX GLDJUDPPH j TXHO SRWHQWLHO HOOHV GHYURQW rWUH SRUWpHV GDQV XQH HDX G¶LQILOWUDWLRQ
j S+ FRQWHQDQW 1×10−6 PRO./−1 GH IHU GLVVRXV 2Q GRQQHUD OD UpSRQVH SDU UDSSRUW
j O¶pOHFWURGH VWDQGDUG j K\GURJqQH HW SDU UDSSRUW j O¶pOHFWURGH DX FDORPHO VDWXUpH
aQm`+2 , *QM+Qm`b *QKKmMb SQHvi2+?MB[m2b kyye- }HBĕ`2 SaA
60. Expliquer les méthodes de protection contre la corrosion
367
1PVS WPVT BJEFS
E©NBSSFS
&9&3$*$& &ODVVHU OHV IRUPHV GX PDJQpVLXP SDU QRPEUH G¶R[\GDWLRQ HW VHORQ OHXU
FDUDFWqUH DFLGH RX EDVLTXH SRXU OHV SODFHU VXU OH GLDJUDPPH 8QH DQRGH
VDFULILFLHOOH HVW R[\GpH j OD SODFH GX PpWDO TXH O¶RQ SURWqJH /¶DJHQW
UpGXLW HVW O¶R[\GDQW
&9&3$*$& &ODVVHU OHV IRUPHV GX IHU SDU QRPEUH G¶R[\GDWLRQ HW VHORQ OHXU FDUDFWqUH
DFLGH RX EDVLTXH SRXU OHV SODFHU VXU OH GLDJUDPPH 8WLOLVHU HQVXLWH OH
GLDJUDPPH SRXU UpSRQGUH DX[ TXHVWLRQV
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& /H PDJQpVLXP 0J(V) D OH QRPEUH G¶R[\GDWLRQ HW VH WURXYH GDQV OH GRPDLQH ' /HV
HVSqFHV 0J (DT) HW 0J 2+ (V) RQW SRXU QRPEUH G¶R[\GDWLRQ ,, HW RQ SHXW pFULUH
O¶pTXDWLRQ DFLGREDVLTXH VXLYDQWH TXL GpILQLW XQ FRXSOH DFLGHEDVH 0J+ (DT) + 2+ 2(O) = 0J(2+) (V) + 2++
/H GRPDLQH ' HVW GRQF FHOXL GH 0J (DT) WDQGLV TXH ' HVW OH GRPDLQH GH 0J 2+ (V) 'DQV XQ GRPDLQH G¶LPPXQLWp OH PpWDO HVW VWDEOH F¶HVW OH FDV GX GRPDLQH ' 'DQV XQ
GRPDLQH GH FRUURVLRQ OH PpWDO HVW R[\Gp F¶HVW OH FDV GX GRPDLQH ' 'DQV XQ GRPDLQH
GH SDVVLYDWLRQ OH PpWDO HVW UHFRXYHUW G¶XQH FRXFKH G¶R[\GH LPSHUPpDEOH SURWHFWULFH F¶HVW OH FDV GX GRPDLQH '
/H FLUFXLW HVW IHUPp SDU OH VRXVVRO HW OHV HDX[ G¶LQILOWUDWLRQ /¶HVSqFH R[\GDQWH HVW O¶HDX
F¶HVW HOOH TXL HVW UpGXLWH j OD FDWKRGH VXU OD FDQDOLVDWLRQ HQ IRQWH VHORQ O¶pTXDWLRQ 2+ 2(O) = 2H− + + (J) + 2+2−
6RXVVRO
H±
&DQDOLVDWLRQ
HQ IRQWH
FDWKRGH
368
Chimie
icor
H±
0DJQpVLXP
DQRGH
&9&3$*$& /HV HVSqFHV D\DQW XQ QRPEUH G¶R[\GDWLRQ GH ,,, VRQW )H (DT) HW )H22+(V) 2Q SHXW
pFULUH HQWUH HX[ O¶pTXDWLRQ DFLGREDVLTXH VXLYDQWH )H+ (DT) + 2+ 2(O) = )H22+(V) + 3++
/H GRPDLQH HVW GRQF FHOXL GH )H HW OH GRPDLQH FHOXL GH )H22+(V) /HV HVSqFHV D\DQW XQ QRPEUH G¶R[\GDWLRQ GH ,, VRQW )H (DT) )H 2+ (V) HW +)H2 ± (DT) 2Q SHXW pFULUH HQWUH HX[ OHV pTXDWLRQV DFLGREDVLTXHV VXLYDQWHV )H+ (DT) + 2+ 2(O) = )H(2+) (V) + 2++
)H(2+) (V) = +)H2 − (DT) + ++
/D FRXUEH HQ SRLQWLOOpV GX KDXW HVW FHOOH GX FRXSOH 2 (J) + 2(O) (OOH PRQWUH TX¶XQH
HDX VDWXUpH HQ 2 (J) j S+ LPSRVH XQ SRWHQWLHO GH O¶RUGUH GH 9(6+ R OD
IRUPH VWDEOH GX IHU HVW FHOOH GX GRPDLQH VRLW )H22+(V) )H22+(V) + 2(O) )H 2+ (V)
/H WULR[\GH GH IHU HVW IRUPp SDU DGGLWLRQ G¶XQH PROpFXOH G¶HDX j )H22+(V) FH TXL
FRUUHVSRQG ELHQ j OD GpILQLWLRQ G¶XQH IRUPH K\GUDWpH
8QH FRXFKH SDVVLYH HVW FRPSDFWH DGKpUHQWH LPSHUPpDEOH EDUULqUH pWDQFKH FRQWLQXH
LQHUWH HWF
8QH SURWHFWLRQ FDWKRGLTXH FRQVLVWH j PDLQWHQLU OH PpWDO GDQV VD ]RQH G¶LPPXQLWp
/H GLDJUDPPH PRQWUH TXH OH IHU HVW VWDEOH j S+ SRXU XQ SRWHQWLHO LQIpULHXU j
−0, 9 9(6+ 3RXU XQH VXUWHQVLRQ FDWKRGLTXH GH P9 HW GRQF QpJDWLYH LO IDXW
GRQF SRUWHU OH IHU j E ≈ −1, 0, 9(6+ RQ HVW DORUV ODUJHPHQW GDQV OH GRPDLQH G¶H[LV
WHQFH GX IHU PpWDOOLTXH
3DU UDSSRUW j O¶pOHFWURGH DX FDORPHO VDWXUpH (&6 E = −1, 0 −0, 25 = −1, 25 9(&6
60. Expliquer les méthodes de protection contre la corrosion
Solutions
/H GRPDLQH HVW GRQF FHOXL GH )H (DT) OH GRPDLQH FHOXL GH )H 2+ (V) HW OH GRPDLQH
FHOXL GH +)H2 ± (DT) /H IHU VROLGH )H(V) D XQ QRPEUH G¶R[\GDWLRQ GH F¶HVW GRQF OH GRPDLQH 369
61
Comprendre le fonctionnement
thermodynamique
d’une pile
$PNQSFOESF
MF GPODUJPOOFNFOU
UIFSNPEZOBNJRVF EVOF QJMF
2VBOE PO OF TBJU QBT /D SLOH HVW XQ GLVSRVLWLI TXL SHUPHW GH FRQYHUWLU O¶pQHUJLH FKLPLTXH HQ pQHUJLH pOHFWULTXH
8QH SLOH HVW FRPSRVpH GH GHX[ GHPLSLOHV UHOLpHV HQWUH HOOHV SDU XQ SRQW VDOLQ 2Q XWLOLVH
XQH UpDFWLRQ G¶R[\GRUpGXFWLRQ TXL HVW VSRQWDQpH ORUVTXH OHV HVSqFHV FKLPLTXHV VRQW HQ
FRQWDFW
/RUVTX¶LOV VRQW PLV HQ FRQWDFW OH ]LQF UpGXLW OHV LRQV FXLYUH /D SLOH 'DQLHOO V¶DSSXLH VXU
FHWWH UpDFWLRQ VSRQWDQpH /HV GHX[ GHPLpTXDWLRQV GHV FRXSOHV VRQW =Q(V) ==Q+ (DT) + 2H−
&X(V) =&X+ (DT) + 2H−
/D UpDFWLRQ GH IRQFWLRQQHPHQW GH FHWWH SLOH DX FRXUV GH ODTXHOOH pOHFWURQV VRQW pFKDQJpV
HVW =Q(V) + &X+ (DT) = &X(V) + =Q+ (DT)
/H ]LQF HVW OH UpGXFWHXU HW VD GHPLSLOH FRQVWLWXH O¶DQRGH /H FXLYUH HVW O¶R[\GDQW HW VD
GHPLSLOH FRQVWLWXH OD FDWKRGH /D UpDFWLRQ TXL D OLHX j O¶DQRGH HVW XQH R[\GDWLRQ WDQGLV
TXH OD UpDFWLRQ j OD FDWKRGH HVW XQH UpGXFWLRQ
ODPH GH ]LQF
DQRGH
VROXWLRQ GH
VXOIDWH GH ]LQF
GpSODFHPHQW GHV pOHFWURQV
MRQFWLRQ
pOHFWURO\WLTXH
ODPH GH FXLYUH
FDWKRGH
VROXWLRQ GH
VXOIDWH GH FXLYUH
/H WUDQVIHUW GHV pOHFWURQV GX UpGXFWHXU YHUV O¶R[\GDQW HVW LQGLUHFW LO VH IDLW j WUDYHUV OH
FLUFXLW j O¶H[WpULHXU GH OD SLOH /H FRXUDQW FLUFXOH GH OD FDWKRGH YHUV O¶DQRGH OHV pOHFWURQV
370
Chimie
DOODQW GH O¶DQRGH YHUV OD FDWKRGH 'DQV OD MRQFWLRQ pOHFWURO\WLTXH OHV LRQV QpJDWLIV VH Gp
SODFHQW YHUV O¶DQRGH WDQGLV TXH OHV LRQV SRVLWLIV YRQW YHUV OD FDWKRGH FH TXL SHUPHW GH
PDLQWHQLU O¶pOHFWURQHXWUDOLWp GHV FRPSDUWLPHQWV
/D QRWDWLRQ GH FHWWH SLOH HVW OD VXLYDQWH =Q(V) |=Q+ (DT) , 62 − (DT) ||&X+ (DT) , 62 − (DT) |&X(V)
'DQV FHWWH QRWDWLRQ RQ FRPPHQFH SDU OH PDWpULDX FRQVWLWXDQW O¶DQRGH SXLV O¶pOHFWURO\WH
GX SUHPLHU FRPSDUWLPHQW RQ FLWH pYHQWXHOOHPHQW OD QDWXUH GH OD MRQFWLRQ pOHFWURO\WLTXH
SXLV O¶pOHFWURO\WH GX GHX[LqPH FRPSDUWLPHQW HW HQILQ OH PDWpULDX GH OD FDWKRGH
3RXU OH V\VWqPH FRQVWLWXp SDU XQH SLOH DX FRXUV GH VRQ pYROXWLRQ RQ D SDU GpILQLWLRQ GH
O¶HQWKDOSLH OLEUH G GG = G(U + P V − T S)
= GU + P GV + V GP − T GS − SGT
= δQ + δW + δWe + P GV + V GP − T GS − SGT
R δWe FRUUHVSRQG DX WUDYDLO pOHFWULTXH UHoX
3RXU XQ V\VWqPH R δW = −P GV HQ GHKRUV GX WUDYDLO pOHFWULTXH OH VHXO WUDYDLO HVW FHOXL
GHV IRUFHV GH SUHVVLRQ HW δQ = T GS − T δSi VHFRQG SULQFLSH GH OD WKHUPRG\QDPLTXH RQ SHXW GRQF pFULUH GG = δWe + V GP − T δSi − SGT
3RXU XQH WUDQVIRUPDWLRQ LVRWKHUPH HW LVREDUH T HW P FRQVWDQWHV RQ D GRQF GG = δWe − T δSi
2U O¶HQWURSLH FUppH δSi HVW WRXMRXUV SRVLWLYH RX QXOOH FH TXL QRXV DPqQH j O¶LQpJDOLWp
VXLYDQWH GG ≤ δWe
3RXU XQH pYROXWLRQ VSRQWDQpH GX V\VWqPH OD YDULDWLRQ G¶HQWKDOSLH OLEUH HVW QpJDWLYH
/H WUDYDLO pOHFWULTXH IRXUQL SDU OD SLOH δWf = −δWe HVW GRQF PDMRUp SDU OD GLPLQXWLRQ
GH O¶HQWKDOSLH OLEUH δWf ≤ −GG
,O \ DXUD pJDOLWp SRXU XQH pYROXWLRQ UpYHUVLEOH F¶HVWjGLUH VDQV FUpDWLRQ G¶HQWURSLH
2Q SHXW H[SULPHU OH WUDYDLO pOHFWULTXH IRXUQL SDU OD SLOH HQ IRQFWLRQ GH O¶DYDQFHPHQW ξ GH OD
UpDFWLRQ pOHFWURFKLPLTXH GX QRPEUH n G¶pOHFWURQV pFKDQJpV GH OD FRQVWDQWH GH )DUDGD\
F HW GH OD GLIIpUHQFH GH SRWHQWLHO ΔE HQWUH OHV GHX[ GHPLSLOHV δWf = δq × ΔE = (nF × Gξ)ΔE
/RUVTXH O¶RQ FRQVLGqUH XQH pYROXWLRQ GX V\VWqPH UpYHUVLEOH RQ D O¶pJDOLWp VXLYDQWH ∂G
nF × Gξ × ΔE = −GG ⇔ nF ΔE = −
= −Δr G
∂ξ T,P
61. Comprendre le fonctionnement thermodynamique d’une pile
371
/D WHQVLRQ j YLGH G¶XQH SLOH SDUIRLV DSSHOpH IRUFH pOHFWURPRWULFH HVW HQ JpQpUDO QRWpH e
(OOH HVW GRQQpH SDU OD GLIIpUHQFH GH SRWHQWLHO HQWUH OHV GHX[ GHPLSLOHV GDQV OH VHQV SRVLWLI
ORUVTXH OD SLOH QH GpELWH SDV i = 0 e = ΔE = EFDWKRGH − EDQRGH
/¶HQWKDOSLH OLEUH GH UpDFWLRQ HVW GRQF OLpH j OD WHQVLRQ j YLGH GH OD SLOH SDU O¶pJDOLWp
VXLYDQWH Δr G = −nF e
&HWWH UHODWLRQ HVW pJDOHPHQW YpULILpH HQWUH O¶HQWKDOSLH OLEUH VWDQGDUG GH UpDFWLRQ HW OD WHQ
VLRQ j YLGH GH OD SLOH GDQV OHV FRQGLWLRQV VWDQGDUG Δr Gƒ = −nF eƒ
/D FDSDFLWp G¶XQH SLOH HVW OD FKDUJH PD[LPDOH qmax TX¶HOOH SHXW GpELWHU DX FRXUV GH VRQ
XWLOLVDWLRQ (OOH V¶H[SULPH j SDUWLU GH O¶DYDQFHPHQW PD[LPDO GH OD UpDFWLRQ ξmax WHO TXH
GpWHUPLQp SDU OH UpDFWLI OLPLWDQW GX QRPEUH n G¶pOHFWURQV pFKDQJpV GDQV OD GHPLpTXDWLRQ
pOHFWURQLTXH HW GH OD FRQVWDQWH GH )DUDGD\ F qmax = n × ξmax × F
&HWWH UHODWLRQ SHUPHW GH FDOFXOHU OD FDSDFLWp GH OD SLOH HQ FRXORPE VRLW HQ DPSqUHVHFRQGH
/¶XQLWp XVXHOOH GH OD FDSDFLWp HVW O¶DPSqUHKHXUH $K SRXU ODTXHOOH OD FRQYHUVLRQ HVW
GRQQpH SDU 1 $K = 3600 &
2VF GBJSF ,O IDXW WRXMRXUV pFULUH OHV GHPLpTXDWLRQV UHGR[ GHV GHX[ FRXSOHV FRQVLGpUpV GDQV OD SLOH
DLQVL TXH OD UpDFWLRQ FRUUHVSRQGDQW j VRQ IRQFWLRQQHPHQW SDU FRPELQDLVRQ GHV GHX[
8WLOLVHU OHV SRWHQWLHOV VWDQGDUGV HW OD IRUPXOH GH 1HUQVW SRXU GpWHUPLQHU OD WHQVLRQ j YLGH
3RXU GpWHUPLQHU OD FDSDFLWp G¶XQH SLOH LO IDXW YpULILHU TXHO HVW OH UpDFWLI OLPLWDQW HQ WHQDQW
FRPSWH GX QRPEUH G¶pOHFWURQV pFKDQJpV
$POTFJMT
/¶pWXGH GHV SLOHV V¶DSSXLH VXU OHV QRWLRQV G¶R[\GRUpGXFWLRQ GH SUHPLqUH DQQpH HQ SDU
WLFXOLHU OD UHODWLRQ GH 1HUQVW DLQVL TXH VXU OD WKHUPRG\QDPLTXH FKLPLTXH GH GHX[LqPH
DQQpH /HV UHYRLU VL QpFHVVDLUH
/H SURJUDPPH GHPDQGH GH VDYRLU pWDEOLU O¶LQpJDOLWp HQWUH O¶HQWKDOSLH OLEUH HW OH WUDYDLO
pOHFWULTXH /D UHODWLRQ HQWUH WHQVLRQ j YLGH HW HQWKDOSLH OLEUH GH UpDFWLRQ SHXW HOOH rWUH
XWLOLVpH GLUHFWHPHQW VDQV GpPRQVWUDWLRQ
,O IDXW SRXYRLU UHWURXYHU OD FRQYHUVLRQ G¶XQH FKDUJH pOHFWULTXH HQWUH DPSqUHKHXUH $K
HW FRXORPE & 372
Chimie
&YFNQMF USBJU©
/HV SLOHV DX OLWKLXP pTXLSHQW GH QRPEUHX[ DSSDUHLOV pOHFWURQLTXHV PRGHUQHV QRWDPPHQW OHV
WpOpSKRQHV SRUWDEOHV HW DSSDUHLOV SKRWRJUDSKLTXHV &H W\SH GH SLOH HVW FRQVWLWXpH G¶XQH ERUQH
SRVLWLYH HQ GLR[\GH GH PDQJDQqVH 0Q2 (V) HW G¶XQH ERUQH QpJDWLYH HQ OLWKLXP O¶pOHFWURO\WH
HVW XQ VHO GH OLWKLXP /L3) (V) GLVVRXV GDQV XQ VROYDQW RUJDQLTXH FDUERQDWH GH SURS\OqQH
HW FRQFHQWUp HQ LRQV /L PLOLHX DFLGH /HV FRXSOHV pOHFWURFKLPLTXHV FRQFHUQpV VRQW UHV
SHFWLYHPHQW 0Q2 (V) 0Q2 2+ (V) HW /L /L(V) 'RQQpHV PDVVH GH O¶pOHFWURGH HQ OLWKLXP J FRXUDQW GpELWp SDU OD SLOH I P$ 0DVVH PRODLUH DWRPLTXH GX OLWKLXP JPRO−1 FRQVWDQWH GH )DUDGD\ ) &PRO−1 RT
F OQ 10 = 0, 059 9 j .
&RXSOH /L /L(V) 0Q2 (V) 0Q2 2+ (V)
3RWHQWLHOV VWDQGDUG G¶R[\GRUpGXFWLRQ j . Eƒ 9
í
(FULUH OHV UpDFWLRQV LQWHUYHQDQW j FKDTXH pOHFWURGH HQ SUpFLVDQW OHXU QDWXUH
(Q GpGXLUH OD UpDFWLRQ JOREDOH GH OD SLOH
([SULPHU VD IHP WKpRULTXH
'pWHUPLQHU OD TXDQWLWp GH PDWLqUH GH OLWKLXP GLVSRQLEOH DLQVL TXH OH QRPEUH ne GH PROHV
G¶pOHFWURQV TXH SHXW WUDQVIpUHU OD SLOH (Q GpGXLUH OD TXDQWLWp G¶pOHFWULFLWp Q H[SULPpH
HQ & SXLV HQ $.K TX¶HOOH SHXW IRXUQLU
&DOFXOHU O¶DXWRQRPLH HQ DQQpHV GH OD SLOH 4XDQG HVWHOOH XVpH "
aQm`+2 , "M[m2 2j kyRj- }HBĕ`2 JS
40-65*0/
/D ERUQH QpJDWLYH HQ OLWKLXP HVW O¶DQRGH /D UpDFWLRQ TXL \ D OLHX HVW XQH R[\GDWLRQ /L(V) = /L+ + H−
/D ERUQH SRVLWLYH HQ GLR[\GH GH PDQJDQqVH HVW OD FDWKRGH /D UpDFWLRQ TXL \ D OLHX HVW
XQH UpGXFWLRQ 0Q2 (V) + H− + ++ = 0Q2(2+)(V)
/D UpDFWLRQ JOREDOH GH IRQFWLRQQHPHQW GH OD SLOH HVW GRQF OD VXLYDQWH SRXU XQ VHXO
pOHFWURQ pFKDQJp 0Q2 (V) + /L(V) + ++ = 0Q2(2+)(V) + /L+
/D IHP WKpRULTXH HVW DXVVL DSSHOpH WHQVLRQ j YLGH
e = EFDWKRGH − EDQRGH = E(0Q2 (V) /0Q2(2+)(V) ) − E(/L+ //L(V) )
61. Comprendre le fonctionnement thermodynamique d’une pile
373
([SULPRQV OHV SRWHQWLHOV JUkFH DX[ UHODWLRQV GH 1HUQVW RT a(0Q2 )a(++ )
OQ
F
a(0Q2(2+))
= Eƒ(0Q2 (V) /0Q2(2+)(V) ) + 0, 059 ORJ a(++ )
E(0Q2 (V) /0Q2(2+)(V) ) = Eƒ(0Q2 (V) /0Q2(2+)(V) ) +
FDU
RT
OQ(x) = 0, 059 ORJ(x)
F
E(/L+ //L(V) ) = Eƒ(/L+ //L(V) ) +
j .
RT a(/L+ )
OQ
= Eƒ(/L+ //L(V) ) + 0, 059 ORJ a(/L+ )
F
a(/L)
2Q REWLHQW GRQF O¶H[SUHVVLRQ VXLYDQWH SRXU OD IHP e = Eƒ(0Q2 (V) /0Q2(2+)(V) ) − Eƒ(/L+ //L(V) ) + 0, 059 ORJ
= 1, 01 − (−3, 04) + 0, 059 ORJ
= 4, 05 + 0, 059 ORJ
a(++ )
a(/L+ )
a(++ )
a(/L+ )
a(++ )
a(/L+ )
4XDQWLWp GH PDWLqUH GH OLWKLXP GLVSRQLEOH n/L =
m/L
2, 0
= 0, 29 PRO
=
M/L
6, 94
&KDTXH DWRPH GH OLWKLXP OLEqUH XQ pOHFWURQ OH QRPEUH GH PROHV G¶pOHFWURQV TXH SHXW
WUDQVIpUHU OD SLOH HVW GRQF pJDO j OD TXDQWLWp GH PDWLqUH GH OLWKLXP GLVSRQLEOH ne = n/L = 0, 29 PRO
&DSDFLWp GH OD SLOH HQ FRXORPE Q = ne × F = 0, 29 × 96500 = 2, 8 × 104 &
&DSDFLWp GH OD SLOH HQ DPSqUHKHXUH Q=
2, 8 × 104
= 7, 7 $K
3600
$XWRQRPLH GH OD SLOH t=
2, 8 × 104
Q
=
= 2, 8 × 108 V = 8, 8 DQV
I
0, 1 × 10−3
/D SLOH D XQH GXUpH GH YLH G¶HQYLURQ QHXI DQV (OOH VHUD XVpH TXDQG WRXW OH OLWKLXP VHUD
FRQVRPPp
374
Chimie
&YFSDJDFT
&9&3$*$& /D FRPEXVWLRQ GH O¶K\GURJqQH HVW PRGpOLVpH SDU O¶pTXDWLRQ GH UpDFWLRQ TXL VXLW 1
+ (J) + 2 (J) = + 2(O)
2
,O HVW SRVVLEOH GH JpQpUHU XQ WUDYDLO pOHFWULTXH YLD FHWWH UpDFWLRQ FKLPLTXH HQ VpSDUDQW VSDWLD
OHPHQW OHV GHX[ UpDFWLIV RQ SDUOH GH SLOH j FRPEXVWLEOH 8QH PHPEUDQH pFKDQJHXVH GH SUR
WRQV PDLV GH UpVLVWDQFH pOHFWULTXH pOHYpH VpSDUH DORUV O¶DQRGH GH OD FDWKRGH R RQW OLHX GHV
UpDFWLRQV G¶R[\GRUpGXFWLRQ GLIIpUHQWHV PHQDQW DX PrPH ELODQ JOREDO TXH SUpFpGHPPHQW
/¶pYROXWLRQ HVW VXSSRVpH LVREDUH j SUHVVLRQ P0 HW LVRWKHUPH j WHPSpUDWXUH T0 = 300 .
HW RQ VH SODFH GDQV OHV FRQGLWLRQV VWDQGDUG
'RQQpHV Δr Sƒ = −163 -.PRO−1 Δr Hƒ = −241 N-PRO−1
/H GLK\GURJqQH MRXHWLO OH U{OH G¶R[\GDQW RX GH UpGXFWHXU " eFULUH OD GHPLpTXDWLRQ
G¶R[\GRUpGXFWLRQ DVVRFLpH
/H GLR[\JqQH MRXHWLO OH U{OH G¶R[\GDQW RX GH UpGXFWHXU " eFULUH OD GHPLpTXDWLRQ G¶R[\
GRUpGXFWLRQ DVVRFLpH
(Q SDUWDQW GHV SUHPLHU HW VHFRQG SULQFLSHV GH OD WKHUPRG\QDPLTXH PRQWUHU TXH OH WUD
�
YDXW −ξ × Δr Gƒ R ξ HVW O¶DYDQFH
YDLO pOHFWULTXH PD[LPDO IRXUQL SDU OD SLOH −Wmax
PHQW GH OD UpDFWLRQ GH FRPEXVWLRQ GH O¶K\GURJqQH HW Δr Gƒ VRQ HQWKDOSLH OLEUH VWDQGDUG
GH UpDFWLRQ
�
¬ TXHO FDV FRUUHVSRQG OD OLPLWH W � = Wmax
"
eYDOXHU QXPpULTXHPHQW OH WUDYDLO PD[LPDO IRXUQL SDU OD UpDFWLRQ G¶XQH PROH GH GLK\
GURJqQH
aQm`+2 , "M[m2 2j kyR8- }HBĕ`2 SaA
&9&3$*$& 0RLQV WR[LTXH TXH OH PpWKDQRO OH ELRpWKDQRO SHXW rWUH XWLOLVp GDQV GHV SLOHV j FRPEXVWLEOH
VHORQ OH VFKpPD VXLYDQW H±
"
& + 2+
"
"
DQRGH
pOHFWURO\WH
2
FDWKRGH
"
61. Comprendre le fonctionnement thermodynamique d’une pile
375
'RQQpHV (QWKDOSLHV VWDQGDUG GH IRUPDWLRQ HQWURSLHV VWDQGDUG j . Δf Hƒ N-PRO−1 Sm ƒ -.−1 PRO−1
& + 2+(J)
& + 2+(O)
2 (J)
&2 (J)
+ 2(J)
+ 2(O)
6DFKDQW TXH O¶pTXDWLRQ ELODQ HVW OD PrPH TXH FHOOH GH OD FRPEXVWLRQ GH O¶pWKDQRO GDQV
O¶DLU UHSURGXLUH HW FRPSOpWHU OH VFKpPD GH OD SLOH HQ UHQVHLJQDQW OHV HVSqFHV FKLPLTXHV
PDQTXDQWHV HW HQ SUpFLVDQW OH VHQV GHV LRQV GDQV O¶pOHFWURO\WH HW GHV pOHFWURQV GDQV OH
FLUFXLW H[WpULHXU
(FULUH OHV GHPLpTXDWLRQV j FKDTXH pOHFWURGH
&DOFXOHU OD WHQVLRQ j YLGH VWDQGDUG GH OD SLOH j .
aQm`+2 , +QM+Qm`b +QKKmM JBM2b@SQMib kyR3- }HBĕ`2 JS
1PVS WPVT BJEFS
E©NBSSFS
&9&3$*$& eFULUH OHV GHPLpTXDWLRQV pOHFWURQLTXHV SRXU OHV FRXSOHV + (J) + HW
+ 2(J) 2 (J) 5HWURXYHU O¶LQpJDOLWp HQWUH YDULDWLRQ G¶HQWKDOSLH OLEUH HW
WUDYDLO pOHFWULTXH HQ VH SODoDQW GDQV OHV FRQGLWLRQV VWDQGDUG ([SULPHU
O¶HQWKDOSLH OLEUH GH UpDFWLRQ HQ IRQFWLRQ GH O¶HQWURSLH GH UpDFWLRQ HW GH
O¶HQWKDOSLH GH UpDFWLRQ j OD WHPSpUDWXUH GH WUDYDLO
&9&3$*$& eFULUH OHV GHPLpTXDWLRQV pOHFWURQLTXHV SRXU OHV FRXSOHV
& + 2+(O) &2 (J) HW + 2(O) 2 (J) 8WLOLVHU OHV HQWKDOSLHV VWDQGDUG
GH IRUPDWLRQ HW OHV HQWURSLHV VWDQGDUG SRXU GpWHUPLQHU O¶HQWKDOSLH
OLEUH VWDQGDUG GH UpDFWLRQ &RQVLGpUHU OD WHPSpUDWXUH GH . SRXU
GpWHUPLQHU O¶pWDW GHV UpDFWLIV HW GHV SURGXLWV
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& /H GLK\GURJqQH MRXH OH U{OH GH UpGXFWHXU + (J) = 2H− + 2++
/H GLK\GURJqQH MRXH OH U{OH G¶R[\GDQW 2 (J) + 4H− + 4++ = 2+ 2(O)
376
Chimie
/¶HQWKDOSLH OLEUH G pWDQW GpILQLH SDU G = U + P0 × V − T0 × S RQ D GDQV OH FDV GH
OD WUDQVIRUPDWLRQ GH QRWUH V\VWqPH LVREDUH HW LVRWKHUPH VH WURXYDQW GDQV OHV FRQGLWLRQV
VWDQGDUG ΔGƒ = ΔU ƒ + P0 × ΔV − T0 × ΔSƒ
'¶DSUqV OH SUHPLHU SULQFLSH ΔU ƒ = W + W � + Q
R W � HVW OH WUDYDLO pOHFWULTXH UHoX SDU OD SLOH /H WUDYDLO GHV IRUFHV GH SUHVVLRQ HVW
GRQQp SDU W = −P0 GV OD FKDOHXU UHoXH SDU Q = T0 × ΔSƒ − T0 × SFUppH ,O HQ UpVXOWH
TXH ΔGƒ = W � − T0 × SFUppH
'¶DSUqV OH VHFRQG SULQFLSH O¶HQWURSLH FUppH HVW SRVLWLYH SFUppH ≥ 0 3DU FRQVpTXHQW
RQ SHXW pFULUH O¶LQpJDOLWp VXLYDQWH ΔGƒ ≤ W �
VRLW
− W � ≤ −ΔGƒ
/¶pYROXWLRQ GX V\VWqPH pWDQW OLp j O¶DYDQFHPHQW GH OD UpDFWLRQ FKLPLTXH RQ SHXW HQ
RXWUH pFULUH TXH FDU
Δr Gƒ =
∂Gƒ
∂ξ
Solutions
ΔGƒ = ξ × Δr Gƒ
T,P
�
/H WUDYDLO PD[LPXP IRXUQL SDU OD SLOH −Wmax
HVW GRQF GRQQp SDU OH PLQLPXP GH W �
VRLW �
= −ξ × Δr Gƒ
−Wmax
�
/D OLPLWH W � = Wmax
HVW DWWHLQWH SRXU SFUppH = 0 VRLW XQH WUDQVIRUPDWLRQ UpYHUVLEOH
2Q SHXW FDOFXOHU O¶HQWKDOSLH OLEUH VWDQGDUG GH UpDFWLRQ j SDUWLU GH O¶HQWURSLH VWDQGDUG GH
UpDFWLRQ HW GH O¶HQWKDOSLH VWDQGDUG GH UpDFWLRQ j OD WHPSpUDWXUH T0 Δr Gƒ = Δr Hƒ − T0 Δr S = −2, 41 × 105 − 300 × (−163) = −1, 92 × 105 -PRO−1
3RXU XQH PROH GH GLK\GURJqQH OH WUDYDLO pOHFWULTXH PD[LPDO IRXUQL HVW GRQF �
−Wmax
= −ξ × Δr Gƒ = −1 × (−1, 92 × 105 ) = 1, 92 × 105 - = 192 N-
&9&3$*$& /¶pTXDWLRQ ELODQ GH OD FRPEXVWLRQ GH O¶pWKDQRO GDQV O¶DLU HVW & + 2+(O) + 32 (J) = 2&2 (J) + 3+ 2(O)
61. Comprendre le fonctionnement thermodynamique d’une pile
377
H±
H±
+
+
& + 2+
&+2+
+ 2
+2
&2
&2
DQRGH
DQRGH
pOHFWURO\WH
pOHFWURO\WH
2
2 FDWKRGH
FDWKRGH
+ 2
+ 2
$
OD GHPLpTXDWLRQ
GHPLpTXDWLRQHVW
HVWO¶R[\GDWLRQ
O¶R[\GDWLRQGHGHO¶pWKDQRO
O¶pWKDQRO $ O¶DQRGH
O¶DQRGH OD
−
+ + + 12H
+2+
2+(O)
+3+
3+22(O)(O)==2&2
2&2
12+
&+
(J)++12+
(O)+
+ 12H−
&
(J)
$
OD GHPLpTXDWLRQ
GHPLpTXDWLRQHVW
HVWODODUpGXFWLRQ
UpGXFWLRQGXGXGLR[\JqQH
GLR[\JqQH $ OD
OD FDWKRGH
FDWKRGH OD
+4+
4+++++4H4H−−==2+
2+
2
22(J)
(J)+
2
(O)(O)
(QWKDOSLH VWDQGDUG
VWDQGDUG GH
GH UpDFWLRQ
UpDFWLRQ ΔffH
Hiiƒƒ
Δr Hƒ =
ννiiΔ
) )++2Δ
)+
3Δ
=−Δ
Hƒ(&++2+
2+(O)
−3Δ
3Δf fHƒ(2
Hƒ(2 (J)
2Δ
)+
3Δ
2)(O) )
ΔffHƒ(&
(J)
2(O)
f Hƒ(&2
f Hƒ(+
(J)
(J)
f Hƒ(&2
f Hƒ(+
(O)))−
= − (−277)
(−277) −
−3(0)
3(0)++2(−394)
2(−394)++3(−286)
3(−286)
−1
= − 1369
1369 N-PRO
N-PRO−1
(QWURSLH VWDQGDUG
(QWURSLH
VWDQGDUG GH
GH UpDFWLRQ
UpDFWLRQ
Sƒ =
ννiiSSm,i
ƒ
Δrr Sƒ
=
Δ
m,i ƒ
ƒ(& + 2+ ))−−3S
) + 2Smm
ƒ(&2
) + 3Sm ƒ(+
=
(J)
2(O)
3SmmHƒ(2
Hƒ(2 (J)
ƒ(&2
2)(O) )
=−
− SSm
m ƒ(& + 2+(O)
(J) ) + 2S
(J) ) + 3S
m ƒ(+
(O)
=
=−
− (161)
(161) −
−3(205)
3(205)++2(214)
2(214)++3(70)
3(70)
−1
−1
=
.PRO−1
=−
− 138
138 -.
-.−1.PRO
(QWKDOSLH OLEUH
(QWKDOSLH
OLEUH VWDQGDUG
VWDQGDUGGH
GHUpDFWLRQ
UpDFWLRQ Δ Gƒ = Δ Hƒ − T Δ Sƒ = −1, 37 × 106 − 298 × (−138) = −1, 33 × 106 -PRO−1
Δrr Gƒ = Δrr Hƒ − T Δrr Sƒ = −1, 37 × 106 − 298 × (−138) = −1, 33 × 106 -PRO−1
7HQVLRQ j YLGH VWDQGDUG GH OD SLOH 7HQVLRQ j YLGH VWDQGDUG GH OD SLOH −1, 33 × 106
Δr Gƒ
eƒ = − Δr Gƒ= − −1, 33 × 106= 1, 15 9
eƒ = − nF = −12 × 96500 = 1, 15 9
nF
12 × 96500
378
Chimie
Comprendre le fonctionnement
cinétique d’une pile
$PNQSFOESF MF GPODUJPOOFNFOU
DJO©UJRVF EVOF QJMF
62
2VBOE PO OF TBJU QBT /¶RXWLO XWLOLVp SRXU VXLYUH OD FLQpWLTXH G¶XQH UpDFWLRQ G¶R[\GRUpGXFWLRQ HVW OD FRXUEH
FRXUDQWSRWHQWLHO/¶pWXGHGXIRQFWLRQQHPHQWFLQpWLTXHG¶XQHSLOHVHEDVHGRQFVXUOHV
FRXUEHV FRXUDQWSRWHQWLHO GHV GHX[ GHPLSLOHV /HV EDVHV WKHUPRG\QDPLTXHV GX IRQF
WLRQQHPHQWGHODSLOHVRQWWUDLWpHVGDQVOD)LFKH1ƒ
/DUpDFWLRQFKLPLTXHJOREDOHFRUUHVSRQGDQWDXIRQFWLRQQHPHQWGHODSLOHHVWXQHUpDFWLRQ
VSRQWDQpH&HSHQGDQWjODGLIIpUHQFHGXSKpQRPqUHGHFRUURVLRQGpMjpWXGLp FI)LFKH
1ƒ OHVHVSqFHVTXLUpDJLVVHQWQHVRQWSDVHQFRQWDFW/DUpDFWLRQG¶R[\GRUpGXFWLRQ
LPSRVH GRQF XQH pJDOLWp HQWUH OH FRXUDQW G¶R[\GDWLRQ HW OH FRXUDQW GH UpGXFWLRQ PDLV
FKDTXHpOHFWURGHDXQSRWHQWLHOGLIIpUHQW
/DYDOHXUGHODWHQVLRQjYLGHeHVWpJDOHjODGLIIpUHQFHGHSRWHQWLHOEc −Ea HQWUHOHV
GHX[FRPSDUWLPHQWVGHODSLOHTXDQGOHFRXUDQWHVWQXO/¶DQRGHRDOLHXO¶R[\GDWLRQHVW
GRQFODERUQHQpJDWLYHGHODSLOH(OOHDXQSRWHQWLHOLQIpULHXUjODFDWKRGHERUQHSRVLWLYH
GHODSLOHRDXUDOLHXODUpGXFWLRQ
&9&.1-& 'pWHUPLQDWLRQ GH OD WHQVLRQ j YLGH G¶XQH SLOH
i
=Q(V) → =Q (DT)
&X(V) → &X (DT)
e
ED
=Q(V) ← =Q (DT)
EF
&X(V) ← &X (DT)
E
/D UpDFWLRQ GH IRQFWLRQQHPHQW GH OD SLOH HVW OD UpDFWLRQ WKHUPRG\QDPLTXHPHQW IDYRULVpH
HQWUH O¶R[\GDQW GRQW OH FRXSOH D OH SRWHQWLHO OH SOXV pOHYp HW OH UpGXFWHXU GRQW OH SRWHQWLHO HVW
62. Comprendre le fonctionnement cinétique d’une pile
379
OH SOXV EDV VXU OHV FRXUEHV FRXUDQW SRWHQWLHO LO V¶DJLW GH OD EUDQFKH SRVLWLYH HQ R[\GDWLRQ
SRXU OH FRXSOH GH EDV SRWHQWLHO HW GH OD EUDQFKH QpJDWLYH HQ UpGXFWLRQ SRXU OH FRXSOH GH
KDXW SRWHQWLHO 'DQV O¶H[HPSOH OH FXLYUH HVW UpGXLW WDQGLV TXH OH ]LQF HVW R[\Gp VHORQ
O¶pTXDWLRQ GH IRQFWLRQQHPHQW =Q(V) + &X+ (DT) = =Q+ (DT) + &X(V)
&RPPH OH PRQWUH O¶H[HPSOH VL OD SLOH GpELWH XQ FRXUDQW i QRQ QXO OH SRWHQWLHO GH FKDTXH
pOHFWURGH FKDQJH HW OD WHQVLRQ u(i) GpOLYUpH SDU OD SLOH HVW DORUV PRLQGUH u(i) < e 2Q SHXW
UHPDUTXHU TXH FHWWH WHQVLRQ GLPLQXH ORJLTXHPHQW TXDQG O¶LQWHQVLWp GpELWpH DXJPHQWH
&9&.1-& WHQVLRQ DX[ ERUQHV G¶XQH SLOH TXL GpELWH
i
5HGa → 2[a
u(i)
EF
ED
E
e
5HGc ← 2[c
/D GLIIpUHQFH HQWUH OD WHQVLRQ TXDQG OD SLOH GpELWH HW OD WHQVLRQ j YLGH HVW GXH j OD UpVLV
WDQFH LQWHUQH GH OD SLOH &HOOHFL HVW OLpH j OD YLWHVVH JOREDOH GH OD UpDFWLRQ pOHFWURFKLPLTXH
j WUDYHUV OD YLWHVVH GX WUDQVIHUW GHV pOHFWURQV DX QLYHDX GHV pOHFWURGHV OD YLWHVVH GH OD GLI
IXVLRQ GHV HVSqFHV DX YRLVLQDJH GH O¶pOHFWURGH DLQVL TX¶j OD PLJUDWLRQ GHV LRQV SRUWHXUV GH
FKDUJH GDQV OD MRQFWLRQ pOHFWURO\WLTXH HQWUH OHV GHX[ GHPLSLOHV 8Q IDFWHXU HVVHQWLHO GDQV
OD SHUIRUPDQFH G¶XQH SLOH HVW GRQF OD FRQFHSWLRQ GH FHOOHFL HW OH FKRL[ GH VRQ pOHFWURO\WH F¶HVW SRXU FHOD TXH OHV SLOHV GX FRPPHUFH XWLOLVHQW XQH SDURL SRUHXVH 3OXV O¶pOHFWURO\WH
FKRLVL HVW FRQGXFWHXU SOXV OD UpVLVWDQFH LQWHUQH GH OD SLOH HVW IDLEOH
'DQV OH FDV SDUWLFXOLHU G¶XQH VLWXDWLRQ GH FRXUWFLUFXLW GH OD SLOH OHV SRWHQWLHOV GHV GHX[
FRPSDUWLPHQWV VRQW pJDX[ HQWUH HX[ HW RQ UHWURXYH OH SRWHQWLHO PL[WH Em G¶XQH UpDFWLRQ
G¶R[\GRUpGXFWLRQ R OHV HVSqFHV VRQW GLUHFWHPHQW DX FRQWDFW O¶XQH GH O¶DXWUH
380
Chimie
&9&.1-& FRXUWFLUFXLW G¶XQH SLOH
i
5HGa → 2[a
EP
E
5HGc ← 2[c
/HV VLWXDWLRQV GH FRUURVLRQ GLIIpUHQWLHOOH VRQW SDUIRLV DSSHOpHV SRXU FHWWH UDLVRQ GHV SLOHV
GH FRUURVLRQ LO V¶DJLW GH GHX[ FRPSDUWLPHQWV GLIIpUHQWV PLV HQ FRQWDFW pOHFWULTXHPHQW
2VF GBJSF ,GHQWLILHU OHV GLIIpUHQWHV SDUWLHV GHV FRXUEHV FRXUDQWSRWHQWLHO DYHF OHV GHPLUpDFWLRQV
G¶R[\GRUpGXFWLRQ TXL OHXU FRUUHVSRQGHQW
5HFKHUFKHU SRXU OD SLOH XQH UpDFWLRQ GH IRQFWLRQQHPHQW GDQV OH VHQV VSRQWDQp
,GHQWLILHU OH U{OH GH FKDTXH pOHFWURGH
/¶DQRGH HVW OD ERUQH QpJDWLYH VRQ SRWHQWLHO HVW SOXV SHWLW OD UpDFWLRQ TXL V¶\ GpURXOH
HVW O¶R[\GDWLRQ GX PHLOOHXU UpGXFWHXU HOOH FqGH VHV pOHFWURQV
/D FDWKRGH HVW OD ERUQH SRVLWLYH VRQ SRWHQWLHO HVW SOXV JUDQG OD UpDFWLRQ TXL V¶\
GpURXOH HVW OD UpGXFWLRQ GX PHLOOHXU R[\GDQW HOOH UHoRLW GHV pOHFWURQV
3RXU GpWHUPLQHU OD WHQVLRQ j YLGH UHOHYHU OH SRWHQWLHO GH FKDFXQH GHV GHX[ pOHFWURGHV GH
OD SLOH j FRXUDQW QXO
3RXU GpWHUPLQHU XQ SRLQW GH IRQFWLRQQHPHQW TXHOFRQTXH WRXMRXUV FRQVLGpUHU XQ FRXUDQW
G¶R[\GDWLRQ HW GH UpGXFWLRQ GH PrPH LQWHQVLWp HQ UDLVRQ GH OD QpFHVVDLUH FRQVHUYDWLRQ GHV
FKDUJHV pOHFWULTXHV
/D UpVLVWDQFH LQWHUQH HVW DXJPHQWpH SDU WRXW FH TXL UDOHQWLW OH SDVVDJH GX FRXUDQW DX VHLQ
GH OD SLOH
62. Comprendre le fonctionnement cinétique d’une pile
381
$POTFJMT
&RPSUHQGUHOHIRQFWLRQQHPHQWFLQpWLTXHG¶XQHSLOHQpFHVVLWHGHFRQQDLWUHVRQIRQFWLRQ
QHPHQWWKHUPRG\QDPLTXH FI)LFKH1ƒ DLQVLTXHOHSULQFLSHGHVFRXUEHVFRXUDQW
SRWHQWLHOSRXUO¶pWXGHGHODFLQpWLTXHGHVUpDFWLRQVFKLPLTXHV FI)LFKH1ƒ 0pPRULVHUO¶DVVRFLDWLRQHQWUHQRPGHO¶pOHFWURGHHWVHQVGHODUpDFWLRQTXLV¶\SURGXLW
DQ2GH2[\GDWLRQ &DWKRGHUpGX&WLRQ Q¶LPSRUWHTXHOOHDVWXFHPQpPRWHFKQLTXHTXL
IRQFWLRQQHHVWYDODEOH /DSLOH'DQLHOO FRXSOHVGX]LQFHWGXFXLYUH HWOHVSLOHVjFRPEXVWLEOH TXLXWLOLVHQWOH
GLR[\JqQHFRPPHR[\GDQW VRQWGHVH[HPSOHVFODVVLTXHVDYHFOHVTXHOVLOHVWXWLOHGHVH
IDPLOLDULVHU
&YFNQMF USBJU©
2Q pWXGLH XQH SLOH j FRPEXVWLEOH j GLK\GURJqQH &HOOHFL XWLOLVH OHV FRXSOHV G¶R[\GRUp
GXFWLRQ + (DT) + (J) HW 2 (J) + 2(O) 2Q GRQQH OHV FRXUEHV GHQVLWp GH FRXUDQWSRWHQWLHO
FLGHVVRXV j $FP−2
E9
'RQQpHV 3RWHQWLHOV VWDQGDUG G¶R[\GRUpGXFWLRQ j . 382
&RXSOH
Eƒ 9
+ (DT) + (J)
2 (J) + 2(O)
,GHQWLILHU OHV EUDQFKHV DQRGLTXHV HW FDWKRGLTXHV GHV FRXUEHV GHQVLWp GH FRXUDQWSRWHQWLHO
GH OD SLOH j FRPEXVWLEOH FRQVLGpUpH DLQVL TXH OHV UpDFWLRQV DVVRFLpHV
'pWHUPLQHU OD WHQVLRQ j YLGH GH OD SLOH j FRPEXVWLEOH
'pWHUPLQHU OD WHQVLRQ GH OD SLOH TXDQG HOOH IRQFWLRQQH DYHF XQH GHQVLWp GH FRXUDQW GH
$FP−2 &RPPHQWHU OD GLIIpUHQFH HQWUH OD WHQVLRQ j YLGH HW OD WHQVLRQ GH IRQFWLRQQHPHQW
Chimie
40-65*0/
2Q DVVRFLH OHV FRXUEHV DX FRXSOH JUkFH DX SRWHQWLHO G¶pTXLOLEUH OX JUDSKLTXHPHQW FRP
SDUp DX SRWHQWLHO VWDQGDUG OD FRXUEH GX FRXSOH + (DT) + (J) HVW j JDXFKH HW FHOOH GX
FRXSOH 2 (J) + 2(O) HVW FHOOH GH GURLWH '¶DSUqV OHV FRQYHQWLRQV GH VLJQH OHV GHQVLWpV
GH FRXUDQW SRVLWLYHV FRUUHVSRQGHQW DX[ UpDFWLRQV G¶R[\GDWLRQ HW OHV GHQVLWpV GH FRXUDQW
QpJDWLYHV FRUUHVSRQGHQW DX[ UpDFWLRQV GH UpGXFWLRQ 3RXU DYRLU XQH SLOH LO IDXW FRQVL
GpUHU OD UpDFWLRQ VSRQWDQpH OH PHLOOHXU R[\GDQW 2 (J) SRXU OH FRXSOH GRQW OH SRWHQWLHO
HVW VXSpULHXU UpDJLW DYHF OH PHLOOHXU UpGXFWHXU + (J) SRXU OH FRXSOH GRQW OH SRWHQWLHO
HVW LQIpULHXU j $FP−2
+ (J) −→ 2++ (DT)
e
E9
u
2+ 2(O) ←− 2 (J) + 4++ (DT)
/D WHQVLRQ j YLGH GH OD SLOH j FRPEXVWLEOH HVW GRQQpH SDU OD GLIIpUHQFH HQWUH OHV GHX[
SRWHQWLHOV SRXU j = 0 e = 1, 2 9
4XDQG OD SLOH IRQFWLRQQH DYHF XQH GHQVLWp GH FRXUDQW GH $FP−2 OD WHQVLRQ j VHV
ERUQHV HVW u = 0, 7 − 0, 1 = 0, 6 9
/D GLIIpUHQFH HQWUH OD WHQVLRQ j YLGH HW OD WHQVLRQ GH IRQFWLRQQHPHQW HVW OLpH j OD UpVLV
WDQFH LQWHUQH GH OD SLOH /D WHQVLRQ HVW LFL UpGXLWH GH PRLWLp SDU UDSSRUW j OH WHQVLRQ j
YLGH
&YFSDJDFT
&9&3$*$& /H SULQFLSH GH IRQFWLRQQHPHQW G¶XQH SLOH UHSRVH VXU XQ JUDGLHQW GH S+ HQWUH VHV GHX[ FRP
SDUWLPHQWV &H JUDGLHQW HQJHQGUH XQH GLIIpUHQFH GH SRWHQWLHO HQWUH OHV GHX[ pOHFWURGHV GX
IDLW GH OD SUpVHQFH G¶XQ FRXSOH R[\GDQWUpGXFWHXU GRQW OH SRWHQWLHO GpSHQG GH OD YDOHXU GX
S+ 'DQV O¶pWXGH TXL VXLW FH FRXSOH HVW OD TXLQK\GURQH PpODQJH pTXLPRODLUH VROLGH GH EHQ]RTXLQRQH QRWpH 4 HW G¶K\GURTXLQRQH QRWpH 4+ 62. Comprendre le fonctionnement cinétique d’une pile
383
pOHFWURGHV GH FDUERQH
S+1
MRQFWLRQ
pOHFWURO\WLTXH
TXLQK\GURQH
S+2
2Q WUDFH SRXU FKDFXQH GHV GHX[ pOHFWURGHV OHV FRXUEHV FRXUDQWSRWHQWLHO 3RXU FH IDLUH RQ
PHVXUH O¶pYROXWLRQ GX FRXUDQW WUDYHUVDQW O¶pOHFWURGH HQ LPSRVDQW GHV VXUWHQVLRQV j O¶pOHF
WURGH SDU UDSSRUW j XQH pOHFWURGH DX FDORPHO VDWXUpH 2Q REWLHQW OHV GHX[ FRXUEHV UHSUpVHQ
WpHV FLGHVVRXV
$ SDUWLU GH OD GHPLpTXDWLRQ pOHFWURQLTXH GX FRXSOH 44+ pWDEOLU O¶H[SUHVVLRQ GX
SRWHQWLHO G¶XQH pOHFWURGH HQ IRQFWLRQ GX S+ (Q GpGXLUH TXH OD WHQVLRQ j YLGH WKpRULTXH
GH OD SLOH HVW GpWHUPLQpH SDU OD GLIIpUHQFH GH S+ HQWUH OHV GHX[ FRPSDUWLPHQWV VHORQ
O¶H[SUHVVLRQ e = 0, 06(S+1 − S+2 )
R S+1 HVW OH S+ GDQV OH FRPSDUWLPHQW GH O¶DQRGH HW S+2 OH S+ GDQV OH FRPSDUWLPHQW
GH OD FDWKRGH
$WWULEXHU OHV FRXUEHV FRXUDQWSRWHQWLHO j O¶DQRGH HW j OD FDWKRGH HW LQGLTXHU OD FRXUEH
UHODWLYH j O¶R[\GDWLRQ HW FHOOH UHODWLYH j OD UpGXFWLRQ GHV HVSqFHV 4 HW 4+ 'pWHUPLQHU OD YDOHXU GH OD WHQVLRQ j YLGH GH OD SLOH
3UpYRLU OD YDOHXU GH OD WHQVLRQ DX[ ERUQHV G¶XQH SLOH TXL GpELWHUDLW XQ FRXUDQW GH μ$
DLQVL TXH OD YDOHXU GH OD SXLVVDQFH GH OD SLOH
aQm`+2 , /Tiû /m +QM+Qm`b *2Mi`H2@amTûH2+ kyRe- }HBĕ`2 S*
384
Chimie
&9&3$*$& 2Q FRQVLGqUH OD SLOH $J(V) _$J 6,(V) _, (V) /H VROLGH $J 6,(V) HVW XWLOLVp FRPPH pOHFWURO\WH HQ
UDLVRQ GH VD WUqV ERQQH FRQGXFWLYLWp LRQLTXH HW G¶XQH WUqV IDLEOH FRQGXFWLYLWp pOHFWURQLTXH FHWWH FRQGXFWLYLWp LRQLTXH HVW SHUPLVH SDU OD PRELOLWp GHV LRQV DUJHQW $J DX VHLQ GX VROLGH
WDQGLV TXH OHV LRQV LRGXUH , ± QH VRQW SDV PRELOHV /¶pTXDWLRQ ELODQ GH IRQFWLRQQHPHQW GH OD
SLOH V¶pFULW 1
$J(V) + , (J) = $J,(V)
2
/H VFKpPD VLPSOLILp FLDSUqV PRQWUH OH SUHPLHU SURWRW\SH GH FHWWH SLOH G¶DSUqV 7 7DNDKDVKL
HW 2 <DPDPRWR (OHFWURFKLPLFD $FWD 9RO SS 2Q UDSSHOOH TXH O¶LRGH
VROLGH VH VXEOLPH LO HVW GRQF HQ pTXLOLEUH DYHF VD YDSHXU GDQV OH GLVSRVLWLI
FDWKRGH HQ JUDSKLWH HW GLRGH
pOHFWURO\WH VROLGH
DQRGH HQ DUJHQW
/HV DXWHXUV UHOqYHQW OHV FRXUEHV GHQVLWp GH FRXUDQWSRWHQWLHO GRQQpHV j OD SDJH VXLYDQWH /D
GHQVLWp GH FRXUDQW j HVW GRQQpH HQ pFKHOOH ORJDULWKPLTXH
3URSRVHU XQ VFKpPD GH FHWWH SLOH HQ IRQFWLRQQHPHQW ,QGLTXHU OHV GHPLpTXDWLRQV DX[
pOHFWURGHV HW OHV PRXYHPHQWV GH FKDUJHV
8WLOLVHU OHV FRXUEHV GHQVLWp GH FRXUDQWSRWHQWLHO SRXU GpWHUPLQHU OD WHQVLRQ j YLGH j
ƒ&
8WLOLVHU OHV FRXUEHV GHQVLWp GH FRXUDQWSRWHQWLHO SRXU GpWHUPLQHU OD WHQVLRQ j ƒ& SRXU
XQH GHQVLWp GH FRXUDQW GH μ$FP−2 &RPPHQWHU OH UpVXOWDW
/RUV GH OD GpFKDUJH GH OD SLOH OHV DXWHXUV V¶DWWHQGHQW j XQH FKXWH UDSLGH GH OD WHQVLRQ
GXH j O¶DSSDULWLRQ HW j O¶DXJPHQWDWLRQ G¶XQH UpVLVWDQFH j OD FDWKRGH 3URSRVHU XQH H[
SOLFDWLRQ
aQm`+2 , /Tiû /m +QM+Qm`b +QKKmM JBM2b@SQMib kyR3- }HBĕ`2 S*
62. Comprendre le fonctionnement cinétique d’une pile
385
j HQ μ$FP−2
E YV $J HQ P9
1PVS WPVT BJEFS
386
E©NBSSFS
&9&3$*$& 8WLOLVHU OD IRUPXOH GH 1HUQVW SRXU OH FRXSOH 44+ SXLV H[SULPHU OD
WHQVLRQ j YLGH FRPPH OD GLIIpUHQFH GH SRWHQWLHO HQWUH OHV FRPSDUWLPHQWV
FDWKRGLTXH HW DQRGLTXH 6XU OHV FRXUEHV FRXUDQWSRWHQWLHO XQH LQWHQVLWp
SRVLWLYH HVW XQH UpDFWLRQ G¶R[\GDWLRQ XQH LQWHQVLWp QpJDWLYH XQH UpDFWLRQ
GH UpGXFWLRQ
&9&3$*$& (FULUH XQH R[\GDWLRQ j O¶DQRGH HW XQH UpGXFWLRQ j OD FDWKRGH &KHUFKHU OH
VHQV GH GpSODFHPHQW GHV pOHFWURQV HQ GHKRUV GH OD SLOH '¶DSUqV O¶pQRQFp
VHXOV OHV LRQV DUJHQW SHXYHQW VH GpSODFHU DX VHLQ GH O¶pOHFWURO\WH VROLGH
6XU OHV FRXUEHV GHQVLWp GH FRXUDQWSRWHQWLHO OD FRXUEH SRVLWLYH FRUUHV
SRQG j XQH R[\GDWLRQ OD FRXUEH QpJDWLYH j XQH UpGXFWLRQ
Chimie
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& /D GHPLpTXDWLRQ pOHFWURQLTXH GX FRXSOH HVW 4+ = 4 + 2++ + 2H−
/H SRWHQWLHO G¶XQH pOHFWURGH j ƒ& HVW GRQQp SDU OD UHODWLRQ GH 1HUQVW E = Eƒ +
0, 06
[4]a(++ )2
ORJ
2
[4+ ]
'DQV GHV FRQGLWLRQV GH FRQFHQWUDWLRQV pTXLPRODLUHV [4] = [4+ ] OH SRWHQWLHO GHYLHQW
GRQF E = Eƒ − 0, 06S+
/D WHQVLRQ j YLGH GH OD SLOH HVW GRQQpH SDU OD GLIIpUHQFH GH SRWHQWLHO HQWUH OHV GHX[
FRPSDUWLPHQWV Solutions
e = EFDWKRGH − EDQRGH
= (Eƒ − 0, 06S+2 ) − (Eƒ − 0, 06S+2 )
= 0, 06(S+1 − S+2 )
/D FRXUEH G¶R[\GDWLRQ HVW FHOOH TXL D XQH LQWHQVLWp SRVLWLYH HW FRUUHVSRQG j O¶DQRGH /D
FRXUEH GH UpGXFWLRQ HVW FHOOH TXL D XQH LQWHQVLWp QpJDWLYH HW FRUUHVSRQG j OD FDWKRGH
DQRGH
u
4+ −→ 4
e
4+ ←− 4
FDWKRGH
/D WHQVLRQ j YLGH HVW GH e = 0, 22 − 0, 02 = 0, 20 9 2Q OD GpWHUPLQH SDU OD GLIIpUHQFH
GHV SRWHQWLHOV SRXU I = 0
62. Comprendre le fonctionnement cinétique d’une pile
387
3RXU XQ FRXUDQW GH μ$ OD WHQVLRQ GH OD SLOH HVW GH u = 0, 18 − 0, 05 = 0, 13 9 /D
SXLVVDQFH GH OD SLOH HVW GRQF P = u × I = 0, 13 × 250 × 10−6 = 32, 5 × 10−6 : = 32, 5 μ:
&9&3$*$& /D UpDFWLRQ j O¶DQRGH HVW O¶R[\GDWLRQ GH O¶DUJHQW $J(V) $J H ±
/D UpDFWLRQ j OD FDWKRGH HVW OD UpGXFWLRQ GX GLLRGH JD]HX[ , (J) H ±
, ±
/HV pOHFWURQV SURGXLWV j O¶DQRGH VH GpSODFHQW j O¶H[WpULHXU GH OD SLOH SRXU UHMRLQGUH OD
FDWKRGH /HV LRQV LRGXUH , ± SURGXLWV QH VRQW SDV PRELOHV GDQV O¶pOHFWURO\WH HW UHVWHQW
Oj R LOV RQW pWp SURGXLWV /HV LRQV DUJHQW $J VRQW OHV SRUWHXUV GH FKDUJH DX VHLQ GH
O¶pOHFWURO\WH VROLGH HW VH GpSODFHQW GH O¶DQRGH R LOV VRQW SURGXLWV YHUV OD FDWKRGH R LOV
UpDJLVVHQW DYHF OHV LRQV LRGXUHV SUpVHQWV VHORQ O¶pTXDWLRQ $J , ± $J,(V)
FDWKRGH
pOHFWURO\WH
$J
H±
DQRGH
388
/D WHQVLRQ j YLGH HVW e = P9 LO V¶DJLW GH OD GLIIpUHQFH GH SRWHQWLHO HQWUH OHV GHX[
FRXUEHV FRXUDQWSRWHQWLHO VXU O¶D[H GHV DEVFLVVHV TXDQG OD SLOH QH GpELWH SDV 4XDQG OD GHQVLWp GH FRXUDQW HVW GH μ$FP−2 OD WHQVLRQ DX[ ERUQHV GH OD SLOH HVW
u = P9 /D GLIIpUHQFH HQWUH OD WHQVLRQ j YLGH HW OD WHQVLRQ TXDQG OD SLOH GpELWH HVW
GXH j OD UpVLVWDQFH LQWHUQH GH OD SLOH 7RXW FH TXL SHXW UDOHQWLU OD UpDFWLRQ G¶R[\GRUpGXF
WLRQ SDUWLFLSH j OD UpVLVWDQFH LQWHUQH OD YLWHVVH GH WUDQVIHUW GHV pOHFWURQV j O¶DQRGH HW
j OD FDWKRGH OD GLIIXVLRQ GHV HVSqFHV LRQLTXHV LFL OHV LRQV $J GDQV O¶pOHFWURO\WH OD
VXEOLPDWLRQ GX GLRGH VROLGH HW OD GLIIXVLRQ GX GLRGH JD]HX[ GDQV OD FDWKRGH HWF
$ O¶LQWHUIDFH HQWUH OD FDWKRGH HW O¶pOHFWURO\WH VROLGH DX FRXUV GX IRQFWLRQQHPHQW GH OD
SLOH LO \ D XQH DFFXPXODWLRQ G¶LRQV LRGXUH , ± ,OV UpDJLVVHQW DYHF OHV LRQV DUJHQW $J
IRUPpV DX QLYHDX GH O¶DQRGH TXL PLJUHQW GDQV O¶pOHFWURO\WH MXVTX¶j OD FDWKRGH ,O \ D
GRQF IRUPDWLRQ G¶LRGXUH G¶DUJHQW j OD VXUIDFH GH OD FDWKRGH 6L FH VROLGH HVW XQ PDXYDLV
FRQGXFWHXU LRQLTXH DORUV OD PLJUDWLRQ GHV LRQV HVW UDOHQWLH HW GRQF OD UpVLVWDQFH LQWHUQH
GH OD SLOH DXJPHQWH DX IXU HW j PHVXUH GH VRQ XWLOLVDWLRQ
Chimie
j HQ μ$FP−2
$J(V) −→ $J+
DQRGH
u
e
E YV $J HQ P9
, (J) ←− 2,−
FDWKRGH
Solutions
62. Comprendre le fonctionnement cinétique d’une pile
389
63
Comprendre le fonctionnement
d’une électrolyse
et la recharge
$PNQSFOESF
MF GPODUJPOOFNFOU
EVOF ©MFDUSPMZTF
FU MB SFDIBSHF
d’un accumulateur
EVO BDDVNVMBUFVS
2VBOE PO OF TBJU QBT 8QH pOHFWURO\VH HW XQH UHFKDUJH G¶XQ DFFXPXODWHXU FRQVWLWXHQW WRXV GHX[ XQH FRQYHUVLRQ
G¶pQHUJLH pOHFWULTXH HQ pQHUJLH FKLPLTXH &HOOHFL PHW HQ MHX XQH UpDFWLRQ HQWUH XQ UpGXFWHXU
HW XQ R[\GDQW TXL QH VH IDLW SDV VSRQWDQpPHQW ORUVTXH OHV UpDFWLIV VRQW PLV HQ SUpVHQFH O¶XQ
GH O¶DXWUH O¶DSSRUW G¶pQHUJLH DX V\VWqPH VRXV IRUPH GH WUDYDLO pOHFWULTXH SHUPHW j OD UpDFWLRQ
GH VH SURGXLUH 8QH WHOOH WUDQVIRUPDWLRQ HVW TXDOLILpH GH IRUFpH
3UHQRQV O¶H[HPSOH GH O¶pOHFWURO\VH GH O¶HDX XQ JpQpUDWHXU HVW EUDQFKp DX[ ERUQHV G¶XQ
pOHFWURO\VHXU
&9&.1-& pOHFWURO\VH GH O¶HDX
*
i
u
FDWKRGH
DQRGH
+ (DT)
+ 2(O)
+ (J)
2 (J)
/HV pOHFWURGHV VRQW LGHQWLILpHV G¶DSUqV OD UpDFWLRQ TXL V¶\ GpURXOH XQH R[\GDWLRQ D OLHX j
O¶DQRGH HW XQH UpGXFWLRQ D OLHX j OD FDWKRGH /HV GHX[ GHPLpTXDWLRQV pOHFWURQLTXHV VRQW j OD FDWKRGH
j O¶DQRGH
2++ (DT) + 2H− = + (J)
2+ 2(O) = 2 (J) + 4++ (DT) + 4H−
/D FRPELQDLVRQ GHV GHX[ GRQQH OD UpDFWLRQ JOREDOH G¶pOHFWURO\VH SRXU pOHFWURQV pFKDQ
JpV 2+ 2(O) = 2+ (J) + 2 (J)
390
Chimie
FRXUEHV
FRXUEHVFRXUDQWSRWHQWLHO
FRXUDQWSRWHQWLHOSRXU
SRXUO¶pOHFWURO\VH
O¶pOHFWURO\VHGHGHO¶HDX
O¶HDX
ii
DQRGH
DQRGH
2(O)−→
−→
22(J)
++
2
(O)
(J)
iiaa
uuVHXLO
VHXLO
EEcc++ηηc c
++ηaηa
EE
aa
EE
u(i
u(ia )a )
+
+(J)
←− ++++(DT)
(J) ←−
(DT)
FDWKRGH
FDWKRGH
/D SRODULWp
SRODULWp GH
GH O¶pOHFWURO\VHXU
O¶pOHFWURO\VHXUHVW
HVWLPSRVpH
LPSRVpHSDU
SDUOHOHJpQpUDWHXU
JpQpUDWHXU/¶DQRGH
/¶DQRGHD XQ
D XQ
SRWHQWLHO
SRWHQWLHO
SOXV
SOXV
pOHYp TXH
TXH OD
OD FDWKRGH
FDWKRGH O¶DQRGH
O¶DQRGHHVW
HVWODODERUQH
ERUQHSRVLWLYH
SRVLWLYHWDQGLV
WDQGLVTXH
TXHOD ODFDWKRGH
FDWKRGH
HVWHVW
OD OD
ERUQH
ERUQH
QpJDWLYH
QpJDWLYH GH
GH O¶pOHFWURO\VHXU
O¶pOHFWURO\VHXU
(Q O¶DEVHQFH
O¶DEVHQFH GH
GH VXUWHQVLRQ
VXUWHQVLRQOLpH
OLpHjjXQH
XQHUpDFWLRQ
UpDFWLRQG¶R[\GRUpGXFWLRQ
G¶R[\GRUpGXFWLRQOHQWH
OHQWH
OD OD
WHQVLRQ
WHQVLRQ
j DSSOL
j DSSOL
TXHU SRXU
SRXU REWHQLU
REWHQLU XQH
XQHpOHFWURO\VH
pOHFWURO\VHHVW
HVWGRQQpH
GRQQpHSDU
SDUODODGLIIpUHQFH
GLIIpUHQFHGHGHSRWHQWLHO
SRWHQWLHO
HQWUH
HQWUH
OHVOHV
GHX[
GHX[
=
=
E
E
−
−
E
E
(Q
(Q
SUpVHQFH
SUpVHQFH
G¶XQ
G¶XQ
FRXSOH
FRXSOH
OHQW
OHQW
LO
LO
IDXW
IDXW
SUHQGUH
SUHQGUH
HQ HQ
FRXSOHV
FRXSOHV PLV
PLV HQ
HQ MHX
MHX uuVHXLO
aa
cc
VHXLO
FRPSWH
FRPSWH OHV
OHV VXUWHQVLRQV
VXUWHQVLRQVDQRGLTXH
DQRGLTXHHWHWFDWKRGLTXH
FDWKRGLTXH (Ea a++ηaη)a )−−(E
(E
ηcη)c )
uuVHXLO
c+
c+
VHXLO==(E
/D FRQVHUYDWLRQ
FRQVHUYDWLRQ GHV
GHVFKDUJHV
FKDUJHVpOHFWULTXHV
pOHFWULTXHVLPSRVH
LPSRVHO¶pJDOLWp
O¶pJDOLWpHQHQYDOHXU
YDOHXUDEVROXH
DEVROXH
GHVGHV
FRXUDQWV
FRXUDQWV
G¶R[\GDWLRQ
G¶R[\GDWLRQ HW
HW GH
GH UpGXFWLRQ
UpGXFWLRQ2Q
2QSHXW
SHXWDORUV
DORUVGpWHUPLQHU
GpWHUPLQHUJUDSKLTXHPHQW
JUDSKLTXHPHQW
OD OD
WHQVLRQ
WHQVLRQ
j DSSOL
j DSSOL
SRXUXQH
XQHLQWHQVLWp
LQWHQVLWpGH
GHFRXUDQW
FRXUDQWiaiaGRQQpH
GRQQpH2Q
2QUHPDUTXH
UHPDUTXH
GRQF
GRQF
TXH
TXH
SRXU
SRXU
DXJPHQWHU
DXJPHQWHU
TXHU u(i
u(iaa))SRXU
OD YLWHVVH
YLWHVVH G¶XQH
G¶XQH UpDFWLRQ
UpDFWLRQG¶pOHFWURO\VH
G¶pOHFWURO\VH HWHWGRQF
GRQFO¶LQWHQVLWp
O¶LQWHQVLWpGDQV
GDQVGHV
GHVFRQGLWLRQV
FRQGLWLRQV
GRQQpHV
GRQQpHV
LO IDXW DXJPHQWHU
DXJPHQWHU ODOD WHQVLRQ
WHQVLRQDSSOLTXpH
DSSOLTXpHjjO¶pOHFWURO\VHXU
O¶pOHFWURO\VHXU&HSHQGDQW
&HSHQGDQWOD OD
UpVLVWDQFH
UpVLVWDQFH
LQWHUQH
LQWHUQH
SURYRTXH
SURYRTXH SDU
SDU HIIHW
HIIHW -RXOH
-RXOHXQ
XQpFKDXIIHPHQW
pFKDXIIHPHQWDFFUX
DFFUXGHGHODODVROXWLRQ
VROXWLRQ2Q2QSHXW
SHXW
pJDOHPHQW
pJDOHPHQW
DYRLU
DYRLU
GHV SUREOqPHV
SUREOqPHV GH
GHVpOHFWLYLWp
VpOHFWLYLWpHWHWGDQV
GDQVFHFHFDV
FDVO¶DXJPHQWDWLRQ
O¶DXJPHQWDWLRQGHGHODODWHQVLRQ
WHQVLRQ
SHXW
SHXW
SHUPHWWUH
SHUPHWWUH
j j
GHV UpDFWLRQV
UpDFWLRQV FRQFXUUHQWHV
FRQFXUUHQWHVG¶DYRLU
G¶DYRLUOLHX
OLHX
2Q FKRLVLUD
FKRLVLUD GRQF
GRQF SOXW{W
SOXW{W G¶DXJPHQWHU
G¶DXJPHQWHUODODVXUIDFH
VXUIDFHGHV
GHVpOHFWURGHV
pOHFWURGHVHW HWOD ODFRQGXFWLYLWp
FRQGXFWLYLWp
GHGH
OD OD
VROXWLRQ
VROXWLRQ HQ
HQ FKRLVLVVDQW
FKRLVLVVDQWXQ
XQpOHFWURO\WH
pOHFWURO\WHLQHUWH
LQHUWHHWHWGHGHFRQFHQWUDWLRQ
FRQFHQWUDWLRQpOHYpH
pOHYpH /RUVTXH
/RUVTXH SOXVLHXUV
SOXVLHXUVUpDFWLRQV
UpDFWLRQVVRQW
VRQWSRVVLEOHV
SRVVLEOHVGDQV
GDQVXQXQpOHFWURO\VHXU
pOHFWURO\VHXU
O¶pWXGH
O¶pWXGH
GHVGHV
FRXUEHV
FRXUEHV
FRXUDQW
FRXUDQW
SRWHQWLHO
SRWHQWLHO SHUPHW
SHUPHW GH
GHSUpYRLU
SUpYRLUO¶pOHFWURO\VH
O¶pOHFWURO\VHTXL
TXLDXUD
DXUDOLHX
OLHX LO LOV¶DJLW
V¶DJLWGHGHFHOOH
FHOOH
SRXU
SRXU
ODTXHOOH
ODTXHOOH
OD OD
WHQVLRQ
WHQVLRQ GH
GH VHXLO
VHXLO HVW
HVWODODSOXV
SOXVEDVVH
EDVVH
±±
3UHQRQV
3UHQRQV O¶H[HPSOH
O¶H[HPSOHGH
GHO¶pOHFWURO\VH
O¶pOHFWURO\VHG¶XQH
G¶XQHVROXWLRQ
VROXWLRQGHGHVXOIDWH
VXOIDWHGHGH]LQF
]LQF=Q=Q
62
62
(DT)(DT)
(DT)
(DT)
FRQWHQDQW
FRQWHQDQW pJDOHPHQW
pJDOHPHQWGHV
GHVLRQV
LRQV&X
&X(DT)
GHVLRQV
LRQVPDQJDQqVH
PDQJDQqVH0Q
0Q
GDQV
GDQV
OH OH
EXWEXW
G¶RE
G¶RE
(DT)HWHWGHV
(DT)
(DT)
WHQLU GX
GX ]LQF
]LQF PpWDOOLTXH
PpWDOOLTXHSXU
SXU$ORUV
$ORUVTXH
TXHODODSUpVHQFH
SUpVHQFHG¶LRQV
G¶LRQVFXLYUH
FXLYUH
,, ,,
&X&X
FRPPH
FRPPH
LPSX
LPSX
(DT)
(DT)
UHWpV QpFHVVLWH
QpFHVVLWH XQH
XQH SXULILFDWLRQ
SXULILFDWLRQSUpDODEOH
SUpDODEOHSXLVTXH
SXLVTXHODODWHQVLRQ
WHQVLRQGHGHVHXLO
VHXLOSRXU
SRXU
OHXU
OHXU
UpGXFWLRQ
UpGXFWLRQ
HVW SOXV
SOXV SHWLWH
SHWLWH TXH
TXH SRXU
SRXUOHOH]LQF
]LQFODODSUpVHQFH
SUpVHQFHG¶LRQV
G¶LRQVPDQJDQqVH
PDQJDQqVH,, ,,0Q
0Q(DT)(DT)
QHQH
SRVH
SRVH
u&X HVW
SDV GH
GH SUREOqPH
SUREOqPH SXLVTXH
SXLVTXHOHXU
OHXUUpGXFWLRQ
UpGXFWLRQVHVHIDLW
IDLWSRXU
SRXUXQH
XQHWHQVLRQ
WHQVLRQGHGHVHXLO
VHXLO
VXSpULHXUH
VXSpULHXUH
u0Q
u0Q
63. Comprendre le fonctionnement d’une électrolyse et la recharge d’un accumulateur
391
3DU FRQWUH VL RQ VRXKDLWH DXJPHQWHU OD YLWHVVH GH OD UpGXFWLRQ GX ]LQF LO IDXW UpDOLVHU
O¶pOHFWURO\VH j XQH WHQVLRQ LQIpULHXUH j u0Q &9&.1-& FRXUEHV FRXUDQWSRWHQWLHO SRXU O¶pOHFWURO\VH GX ]LQF
i
+ 2(O) −→ 2(J)
u0Q
0Q(V) ←− 0Q+ (DT)
=Q(V) ←− =Q+ (DT)
u=Q
u&X
E
&X(V) ←− &X+ (DT)
8Q DFFXPXODWHXU HVW XQ GLVSRVLWLI pOHFWURFKLPLTXH DYHF GHX[ IRQFWLRQQHPHQWV SRVVLEOHV LO IRQFWLRQQH VRLW FRPPH XQH SLOH DYHF XQH UpDFWLRQ VSRQWDQpH TXL SHUPHW GH FRQYHUWLU GH
O¶pQHUJLH FKLPLTXH HQ pQHUJLH pOHFWULTXH VRLW FRPPH XQ pOHFWURO\VHXU ORUVTX¶XQ DSSRUW
G¶pQHUJLH pOHFWULTXH IRUFH OD UpDFWLRQ j VH SURGXLUH GDQV O¶DXWUH VHQV 8Q DFFXPXODWHXU
HVW GRQF XQ GLVSRVLWLI TXL SHXW VWRFNHU RX UHVWLWXHU GH O¶pQHUJLH pOHFWULTXH /D GpFKDUJH
G¶XQ DFFXPXODWHXU FRUUHVSRQG j VRQ IRQFWLRQQHPHQW HQ SLOH OD FKDUJH j XQ IRQFWLRQQH
PHQW HQ pOHFWURO\VHXU /HV VHQV GHV UpDFWLRQV DX[ pOHFWURGHV HW GH OD UpDFWLRQ JOREDOH VRQW
LQYHUVpV HQWUH OD FKDUJH HW OD GpFKDUJH /H IRQFWLRQQHPHQW GH O¶DFFXPXODWHXU GRLW GRQF
rWUH EDVp VXU GHV UpDFWLRQV pOHFWURFKLPLTXHV UpYHUVLEOHV '¶DXWUH SDUW SRXU SHUPHWWUH OH
IRQFWLRQQHPHQW HQ SLOH LO IDXW TXH OHV HVSqFHV FKLPLTXHV QH VRLHQW SDV HQ FRQWDFW VRLW HQ
XWLOLVDQW GHV FRPSDUWLPHQWV VRLW HQ XWLOLVDQW GHV HVSqFHV VROLGHV TXL VH IRUPHQW DX QLYHDX
GHV pOHFWURGHV
&9&.1-& FRXUEHV FRXUDQWSRWHQWLHO SRXU O¶DFFXPXODWHXU DX SORPE
i
3E(V) −→ 3E62 (V)
3E62 (V) −→ 3E2 (V)
uGpFKDUJH
3E(V) ←− 3E62 (V)
uFKDUJH
E9
3E62 (V) ←− 3E2 (V)
/D OHFWXUH GHV FRXUEHV FRXUDQWSRWHQWLHO SHUPHW GH SUpYRLU TXH OD WHQVLRQ HQ GpFKDUJH VHUD
WRXMRXUV SOXV SHWLWH TXH OD WHQVLRQ GH FKDUJH 2Q FRQVLGqUH O¶H[HPSOH GH O¶DFFXPXODWHXU
392
Chimie
DX SORPE TXH O¶RQ WURXYH GDQV OHV EDWWHULHV GHV DXWRPRELOHV /¶pOHFWURO\WH HVW FRQVWLWXp
SDU GH O¶DFLGH VXOIXULTXH + 62 (DT) XQH GHV pOHFWURGHV HVW HQ SORPE 3E(V) HW OD GHX[LqPH
HQ SORPE UHFRXYHUW GH GLR[\GH GH SORPE 3E2 (V) /D WHQVLRQ j YLGH HVW GH 9
2VF GBJSF ,GHQWLILHU OHV HVSqFHV FKLPLTXHV SUpVHQWHV OHV FRXSOHV PLV HQ MHX HW OHXUV SRWHQWLHOV UHV
SHFWLIV
(FULUH OHV GHPLpTXDWLRQV pOHFWURQLTXHV GHV FRXSOHV
'LVWLQJXHU OD WHQVLRQ GH VHXLO FLQpWLTXH TXL WLHQW FRPSWH GHV VXUWHQVLRQV GHV FRXSOHV GH OD
WHQVLRQ GH VHXLO SUpYXH SDU OD WKHUPRG\QDPLTXH TXL QH SUHQG HQ FRPSWH TXH OD GLIIpUHQFH
GHV SRWHQWLHOV
5HFKHUFKHU SRXU O¶pOHFWURO\VH OD UpDFWLRQ GRQW OD WHQVLRQ GH VHXLO HVW OD SOXV SHWLWH
5HWHQLU TXH O¶DQRGH HVW OD ERUQH SRVLWLYH TXH VRQ SRWHQWLHO HVW SOXV JUDQG TXH OD UpDFWLRQ
TXL V¶\ GpURXOH HVW XQH R[\GDWLRQ FDU HOOH FqGH VHV pOHFWURQV
5HWHQLU TXH OD FDWKRGH HVW OD ERUQH QpJDWLYH TXH VRQ SRWHQWLHO HVW SOXV SHWLW TXH OD UpDFWLRQ
TXL V¶\ GpURXOH HVW XQH UpGXFWLRQ FDU HOOH UHoRLW GHV pOHFWURQV
3RXU GpWHUPLQHU XQ SRLQW GH IRQFWLRQQHPHQW TXHOFRQTXH WRXMRXUV FRQVLGpUHU XQ FRXUDQW
G¶R[\GDWLRQ HW GH UpGXFWLRQ GH PrPH LQWHQVLWp HQ YDOHXU DEVROXH HQ UDLVRQ GH OD QpFHVVDLUH
FRQVHUYDWLRQ GHV FKDUJHV pOHFWULTXHV
&RQVLGpUHU O¶pWXGH GH OD GpFKDUJH G¶XQ DFFXPXODWHXU FRPPH FHOOH GX IRQFWLRQQHPHQW
G¶XQH SLOH HW O¶pWXGH GH OD FKDUJH G¶XQ DFFXPXODWHXU FRPPH FHOOH GX IRQFWLRQQHPHQW
G¶XQ pOHFWURO\VHXU
$POTFJMT
/¶pWXGH GHV pOHFWURO\VHXUV V¶DSSXLH VXU OHV QRWLRQV G¶R[\GRUpGXFWLRQ GH SUHPLqUH DQQpH
DLQVL TXH VXU OH SULQFLSH GHV FRXUEHV FRXUDQWSRWHQWLHO SRXU O¶pWXGH GH OD FLQpWLTXH GHV
UpDFWLRQV FKLPLTXHV YRLU ILFKH 1ƒ 5HSUHQGUH FHV FKDSLWUHV VL EHVRLQ
0pPRULVHU O¶DVVRFLDWLRQ HQWUH QRP GH O¶pOHFWURGH HW VHQV GH OD UpDFWLRQ TXL V¶\ SURGXLW DQ2GH 2[\GDWLRQ &DWKRGH UpGX&WLRQ Q¶LPSRUWH TXHOOH DVWXFH PQpPRWHFKQLTXH TXL
IRQFWLRQQH HVW YDODEOH /¶DFFXPXODWHXU DX SORPE HW O¶pOHFWURO\VH GH O¶HDX VRQW GHV H[HPSOHV FODVVLTXHV ,O HVW XWLOH
GH VH IDPLOLDULVHU DYHF OHXU IRQFWLRQQHPHQW
/H YRFDEXODLUH VFLHQWLILTXH GLIIqUH GX ODQJDJH FRXUDQW OH WHUPH XVXHO GH © EDWWHULH ª
GpVLJQH HQ HIIHW LQLWLDOHPHQW XQH EDWWHULH G¶DFFXPXODWHXUV SOXVLHXUV DFFXPXODWHXUV EUDQ
FKpV HQ VpULH SXLV SDU H[WHQVLRQ XQ DFFXPXODWHXU VHXO /¶H[SUHVVLRQ © SLOH UHFKDUJHDEOH ª
HVW DXVVL SDUIRLV XWLOLVpH SRXU XQ DFFXPXODWHXU
63. Comprendre le fonctionnement d’une électrolyse et la recharge d’un accumulateur
393
&YFNQMF USBJU©
2Q pWXGLH O¶pOHFWURO\VH G¶XQH VROXWLRQ DTXHXVH DFLGLILpH S+ GH GLFKORUXUH G¶pWDLQ 6Q &O ± c0 = 0, 1 PRO/−1 /HV SRWHQWLHOV VWDQGDUG HW OHV VXUWHQVLRQV DQRGLTXH RX FDWKR
GLTXH GDQV OHV FRQGLWLRQV GH O¶H[SpULHQFH VRQW GRQQpV GDQV OH WDEOHDX
FRXSOH
6Q (DT) 6Q(V)
+ (DT) + (J)
2 (J) + 2(O)
&O (J) &O ± (DT)
Eƒ YV (6+ HQ 9
−0, 14
0, 00
+1, 23
+1, 36
ηa HQ 9
0, 00
+0, 70
0, 00
ηc HQ 9
0, 00
−0, 90
0, 00
7UDFHU O¶DOOXUH GHV FRXUEHV FRXUDQW SRWHQWLHO SRXU OHV HVSqFHV SUpVHQWHV HQ VROXWLRQ
3UpYRLU TXHOOH UpDFWLRQ D OLHX j O¶DQRGH
3UpYRLU TXHOOH UpDFWLRQ D OLHX j OD FDWKRGH
3UpYRLU OD UpDFWLRQ JOREDOH HW OH QRPEUH G¶pOHFWURQV pFKDQJpV
'pWHUPLQHU OD WHQVLRQ GH VHXLO PLQLPDOH SRXU O¶pOHFWURO\VH DLQVL TXH OD OLPLWH j QH SDV
GpSDVVHU SRXU pYLWHU OHV UpDFWLRQV FRQFXUUHQWHV
40-65*0/
/HV HVSqFHV SUpVHQWHV HQ VROXWLRQ VRQW + (DT) &O ± (DT) 6Q (DT) HW + 2(O) + (J) = 2++ (DT) + 2H−
2+ 2(O) = 2 (J) + 4++ (DT) + 4H−
2&O− (DT) = &O (J) + 2H−
6Q(V) = 6Q+ (DT) + 2H−
(Q FRQVLGpUDQW P = P ƒ SRXU FKDTXH JD] OHV SRWHQWLHOV G¶pTXLOLEUH GHV FRXSOHV VRQW
394
Chimie
GRQQpV SDU RT a(++ )2
OQ
2F
a(+ )
+
= Eƒ(+ /+ ) − 0, 059 S+ = −0, 18 9
E(++ /+ ) = Eƒ(++ /+ ) +
RT a(++ )4 a(2 )
OQ
4F
a(+ 2)2
= Eƒ(2 /+ 2) − 0, 059 S+ = 1, 05 9
E(2 /+ 2) = Eƒ(2 /+ 2) +
RT a(6Q+ )
OQ
2F
a(6Q)
0, 059
= Eƒ(6Q+ /6Q) +
ORJ c0 = −0, 17 9
2
a(&O )
RT
OQ
E(&O /&O− ) = Eƒ(&O /&O− ) +
2F
a(&O− )2
= Eƒ(&O /&O− ) − 0, 059 ORJ 2c0 = +1, 40 9
E(6Q+ /6Q) = Eƒ(6Q+ /6Q) +
3RXU SODFHU OHV FRXUEHV FRXUDQWSRWHQWLHO RQ DMRXWH OHV VXUWHQVLRQV DX SRWHQWLHO G¶pTXL
OLEUH
i
−1, 08
+ (J) ←− ++ (DT)
−0, 17
6Q(V) ←− 6Q+ (DT)
+ 2(O) −→ 2 (J)
&O− (DT) −→ &O (J)
E9
+1, 40 +1, 75
/¶R[\GDWLRQ TXL D OLHX j O¶DQRGH HVW FHOOH TXL VH IDLW SRXU OH SRWHQWLHO OH SOXV EDV 2&O− (DT) = &O (J) + 2H−
/D UpGXFWLRQ TXL D OLHX j OD FDWKRGH HVW FHOOH TXL VH IDLW SRXU OH SRWHQWLHO OH SOXV KDXW 6Q+ (DT) + 2H− = 6Q(V)
/D UpDFWLRQ G¶pOHFWURO\VH JOREDOH SRXU pOHFWURQV pFKDQJpV HVW GRQF 2&O− (DT) + 6Q+ (DT) = &O (J) + 6Q(V)
63. Comprendre le fonctionnement d’une électrolyse et la recharge d’un accumulateur
395
/D WHQVLRQ PLQLPDOH SRXU O¶pOHFWURO\VH HVW GH
u = E(&O /&O− ) − E(6Q+ /6Q) = +1, 40 − (−0, 17) = 1, 57 9
6L RQ DXJPHQWH OD WHQVLRQ G¶pOHFWURO\VH OD SUHPLqUH UpDFWLRQ QRQ VRXKDLWpH HVW O¶R[\
GDWLRQ GH O¶HDX SRXU XQH WHQVLRQ GH VHXLO GH u = E(+ 2/2 ) + ηa − E(6Q+ /6Q) = 1, 05 + 0, 70 − (−0, 17) = 1, 92 9
&YFSDJDFT
&9&3$*$& 8Q DFFXPXODWHXU OLWKLXPLRQ IRQFWLRQQH SDU O¶pFKDQJH UpYHUVLEOH G¶LRQV OLWKLXP HQWUH XQH
pOHFWURGH QpJDWLYH HW XQH pOHFWURGH SRVLWLYH
/¶XWLOLVDWLRQ G¶XQH pOHFWURGH HQ OLWKLXP SRXU FRQVWLWXHU O¶pOHFWURGH QpJDWLYH G¶XQ DFFXPX
ODWHXU SRVH GH QRPEUHX[ SUREOqPHV F¶HVW OD UDLVRQ SRXU ODTXHOOH RQ XWLOLVH OH OLWKLXP HQ
LQVHUWLRQ GDQV XQH VWUXFWXUH K{WH /HV DWRPHV GH OLWKLXP VRQW LQVpUpV GDQV XQH VWUXFWXUH FDU
ERQpH SDU H[HPSOH GX JUDSKLWH RQ SDUOH G¶pOHFWURGH DX JUDSKLWH OLWKLp /RUV GH OD FKDUJH OD
UpDFWLRQ pOHFWURFKLPLTXH TXL VH SURGXLW HVW OD UpGXFWLRQ GHV LRQV OLWKLXP TXL V¶DFFRPSDJQH
GH O¶LQVHUWLRQ GHV DWRPHV GH OLWKLXP GDQV OH JUDSKLWH /RUV GH OD GpFKDUJH OHV DWRPHV GH
OLWKLXP VRQW R[\GpV HW OHV LRQV OLWKLXP VH GpVLQVqUHQW /D IRUPXOH FKLPLTXH GX FRPSRVp
G¶LQVHUWLRQ HVW /L[ & x YDULDQW GH ]pUR GDQV O¶pWDW GpFKDUJp j XQ GDQV O¶pWDW FKDUJp
/¶pOHFWURGH SRVLWLYH HVW FRQVWLWXpH G¶XQ FULVWDO G¶R[\GH GH FREDOW &R2 GDQV OHTXHO GHV
LRQV OLWKLXP V¶LQVqUHQW SRXU IRUPHU XQ FULVWDO G¶R[\GH GH FREDOW OLWKLp /L&R2 /RUV GH OD
FKDUJH OH FREDOW V¶R[\GH SHQGDQW TXH OHV LRQV OLWKLXP VH GpVLQVqUHQW 3HQGDQW OD GpFKDUJH
OH FREDOW HVW UpGXLW SHQGDQW TXH OHV LRQV OLWKLXP V¶LQVqUHQW
5DSSHOHU OD GHPLpTXDWLRQ GH UpGXFWLRQ GHV LRQV /L eFULUH OD UpDFWLRQ G¶LQVHUWLRQ GHV DWRPHV GH OLWKLXP GDQV OH JUDSKLWH
/HV GHX[ UpDFWLRQV VH SURGXLVHQW VLPXOWDQpPHQW eFULUH OD GHPLpTXDWLRQ ELODQ WUDGXL
VDQW FHV SKpQRPqQHV SHQGDQW OD FKDUJH
eFULUH OD GHPLpTXDWLRQ TXL VH SURGXLW j O¶pOHFWURGH SRVLWLYH ORUV GH OD FKDUJH HQ WHQDQW
FRPSWH GH O¶LQVHUWLRQ GHV LRQV OLWKLXP
eFULUH O¶pTXDWLRQ ELODQ GX IRQFWLRQQHPHQW GH O¶DFFXPXODWHXU ORUV GH OD FKDUJH SXLV ORUV
GH OD GpFKDUJH
aQm`+2 , +QM+Qm`b *2Mi`H2@amTûH2+ kyR8- }HBĕ`2 SaA
396
Chimie
&9&3$*$& 2Q FRPSDUH OHV FDUDFWpULVWLTXHV GH TXDWUH IDPLOOH G¶DFFXPXODWHXUV DX SORPE 3E QLFNHO
FDGPLXP 1L&G QLFNHOPpWDO K\GUXUH 1L0+ HW OLWKLXPLRQ /LLRQ WHQVLRQ 9
pQHUJLH PDVVLTXH VSpFLILTXH :KNJ
F\FOHV
DXWRGpFKDUJH PRLV
GXUpH GH YLH DQV
WHPSV GH FKDUJH K
3E
1L&G
1L0+
/LLRQ
/HV DFFXPXODWHXUV 1L&G HW 1L0+ SUpVHQWHQW XQ HIIHW PpPRLUH TXL DIIHFWH OHV SHUIRUPDQFHV
HW OD GXUpH GH YLH GHV EDWWHULHV ORUVTXH FHOOHVFL VRQW UHFKDUJpHV DYDQW G¶rWUH WRWDOHPHQW Gp
FKDUJpHV /HV DFFXPXODWHXUV /LLRQ GRLYHQW rWUH SURWpJpV FRQWUH OD VXUFKDUJH HW OD VXUGp
FKDUJH SDU GHV V\VWqPHV pOHFWURQLTXHV HQ UDLVRQ GH ULVTXH GH VXUFKDXIIH HW G¶H[SORVLRQ j OD
FKDUJH HW GH GpWpULRUDWLRQ ORUV G¶XQH GpFKDUJH FRPSOqWH /HV DFFXPXODWHXUV DX SORPE RQW
XQ FR€W GH UHYLHQW IDLEOH
([SOLTXHU O¶XWLOLVDWLRQ GHV DFFXPXODWHXUV DX SORPE SRXU OH GpPDUUDJH GHV DXWRPRELOHV
/HV DFFXPXODWHXUV 1L&G HW 1L0+ VRQW XWLOLVpV j OD SODFH GHV SLOHV 3RXUTXRL UHFRPPDQGH
WRQ OHV DFFXPXODWHXUV 1L0+ VHXOHPHQW DYHF OHV pTXLSHPHQWV QpFHVVLWDQW GHV FRXUDQWV
pOHYpV FRPPH OHV DSSDUHLOV SKRWR QXPpULTXHV "
4XHOV VRQW OHV FDUDFWpULVWLTXHV GHV DFFXPXODWHXUV OLWLXPLRQ TXL H[SOLTXHQW OHXU XWLOLVD
WLRQ GDQV GHV GLVSRVLWLIV LQWpJUpV WHOV TXH OHV VPDUWSKRQHV HW WDEOHWWHV "
1PVS WPVT BJEFS
E©NBSSFS
/RUV GH OD FKDUJH OHV LRQV OLWKLXP VRQW UpGXLWV WDQGLV TXH OH FREDOW HVW
R[\Gp
&9&3$*$& 4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& /L H ±
/L
/L &
/L&
/RUV GH OD FKDUJH OHV LRQV OLWKLXP VRQW UpGXLWV j O¶pOHFWURGH QpJDWLYH R LOV V¶LQVqUHQW
GDQV OH JUDSKLWH
/L+ + H− + & = /L&
63. Comprendre le fonctionnement d’une électrolyse et la recharge d’un accumulateur
397
/RUV GH OD FKDUJH OHV LRQV OLWKLXP VH GpVLQVqUHQW GH O¶pOHFWURGH SRVLWLYH WDQGLV TXH OH
FREDOW V¶R[\GH /L&R2 = /L+ + &R2 + H−
/RUV GH OD FKDUJH OH ELODQ HVW OH VXLYDQW /L&R2 + & = /L& + &R2
8Q pOHFWURQ HW XQ LRQ OLWKLXP VRQW pFKDQJpV HQWUH OHV GHX[ pOHFWURGHV GH O¶DFFXPXODWHXU
/RUV GH OD FKDUJH O¶pOHFWURQ HVW UHoX SDU O¶pOHFWURGH QpJDWLYH HW O¶LRQ OLWKLXP HVW UHoX
SDU O¶pOHFWURGH SRVLWLYH /RUV GH OD GpFKDUJH OHV pFKDQJHV VH IRQW GDQV OH VHQV LQYHUVH /L& + &R2 = /L&R2 + &
&9&3$*$& 398
/HV DFFXPXODWHXUV DX SORPE RQW XQH IDLEOH pQHUJLH PDVVLTXH VSpFLILTXH SDU UDSSRUW
DX[ DXWUHV GLVSRVLWLIV LOV VRQW ORXUGV HQ UDLVRQ GH OD GHQVLWp SDUWLFXOLqUHPHQW pOHYpH GX
SORPE 3DU FRQVpTXHQW PDOJUp OHXU IDLEOH FR€W HW OHXUV SHUIRUPDQFHV FRQYHQDEOHV LOV
VRQW XWLOLVpV ORUVTXH OD PDVVH GH O¶DFFXPXODWHXU Q¶HVW SDV XQ HQMHX
6L OHV DFFXPXODWHXUV 1L0+ RQW XQH pQHUJLH PDVVLTXH SOXV pOHYpH TXH OHV 1L&G LOV
SUpVHQWHQW FHSHQGDQW XQH DXWRGpFKDUJH WUqV LPSRUWDQWH
/HV DFFXPXODWHXUV /LLRQ SRVVqGHQW O¶pQHUJLH PDVVLTXH VSpFLILTXH OD SOXV pOHYpH PDLV
QpFHVVLWHQW XQ V\VWqPH GH FRQWU{OH GH FKDUJH HW GH GpFKDUJH LOV VRQW GRQF DGDSWpV j
GHV DSSDUHLOV pOHFWURQLTXHV SRXU OHVTXHOOHV OD PDVVH GRLW rWUH OLPLWpH HW R O¶LQWpJUDWLRQ
G¶XQ V\VWqPH GH VXLYL DXWRPDWLTXH GH O¶pWDW GH FKDUJH QH SRVH SDV GH SUREOqPH
Chimie
Déterminer une enthalpie standard
%©UFSNJOFS VOF FOUIBMQJF
par calorimétrie
de réaction
TUBOEBSE EF S©BDUJPO
QBS DBMPSJN©USJF
64
2VBOE PO OF TBJU QBT /¶HQWKDOSLH VWDQGDUG G¶XQH UpDFWLRQ QRWpH ΔrHƒ HQ -PRO−1 SHXW rWUH REWHQXH VRLW H[
SpULPHQWDOHPHQW ORUV GH PDQLSXODWLRQV GH FDORULPpWULH VRLW DQDO\WLTXHPHQW JUkFH j GHV
JUDQGHXUV WKHUPRG\QDPLTXHV WDEXOpHV FI )LFKH 1ƒ © &DOFXOHU XQH HQWKDOSLH VWDQGDUG GH
UpDFWLRQ ª &¶HVW OH SUHPLHU DVSHFW TXL VHUD DERUGp GDQV FHWWH ILFKH
/D FDORULPpWULH OLWWpUDOHPHQW © PHVXUH GH FKDOHXU ª HVW XQ SDQ GH OD WKHUPRG\QDPLTXH
GpGLp j OD GpWHUPLQDWLRQ GH JUDQGHXUV WKHUPRG\QDPLTXHV JUkFH GHV PHVXUHV GH PDVVH HW GH
WHPSpUDWXUH
'DQV OH FDGUH GX SURJUDPPH RQ VH UHVWUHLQW j OD FDORULPpWULH PRQREDUH Pext = FRQVWDQWH 3RXU WRXWH WUDQVIRUPDWLRQ PRQREDUH RQ UDSSHOOH TXH OH 1er SULQFLSH GH OD WKHUPRG\QDPLTXH
GHYLHQW ΔH = Q DYHF ΔH OD YDULDWLRQ JOREDOH G¶HQWKDOSLH GX V\VWqPH HQWUH O¶pWDW LQLWLDO HW
O¶pWDW ILQDO HW Q OD FKDOHXU pFKDQJpH HQWUH OH V\VWqPH HW O¶H[WpULHXU SHQGDQW OD WUDQVIRUPDWLRQ
/H FDORULPqWUH YRLU )LJXUH FLGHVVRXV HVW XQ GLVSRVLWLI FDORULIXJp SHUPHWWDQW GHV pFKDQJHV
LQWHUQHV G¶pQHUJLH VDQV SHUWH GH FKDOHXU DYHF O¶H[WpULHXU 2Q SDUOH DORUV GH WUDQVIRUPDWLRQV
DGLDEDWLTXHV SRXU OHVTXHOOHV Q = 0
)ං඀ඎඋൾ ± 6FKpPD G¶XQ FDORULPqWUH
HW GH VHV DFFHVVRLUHV DJLWDWHXU PpFDQLTXH
WKHUPRFRXSOH
FRXYHUFOH
(Q UpDOLWp LO H[LVWH GHV SHUWHV GH FKDOHXU TXH O¶RQ QpJOLJHUD GDQV O¶pWXGH
64. Déterminer une enthalpie standard de réaction par calorimétrie
399
(Q FDORULPpWULH PRQREDUH OH 1er SULQFLSH GH OD WKHUPRG\QDPLTXH GHYLHQW GRQF ΔH = 0
,O HVW SRVVLEOH G¶XWLOLVHU FH GLVSRVLWLI DILQ GH GpWHUPLQHU HQWUH DXWUHV O¶HQWKDOSLH VWDQGDUG
G¶XQH UpDFWLRQ FKLPLTXH VH SURGXLVDQW HQ VROXWLRQ DTXHXVH
(WDSHV H[SpULPHQWDOHV 'pWHUPLQDWLRQ DX SUpDODEOH GH OD YDOHXU HQ HDX μ GX FDORULPqWUH HW GHV DFFHVVRLUHV ,O V¶DJLW
GH OD PDVVH pTXLYDOHQWH G¶HDX TXL SRVVqGH OD PrPH FDSDFLWp WKHUPLTXH TXH O¶HQVHPEOH
IRUPp GX FDORULPqWUH HW GH VHV DFFHVVRLUHV
0HVXUHV SUpFLVHV GHV PDVVHV HW GHV WHPSpUDWXUHV GHV GHX[ VROXWLRQV UpDFWLYHV DYDQW Pp
ODQJH 8QH GHV VROXWLRQV VHUD GLUHFWHPHQW SODFpH GDQV OH FDORULPqWUH
$MRXW UDSLGH GH OD GHX[LqPH VROXWLRQ IHUPHWXUH GX FRXYHUFOH SXLV KRPRJpQpLVDWLRQ JUkFH
j O¶DJLWDWHXU
0HVXUH GH OD WHPSpUDWXUH PLQLPDOH RX PD[LPDOH © j O¶pTXLOLEUH ª HQ IRQFWLRQ GX FDUDFWqUH
HQGR RX H[RWKHUPLTXH GH OD UpDFWLRQ FKLPLTXH
8QH IRLV OHV PHVXUHV HIIHFWXpHV LO IDXW OHV H[SORLWHU SRXU REWHQLU O¶HQWKDOSLH GH UpDFWLRQ
VRXKDLWpH
5HPDUTXH &HV JUDQGHXUV PHVXUpHV SHXYHQW ILJXUHU GDQV O¶pQRQFp G¶XQ H[HUFLFH 'qV ORUV
LO IDXW MXVWH DSSOLTXHU OD SDUWLH H[SORLWDWLRQ
([SORLWDWLRQ /H V\VWqPH WKHUPRG\QDPLTXH FRQVLGpUp HVW O¶HQVHPEOH IRUPp GX FDORULPqWUH GH VHV DFFHV
VRLUHV HW GHV VROXWLRQV TXL RQW UpDJL
'DQV OH FDGUH GX SURJUDPPH RQ SHXW UHQFRQWUHU FDXVHV GH YDULDWLRQ G¶HQWKDOSLH DX VHLQ
G¶XQ FDORULPqWUH ΔHréaction YDULDWLRQ G¶HQWKDOSLH GXH DX FDUDFWqUH HQGR RX H[RWKHUPLTXH GH OD UpDF
WLRQ FKLPLTXH
ΔHréaction = ΔrHƒ × ξ
R ΔrHƒ HVW O¶HQWKDOSLH GH UpDFWLRQ FKHUFKp
HW ξ HVW O¶DYDQFHPHQW GH OD UpDFWLRQ HQ JpQpUDO LO HVW GpWHUPLQp SDU XQ WDEOHDX G¶DYDQ
FHPHQW ΔHvariation de T YDULDWLRQ G¶HQWKDOSLH GXH j OD YDULDWLRQ GH OD WHPSpUDWXUH G¶XQH SDU
WLH GX V\VWqPH DSSHOp VRXVV\VWqPH SDU H[ FDORULPqWUH DFFHVVRLUHV XQH VROXWLRQ
DTXHXVH «
ΔHvariation de T = m × c × (Teq − Ti )
$YHF m HW c UHVSHFWLYHPHQW OD PDVVH HW OD FDSDFLWp WKHUPLTXH PDVVLTXH GX VRXV
V\VWqPH FRQVLGpUp Teq OD WHPSpUDWXUH j O¶pTXLOLEUH HW Ti OD WHPSpUDWXUH LQLWLDOH GX
VRXV V\VWqPH
5HPDUTXH OD FDSDFLWp WKHUPLTXH PDVVLTXH GH O¶HDX OLTXLGH HVW OD VHXOH JUDQGHXU QRQ PH
VXUpH (OOH VHUD GRQQpH ceau = 4, 18 J.g −1 .K −1 '¶XQH PDQLqUH JpQpUDOH LO IDXW rWUH DWWHQWLI DX[ XQLWpV GHV JUDQGHXUV IRXUQLHV SDU O¶pQRQFp
,O Q¶HVW SDV UDUH GH GHYRLU FRQYHUWLU GHV JUDQGHXUV PDVVLTXHV HQ PRODLUHV RX LQYHUVHPHQW
400
Chimie
(WDSHV GH O¶H[SORLWDWLRQ 0LVH HQ pTXDWLRQ ,O IDXW OLVWHU OHV pFKDQJHV LQWHUQHV G¶pQHUJLH WRXFKDQW OHV GLIIpUHQWV VRXVV\VWqPHV DX
FRXUV GH O¶H[SpULHQFH WRXW HQ FRQVLGpUDQW TX¶LO Q¶\ D SDV G¶pFKDQJH WKHUPLTXH DYHF
O¶H[WpULHXU
ΔH = 0 = ΔHréaction + ΔH variation de T + ΔH variation de T + ΔH variation de T
(calorimètre)
(sous système 1)
(sous système 2)
5HPDUTXHV VL XQ VRXVV\VWqPH HVW XQH VROXWLRQ DTXHXVH SDV WURS FRQFHQWUpH RQ FRQVLGqUH TXH
VD FDSDFLWp WKHUPLTXH PDVVLTXH HVW pJDOH j FHOOH GH O¶HDX ceau VL WRXWHV OHV SDUWLHV GX V\VWqPH VRQW j OD PrPH WHPSpUDWXUH j O¶pWDW LQLWLDO HW pWDQW
GRQQp TXH OD WHPSpUDWXUH j O¶pTXLOLEUH HVW OD PrPH SRXU WRXW OH V\VWqPH LO HVW SRVVLEOH
GH IDFWRULVHU SDU (Teq − Ti ) HW GH VLPSOLILHU O¶H[SUHVVLRQ SXLVTXH ΔH variation de T + ΔH variation de T + ΔH variation de T = ΔH variation de T
(calorimètre)
(sous système 1)
(sous système 2)
(système entier)
([SUHVVLRQ GH FKDTXH WHUPH HQ IRQFWLRQ GH FH TXL VH SDVVH SK\VLTXHPHQW ΔH variation de T = (Teq − Ti ) × mj × cj
(système entier)
j
ΔHréaction = ΔrHƒ × ξ
5HSpUHU O¶LQFRQQXH HW WUDLWHU PDWKpPDWLTXHPHQW O¶pTXDWLRQ DILQ GH O¶LVROHU 0 = ΔrHƒ × ξ + (Teq − Ti ) × mj × cj
j
1
ΔrHƒ = − × (Teq − Ti ) × mj × cj
ξ
j
'LVFXVVLRQ VXU OH UpVXOWDW REWHQX 6L ΔrHƒ > 0 DORUV OD UpDFWLRQ HVW HQGRWKHUPLTXH
6L ΔrHƒ < 0 DORUV OD UpDFWLRQ HVW H[RWKHUPLTXH
2VF GBJSF 3RXU OD SDUWLH H[SpULPHQWDOH VXLYUH ULJRXUHXVHPHQW OH SURWRFROH H[SpULPHQWDO
1H SDV KpVLWHU j UHIDLUH OHV PDQLSXODWLRQV SOXVLHXUV IRLV
3RXU OD SDUWLH H[SORLWDWLRQ DSSOLTXHU OD PpWKRGH G¶H[SORLWDWLRQ
%LHQ LGHQWLILHU O¶RULJLQH SK\VLTXH GHV YDULDWLRQV G¶HQWKDOSLH HW OHV VRXVV\VWqPHV VXU OHV
TXHOV HOOHV V¶DSSOLTXHQW
64. Déterminer une enthalpie standard de réaction par calorimétrie
401
$POTFJMT
5pDOLVHU GHV PHVXUHV SUpFLVHV GH PDVVH HW WHPSpUDWXUH HQ SUHQDQW OHV WHPSpUDWXUHV pOH
YpHV MXVWH DYDQW HW MXVWH DSUqV OH PpODQJH DILQ GH OLPLWHU OHV HIIHWV GHV SHUWHV GH FKDOHXU
DX QLYHDX GX FDORULPqWUH
(IIHFWXHU DX PD[LPXP OH FDOFXO OLWWpUDO DYDQW GH UpDOLVHU O¶DSSOLFDWLRQ QXPpULTXH
%LHQ GpWDLOOHU OHV pFKDQJHV LQWHUQHV G¶pQHUJLH SRXU QH SDV HQ RXEOLHU HW OHV H[SULPHU FRU
UHFWHPHQW /D PLVH HQ pTXDWLRQ HVW HVVHQWLHOOH 6D UpVROXWLRQ HVW HQ JpQpUDO DLVpH SXLVTXH
F¶HVW XQH pTXDWLRQ GX 1er GHJUp
(Q H[HUFLFH LO SHXW rWUH GHPDQGp GH GpWHUPLQHU XQH DXWUH JUDQGHXU TXH O¶HQWKDOSLH GH Up
DFWLRQ 8QH IRLV OD PLVH HQ pTXDWLRQ HIIHFWXpH Q¶LPSRUWH TXHOOH LQFRQQXH SHXW rWUH LVROpH
$WWHQWLRQ DX[ XQLWpV HW j OHXUV PXOWLSOHV FHUWDLQHV GRQQpHV SHXYHQW rWUH PRODLUHV SDU
H[HPSOH ΔrHƒ HQ N-PRO−1 Cm HQ -PRO−1 .−1 G¶DXWUHV PDVVLTXHV SDU H[HPSOH
ceau HQ -J−1 .−1 /H UpVXOWDW H[SpULPHQWDO SHXW rWUH FRPSDUp j XQH YDOHXU ´WKpRULTXH´ 'DQV FH FDV LO HVW
UHFRPPDQGp GH FDOFXOHU O¶pFDUW UHODWLI η HQWUH FHV YDOHXUV ΔrHƒthéorique − ΔrHƒexpérimentale H[SULPp HQ SRXUFHQWDJH
η=
ΔrHƒthéorique
&YFNQMF USBJU©
2Q SUpOqYH 150 P/ G¶XQH VROXWLRQ GH VXOIDWH GH FXLYUH &X+ ; 62 − GH FRQFHQWUDWLRQ
C = 0, 20 PRO/−1 SXLV RQ LQWURGXLW FHWWH VROXWLRQ GDQV XQ FDORULPqWUH 2Q PHVXUH XQH
WHPSpUDWXUH T1 = 25 ƒ& 2Q DMRXWH GDQV OH PLOLHX 2, 6 J GH ]LQF VROLGH HQ SRXGUH
$SUqV DJLWDWLRQ RQ PHVXUH XQH WHPSpUDWXUH T2 = 51 ƒ&
'pWHUPLQHU OD FRQVWDQWH G¶pTXLOLEUH DVVRFLpH j OD UpDFWLRQ TXL VH SURGXLW GDQV OH FDORUL
PqWUH
'¶DSUqV OHV FRQGLWLRQV LQLWLDOHV TXHO UpDFWLI HVW HQ GpIDXW "
'pWHUPLQHU OD PDVVH QRWpH m&X GH VXOIDWH GH FXLYUH SHQWDK\GUDWp &X62 , + 2
QpFHVVDLUH SRXU REWHQLU 150 P/ GH VROXWLRQ GH FRQFHQWUDWLRQ 0, 20 PRO/−1 HQ LRQ &X+ 2Q GpFRPSRVH IRUPHOOHPHQW OD UpDFWLRQ HQ GHX[ pWDSHV /H V\VWqPH LQLWLDO HDX VXOIDWH GH FXLYUH ]LQF V¶pFKDXIIH GH T1 j T2 O¶pFKDXI
IHPHQW GX FDORULPqWUH HVW LFL FRQVLGpUp FRPPH QpJOLJHDEOH
/D UpDFWLRQ D OLHX j T2 402
Chimie
eWDEOLU OD UHODWLRQ HQWUH OD FKDOHXU OLEpUpH ORUV GH OD UpDFWLRQ QRWpH Q HW OHV GRQQpHV GH
O¶H[SpULHQFH
([SULPHU OD UHODWLRQ HQWUH Q HW ΔrHƒ HQWKDOSLH VWDQGDUG GH OD UpDFWLRQ FRQVLGpUpH
(Q GpGXLUH OD YDOHXU QXPpULTXH GH Q HW ΔrHƒ /D UpDFWLRQ HVWHOOH H[R RX HQGRWKHU
PLTXH "
'RQQpHV &DSDFLWpV FDORULILTXHV PDVVLTXHV j SUHVVLRQ FRQVWDQWH HQ - J−1 .−1 cƒP (=Q) = 0, 38
cƒP (&X) = 0, 40 SRXU OH VHO &X62 , + 2
cƒP (+ 2) = 4, 18
3RWHQWLHOV VWDQGDUG j S+ QXO HW j 298 . HQ 9 Eƒ(&X+ / &X) = 0, 34
Eƒ(=Q+ / =Q) = −0, 76
0DVVHV PRODLUHV HQ JPRO−1 M (&X) = 63, 55
M (=Q) = 65, 38
M (2) = 15, 99
M (+) = 1, 00
M (6) = 32, 06
40-65*0/
,O VH SURGXLW XQH UpDFWLRQ UpGR[ HQWUH OHV LRQV &X+ HW OH =Q(V) VXLYDQW OH ELODQ +
&X+
(DT) + =Q(V) = &X(V) + =Q(DT) 'DQV OH FDV G¶XQH UpDFWLRQ UpGR[ OD FRQVWDQWH Kƒ(T ) VH FDOFXOH GLUHFWHPHQW j SDUWLU GH
OD IRUPXOH YRLU )LFKH 1ƒ © eWDEOLU OD FRPSRVLWLRQ ILQDOH G¶XQ V\VWqPH FKLPLTXH ª
2
n
(Eƒ&X+ / &X − Eƒ=Q+ / =Q ) =
(0, 34 − (−0, 76)) = 37, 3
ORJ (Kƒ(T )) =
0, 059
0, 059
6RLW Kƒ(T ) = 1037,3 = 1, 9 × 1037 /D UpDFWLRQ HVW TXDQWLWDWLYH
3RXU GpWHUPLQHU OH UpDFWLI HQ GpIDXW LO IDXW FDOFXOHU SXLV FRPSDUHU OHV TXDQWLWpV LQLWLDOHV
GH FKDTXH UpDFWLI HQ WHQDQW FRPSWH GH OD VW°FKLRPpWULH GH OD UpDFWLRQ LFL 1 SRXU 1 n0&X+ = C × V = 0, 20 × 150 × 10−3 = 3, 0 × 10−2 PRO
m
2, 6
n0=Q =
= 4, 0 × 10−2 PRO
=
M=Q
65, 38
n0&X+ < n0=Q /H UpDFWLI HQ GpIDXW HVW GRQF O¶LRQ &X+ 3RXU UpDOLVHU FH FDOFXO LO IDXW ELHQ SUHQGUH HQ FRPSWH OD PDVVH PRODLUH GX VHO GDQV VRQ
HQVHPEOH VDQV RXEOLHU OH FRQWUHLRQ QL OHV PROpFXOHV G¶HDX SUpVHQWHV GDQV OH VROLGH SHVp
m&X = n0&X+ × M(&X62 , + 2)
$SSOLFDWLRQ QXPpULTXH m&X = 3, 0 × 10−2 × (63, 55 + 32, 06 + 4 × 15, 99 + 5 × 17, 99) = 7, 5 J
64. Déterminer une enthalpie standard de réaction par calorimétrie
403
3RXU FHWWH UpDFWLRQ VH UpDOLVDQW j P IL[pH OD FKDOHXU OLEpUpH ORUV GH OD UpDFWLRQ FRUUHVSRQG
j OD YDULDWLRQ G¶HQWKDOSLH GXH j OD UpDFWLRQ YXH SUpFpGHPPHQW Q = ΔHréaction
'H SOXV OD UpDFWLRQ D\DQW OLHX GDQV XQ FDORULPqWUH RQ FRQVLGqUH TX¶LO Q¶\ D SDV G¶pFKDQJH
DYHF O¶H[WpULHXU VHXOHPHQW GHV pFKDQJHV LQWHUQHV
(Q WHQDQW FRPSWH GHV GHX[ pWDSHV GH OD UpDFWLRQ OD PLVH HQ pTXDWLRQ GRQQH ΔH = 0 = ΔH variation de T + ΔH variation de T + ΔH variation de T + Q
(eau)
(sulf ate de cuivre)
(zinc)
/¶pFKDXIIHPHQW GX FDORULPqWUH Q¶DSSDUDLW SDV FDU LO HVW QpJOLJp
2Q REWLHQW Q = −ΔH variation de T − ΔH variation de T − ΔH variation de T
(eau)
(sulf ate de cuivre)
(zinc)
Q = −m+ 2 cƒP (+ 2) (T2 − T1 ) − m&X cƒP (&X) (T2 − T1 ) − m=Q cƒP (=Q) (T2 − T1 )
6RLW DX ILQDO Q = −[m+ 2 × cƒP (+ 2) + m&X × cƒP (&X) + m=Q × cƒP (=Q) ] × (T2 − T1 )
1RXV DYRQV GpMj YX TXH Q = ΔHréaction HW GRQF Q = ΔrHƒ × ξ
$SSOLFDWLRQV QXPpULTXHV Q = −(150 × 4, 18 + 7, 5 × 0, 40 + 2, 6 × 0, 38) × (51 − 25) = −1, 6 × 104 'H SOXV O¶pWXGH GH OD VW°FKLRPpWULH GH OD UpDFWLRQ SHUPHW GH GpWHUPLQHU O¶DYDQFHPHQW
ξ GH FHWWH UpDFWLRQ TXDQWLWDWLYH ,O FRUUHVSRQG j OD TXDQWLWp LQLWLDOH GX UpDFWLI OLPLWDQW n0&X+ = ξ = 3, 0 × 10−2 PRO
/¶HQWKDOSLH VWDQGDUG GH UpDFWLRQ YDXW GRQF Q
−1, 6 × 104
ΔrHƒ =
=
= −5, 5 × 105 -PRO−1 ξ
3, 0 × 10−2
ΔrHƒ < 0 OD UpDFWLRQ HVW GRQF H[RWKHUPLTXH &¶HVW FRKpUHQW DYHF O¶pFKDXIIHPHQW PH
VXUp GDQV OH FDORULPqWUH
&YFSDJDFT
&9&3$*$& 'DQV XQ FDORULPqWUH RQ PpODQJH 100 P/ GH VROXWLRQ GH VRXGH 1D+ ; +2− j 2, 0 PRO/−1
HW 100 P/ GH VROXWLRQ G¶DFLGH FKORUK\GULTXH + 2+ ; &O− j 2, 0 PRO/−1 /¶DXJPHQWDWLRQ
GH WHPSpUDWXUH HVW GH 11 ƒ& ORUV GH OD UpDFWLRQ
&DOFXOHU O¶HQWKDOSLH VWDQGDUG GH OD UpDFWLRQ TXL V¶HIIHFWXH GDQV OH FDORULPqWUH
'RQQpHV &DSDFLWp WKHUPLTXH GX FDORULPqWUH Ccalo = 200 -.−1
&DSDFLWp WKHUPLTXH PDVVLTXH GH O¶HDX OLTXLGH ceau = 4180 -NJ−1 .−1
404
Chimie
&9&3$*$& 2Q UpDOLVH OD FRPEXVWLRQ GH 11, 4 J G¶RFWDQH GDQV XQH HQFHLQWH VXSSRVpH FDORULIXJpH GDQV OH
EXW GH FKDXIIHU 500 J G¶HDX /D WHPSpUDWXUH LQLWLDOH GH O¶HDX HVW T1 = 20 ƒ& /D WHPSpUDWXUH
ILQDOH GH O¶HDX HVW T2 = 100 ƒ&
(FULUH O¶pTXDWLRQELODQ GH OD UpDFWLRQ GH FRPEXVWLRQ GH O¶RFWDQH VDFKDQW TXH OHV SURGXLWV
IRUPpV VRQW OH GLR[\GH GH FDUERQH &2 (J) HW OD YDSHXU G¶HDX + 2(O) 4XHOOHV pWDSHV GRLWRQ SUHQGUH HQ FRPSWH SRXU GpFRPSRVHU OH SURFHVVXV "
(Q QpJOLJHDQW O¶pFKDXIIHPHQW GH O¶HQFHLQWH FDORULIXJpH H[SULPHU SXLV FDOFXOHU O¶HQWKDO
SLH VWDQGDUG GH OD UpDFWLRQ GH FRPEXVWLRQ
'RQQpHV 0DVVHV PRODLUHV HQ JPRO−1 M (&) = 12 ; M (+) = 1
&DSDFLWp WKHUPLTXH PDVVLTXH GH O¶HDX OLTXLGH ceau = 4, 18 -J−1 .−1
1PVS WPVT BJEFS
&9&3$*$& E©NBSSFS
5HSpUHU TX¶LO V¶DJLW G¶XQ H[HUFLFH GH ´FDORULPpWULH´ SRXU SRXYRLU DS
SOLTXHU OD PpWKRGH GX FRXUV
'pFRPSRVHU OH SURFHVVXV FRPSOHW HQ SOXVLHXUV YDULDWLRQV G¶HQWKDOSLH
GH VRXVSDUWLHV GH V\VWqPH UpDFWLRQ FKLPLTXH PRGLILFDWLRQ GH T
(TXLOLEUHU OD UpDFWLRQ DFLGREDVLTXH HW UHSpUHU OH UpDFWLI OLPLWDQW DILQ
GH GpWHUPLQHU O¶DYDQFHPHQW ξ GH OD UpDFWLRQ
&9&3$*$& /¶H[SUHVVLRQ ´HQFHLQWH FDORULIXJpH´ LQGLTXH TX¶LO V¶DJLW ELHQ G¶XQ
H[HUFLFH GH ´FDORULPpWULH´
$SSOLTXHU OD PpWKRGH DILQ G¶pTXLOLEUHU XQH UpDFWLRQ GH FRPEXVWLRQ
LGpDOH
'pFRPSRVHU OH SURFHVVXV FRPSOHW HQ SOXVLHXUV YDULDWLRQV G¶HQWKDOSLH
GH VRXVSDUWLHV GH V\VWqPH UpDFWLRQ FKLPLTXH PRGLILFDWLRQ GH T
5HSpUHU OH UpDFWLI OLPLWDQW DILQ GH GpWHUPLQHU O¶DYDQFHPHQW ξ GH OD
UpDFWLRQ
64. Déterminer une enthalpie standard de réaction par calorimétrie
405
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& 'DQV OH FDORULPqWUH VH SURGXLW OD UpDFWLRQ DFLGREDVLTXH GRQW OH ELODQ V¶pFULW 1
+ 2+ + +2− = + 2
Kƒ(T ) =
= 1014
Ke
&HWWH UpDFWLRQ HVW TXDQWLWDWLYH OHV GHX[ UpDFWLIV RQW pWp LQWURGXLWV HQ SURSRUWLRQ VW°FKLRPp
WULTXH O¶DYDQFHPHQW FRUUHVSRQG j OD TXDQWLWp LQLWLDOH GX UpDFWLI OLPLWDQW ξ = n0soude = n0acide = C × V = 2, 0 × 0, 100 = 0, 20 PRO
/H V\VWqPH VXELVVDQW O¶pFKDXIIHPHQW HVW HVVHQWLHOOHPHQW FRQVWLWXp G¶XQH VROXWLRQ DTXHXVH
GH FKORUXUH GH VRGLXP GRQW OD FDSDFLWp WKHUPLTXH VHUD DVVLPLOpH j FHOOH GH O¶HDX SXUH ceau /D UpDFWLRQ DFLGHEDVH HQWUDLQH XQH pOpYDWLRQ GH WHPSpUDWXUH GH WRXW FH TXL VH WURXYH GDQV
OH FDORULPqWUH (Q QpJOLJHDQW WRXWH IXLWH WKHUPLTXH DYHF O¶H[WpULHXU GX FDORULPqWUH RQ D ΔH = 0 = ΔHréaction + ΔH élévation de T + ΔH élévation de T
(calorimètre)
(eau)
0 = ΔrHƒ × ξ + Ccalo × ΔT + (meau ) × ceau × ΔT
/¶HQWKDOSLH VWDQGDUG GH UpDFWLRQ FRUUHVSRQG j 1
ΔrHƒ = − × (Ccalo + meau × ceau ) × ΔT
ξ
6RLW 1
ΔrHƒ = −
× (200 + (200 × 10−3 ) × 4180) × 11 = −5, 7 × 104 -PRO−1 0, 20
ΔrHƒ < 0 OD UpDFWLRQ HVW GRQF H[RWKHUPLTXH &¶HVW FRKpUHQW DYHF O¶pOpYDWLRQ GH WHPSp
UDWXUH FRQVWDWpH GDQV OH FDORULPqWUH
5HPDUTXH OD FDSDFLWp WKHUPLTXH GX FDORULPqWUH Ccalo DXUDLW SX rWUH UHPSODFpH SDU OH SURGXLW
μ × ceau DYHF μ PDVVH pTXLYDOHQWH HQ HDX GX FDORULPqWUH
&9&3$*$& 3RXU pFULUH O¶pTXDWLRQ ELODQ GH OD FRPEXVWLRQ GH O¶RFWDQH LO IDXW pTXLOLEUHU G¶DERUG HQ
& SXLV HQ + HW HQILQ HQ 2 25
2 (J) = 8 &2 (J) + 9 + 2(O)
& + (J) +
2
2Q SHXW YLUWXHOOHPHQW GpFRPSRVHU OH SURFHVVXV HQ GHX[ pWDSHV VXFFHVVLYHV OD UpDFWLRQ H[RWKHUPLTXH GH FRPEXVWLRQ GH O¶RFWDQH
pOpYDWLRQ GH WHPSpUDWXUH GX V\VWqPH MXVTX¶j T2 = 100 ƒ&
406
Chimie
/¶HQFHLQWH pWDQW FDORULIXJpH HOOH IRQFWLRQQH FRPPH XQ FDORULPqWUH 2Q DSSOLTXH OD
PpWKRGH DVVRFLpH (calorimètre)
ΔH = 0 = ΔHréaction + ΔH élévation
de T + ΔH élévation de T
QpJOLJHDEOH
(eau)
0 = ΔrHƒ × ξ + meau × ceau × (T2 − T1 )
6RLW O¶H[SUHVVLRQ GH O¶HQWKDOSLH VWDQGDUG GH UpDFWLRQ 1
ΔrHƒ = − × (meau × ceau × (T2 − T1 ))
ξ
3RXU ILQDOLVHU O¶DSSOLFDWLRQ QXPpULTXH LO IDXW GpWHUPLQHU O¶DYDQFHPHQW
moctane
11, 4
= 0, 100 PRO
=
ξ = n0octane =
Moctane
8 × 12 + 18 × 1
$X ILQDO RQ REWLHQW 1
ΔrHƒ = −
(500 × 4, 18 × (100 − 20)) = −1, 7 × 106 -PRO−1
0, 100
ΔrHƒ < 0 OD UpDFWLRQ HVW IRUWHPHQW H[RWKHUPLTXH &¶HVW FRKpUHQW SXLVTX¶LO V¶DJLW
G¶XQH UpDFWLRQ GH FRPEXVWLRQ
Solutions
64. Déterminer une enthalpie standard de réaction par calorimétrie
407
65
Calculer une enthalpie
standard de réaction
$BMDVMFS VOF FOUIBMQJF
TUBOEBSE EF S©BDUJPO
2VBOE PO OF TBJU QBT /¶HQWKDOSLH VWDQGDUG G¶XQH UpDFWLRQ QRWpH ΔrHƒ HQ -PRO−1 SHXW rWUH REWHQXH VRLW H[
SpULPHQWDOHPHQW ORUV GH PDQLSXODWLRQV GH FDORULPpWULH FI )LFKH 1ƒ © 'pWHUPLQHU XQH
HQWKDOSLH VWDQGDUG GH UpDFWLRQ SDU FDORULPpWULH ª VRLW DQDO\WLTXHPHQW JUkFH j GHV JUDQ
GHXUV WKHUPRG\QDPLTXHV WDEXOpHV &¶HVW FH GHUQLHU DVSHFW TXL HVW DERUGp GDQV FHWWH ILFKH
&RQVLGpURQV XQH UpDFWLRQ FKLPLTXH TXDQWLWDWLYH D\DQW OLHX j T HW P FRQVWDQWHV GRQW RQ
UHFKHUFKH O¶HQWKDOSLH VWDQGDUG ΔrHƒ
2Q SHXW OD UHSUpVHQWHU VFKpPDWLTXHPHQW GH FHWWH IDoRQ (WDW LQLWLDO
ΔrHƒ
(WDW ILQDO
/¶HQWKDOSLH VWDQGDUG GH UpDFWLRQ QH GpSHQG SDV GX FKHPLQ VXLYL 2Q FRQVWUXLW GRQF XQ FKH
PLQ YLUWXHO GLIIpUHQW GX FKHPLQ UpHO DOODQW GHV UpDFWLIV DX[ SURGXLWV 2Q IRUPH XQ F\FOH
DSSHOp F\FOH WKHUPRG\QDPLTXH TXL FRQWLHQW DXWDQW G¶pWDWV LQWHUPpGLDLUHV TXH QpFHVVDLUH
/¶HQWKDOSLH VWDQGDUG GH UpDFWLRQ UHFKHUFKpH ΔrHƒ V¶H[SULPH FRPPH pWDQW OD VRPPH GHV
HQWKDOSLHV VWDQGDUGV GHV UpDFWLRQV IRUPDQW OH FKHPLQ YLUWXHO ΔrHƒ = ΔrHƒ1 + ΔrHƒ2 + ΔrHƒ3 + ...
&9&.1-& &\FOH WKHUPRG\QDPLTXH DYHF GHX[ pWDWV LQWHUPpGLDLUHV
(WDW LQLWLDO
ΔrHƒ
ΔrHƒ1
(WDW LQWHUPpGLDLUH 408
Chimie
(WDW ILQDO
ΔrHƒ3
ΔrHƒ2
(WDW LQWHUPpGLDLUH /¶HQWKDOSLH VWDQGDUG GH IRUPDWLRQ G¶XQH HVSqFH FKLPLTXH QRWpH Δf Hƒi HVW O¶HQWKDO
SLH GH OD UpDFWLRQ GH IRUPDWLRQ G¶XQH PROH G¶XQH HVSqFH FKLPLTXH GDQV XQ pWDW SK\VLTXH
GRQQp j SDUWLU GHV pOpPHQWV SULV GDQV OHXU pWDW VWDQGDUG GH UpIpUHQFH
1RWD EHQH /¶pWDW VWDQGDUG GH UpIpUHQFH G¶XQ pOpPHQW j OD WHPSpUDWXUH T FRUUHVSRQG DX
FRUSV VLPSOH OH SOXV VWDEOH j FHWWH WHPSpUDWXUH GDQV O¶pWDW SK\VLTXH TXL H[LVWH j FHWWH
WHPSpUDWXUH
&9&.1-& /H SORPE 3E
Tf us = 600K; Tvap = 2022K
/¶pWDW VWDQGDUG GH UpIpUHQFH GH O¶pOpPHQW SORPE j . HVW 3E(V)
/¶pWDW VWDQGDUG GH UpIpUHQFH GH O¶pOpPHQW SORPE j . HVW 3E(O)
/¶pWDW VWDQGDUG GH UpIpUHQFH GH O¶pOpPHQW SORPE j . HVW 3E(J)
&HUWDLQV pOpPHQWV UHYLHQQHQW IUpTXHPPHQW GDQV OHV PROpFXOHV
/HXUV pWDWV VWDQGDUGV GH UpIpUHQFH j 298 . VRQW (OpPHQWV
(WDW VWDQGDUG
GH UpIpUHQFH
&
+
2
1
)
&O
%U
,
&JUDSKLWH
QRWp &(JU)
+ (J)
2 (J)
1 (J)
) (J)
&O (J)
%U (O)
, (V)
&9&.1-& /D UpDFWLRQ GH IRUPDWLRQ GH O¶pWKDQRO JD]HX[ j T = 298 . V¶pFULW &(JU) + + (J) + 2 (J) = & + 2+(J) Δf Hƒ& + 2+ (J)
,O HVW SRVVLEOH GH OD VFKpPDWLVHU SDU &(JU) + + (J) + 2 (J)
Δf Hƒ& + 2+(J)
& + 2+(J)
$XWUH H[HPSOH OD UpDFWLRQ GH IRUPDWLRQ GX QLWUDWH GH SORPE VROLGH j T = 298 V¶pFULW Δf Hƒ3E(12 ) (V)
3E (V) + 1 (J) + 2 (J) = 3E(12 ) (V)
RX VRXV IRUPH VFKpPDWLTXH 3E(V) + 1 (J) + 2 (J)
Δf Hƒ3E(12 ) (V)
3E(12 ) (V)
65. Calculer une enthalpie standard de réaction
409
$ILQ GH FDOFXOHU O¶HQWKDOSLH VWDQGDUG G¶XQH UpDFWLRQ TXHOFRQTXH LO VXIILW GH FRQVLGpUHU XQ
pWDW LQWHUPpGLDLUH FRQWHQDQW WRXV OHV pOpPHQWV SULV GDQV OHXU pWDW VWDQGDUG GH UpIpUHQFH
ΔrHƒ
UpDFWLIV
réactif s
−αi Δf Hƒi
SURGXLWV
βi Δf Hƒi
produits
pOpPHQWV SULV GDQV
OHXU pWDW VWDQGDUG
GH UpIpUHQFH
R αi HW βi VRQW UHVSHFWLYHPHQW OHV FRHIILFLHQWV VW°FKLRPpWULTXHV GHV UpDFWLIV HW GHV SUR
GXLWV
(Q SUDWLTXH VL O¶pWDW SK\VLTXH GHV HVSqFHV FKLPLTXHV HVW OH PrPH GDQV OHV GRQQpHV HW
GDQV O¶pTXDWLRQ ELODQ pWDEOLU OH F\FOH WKHUPRG\QDPLTXH Q¶HVW SDV QpFHVVDLUH RQ XWLOLVH
GLUHFWHPHQW OD ORL GH +HVV νi Δf Hƒi
ΔrHƒ =
i
R νi HVW OH FRHIILFLHQW VW°FKLRPpWULTXH DOJpEULTXH GX FRQVWLWXDQW i
HW Δf Hƒi HVW O¶HQWKDOSLH VWDQGDUG GH IRUPDWLRQ GX FRQVWLWXDQW i GDQV XQ pWDW SK\VLTXH ELHQ
SUpFLV
&9&.1-& &RQVLGpURQV OD UpDFWLRQ GH FRPEXVWLRQ G¶HUJROV OLTXLGHV XWLOLVpV GDQV OHV SHWLWV PRWHXUV
IXVpHV VH GpURXODQW j 298 . VXLYDQW O¶pTXDWLRQ ELODQ &+ 1 (J) + 1 2 (J) = 1 (J) + + 2(J) + &2 (J)
ΔrHƒ = ?
'RQQpHV (QWKDOSLHV VWDQGDUGV GH IRUPDWLRQ HQ N-PRO−1 j 298 . &RQVWLWXDQWV
Δ f Hi ƒ
&+ 1 (J)
95
'¶DSUqV OD ORL GH +HVV ΔrHƒ =
1 2 (J)
11
+ 2(J)
−242
&2 (J)
−394
1 (J)
0
νi Δf Hƒi
i
ΔrHƒ = −Δf Hƒ&+ 1 (J) − 54 Δf Hƒ1 2 (J) + 94 Δf Hƒ1 (J) +3Δf Hƒ+ 2(J) +Δf Hƒ&2 (J)
ΔrHƒ = −(95) − 54 × (11) + 94 × (0) + 3 × (−242) + (−394) = −1229 .-PRO−1 5HPDUTXH /¶HQWKDOSLH VWDQGDUG GH IRUPDWLRQ G¶XQ FRUSV VLPSOH TXL FRUUHVSRQG j XQ pWDW
VWDQGDUG GH UpIpUHQFH G¶XQ pOpPHQW HVW WRXMRXUV QXOOH
410
Chimie
2VF GBJSF $QDO\VHU OHV GRQQpHV GH O¶pQRQFp DILQ GH GpWHUPLQHU j TXHO FDV FRUUHVSRQG O¶H[HUFLFH j
WUDLWHU
$POTFJMT
$SSOLTXHU OD PpWKRGH
/H UpVXOWDW SHXW rWUH FRPSDUp j XQH YDOHXU ´WKpRULTXH´ GRQQpH LO HVW UHFRPPDQGp GH
FDOFXOHU O¶pFDUW UHODWLI η HQWUH FHV YDOHXUV ΔrHƒcalculée − ΔrHƒdonnée H[SULPp HQ SRXUFHQWDJH
η=
ΔrHƒdonnée
&YFNQMF USBJU©
2Q V¶LQWpUHVVH j O¶pTXLOLEUH GH %RXGRXDUG IRQGDPHQWDO HQ S\URPpWDOOXUJLH VRXV P = P ƒ
HW j T = 298 . &(V) + &2 (J) = &2(J) 'pWHUPLQHU O¶H[SUHVVLRQ GH O¶HQWKDOSLH VWDQGDUG GH UpDFWLRQ
&DOFXOHU VD YDOHXU HW LQWHUSUpWHU VRQ VLJQH
'RQQpHV j T = 298 .
Δf Hƒ HQ N-PRO−1
&2(J)
−110, 44
&(JU)
0
&2 (J)
−393, 13
40-65*0/
/HV GRQQpHV IRXUQLVVHQW OHV Δf Hƒ GHV UpDFWLIV HW SURGXLWV GLUHFWHPHQW GDQV OH ERQ pWDW
SK\VLTXH /H &(V) j 298 . FRUUHVSRQG j OD SKDVH JUDSKLWH GX FDUERQH
νi Δf Hƒi
/D ORL GH +HVV SHXW rWUH DSSOLTXpH GLUHFWHPHQW ΔrHƒ =
i
ΔrHƒ = −Δf Hƒ&(V) − Δf Hƒ&2 (J) + 2 × Δf Hƒ&2(J)
$SSOLFDWLRQ QXPpULTXH ΔrHƒ = −(−393, 13) + 2 × (−110, 44) = 172, 25 N-PRO−1 /¶HQWKDOSLH VWDQGDUG GH UpDFWLRQ HVW SRVLWLYH OD UpDFWLRQ HVW GRQF HQGRWKHUPLTXH
65. Calculer une enthalpie standard de réaction
411
&YFSDJDFT
&9&3$*$& 2Q DSSHOOH FRPEXVWLRQ G¶XQ K\GURFDUEXUH OD UpDFWLRQ G¶R[\GDWLRQ GH FHW K\GURFDUEXUH SDU OH
GLR[\JqQH JD]HX[ FRQGXLVDQW j O¶REWHQWLRQ GH GLR[\GH GH FDUERQH JD]HX[ HW G¶HDX OLTXLGH
2Q QRWH Δc Hƒ O¶HQWKDOSLH VWDQGDUG GH UpDFWLRQ GH OD FRPEXVWLRQ
3RXU OH EHQ]qQH OLTXLGH Δc Hƒ(& + (O) , 298K) = ±3268 N-PRO−1 'pWHUPLQHU O¶HQWKDOSLH VWDQGDUG GH IRUPDWLRQ GH & + (O) j 298 .
'RQQpHV j T = 298 . Δf Hƒ HQ N-PRO−1
+ 2(O)
−285, 2
+ 2(J)
−241, 8
&2 (J)
−393, 5
&9&3$*$& &DOFXOHU O¶HIIHW WKHUPLTXH GpJDJp VRXV P = P ƒ HW j T = 298 . TXDQG RQ IDLW UpDJLU
3, 5 J G¶R[\GH GH 0DQJDQqVH 0Q2(V) DYHF XQH TXDQWLWp VW°FKLRPpWULTXH G¶DFLGH VXOIXULTXH
+ 62 (O) VXLYDQW OH ELODQ VXLYDQW 0Q2(V) + + 62 (O) = 0Q62 (V) + + 2(O)
'RQQpHV 0DVVHV PRODLUHV HQ JPRO−1 M (0Q) = 55, 0 M (2) = 16, 0
(QWKDOSLHV VWDQGDUG GH UpDFWLRQ j 298 . GDQV O¶DSSUR[LPDWLRQ G¶(OOLQJKDP + 62 (O) + 0Q2 (V) = 0Q (62 ) (V) + + 2(O) + 2 (J)
ΔrHƒ1 = −172, 1 N-PRO−1
0Q (62 ) (V) + + 2(O) = + 62 (O) + 0Q62 (V) + 2 (J)
ΔrHƒ2 = −137, 4 N-PRO−1
0Q2 (V) = 0Q2(V) + 2 (J)
ΔrHƒ3 = +136, 0 N-PRO−1
412
Chimie
1PVS WPVT BJEFS
&9&3$*$& E©NBSSFS
$SSOLTXHU OD ORL GH +HVV
,VROHU O¶LQFRQQXH
&9&3$*$& /¶HIIHW WKHUPLTXH GpJDJp FRUUHVSRQG j Q OD FKDOHXU OLEpUpH DX FRXUV
GH OD UpDFWLRQ PRQRWKHUPH HW PRQREDUH ,O FRUUHVSRQG DXVVL j OD YD
ULDWLRQ G¶HQWKDOSLH ΔH HQ OLHQ DYHF O¶DYDQFHPHQW ξ HW ΔrHƒ
&RPELQHU OHV UpDFWLRQV GRQQpHV DILQ GH UHWURXYHU OD UpDFWLRQ SULQFL
SDOH /D FRPELQDLVRQ OLQDLUH GHV ΔrHƒi GRQQpHV SHUPHW GH FDOFXOHU
OH ΔrHƒ GH OD UpDFWLRQ SULQFLSDOH
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& /D UpDFWLRQ GH FRPEXVWLRQ GX EHQ]qQH V¶pFULW 2 (J) = &2 (J) + + 2(O)
Solutions
& + (J) +
/HV GRQQpHV IRXUQLVVHQW OHV Δf Hƒ GHV UpDFWLIV HW SURGXLWV
/D ORL GH +HVV SHXW rWUH DSSOLTXpH GLUHFWHPHQW Δc Hƒ =
νi Δf Hƒi
i
15
× Δf Hƒ2 (J) + 6 × Δf Hƒ&2 (J) + 3 × Δf Hƒ+ 2(O)
Δc Hƒ = −Δf Hƒ& + (J) −
2
5HPDUTXHV /¶HQWKDSLH VWDQGDUG GH IRUPDWLRQ 2 (J) Δf Hƒ2 (J) HVW QXOOH FDU F¶HVW OH FRUSV VLPSOH FRU
UHVSRQGDQW j O¶pWDW VWDQGDUG GH UpIpUHQFH GH O¶R[\JqQH
/D GRQQpH GH O¶HQWKDOSLH VWDQGDUG GH IRUPDWLRQ GH O¶HDX JD] + 2(J) QH VHUW SDV LFL
6RLW Δf Hƒ& + (J) = −Δc Hƒ + 6 × Δf Hƒ&2 (J) + 3 × Δf Hƒ+ 2(O)
$SSOLFDWLRQ QXPpULTXH Δf Hƒ& + (J) = −(−3268) + 6 × (−393, 5) + 3 × (−285, 2) = 51, 4 N-PRO−1 65. Calculer une enthalpie standard de réaction
413
&9&3$*$& /¶HIIHW WKHUPLTXH GpJDJpH FRUUHVSRQG j OD FKDOHXU pFKDQJpH DX FRXUV GH FHWWH UpDFWLRQ j T
HW P IL[pH &HOD FRUUHVSRQG pJDOHPHQW j OD YDULDWLRQ G¶HQWKDOSLH DX FRXUV GH OD UpDFWLRQ
Q = ΔH = ΔrHƒ × ξ
&HV GHX[ JUDQGHXUV QH VRQW SDV IRXUQLHV GLUHFWHPHQW GDQV O¶pQRQFp PDLV SHXYHQW VH FDOFXOHU '¶DSUqV OD VW°FKLRPpWULH O¶DYDQFHPHQW ξ FRUUHVSRQG j OD TXDQWLWp GH PDWLqUH LQLWLDOH
GX UpDFWLI OLPLWDQW LFL TXDQWLWp VW°FKLRPpWULTXH OD UpDFWLRQ pWDQW FRQVLGpUpH TXDQWL
WDWLYH
m0Q2
3, 5
= 0, 040 PRO
=
ξ = n00Q2(V) =
M0Q2
55, 0 + 2 × 16, 0
/¶HQWKDOSLH VWDQGDUG GH UpDFWLRQ SHXW VH FDOFXOHU SDU FRPELQDLVRQ OLQpDLUH GHV HQWKDO
SLHV GHV UpDFWLRQV GRQQpHV 3RXU FH IDLUH LO IDXW pWXGLHU FRPPHQW UHFRPSRVHU OD
UpDFWLRQ SULQFLSDOH QRWpH (4) j SDUWLU GH FHV UpDFWLRQV
−(3) 0Q2(V) + 2 (J) = 0Q2 (V)
+ 0, 5 × (1) + 62 (O) + 0Q2 (V) = 0Q (62 ) (V) + + 2(O) + 2 (J)
+ 0, 5 × (2) 0Q (62 ) (V) + + 2(O) = + 62 (O) + 0Q62 (V) + 2 (J)
²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²±
(4) 0Q2(V) + + 62 (O) = 0Q62 (V) + + 2(O)
/D FRPELQDLVRQ OLQpDLUH HVW (4) = 12 × (1) + 12 × (2) − (3)
/¶HQWKDOSLH VWDQGDUG GH OD UpDFWLRQ SULQFLSDOH VH FDOFXOH SDU ΔrHƒ = 12 × ΔrHƒ1 + 12 × ΔrHƒ2 − ΔrHƒ3
ΔrHƒ = 12 × (−172, 1) + 12 × (−137, 4) − 136, 0 = −290, 8 N-PRO−1 /D YDOHXU QpJDWLYH LQGLTXH TXH OD UpDFWLRQ HVW H[RWKHUPLTXH
(QILQ OD TXDQWLWp G¶pQHUJLH OLEpUpH SDU OH V\VWqPH DX FRXUV GH OD UpDFWLRQ D SRXU YDOHXU Q = ΔH = ΔrHƒ × ξ = −11, 7 -
414
Chimie
Évaluer la température atteinte par
un système
siège
réactionBUUFJOUF
&WBMVFS
MB d’une
UFNQ©SBUVSF
isobare
QBS VO
TJ¨HF EVOF
et TZTU¨NF
adiabatique
S©BDUJPO JTPCBSF FU BEJBCBUJRVF
66
2VBOE PO OF TBJU QBT 'DQV OD SOXSDUW GHV pWXGHV HQ WKHUPRFKLPLH OH V\VWqPH HVW VLqJH G¶XQH UpDFWLRQ FKLPLTXH
VH GpURXODQW j T HW P IL[pHV
2Q FRQVLGqUH OH PRGqOH G¶XQ V\VWqPH VLqJH G¶XQH UpDFWLRQ FKLPLTXH TXL VXELW XQH WUDQV
IRUPDWLRQ j OD IRLV LVREDUH P = FRQVWDQWH HW DGLDEDWLTXH Q = 0 PDLV QRQ LVRWKHUPH
T = FRQVWDQWH
,O V¶DJLW ELHQ G¶XQ PRGqOH FDU HQ SUDWLTXH LO HVW DVVH] GLIILFLOH GH FUpHU XQH WHOOH WUDQVIRUPD
WLRQ
(Q HIIHW SRXU TX¶XQH WUDQVIRUPDWLRQ VRLW LVREDUH LO HVW QpFHVVDLUH TXH O¶pTXLOLEUH PpFDQLTXH
VRLW PDLQWHQX 3RXU FHOD OD WUDQVIRUPDWLRQ GRLW rWUH TXDVLVWDWLTXH RX LQILQLPHQW OHQWH
'¶DXWUH SDUW SRXU TX¶XQH WUDQVIRUPDWLRQ VRLW DGLDEDWLTXH LO H[LVWH GHX[ SRVVLELOLWpV VRLW O¶HQFHLQWH FRQWHQDQW OH V\VWqPH HVW SDUIDLWHPHQW FDORULIXJpH ,O Q¶\ D GRQF DXFXQ
pFKDQJH WKHUPLTXH DYHF O¶H[WpULHXU FI )LFKH 1ƒ © 'pWHUPLQHU XQH HQWKDOSLH VWDQGDUG
GH UpDFWLRQ SDU FDORULPpWULH ª (Q SUDWLTXH F¶HVW LPSRVVLEOH FDU LO H[LVWH WRXMRXUV GHV IXLWHV
G¶pQHUJLH WKHUPLTXH VRLW OD WUDQVIRUPDWLRQ HVW WHOOHPHQW UDSLGH TXH OHV pFKDQJHV WKHUPLTXHV DYHF O¶H[WpULHXU GX
V\VWqPH Q¶RQW SDV OH WHPSV GH V¶pWDEOLU
/RUVTX¶RQ VH SODFH GDQV FH PRGqOH G¶pWXGH OD WUDQVIRUPDWLRQ FKLPLTXH LVREDUH HW DGLDED
WLTXH YD V\VWpPDWLTXHPHQW PRGLILHU OD WHPSpUDWXUH GX V\VWqPH
&RPPHQW pYDOXHU OD WHPSpUDWXUH DWWHLQWH HQ ILQ GH WUDQVIRUPDWLRQ DSSHOpH SDUIRLV
WHPSpUDWXUH GH IODPPH "
/D WUDQVIRUPDWLRQ SHXW VH GpFRPSRVHU HQ GHX[ pWDSHV JpQpUDOHPHQW UpDFWLRQ FKLPLTXH LVRWKHUPH j Ti
YDULDWLRQ GH OD WHPSpUDWXUH GHV SURGXLWV GH Ti j Tf
66. Évaluer la température atteinte par un système siège d’une réaction isobare et adiabatique
415
&HOD UHYLHQW j FRQVWUXLUH XQ F\FOH WKHUPRG\QDPLTXH IDLVDQW DSSDUDLWUH XQ pWDW LQWHUPpGLDLUH
FRQWHQDQW OHV SURGXLWV GH OD UpDFWLRQ j Ti ΔH = 0
(WDW LQLWLDO UpDFWLIV j Ti
(WDW ILQDO SURGXLWV j Tf
ΔH variation de T
ΔrHƒ(Ti ) × ξmax
des produits
(WDW LQWHUPpGLDLUH SURGXLWV j Ti
/D PLVH HQ pTXDWLRQ UHVVHPEOH j FHOOH GH OD FDORULPpWULH ΔH = 0 = ΔrHƒ(Ti ) × ξmax + ΔH variation de T
des produits
0 = ΔrHƒ(Ti ) × ξmax + (Tf − Ti ) ×
mi × ci
produits
DYHF mi HW ci OD PDVVH HW OD FDSDFLWp WKHUPLTXH PDVVLTXH GH O¶HVSqFH Ai 3XLV RQ LVROH Tf ΔrHƒ(Ti ) × ξmax
Tf = Ti −
mi × ci
produits
5HPDUTXH VXLYDQW OHV GRQQpHV IRXUQLHV GDQV OHV H[HUFLFHV LO HVW SRVVLEOH G¶LQYHUVHU OHV
GHX[ pWDSHV /D WUDQVIRUPDWLRQ VH GpFRPSRVHUDLW DORUV HQ YDULDWLRQ GH OD WHPSpUDWXUH GHV UpDFWLIV Ti j Tf
UpDFWLRQ FKLPLTXH LVRWKHUPH j Tf
/H F\FOH WKHUPRG\QDPLTXH VHUDLW (WDW LQLWLDO UpDFWLIV j Ti
ΔH = 0
ΔH variation de T
ΔrHƒ(Tf ) × ξmax
des réactif s
(WDW LQWHUPpGLDLUH UpDFWLIV j Tf
416
Chimie
(WDW ILQDO SURGXLWV j Tf
&RPPHQW FKRLVLU OH VHQV GH OD GpFRPSRVLWLRQ "
,O IDXW ELHQ DQDO\VHU OHV GRQQpHV SRXU UpSRQGUH j FHV TXHVWLRQV HVW FH TXH O¶HQWKDOSLH GH UpDFWLRQ ΔrHƒ HVW GRQQpH j Ti RX j Tf "
HVW FH TXH OHV FDSDFLWpV WKHUPLTXHV FRUUHVSRQGHQW DX[ UpDFWLIV RX DX[ SURGXLWV "
5HPDUTXH 6L OD WHPSpUDWXUH GH ΔrHƒ Q¶HVW SDV SUpFLVpH F¶HVW TX¶HOOH HVW YDODEOH DXVVL
ELHQ j Ti TX¶j Tf &¶HVW O¶DSSUR[LPDWLRQ G¶(OOLQJKDP
2VF GBJSF &RPPHQFHU SDU DQDO\VHU O¶pQRQFp DILQ GH UHSpUHU TX¶LO V¶DJLW G¶XQ V\VWqPH VLqJH G¶XQH
UpDFWLRQ LVREDUH HW DGLDEDWLTXH
5HFKHUFKHU OHV LQIRUPDWLRQV SRXU UpSRQGUH DX[ TXHVWLRQV VXLYDQWHV DILQ GH VDYRLU FRP
PHQW FRQVWUXLUH OH F\FOH WKHUPRG\QDPLTXH OD UpDFWLRQ HVW HOOH WRWDOH "
OHV UpDFWLIV VRQWLOV HQ SURSRUWLRQV VW°FKLRPpWULTXHV "
OD WUDQVIRUPDWLRQ VH IDLWHOOH HQ O¶DEVHQFH G¶HVSqFH VSHFWDWULFH "
$POTFJMT
(WUH SDUWLFXOLqUHPHQW DWWHQWLI j OD WHPSpUDWXUH GHV pWDWV LQWHUPpGLDLUHV
1H SDV KpVLWHU j OLVWHU WRXWHV OHV HVSqFHV SUpVHQWHV HW SDV XQLTXHPHQW OHV UpDFWLIV HW SUR
GXLWV GH UpDFWLRQV
$WWHQWLRQ DX FDV SDUWLFXOLHU GHV UpDFWLRQV DYHF OH GLR[\JqQH 2 FRPEXVWLRQV VL 2 SURYLHQW GH O¶DLU DORUV LO \ D IRUFpPHQW SUpVHQFH GH GLD]RWH 1 TX¶LO QH IDXW SDV
RXEOLHU HQ WDQW TX¶HVSqFH VSHFWDWULFH /HV SURSRUWLRQV VRQW GH 4 1 SRXU 1 2 $WWHQWLRQ DX[ XQLWpV HW j OHXUV PXOWLSOHV FHUWDLQHV GRQQpHV SHXYHQW rWUH PRODLUHV SDU
H[HPSOH ΔrHƒ HQ N-PRO−1 G¶DXWUHV PDVVLTXHV SDU H[HPSOH ci HQ -.−1 J−1 &YFNQMF USBJU©
3DUWDQW G¶XQ PpODQJH G¶XQH PROH GH GLR[\GH GH VRXIUH 62 (J) SRXU 4 PROHV G¶DLU LQLWLDOH
PHQW j 298 . RQ UpDOLVH GDQV XQ UpDFWHXU DGLDEDWLTXH HW LVREDUH XQH FRQYHUVLRQ WRWDOH GRQW
OH ELODQ HVW OH VXLYDQW 62 (J) + 2 (J) → 62 (J)
66. Évaluer la température atteinte par un système siège d’une réaction isobare et adiabatique
417
'pWHUPLQHU OD FRPSRVLWLRQ GX V\VWqPH j O¶pWDW ILQDO 2Q WLHQGUD QRWDPPHQW FRPSWH GH
OD SUpVHQFH GH GLD]RWH 1 (J) GDQV OH UpDFWHXU
'pWHUPLQHU OD WHPSpUDWXUH ILQDOH DWWHLQWH GDQV OH UpDFWHXU
'RQQpHV &RPSRVLWLRQ GH O¶DLU 20 GH GLR[\JqQH 80 GH GLD]RWH
&DSDFLWpV WKHUPLTXHV PRODLUHV VWDQGDUG j SUHVVLRQ FRQVWDQWH HQ -.−1 PRO−1 CPƒ (2 (J) ) = 34, 2 ; CPƒ (1 (J) ) = 31, 2 ; CPƒ (62 (J) ) = 51, 1 ; CPƒ (62 (J) ) = 76, 6
(QWKDOSLH VWDQGDUG GH OD UpDFWLRQ GH FRPEXVWLRQ j 298 . ΔrHƒ = −197, 6 N-PRO−1 40-65*0/
/H V\VWqPH FRQWLHQW LQLWLDOHPHQW 4 PRO G¶DLU VRLW 3, 2 PRO GH 1 (J) HW 0, 8 PRO GH 2 (J) /D UpDFWLRQ pWDQW WRWDOH HQ DQDO\VDQW OD VW°FKLRPpWULH GH OD UpDFWLRQ RQ GpWHUPLQH TXH
OH UpDFWLI OLPLWDQW HVW 62 HW TXH O¶DYDQFHPHQW HVW ξmax = 0, 5 PRO
$ O¶pWDW ILQDO OH V\VWqPH FRQWLHQW 1 PRO GH 62 (J) SURGXLW GH OD UpDFWLRQ
0, 3 PRO GH 2 (J) UpDFWLI HQ H[FqV
3, 2 PRO GH 1 (J) HVSqFH VSHFWDWULFH
'DQV OH UpDFWHXU DGLDEDWLTXH HW LVREDUH O¶pQHUJLH pFKDQJpH ORUV GH OD UpDFWLRQ HIIHFWXpH
j 298 . VHUW LQWpJUDOHPHQW j PRGLILHU OD WHPSpUDWXUH GX V\VWqPH
(WDW LQLWLDO j 298 . 1 PRO GH 62 (J)
0, 8 PRO GH 2 (J)
3, 2 PRO 1 (J)
(WDW ILQDO j Tf 1 PRO GH 62 (J)
0, 3 PRO GH 2 (J)
3, 2 PRO 1 (J)
ΔH = 0
ΔH variation de T de l ensemble
ΔrHƒ(298K) × ξmax
des espèces présentes
(WDW LQWHUPpGLDLUH j 298 . 1 PRO GH 62 (J)
0, 3 PRO GH 2 (J)
3, 2 PRO 1 (J)
0LVH HQ pTXDWLRQ ΔH = 0 = ΔrHƒ(298K) × ξmax + ΔH variation de T de l ensemble
des espèces présentes
ƒ
ΔH = 0 = ΔrHƒ(298K) × 0, 5 + (Tf − 298) ×
ni × CP,i
produits
418
Chimie
Tf = 298 +
−ΔrHƒ(298K) × 0, 5
ƒ
ni × CP,i
produits
6RLW Tf = 298 +
197, 6 × 103 × 0, 5
= 827 .
1 × 76, 6 + 0, 3 × 34, 2 + 3, 2 × 31, 2
/D FRPEXVWLRQ HVW H[RWKHUPLTXH O¶pQHUJLH OLEpUpH DXJPHQWH OD WHPSpUDWXUH GX V\VWqPH
&YFSDJDFT
&9&3$*$& 2Q UpDOLVH OD FRPEXVWLRQ GX VRXIUH GDQV GX GLR[\JqQH SXU VHORQ OH ELODQ 6(V) + 2 (J) = 62 (J)
/¶HQWKDOSLH VWDQGDUG GH UpDFWLRQ DVVRFLpH HVW ΔrHƒ = −300 N-PRO−1 j 7
298 .
2Q FKHUFKH j UpDOLVHU OD FRPEXVWLRQ WRWDOH GX VRXIUH WRXW HQ QH FRQVRPPDQW TXH OD PRLWLp GH
OD TXDQWLWp HQ 2 (J) LQLWLDOHPHQW LQWURGXLWH /D SUHVVLRQ HVW IL[pH j P = 1 EDU OD WHPSpUDWXUH
LQLWLDOH HVW GH T1 = 298 . HW O¶pYROXWLRQ HVW VXSSRVpH DGLDEDWLTXH
4XHOOH HVW OD WHPSpUDWXUH GHV JD] HQ VRUWLH GH IRXU "
'RQQpHV &DSDFLWpV WKHUPLTXHV PRODLUHV j SUHVVLRQ FRQVWDQWH HQ -.−1 PRO−1 CPƒ (2 (J) ) = 34, 2 ; CPƒ (62 (J) ) = 51, 1
&9&3$*$& /¶REWHQWLRQ GX ]LQF SDU PpWDOOXUJLH VH IDLW HQ GHX[ pWDSHV OD WUDQVIRUPDWLRQ GX VXOIXUH GH
]LQF =Q6(V) HQ R[\GH GH ]LQF =Q2(V) SXLV OD UpGXFWLRQ GH FHW R[\GH
/D SUHPLqUH pWDSH pJDOHPHQW DSSHOpH © JULOODJH GH OD EOHQGH ª V¶HIIHFWXH j T = 1350 .
(OOH HVW PRGpOLVpH VHORQ OH ELODQ =Q6(V) + 2 (J) = =Q2(V) + 62 (J)
$ O¶DLGH GHV GRQQpHV FDOFXOHU O¶HQWKDOSLH VWDQGDUG ΔrHƒ GH FHWWH UpDFWLRQ
/D UpDFWLRQ HVWHOOH HQGR RX H[RWKHUPLTXH "
2Q VXSSRVH GDQV XQ SUHPLHU WHPSV TXH OD EOHQGH =Q6(V) XWLOLVpH HVW SXUH 2Q IDLW UpDJLU 1
PROH GH EOHQGH DYHF OD TXDQWLWp G¶DLU DSSURSULpH SRXU TXH =Q6(V) HW 2 (J) VRLHQW HQ SUR
SRUWLRQV VW°FKLRPpWULTXHV 2Q FRQVLGqUH TXH OD WUDQVIRUPDWLRQ HVW LVREDUH P = 1 EDU HW
DGLDEDWLTXH
66. Évaluer la température atteinte par un système siège d’une réaction isobare et adiabatique
419
&DOFXOHU OD WHPSpUDWXUH DWWHLQWH SDU OH PpODQJH UpDFWLRQQHO
/D UpDFWLRQ SHXWHOOH rWUH DXWRHQWUHWHQXH VRLW DXWUHPHQW GLW OD FKDOHXU GH UpDFWLRQ SUR
GXLWH HVWHOOH VXIILVDQWH SRXU SRUWHU OH PpODQJH UpDFWLRQQHO GH 298 . j 1350 . "
(Q UpDOLWp OH PLQHUDL XWLOLVp Q¶HVW SDV SXU ,O FRQWLHQW G¶DXWUHV FRQVWLWXDQWV QRWDPPHQW GH
OD VLOLFH 6L2 (V) TXH O¶RQ FRQVLGqUHUD SDU OD VXLWH FRPPH OD VHXOH LPSXUHWp SUpVHQWH
&DOFXOHU SRXU PROH GH =Q6(V) OD TXDQWLWp GH PDWLqUH PD[LPDOH HQ 6L2 (V) GDQV OH
PLQHUDL SRXU TXH OD UpDFWLRQ VRLW DXWRHQWUHWHQXH
(Q GpGXLUH OD IUDFWLRQ PDVVLTXH PLQLPDOH w HQ =Q6(V) QpFHVVDLUH DX FDUDFWqUH DXWR
HQWUHWHQX GX JULOODJH
'RQQpHV j 298 . N-PRO−1
Δf Hƒ
CPƒ -.−1 PRO−1
0DVVH PRODLUH JPRO−1
=Q6(V)
−202, 9
58, 05
97, 44
2 (J)
0
1PVS WPVT BJEFS
&9&3$*$& =Q2(V)
−348
51, 64
62 (J)
−296, 9
51, 10
1 (J)
0
30, 65
6L2 (V)
72, 50
60, 08
E©NBSSFS
$QDO\VHU OHV GRQQpHV SRXU GpFRPSRVHU OD WUDQVIRUPDWLRQ FRUUHFWH
PHQW /D UpDFWLRQ FKLPLTXH DWHOOH OLHX DYDQW RX DSUqV OD YDULDWLRQ
GH WHPSpUDWXUH "
1RWHU n OD TXDQWLWp LQLWLDOH HQ 6(V) SXLV GpWHUPLQHU OHV TXDQWLWpV HQ
2 (J) HW 62 (J) &9&3$*$& 8WLOLVHU OD )LFKH 1ƒ © &DOFXOHU XQH HQWKDOSLH VWDQGDUG GH UpDFWLRQ ª
/¶DLU HVW FRPSRVp GH 80 GH GLD]RWH HW GH 20 GH GLR[\JqQH
'DQV OD TXHVWLRQ O¶LQFRQQXH Q¶HVW SDV OD WHPSpUDWXUH GH IODPPH
PDLV OD TXDQWLWp GH PDWLqUH GH 6L2 (V) HVSqFH VSHFWDWULFH 420
Chimie
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& /¶HQWKDOSLH VWDQGDUG GH OD FRPEXVWLRQ HVW QpJDWLYH /D UpDFWLRQ HVW H[RWKHUPLTXH HOOH OLEqUH
GH O¶pQHUJLH TXL HQWUDLQH XQH pOpYDWLRQ GH OD WHPSpUDWXUH GX V\VWqPH
/D UpDFWLRQ HVW WRWDOH ,QLWLDOHPHQW LO \ D IRLV SOXV GH 2 (J) TXH GH 6(V) SXLVTX¶j OD ILQ GH OD
UpDFWLRQ LO UHVWH OD PRLWLp GH OD TXDQWLWp LQLWLDOH GH 2 (J) /HV GRQQpHV LPSRVHQW GH GpFRPSRVHU OD WUDQVIRUPDWLRQ VXLYDQW FH F\FOH WKHUPRG\QDPLTXH (WDW LQLWLDO j 298 . n PRO GH 6(V)
2n PRO GH 2 (J)
(WDW ILQDO j Tf n PRO GH 62 (J)
n PRO GH 2 (J)
ΔH = 0
ΔH variation de T de l ensemble
ΔrHƒ(298K) × ξmax
des espèces présentes
Solutions
(WDW LQWHUPpGLDLUH j 298 . n PRO GH 62 (J)
n PRO GH 2 (J)
0LVH HQ pTXDWLRQ ΔH = 0 = ΔrHƒ(298K) × ξmax + ΔH variation de T de l ensemble
des espèces présentes
ƒ
ΔH = 0 = ΔrHƒ(298K) × n + (Tf − 298) ×
ni × CP,i
produits
−ΔrHƒ(298K) × n
Tf = 298 +
ƒ
ni × CP,i
produits
300 × 103 × n
= 3815 .
n × 51, 1 + n × 34, 2
/D WHPSpUDWXUH GHV JD] HQ VRUWLH GH IRXU HVW GH 3815 .
&HWWH YDOHXU HVW SDUWLFXOLqUHPHQW pOHYpH (Q UpDOLWp OD WHPSpUDWXUH DWWHLQWH SDU OH V\VWqPH
VHUD SOXV IDLEOH FDU OHV SDURLV QH VRQW MDPDLV SDUIDLWHPHQW FDORULIXJpHV
6RLW Tf = 298 +
&9&3$*$& /¶HQWKDOSLH VWDQGDUG GH UpDFWLRQ VH FDOFXOH JUkFH j OD ORL GH +HVV FI )LFKH 1ƒ © &DO
FXOHU XQH HQWKDOSLH VWDQGDUG GH UpDFWLRQ ª
3
νi Δf Hƒi = −Δf Hƒ=Q6(V) − Δf Hƒ2 (J) + Δf Hƒ=Q2(V) + Δf Hƒ62 (J)
2
i
ΔrHƒ = +202, 9 − 0 + (−348) + (−296, 9) = −442 N-PRO−1
ΔrHƒ =
66. Évaluer la température atteinte par un système siège d’une réaction isobare et adiabatique
421
/D UpDFWLRQ HVW H[RWKHUPLTXH FDU ΔrHƒ < 0
/D EOHQGH UpDJLW DYHF OH GLR[\JqQH GH O¶DLU ,O \ D GRQF SUpVHQFH GH GLD]RWH LQHUWH VSHF
WDWHXU 'H SOXV GDQV O¶DLU n1 = 4 × n2 /HV GRQQpHV QH IRXUQLVVHQW SDV OD FDSDFLWp WKHUPLTXH PRODLUH GH 2 (J) &HOD LPSRVH GH GpFRPSRVHU OD WUDQVIRUPDWLRQ LVREDUH HW DGLDEDWLTXH G¶DSUqV OH F\FOH
WKHUPRG\QDPLTXH VXLYDQW (WDW LQLWLDO j 298 . 1 PRO GH =Q6(V)
1, 5 PRO GH 2 (J)
6 PRO GH 1 (J)
(WDW ILQDO j Tf 1 PRO GH =Q2(V)
1 PRO GH 62 (J)
6 PRO GH 1 (J)
ΔH = 0
ΔH variation de T de l ensemble
ΔrHƒ(298K) × ξmax
des espèces présentes
(WDW LQWHUPpGLDLUH j 298 . 1 PRO GH =Q2(V)
1 PRO GH 62 (J)
6 PRO GH 1 (J)
0LVH HQ pTXDWLRQ ΔH = 0 = ΔrHƒ(298K) × ξmax + ΔH variation de T de l ensemble
des espèces présentes
ƒ
ΔH = 0 = ΔrHƒ(298K) × 1 + (Tf − 298) ×
ni × CP,i
produits
Tf = 298 +
−ΔrHƒ(298K) × 1
ƒ
ni × CP,i
produits
442 × 103
= 1840 .
1 × 51, 64 + 1 × 51, 1 + 6 × 30, 65
/D WHPSpUDWXUH GH IODPPH DWWHLQWH SDU OH PpODQJH UpDFWLRQQHO HVW GH 1840 .
6RLW Tf = 298 +
422
(Q SDUWDQW GH 298 . OD WHPSpUDWXUH DWWHLQWH SDU OH PpODQJH HVW VXSpULHXUH j 1350 . /D
UpDFWLRQ HVW DXWRHQWHWHQXH
Chimie
/H V\VWqPH FRQWLHQW 6L2 (V) TXL MRXH OH U{OH G¶LPSXUHWp VSHFWDWULFH
/D FRPSRVLWLRQ GX V\VWqPH HVW PRGLILpH HW OD WHPSpUDWXUH ILQDOH GRLW rWUH DX PLQLPXP
GH 1350 . SRXU TXH OD UpDFWLRQ VRLW DXWRHQWUHWHQXH (WDW LQLWLDO j 298 . 1 PRO GH =Q6(V)
1, 5 PRO GH 2 (J)
6 PRO GH 1 (J)
n PRO GH 6L2 (V)
(WDW ILQDO j 1350 . 1 PRO GH =Q2(V)
1 PRO GH 62 (J)
6 PRO GH 1 (J)
n PRO GH 6L2 (V)
ΔH = 0
ΔH variation de T de l ensemble
ΔrHƒ(298K) × ξmax
des espèces présentes
(WDW LQWHUPpGLDLUH j 298 . 1 PRO GH =Q2(V)
1 PRO GH 62 (J)
6 PRO GH 1 (J)
n PRO GH 6L2 (V)
Solutions
0LVH HQ pTXDWLRQ ΔH = 0 = ΔrHƒ(298K) × ξmax + ΔH variation de T de l ensemble
des espèces présentes
ƒ
ΔH = 0 = ΔrHƒ(298K) × 1 + (1350 − 298) ×
ni × CP,i
produits
ƒ
ƒ
ƒ
ƒ
−ΔrHƒ(298K) = (1350−298)×(1×CP,
=Q2 +1×CP, 62 +6×CP, 1 +n×CP, 6L2 )
ƒ
ƒ
ƒ
ƒ
442 × 103 = (1350 − 298) × (CP,
=Q2 + CP, 62 + 6 × CP, 1 + n × CP, 6L2 )
442 × 103
ƒ
ƒ
ƒ
ƒ
+
C
+
6
×
C
+
n
×
C
=
CP,
=Q2
P, 62
P, 1
P, 6L2
(1350 − 298)
3
442 × 10
1
ƒ
ƒ
ƒ
6RLW n = ƒ
− CP, =Q2 − CP, 62 − 6 × CP, 1
×
(1350 − 298)
CP, 6L2
442 × 103
1
n=
×
− 51, 64 − 51, 10 − 6 × 30, 65 = 1, 84 PRO
72, 50
(1350 − 298)
3RXU TXH OD UpDFWLRQ UHVWH DXWRHQWUHWHQXH LO IDXW DX PD[LPXP 1, 84 PRO GH 6L2 (V) SDU
PRO GH =Q6(V) /D IUDFWLRQ PDVVLTXH PLQLPDOH w HQ =Q6(V) QpFHVVDLUH SRXU TXH OD UpDFWLRQ UHVWH DXWR
HQWUHWHQXH VH FDOFXOH HQ XWLOLVDQW OHV YDOHXUV REWHQXHV j OD TXHVWLRQ SUpFpGHQWH HW O¶H[
SUHVVLRQ GH OD IUDFWLRQ PDVVLTXH m=Q6
n=Q6 × M=Q6
m=Q6
=
=
w=
mtotale
m=Q6 + m6L2
n=Q6 × M=Q6 + n6L2 × M6L2
1 × 97, 44
= 0, 468 = 46, 8
w=
1 × 97, 44 + 1, 84 × 60, 08
66. Évaluer la température atteinte par un système siège d’une réaction isobare et adiabatique
423
67
Prévoir le sens d’évolution
spontanée
système
1S©WPJS
MF TFOTd’un
Eš©WPMVUJPO
TQPOUBO©F EšVO TZTU¨NF
2VBOE PO OF TBJU QBT 6RLW XQ V\VWqPH FRQVWLWXp G¶HVSqFHV FKLPLTXHV Ai SDUWLFLSDQW j XQH UpDFWLRQ FKLPLTXH G¶pTXD
WLRQ ELODQ νi Ai = 0 νi FRHIILFLHQW VW°FKLRPpWULTXH DOJpEULTXH GH Ai i
3HXWRQ SUpYRLU OH VHQV G¶pYROXWLRQ VSRQWDQpH GH FH V\VWqPH F¶HVWjGLUH VDQV DSSRUW
H[WpULHXU G¶pQHUJLH VDYRLU VL KRUV pTXLOLEUH j WHPSpUDWXUH HW SUHVVLRQ IL[pHV OD UpDF
WLRQ YD VH SURGXLUH GDQV OH VHQV GLUHFW RX GDQV OH VHQV LQGLUHFW "
/D UHODWLRQ IRQGDPHQWDOH GRQQDQW OH FULWqUH G¶pYROXWLRQ VSRQWDQpH G¶XQ V\VWqPH V¶pFULW ΔrG × dξ < 0
DYHF ΔrG O¶HQWKDOSLH OLEUH GH OD UpDFWLRQ
HW dξ O¶DYDQFHPHQW pOpPHQWDLUH GH FHWWH UpDFWLRQ
/D FRQQDLVVDQFH GX VLJQH GH ΔrG SHUPHW HQ HIIHW GH FRQFOXUH GLUHFWHPHQW VLJQH GH ΔrG
VHQV G¶pYROXWLRQ VSRQWDQpH GX V\VWqPH
ΔrG < 0
dξ > 0 GRQF OH V\VWqPH pYROXH GDQV OH VHQV GLUHFW ©→ª
ΔrG > 0
dξ < 0 GRQF OH V\VWqPH pYROXH GDQV OH VHQV LQGLUHFW ©←ª
&HWWH UHODWLRQ VH GpGXLW GH OD GpILQLWLRQ GH O¶HQWKDOSLH OLEUH G¶XQ V\VWqPH G = H −T ×S = U +P ×V −T ×S
O¶DSSOLFDWLRQ GX SUHPLHU HW GX GHX[LqPH SULQFLSH GH OD WKHUPRG\QDPLTXH DX V\VWqPH
VLqJH GH OD UpDFWLRQ FKLPLTXH VSRQWDQpH GRQF LUUpYHUVLEOH HQ O¶DEVHQFH GH WUDYDLO DXWUH
TXH FHOXL GHV IRUFHV GH SUHVVLRQ dG = δW + δQ + P × dV + V × dP − S × dT − T × dS
dG = −P × dV + T × (dS − δScréée ) + P × dV + V × dP − S × dT − T × dS
VRLW dG = V × dP − T × δScréée − S × dT
O¶H[SUHVVLRQ GH OD YDULDWLRQ pOpPHQWDLUH GH O¶HQWKDOSLH OLEUH G¶XQ V\VWqPH VLqJH G¶XQH
UpDFWLRQ FKLPLTXH dG = −S × dT + V × dP + ΔrG × dξ
O¶pJDOLWp GHV GHX[ H[SUHVVLRQV SUpFpGHQWHV SRXU dG ΔrG × dξ = −T × δScréée DYHF δScréée > 0 G¶DSUqV OH 2nd SULQFLSH GH OD WKHUPRG\QDPLTXH
3DU FRQVpTXHQW OH SURGXLW ΔrG × dξ HVW VWULFWHPHQW QpJDWLI
424
Chimie
&RPPHQW GpWHUPLQHU OH VLJQH GH O¶HQWKDOSLH OLEUH G¶XQH UpDFWLRQ "
&DV G¶XQ V\VWqPH IHUPp FRQVWLWXp GH GHX[ HVSqFHV A HW B VLqJH G¶XQH WUDQVIRUPDWLRQ
GpFULWH SDU O¶pTXDWLRQ GH ELODQ A = B V¶LO \ D pYROXWLRQ HVWFH GDQV OH VHQV A → B RX
A←B "
7UqV VRXYHQW RQ VH UDPqQH j O¶pWXGH GHV SRWHQWLHOV FKLPLTXHV GH A HW B (Q HIIHW SDU
GpILQLWLRQ RQ D LFL ΔrG = −μA + μB '¶R OD GLVFXVVLRQ VXU OH VLJQH GH ΔrG VLJQH GH ΔrG
VHQV G¶pYROXWLRQ VSRQWDQpH GX V\VWqPH
μA > μ B
ΔrG < 0
VHQV GLUHFW A → B nA (t) GLPLQXH nB (t) DXJPHQWH
μA < μ B
ΔrG > 0
VHQV LQGLUHFW B → A nA (t) DXJPHQWH nB (t) GLPLQXH
/H V\VWqPH pYROXH VSRQWDQpPHQW GDQV OH VHQV GHV SRWHQWLHOV FKLPLTXHV GpFURLVVDQWV
5HPDUTXH FH FDV GH ILJXUH VH SUpVHQWH JpQpUDOHPHQW DYHF XQ PpODQJH GLSKDVLTXH G¶XQ
FRUSV SXU
&9&.1-& VRLW OD WUDQVIRUPDWLRQ GH ELODQ %U (J) = %U (O) /HV SRWHQWLHOV FKLPLTXHV DVVR
FLpV VRXV 1 EDU HW j 25ƒ& VRQW WHOV TXH μ%U (O) < μ%U (J) 2Q REVHUYH VSRQWDQpPHQW OD WUDQVIRUPDWLRQ GH %U (J) HQ %U (O) OLTXpIDFWLRQ /D SKDVH GX GLEURPH OD SOXV VWDEOH GDQV FHV FRQGLWLRQV HVW GRQF OD SKDVH OLTXLGH
&DV G¶XQ V\VWqPH IHUPp SOXV FRPSOH[H FRPSUHQDQW GHV HVSqFHV FKLPLTXHV Ai VLqJH
G¶XQH UpDFWLRQ FKLPLTXH *pQpUDOHPHQW O¶pWXGH QH SRUWH SDV GLUHFWHPHQW VXU OH FDOFXO GH ΔrG j SDUWLU GHV SRWHQWLHOV
FKLPLTXHV PDLV IDLW DSSDUDLWUH O¶HQWKDOSLH OLEUH VWDQGDUG GH UpDFWLRQ QRWpH ΔrGƒ HW OH
TXRWLHQW GH UpDFWLRQ Qr ν i × μi =
νi × (μƒi + R × T × OQ ai )
ΔrG =
i
i
DYHF μi = μƒi + R × T × OQ ai OH SRWHQWLHO FKLPLTXH GH O¶HVSqFH FKLPLTXH Ai μƒi VRQ SRWHQWLHO FKLPLTXH VWDQGDUG HW ai VRQ DFWLYLWp
νi
νi × (μƒi + R × T × OQ (ai )) = ΔrGƒ + R × T × OQ
ai
'¶R ΔrG =
i
i
VRLW ΔrG = ΔrGƒ + R × T × OQ Qr
νi
DYHF ΔrGƒ = νi × μƒi O¶HQWKDOSLH OLEUH VWDQGDUG GH UpDFWLRQ HW Qr =
ai
i
OH TXRWLHQW GH UpDFWLRQ j XQ LQVWDQW t GRQQp
i
$ O¶pTXLOLEUH Qréquilibre = Kƒ FRQVWDQWH G¶pTXLOLEUH GH OD UpDFWLRQ HW ΔrG = 0
G¶R OHV UHODWLRQV IRQGDPHQWDOHV Qr
ΔrGƒ = −R × T × OQ Qr
HW ΔrG = R × T × OQ
Kƒ
3OXVLHXUV FKHPLQV PqQHQW j ΔrGƒ RX j Kƒ FHOD GpSHQG GHV GRQQpHV IRXUQLHV VXU OH
V\VWqPH 2Q UHWLHQGUD QRWDPPHQW OHV FDV UpFXUUHQWV 67. Prévoir le sens d’ évolution spontanée d’un système
425
ORUVTXH OHV GRQQpHV IRXUQLHV VRQW GHV JUDQGHXUV WKHUPRG\QDPLTXHV VWDQGDUG HQ
WKDOSLHV VWDQGDUG GH IRUPDWLRQ HQWKDOSLHV VWDQGDUG GH GLVVRFLDWLRQ GH OLDLVRQ RX
HQWKDOSLHV VWDQGDUG GH FKDQJHPHQW G¶pWDW HQWURSLHV PRODLUHV VWDQGDUG Sƒm,i RQ
FDOFXOH O¶HQWKDOSLH VWDQGDUG GH UpDFWLRQ ΔrHƒ FI )LFKH 1ƒ © &DOFXOHU XQH HQ
WKDOSLH VWDQGDUG GH UpDFWLRQ ª HW O¶HQWURSLH VWDQGDUG GH UpDFWLRQ ΔrSƒ JUkFH j OD
IRUPXOH
�
νi × Sƒm,i
ΔrSƒ =
i
2Q HQ GpGXLW O¶H[SUHVVLRQ GH O¶HQWKDOSLH OLEUH VWDQGDUG GH UpDFWLRQ ΔrGƒ = ΔrHƒ − T × ΔrSƒ �
�
ΔrGƒ
SXLV FHOOH GH OD FRQVWDQWH G¶pTXLOLEUH Kƒ = H[S −
R×T
ORUVTXH OHV GRQQpHV IRXUQLHV VRQW DVVRFLpHV j GHV pTXLOLEUHV FRQVWDQWHV G¶pTXLOLEUH
RX HQWKDOSLHV OLEUHV VWDQGDUG GH UpDFWLRQ RQ FKHUFKH OD FRPELQDLVRQ OLQpDLUH GHV
ELODQV GRQQDQW O¶pTXDWLRQ ELODQ GH OD UpDFWLRQ pWXGLpH
6RLW SDU H[HPSOH O¶pTXDWLRQ
� ELODQ REWHQXH SDU OD FRPELQDLVRQ OLQpDLUH G¶DXWUHV EL
bj × ΔrGƒj DYHF bj XQ FRHIILFLHQW SRVLWLI RX QpJDWLI
ODQV WHOOH TXH ΔrGƒ =
j
2Q D DORUV OD UHODWLRQ VXLYDQWH HQWUH OHV FRQVWDQWHV G¶pTXLOLEUH ⎞
⎛ �
⎞
⎛
− bj × ΔrGƒj
�
b
×
(R
×
T
×
OQ
Kƒ
)
⎟
⎜ j
j
j ⎠
Kƒ = H[S ⎝
⎠ = H[S ⎝
R×T
R×T
j
6RLW Kƒ = H[S
'¶R Kƒ =
�
j
&9&.1-& �
�
j
b
�
b
OQ Kƒj j
�
�
�
= H[S OQ
�
j
b
Kƒj j
�
Kƒj j
6RLW OD UpDFWLRQ G¶R[\GRUpGXFWLRQ HQ PLOLHX EDVLTXH XWLOLVpH GDQV OD PpWKRGH GH
:LQFNOHU GpWHUPLQDWLRQ GX WDX[ GH GLR[\JqQH GDQV XQH HDX G¶pTXDWLRQ ELODQ −
0Q+
DT + 2 DT + + 2(O) + +2 DT = 0Q(2+) (V)
/D FRQVWDQWH G¶pTXLOLEUH DVVRFLpH HVW QRWpH Kƒ O¶HQWKDOSLH OLEUH VWDQGDUG GH UpDF
WLRQ HVW QRWpH ΔrGƒ
2Q GRQQH O¶pTXDWLRQ ELODQ WUDGXLVDQW O¶R[\GDWLRQ GHV LRQV M n2+ HQ LRQV M n3+ +
−
(1) 0Q+
DT + 2 DT + + 2(O) = 0Q DT + +2 DT
O¶pTXDWLRQ ELODQ WUDGXLVDQW OD GLVVROXWLRQ GX SUpFLSLWp 0Q(2+) (V) −
(2) 0Q(2+) (V) = 0Q+
DT + +2 DT
426
Chimie
/H ELODQ pWXGLp V¶REWLHQW SDU OD FRPELQDLVRQ OLQpDLUH (1) − 4 × (2) HQ HIIHW +
−
(1) 0Q+
DT + 2 DT + + 2(O) = 0Q DT + +2 DT
−
−4 × (2) 0Q+
DT + +2 DT = 0Q(2+) (V)
²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²±
−
0Q+
DT + 2 DT + + 2(O) + +2 DT = 0Q(2+) (V)
Kƒ1
(Kƒ2 )4
DYHF ΔrGƒi O¶HQWKDOSLH OLEUH VWDQGDUG GH UpDFWLRQ HW Kƒi OD FRQVWDQWH G¶pTXLOLEUH
GHV UpDFWLRQV (1) RX (2)
'¶R ΔrGƒ = ΔrGƒ1 − 4 × ΔrGƒ2 HW Kƒ =
)LQDOHPHQW OD GLVFXVVLRQ VXU OH VLJQH GH ΔrG UHSRVH VXU OD FRPSDUDLVRQ GX TXRWLHQW GH
UpDFWLRQ HW GH OD FRQVWDQWH G¶pTXLOLEUH Qr < Kƒ
Qr > Kƒ
VLJQH GH ΔrG
ΔrG < 0
ΔrG > 0
VHQV G¶pYROXWLRQ VSRQWDQpH GX V\VWqPH
VHQV GLUHFW ©→ª
VHQV LQGLUHFW ©←ª
2VF GBJSF %LHQ FRQQDvWUH VRQ FRXUV« OD WKHUPRFKLPLH QH IDLW SDV SDUWLH GHV FKDSLWUHV OHV SOXV IDFLOHV
PDLV DYHF GH OD ULJXHXU RQ GRLW SRXYRLU V¶HQ VRUWLU ,GHQWLILHU OH V\VWqPH pWXGLp FRUSV SXU " PpODQJH G¶HVSqFHV FKLPLTXHV " V\VWqPH VLqJH
G¶XQH UpDFWLRQ " HW SUHQGUH HQ FRPSWH OHV GRQQpHV IRXUQLHV SRXU ELHQ GpPDUUHU OD UpVROX
WLRQ
$POTFJMT
%LHQ FRQQDvWUH OHV LGHQWLWpV WKHUPRG\QDPLTXHV HW OHXUV FRQGLWLRQV G¶DSSOLFDWLRQ DILQ GH
SRXYRLU UHGpPRQWUHU OD IRUPXOH ΔrG × dξ < 0
$WWHQWLRQ DX[ GHX[ HUUHXUV IUpTXHQWHV VXU O¶HQWKDOSLH OLEUH VWDQGDUG GH UpDFWLRQ 2Q VH UDPqQH SRXU O¶HQWKDOSLH GH UpDFWLRQ j OD JUDQGHXU VWDQGDUG HQ FRQVLGpUDQW TXH
WRXW VH SDVVH FRPPH VL OH V\VWqPH VH FRPSRUWDLW FRPPH XQ HQVHPEOH GH FRUSV SXUV
VHXOV GDQV OHXU SKDVH j P = P ƒ ΔrH(T, P, ξ) � ΔrHƒ(T )
3DU FRQWUH RQ HQ SHXW SDV IDLUH FHWWH DSSUR[LPDWLRQ SRXU O¶HQWKDOSLH OLEUH GH UpDFWLRQ ΔrG(T, P, ξ) �= ΔrGƒ(T ) /¶DSSUR[LPDWLRQ G¶(OOLQJKDP FRQVLVWH j FRQVLGpUHU TXH ΔrHƒ HW ΔrSƒ VRQW GHV FRQVWDQWHV
LQGpSHQGDQWHV GH OD WHPSpUDWXUH T 3DU FRQWUH ΔrGƒ = ΔrHƒ − T × ΔrSƒ Q¶HVW SDV
XQH FRQVWDQWH PDLV XQH IRQFWLRQ DIILQH GH T 67. Prévoir le sens d’ évolution spontanée d’un système
427
&YFNQMF USBJU©
2Q FRQVLGqUH OD UpDFWLRQ GH V\QWKqVH GH O¶pWKDQRO SDU K\GUDWDWLRQ GH O¶pWKqQH GH ELODQ & + (J) + + 2(J) = & + 2+(J)
([SULPHU SXLV FDOFXOHU O¶HQWKDOSLH VWDQGDUG GH UpDFWLRQ &RPPHQWHU VRQ VLJQH
([SULPHU SXLV FDOFXOHU O¶HQWURSLH VWDQGDUG GH UpDFWLRQ &RPPHQWHU VRQ VLJQH
([SULPHU O¶HQWKDOSLH OLEUH VWDQGDUG GH UpDFWLRQ
&DOFXOHU OD FRQVWDQWH G¶pTXLOLEUH DVVRFLpH j T = 400 .
([SULPHU SXLV FDOFXOHU OH TXRWLHQW GH UpDFWLRQ LQLWLDO SRXU GHV SUHVVLRQV SDUWLHOOHV LQL
WLDOHV Peau = 0, 5 EDU Péthène = 0, 5 EDU HW Péthanol = 0, 001 EDU
&RQFOXUH VXU O¶pYROXWLRQ VSRQWDQpH GX V\VWqPH SRXU T = 400 .
'RQQpHV &RPSRVp
& + (J)
+ 2(J)
& + 2+(J)
Δf Hƒ HQ N-PRO−1 j 298 .
52, 3
−241, 8
−235, 1
Sm ƒ HQ -.−1 PRO−1 j 298 .
220
189
283
/D FRQVWDQWH GHV JD] SDUIDLWV R = 8, 314 -.−1 PRO−1
40-65*0/
/D ORL GH +HVV SHXW rWUH DSSOLTXpH GLUHFWHPHQW ΔrHƒ =
νi Δf Hƒi
i
ΔrHƒ = −Δf Hƒ& + (J) − Δf Hƒ+ 2(J) + Δf Hƒ& + 2+(J)
ΔrHƒ = −52, 3 − (−241.8) + (−235, 1) = −45, 6 N-PRO−1 ΔrHƒ < 0 FHWWH UpDFWLRQ G¶K\GUDWDWLRQ HVW H[RWKHUPLTXH
/¶HQWURSLH VWDQGDUG GH UpDFWLRQ SHXW rWUH FDOFXOpH GLUHFWHPHQW ΔrSƒ =
νi Sƒm,i
i
ΔrSƒ = −Sƒm,& + (J) − Sƒm,+ 2(J) + Sƒm,& + 2+(J)
ΔrSƒ = −220 − 189 + 283 = −126 -.−1 PRO−1
ΔrSƒ < 0 OH GpVRUGUH GLPLQXH DX FRXUV GH FHWWH UpDFWLRQ &HOD HVW FRKpUHQW FDU ORUV
GH OD UpDFWLRQ RQ SDVVH GH pTXLYDOHQWV GH JD] j XQ VHXO
428
/¶H[SUHVVLRQ GH O¶HQWKDOSLH OLEUH VWDQGDUG GH UpDFWLRQ HVW ΔrGƒ(T ) = ΔrHƒ − T × ΔrSƒ
HQ -PRO−1
3RXU FDOFXOHU OD FRQVWDQWH G¶pTXLOLEUH LO IDXW XWLOLVHU OD IRUPXOH ΔrGƒ(T ) = −RT × OQ Kƒ(T ) = ΔrHƒ − T × ΔrSƒ
1
1
× ΔrHƒ + × ΔrSƒ
6RLW OQ Kƒ(T ) = −
RT
R
Chimie
$ 400 . OQ Kƒ(400 .) = −
1
1
× (−45, 6 × 103 ) +
× (−126)
8, 314 × 400
8, 314
OQ Kƒ(400 .) = −1, 44
VRLW DX ILQDO Kƒ(400 .) = H[S (−1, 44) = 0, 236
/H TXRWLHQW GH UpDFWLRQ LQLWLDO QRWpH Q0 V¶H[SULPH a& + 2+(J)
Péthanol × P ƒ
0, 001 × 1
= 4 × 10−3
=
=
Q0 =
a& + (J) × a+ 2(J)
Péthylène × Peau
0, 5 × 0, 5
$ILQ GH FRQFOXUH VXU O¶pYROXWLRQ VSRQWDQpH GX V\VWqPH LO IDXW FRPSDUHU OHV YDOHXUV GH
Kƒ(400 .) HW Q0 Q0 < Kƒ(400 .) j T = 400 . O¶pYROXWLRQ VH IDLW GDQV OH VHQV GLUHFW
&YFSDJDFT
&9&3$*$& /HV GHX[ YDULpWpV DOORWURSLTXHV GX FDUERQH OHV SOXV FRXUDQWHV VRQW OH JUDSKLWH HW OH GLDPDQW
'RQQpHV 0DVVH PRODLUH GX FDUERQH M (&) = 12 JPRO−1
0DVVHV YROXPLTXHV ρgraphite = 2270 NJP−3 HW ρdiamant = 3513 NJP−3
3RWHQWLHOV FKLPLTXHV VWDQGDUGV VRXV 1 EDU HW j 25 ƒ& μƒgraphite < μƒdiamant
&DOFXOHU OH YROXPH PRODLUH GHV VROLGHV
4XHOOH YDULpWp DOORWURSLTXH HVW OD SOXV VWDEOH j 25 ƒ& VRXV 1 EDU " -XVWLILHU OD UpSRQVH
&RPPHQW MXVWLILHU TXH OHV GHX[ IRUPHV VRLHQW SRXUWDQW REVHUYpHV GDQV FHV FRQGLWLRQV "
&9&3$*$& /D UpDFWLRQ GH FRUURVLRQ GX QLFNHO HVW GRQQpH SDU O¶pTXDWLRQ VXLYDQWH j OD WHPSpUDWXUH T 1L(V) + 2 (J) = 1L2(V) DYHF ΔrG ƒ = −490 + 0, 19 × T HQ N-PRO−1
/HV SKDVHV FRQGHQVpHV VRQW VXSSRVpHV H[LVWHU j O¶pTXLOLEUH
([SULPHU OD FRQVWDQWH G¶pTXLOLEUH DVVRFLpH j FH ELODQ (Q GpGXLUH O¶H[SUHVVLRQ GH OD
SUHVVLRQ SDUWLHOOH P2 ,éq HQ GLR[\JqQH j O¶pTXLOLEUH
$ SDUWLU G¶XQH GLVFXVVLRQ VXU OD SUHVVLRQ SDUWLHOOH HQ GLR[\JqQH GpWHUPLQHU OH VHQV
G¶pYROXWLRQ GX V\VWqPH
4XHOOH HVW HQ SDUWLFXOLHU O¶pYROXWLRQ DWWHQGXH G¶XQ EDUUHDX GH QLFNHO H[SRVp j O¶DLU j
300 . "
&H SKpQRPqQH Q¶HVW SDV REVHUYp 3URSRVHU XQH H[SOLFDWLRQ
67. Prévoir le sens d’ évolution spontanée d’un système
429
1PVS WPVT BJEFS
E©NBSSFS
&9&3$*$& 5DLVRQQHU VXU OHV XQLWpV SRXU WURXYHU O¶H[SUHVVLRQ GX YROXPH PRODLUH
HQ IRQFWLRQ GHV GRQQpHV GH O¶pQRQFp
&RPSDUHU OHV SRWHQWLHOV FKLPLTXHV GHV GHX[ YDULpWpV DOORWURSLTXHV VR
OLGHV
&9&3$*$& 8WLOLVHU OD ORL G¶DFWLRQ GHV PDVVHV
([SULPHU FDOFXOHU SXLV FRPSDUHU OHV YDOHXUV GH Kƒ HW GH Qr 4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& &DOFXO GHV YROXPHV PRODLUHV M (&)
12 × 10−3
= 5, 3 × 10−6 P3 PRO−1
=
Vm,graphite =
ρgraphite
2270
M (&)
12 × 10−3
= 3, 4 × 10−6 P3 PRO−1
Vm,diamant =
=
ρdiamant
3513
&RPSDURQV OHV SRWHQWLHOV FKLPLTXHV DILQ GH WURXYHU GDQV TXHO VHQV pYROXHUDLW XQ V\V
WqPH FRQWHQDQW GX FDUERQH VRXV VHV GHX[ YDULpWpV DOORWURSLTXHV JUDSKLWH HW GLDPDQW
3RXU OHV FRPSRVpV j O¶pWDW FRQGHQVp VHXOV GDQV OHXU SKDVH OH SRWHQWLHO FKLPLTXH HW OH
SRWHQWLHO FKLPLTXH VWDQGDUG VRQW FRQIRQGXV PRGqOH LQFRPSUHVVLEOH HW LQGLODWDEOH μgraphite = μƒgraphite < μƒdiamant = μdiamant
8Q V\VWqPH FRQVWLWXp GH GHX[ HVSqFHV FKLPLTXHV pYROXH VSRQWDQpPHQW GDQV OH VHQV GH
OD IRUPDWLRQ GH O¶HVSqFH GH SOXV IDLEOH SRWHQWLHO FKLPLTXH LFL OH FDUERQH JUDSKLWH
$ T = 25 ƒ& HW P = 1 EDU OD YDULpWp DOORWURSLTXH GX FDUERQH VROLGH OD SOXV VWDEOH HVW
OH JUDSKLWH
430
/D WKHUPRG\QDPLTXH PRQWUH TXH OH GLDPDQW GHYUDLW WRWDOHPHQW VH WUDQVIRUPHU HQ JUD
SKLWH 6L OH GLDPDQW H[LVWH j T = 25 ƒ& VRXV P = 1 EDU F¶HVW j FDXVH G¶XQ EORFDJH
FLQpWLTXH GH FHWWH UpDFWLRQ /H GLDPDQW HVW GLW GDQV XQ pWDW PpWDVWDEOH
Chimie
&9&3$*$& /D FRQVWDQWH G¶pTXLOLEUH V¶H[SULPH SDU OD ORL G¶DFWLRQ GHV PDVVHV a21L2(V) ,éq
Pƒ
1
=
Kƒ(T ) =
=
2
P
P2 (J) ,éq
a2 (J) ,éq × a1L(V) ,éq
2 (J) ,éq
×1
Pƒ
1
× Pƒ
6RLW P2 (J) ,éq =
Kƒ(T )
3RXU GpWHUPLQHU OH VHQV GH O¶pYROXWLRQ LO IDXW FRPSDUHU OHV YDOHXUV GH Qr HW GH Kƒ(T )
Pƒ
Pƒ
HW Qr =
2U Kƒ(T ) =
P2 (J) ,éq
P2 (J)
,O VXIILW GH FRPSDUHU GLUHFWHPHQW P2 (J) HW P2 (J) ,éq (Q HIIHW VL P2 (J) > P2 (J) ,éq DORUV Qr < Kƒ HW O¶pYROXWLRQ VH IHUD GDQV OH VHQV GLUHFW
6L P2 (J) < P2 (J) ,éq DORUV Qr > Kƒ HW O¶pYROXWLRQ VH IHUD GDQV OH VHQV LQGLUHFW
6L P2 (J) = P2 (J) ,éq DORUV Qr = Kƒ HW LO Q¶\ DXUD SDV G¶pYROXWLRQ SXLVTXH OH V\VWqPH
VHUD j O¶pTXLOLEUH
/RUVTXH 2 (J) SURYLHQW GH O¶DLU VD SUHVVLRQ SDUWLHOOH HVW FRQVWDQWH HW SURFKH GH 20 j
FKDTXH LQVWDQW P2 (J) = 0, 20
/D YDOHXU GH Kƒ(T ) HVW REWHQXH j SDUWLU GH Δr Gƒ(T ) −Δr Gƒ(T )
R×T
Solutions
/¶H[SUHVVLRQ Δr Gƒ(T ) = −R×T ×OQ Kƒ(T ) GHYLHQW Kƒ(T ) = H[S
4, 90 × 105 1, 9 × 102
−
6RLW Kƒ(T ) = H[S
R×T
R
$WWHQWLRQ j QH SDV RXEOLHU GH FRQYHUWLU ΔrGƒ HQ -PRO−1
−1
−1
(Q SUHQDQW R = 8, 31
j OD WHPSpUDWXUH T = 300 . -. PRO5 HW HQ VH SODoDQW
4, 90 × 10
1, 9 × 102
−
= 2, 7 × 1075
Kƒ(300 .) = H[S
8, 31 × 300
8, 31
Pƒ
= 3, 7×10−76 � P2 (J)
/D SUHVVLRQ HQ 2 j O¶pTXLOLEUH j 300 . P2 (J) ,éq =
Kƒ(300)
/D UpDFWLRQ pYROXH GRQF GDQV OH VHQV GLUHFW F¶HVW j GLUH FHOXL GH O¶R[\GDWLRQ GX QLFNHO
VROLGH
5HPDUTXH &RPPH OD UpDFWLRQ QH SHUPHW SDV GH PRGLILHU OD SUHVVLRQ HQ 2 FRQVLGpUpH
FRQVWDQWH OD UpDFWLRQ FKLPLTXH Q¶DWWHLQGUD MDPDLV O¶pTXLOLEUH UXSWXUH G¶pTXLOLEUH /D WKHUPRG\QDPLTXH PRQWUH TXH OH QLFNHO PpWDOOLTXH GHYUDLW WRWDOHPHQW rWUH FRUURGp
SDU OH GLR[\JqQH
6L OH QLFNHO H[LVWH GDQV FHV FRQGLWLRQV F¶HVW j FDXVH G¶XQ EORFDJH FLQpWLTXH GH OD UpDFWLRQ
G¶R[\GDWLRQ
67. Prévoir le sens d’ évolution spontanée d’un système
431
68 Établir la composition
&UBCMJS MB DPNQPTJUJPO
d’un système à l’état final
EšVO TZTU¨NF Mš©UBU GJOBM
2VBOE PO OF TBJU QBT 7RXWHV OHV UpDFWLRQV HQYLVDJpHV GDQV OD VXLWH VRQW PHQpHV j T HW P FRQVWDQWHV
8Q V\VWqPH FRQVWLWXp G¶HVSqFHV FKLPLTXHV Ai HVW GDQV VRQ pWDW ILQDO TXDQG O¶HQVHPEOH GHV
TXDQWLWpV GH PDWLqUH nAi QH YDULH SOXV DX FRXUV GX WHPSV 'HX[ FDV VH SUpVHQWHQW VL WRXWHV
OHV HVSqFHV FKLPLTXHV LQLWLDOHPHQW LQWURGXLWHV HW FHOOHV IRUPpHV DX FRXUV GH OD UpDFWLRQ FR
H[LVWHQW j O¶pWDW ILQDO DORUV OH V\VWqPH D DWWHLQW O¶pTXLOLEUH FKLPLTXH 'DQV OH FDV FRQWUDLUH
OH V\VWqPH Q¶DWWHLQW MDPDLV O¶pTXLOLEUH HW O¶pWDW ILQDO QH SHXW SDV rWUH GpFULW DYHF OHV PrPHV
RXWLOV TXH FHX[ FDUDFWpULVWLTXHV G¶XQ pTXLOLEUH
'DQV WRXV OHV FDV FRPPHQW pWDEOLU OD FRPSRVLWLRQ G¶XQ V\VWqPH j O¶pWDW ILQDO VRLW FDOFXOHU
OHV TXDQWLWpV GH PDWLqUH nAi,∞ GHV HVSqFHV FKLPLTXHV Ai TXL OH FRQVWLWXHQW "
&DV R OH V\VWqPH DWWHLQW O¶pTXLOLEUH nAi,∞ = nAi,équilibre QRWp nAi,éq )
/D FRPSRVLWLRQ GX V\VWqPH j O¶pWDW ILQDO HVW SULQFLSDOHPHQW GRQQpH SDU O¶H[SORLWDWLRQ GH OD
FRQVWDQWH G¶pTXLOLEUH Kƒ GRXEOpH VL EHVRLQ GH O¶XWLOLVDWLRQ GX WDEOHDX G¶DYDQFHPHQW
/D GpWHUPLQDWLRQ GH OD YDOHXU QXPpULTXH GH Kƒ HVW GRQF LQGLVSHQVDEOH 2Q SRXUUD V¶DSSX\HU
VXU OHV PpWKRGHV VXLYDQWHV 5HSUHQGUH OD GpILQLWLRQ GH Kƒ j SDUWLU GX TXRWLHQW GH UpDFWLRQ ν
i
Kƒ = Qr,éq =
ai,éq
i
DYHF ai O¶DFWLYLWp GH O¶HVSqFH FKLPLTXH Ai HW νi VRQ FRHIILFLHQW VW°FKLRPpWULTXH DOJp
EULTXH
(Q SUDWLTXH LO HVW UDUH G¶DYRLU OHV YDOHXUV QXPpULTXHV GH WRXWHV OHV DFWLYLWpV
'pWHUPLQHU Kƒ j SDUWLU GHV JUDQGHXUV VWDQGDUG GH UpDFWLRQ FI )LFKH 1ƒ © 3UpYRLU
OH VHQV G¶pYROXWLRQ VSRQWDQpH G¶XQ V\VWqPH ª −ΔrGƒ
−ΔrHƒ + T × ΔrSƒ
Kƒ(T ) = H[S
= H[S
R×T
R×T
DYHF ΔrGƒ ΔrHƒ HW ΔrSƒ GpVLJQDQW UHVSHFWLYHPHQW O¶HQWKDOSLH OLEUH VWDQGDUG GH
UpDFWLRQ O¶HQWKDOSLH VWDQGDUG GH UpDFWLRQ HW O¶HQWURSLH VWDQGDUG GH UpDFWLRQ
(WDEOLU Kƒ j SDUWLU GH FRQVWDQWHV G¶pTXLOLEUH Kƒj GRQQpHV GDQV O¶pQRQFp FI )LFKH 1ƒ
© 3UpYRLU OH VHQV G¶pYROXWLRQ VSRQWDQpH G¶XQ V\VWqPH ª 432
6L O¶pTXDWLRQELODQ GH O¶pTXLOLEUH pWXGLp V¶pFULW FRPPH
OD FRPELQDLVRQ OLQpDLUH GH j pTXDWLRQV
bj
ELODQ
Chimie FRHIILFLHQW DVVRFLp QRWp bj DORUV Kƒ = (Kƒj ) j
,O SHXW rWUH LQWpUHVVDQW GH VDYRLU UHFRQQDvWUH FHUWDLQV pTXLOLEUHV
(WDEOLU Kƒ j SDUWLU GH FRQVWDQWHV G¶pTXLOLEUH Kƒj GRQQpHV GDQV O¶pQRQFp FI )LFKH 1ƒ
© 3UpYRLU OH VHQV G¶pYROXWLRQ VSRQWDQpH G¶XQ V\VWqPH ª 6L O¶pTXDWLRQELODQ GH O¶pTXLOLEUH pWXGLp V¶pFULW FRPPH
OD FRPELQDLVRQ OLQpDLUH GH j pTXDWLRQV
ELODQ FRHIILFLHQW DVVRFLp QRWp bj DORUV Kƒ = (Kƒj )bj j
,O SHXW rWUH LQWpUHVVDQW GH VDYRLU UHFRQQDvWUH FHUWDLQV pTXLOLEUHV
(TXLOLEUH G¶R[\GRUpGXFWLRQ
%LODQ JpQpUDO n2 2[ + n1 5HG = n2 5HG + n1 2[
([SUHVVLRQ GH Kƒ n
×(Eƒ1 −Eƒ2 )
Kƒ(298K) = 10 0,06
DYHF Eƒi OH SRWHQWLHO VWDQGDUG GX FRXSOH 2[i / 5HGi
HW n OH QRPEUH G¶pOHFWURQV JOREDOHPHQW pFKDQJpV DX FRXUV GH OD UpDFWLRQ
5HPDUTXH n = ppcm(n1 ; n2 )
&9&.1-& , + 6 2 − = ,− + 6 2 −
'RQQpHV Eƒ, » ,− = 0, 54 9 HW Eƒ6 2 − » 6 2 − = 0, 09 9 j 298 .
&RQVWDQWH G¶pTXLOLEUH j 298 . 2
Kƒ = 10 0,06
×(Eƒ, » ,− −Eƒ6 2 − » 6 2 −
2
= 10 0,06
×(0,54−0,09)
= 1015
(TXLOLEUH GH PLVH HQ VROXWLRQ G¶XQ DFLGH
%LODQ JpQpUDO $+ DT + + 2(O) = $−DT + + 2+DT
([SUHVVLRQ GH Kƒ Kƒ = Ka FRQVWDQWH G¶DFLGLWp GX FRXSOH $+/$−
VRLW Kƒ = 10−pKa &9&.1-& PLVH HQ VROXWLRQ GH O¶DFLGH pWKDQRwTXH
&+ &22+ DT + + 2(O) = &+ &22−DT + + 2+DT
'RQQpH pKa = 4, 8 j 298 .
&RQVWDQWH G¶pTXLOLEUH j 298 . Kƒ = 10
−pKa(&+ &22+/&+ &22− )
= 10−4,8
(TXLOLEUH GH GLVVROXWLRQ G¶XQ SUpFLSLWp
p−
%LODQ JpQpUDO $p %q(s) = p $q+
DT + q % DT
([SUHVVLRQ GH Kƒ Kƒ = Ks
VRLW Kƒ = 10−pKs SURGXLW GH VROXELOLWp GX SUpFLSLWp
68. Établir la composition d’un système à l’ état final
433
&9&.1-& GLVVROXWLRQ GX FKORUXUH G¶DUJHQW $J&O(V) = $J DT + &O DT
+
−
'RQQpH pKs = 9, 75 j 298 .
&RQVWDQWH G¶pTXLOLEUH j 298 . Kƒ = 10−pKs($J&O) = 10−9,75
(TXLOLEUH GH IRUPDWLRQ JOREDOH G¶XQ FRPSOH[H
n+
%LODQ JpQpUDO 0n+
DT + x / DT = [0/x ] DT
([SUHVVLRQ GH Kƒ Kƒ = βx FRQVWDQWH GH IRUPDWLRQ JOREDOH GX FRPSOH[H
VRLW Kƒ = 10 ORJ(βx ) &9&.1-& IRUPDWLRQ GX FRPSOH[H WpWUDDPPLQHFXLYUH
,,
+
&X+
DT + 1+ DT = [&X(1+ ) ] DT
'RQQpH j 298 . ORJ(β4 ) = 12
&RQVWDQWH G¶pTXLOLEUH j 298 . Kƒ = 10 ORJ(β4 ) = 1012 8QH IRLV OD YDOHXU QXPpULTXH GH OD FRQVWDQWH G¶pTXLOLEUH GpWHUPLQpH LO IDXW VDYRLU O¶XWLOLVHU
SRXU FDOFXOHU OHV TXDQWLWpV GH PDWLqUH GHV HVSqFHV FKLPLTXHV j O¶pTXLOLEUH GDQV OH V\VWqPH
/j HQFRUH OH SUREOqPH SHXW GLIIpUHU VL Kƒ QH GpSHQG TXH G¶XQH VHXOH YDULDEOH GH FRPSRVLWLRQ FKLPLTXH OD UpVROXWLRQ HVW
GLUHFWH
&9&.1-& (TXLOLEUH GH FRUURVLRQ GX SORPE
3E(V) + 2 (J) = 3E2(V)
/D FRQVWDQWH G¶pTXLOLEUH V¶pFULW Kƒ =
Pƒ
P2 ,éq
G¶R P2 ,éq =
Pƒ
(Kƒ)2
VL Kƒ GpSHQG GH SOXVLHXUV YDULDEOHV GH FRPSRVLWLRQ FKLPLTXH RQ XWLOLVH OH WDEOHDX G¶DYDQ
FHPHQW SRXU VH UDPHQHU j XQH VHXOH LQFRQQXH O¶DYDQFHPHQW j O¶pTXLOLEUH ξéq 6HORQ OD
YDOHXU QXPpULTXH GH Kƒ OD UpVROXWLRQ SHXW rWUH RX QRQ UDFFRXUFLH SDU OD PLVH HQ SODFH
G¶K\SRWKqVHV
434
Chimie
9DOHXU QXPpULTXH GH Kƒ
+\SRWKqVH GH UpVROXWLRQ
10−4 < Kƒ < 104
DXFXQH K\SRWKqVH
UpVROXWLRQ FRPSOqWH GX SRO\Q{PH
Kƒ = I(ξéq )
Kƒ > 104
OH V\VWqPH HVW WUqV PDMRULWDLUHPHQW
FRPSRVp GHV SURGXLWV GH OD UpDFWLRQ
OH UpDFWLI OLPLWDQW V¶LO \ HQ D XQ
HVW SUDWLTXHPHQW WRWDOHPHQW FRQVRPPp ξéq ≃ nréactif limitant (0)
Kƒ < 10−4
OH V\VWqPH HVW WUqV PDMRULWDLUHPHQW FRPSRVp
GHV UpDFWLIV LQLWLDOHPHQW LQWURGXLWV
OHV UpDFWLIV QH VRQW SUDWLTXHPHQW SDV FRQVRPPpV nréactif,éq ≃ nréactif limitant (0)
$WWHQWLRQ WRXWH K\SRWKqVH GRLW rWUH YpULILpH j OD ILQ GH OD GpWHUPLQDWLRQ GH OD FRPSRVLWLRQ
ILQDOH GX V\VWqPH $LQVL SRXU OH FDV Kƒ > 104 DWRQ nréactif limitant,éq QpJOLJHDEOH GHYDQW nréactif limitant (0) "
SRXU OH FDV Kƒ < 10−4 DWRQ ξéq QpJOLJHDEOH GHYDQW nréactif (0) " &HOD QH VHUD SDV
IRUFpPHQW OH FDV QRWDPPHQW VL OHV TXDQWLWpV LQLWLDOHV GHV UpDFWLIV VRQW IDLEOHV
&DV R OH V\VWqPH Q¶DWWHLQW SDV O¶pTXLOLEUH UXSWXUH G¶pTXLOLEUH
$X PRLQV XQH HVSqFH FKLPLTXH GLVSDUDvW GX V\VWqPH DX FRXUV GH OD UpDFWLRQ &H FDV QH SHXW
VH UHQFRQWUHU TXH ORUVTXH OD UpDFWLRQ LPSOLTXH GHV HVSqFHV SUpVHQWHV GDQV XQH DXWUH SKDVH
VROLGH JD] RX OLTXLGH QRQ PLVFLEOH /D FRPSRVLWLRQ HVW DORUV GRQQpH SDU O¶H[SORLWDWLRQ GX
WDEOHDX G¶DYDQFHPHQW O¶DYDQFHPHQW ILQDO ξ∞ pWDQW pJDO j OD TXDQWLWp GH PDWLqUH LQLWLDOH GX
UpDFWLI TXL D GLVSDUX
&9&.1-& &DV GH OD FRUURVLRQ GX SORPE j O¶DLU OLEUH
2Q SHXW PRQWUHU TXH OD SUHVVLRQ SDUWLHOOH HQ GLR[\JqQH P2 ,éq HVW WUqV IDLEOH j O¶pTXLOLEUH FI
)LFKH 1ƒ © 3UpYRLU OH VHQV G¶pYROXWLRQ VSRQWDQpH G¶XQ V\VWqPH ([HUFLFH ª (Q SDUWLFXOLHU RQ D WRXMRXUV P2 ,atm P2 ,éq /H V\VWqPH Q¶DWWHLQW MDPDLV O¶pTXLOLEUH LO pYROXH MXVTX¶j O¶R[\GDWLRQ WRWDOH GX SORPE PpWDO
OLTXH /H V\VWqPH j O¶pWDW ILQDO HVW GRQF XQLTXHPHQW FRQVWLWXp G¶R[\GH GH SORPE WHO TXH n3E2(V) ,∞ = n3E(V) (0)
5HPDUTXH OH FDV OH SOXV UHSUpVHQWp HVW FHOXL G¶XQ V\VWqPH GRQW O¶pWDW ILQDO HVW XQ pTXLOLEUH
FKLPLTXH &HOD RXYUH OD SRVVLELOLWp GH FKHUFKHU j RSWLPLVHU VD FRPSRVLWLRQ j O¶pWDW ILQDO FI
)LFKH 1ƒ © 2SWLPLVHU XQ SURFHVVXV ª 68. Établir la composition d’un système à l’ état final
435
2VF GBJSF (WUH DWWHQWLI j OD FRPSRVLWLRQ GX V\VWqPH GDQV VRQ pWDW LQLWLDO HQ IDLVDQW XQ LQYHQWDLUH
VRLJQp GHV HVSqFHV FKLPLTXHV SUpVHQWHV
&KHUFKHU j FDOFXOHU OD FRQVWDQWH G¶pTXLOLEUH V¶LO V¶DJLW G¶XQ pTXLOLEUH &H UpVXOWDW HVW OD
© FOp GH YR€WH ª GH WRXV OHV H[HUFLFHV WUDLWDQW GH FH VXMHW
(WUH HIILFDFH VXU O¶XWLOLVDWLRQ GX WDEOHDX G¶DYDQFHPHQW WDQW GDQV VD FRQVWUXFWLRQ TXH GDQV
VD OHFWXUH
$POTFJMT
$WWHQWLRQ j O¶HUUHXU IUpTXHQWH TXL FRQVLVWH j FRQIRQGUH OHV FRQFHQWUDWLRQV LQLWLDOHV GHV
VROXWLRQV HW OHV FRQFHQWUDWLRQV LQLWLDOHV GHV HVSqFHV FKLPLTXHV GDQV OH PpODQJH UpDOLVp j
SDUWLU GHV VROXWLRQV
5HSUHQGUH VL QpFHVVDLUH OHV FKDSLWUHV YXV HQ SUHPLqUH DQQpH SRUWDQW VXU OHV pTXLOLEUHV HQ
VROXWLRQ DTXHXVH R[\GRUpGXFWLRQ DFLGREDVLFLWp FRPSOH[DWLRQ HW SUpFLSLWDWLRQ 1H SDV VH © QR\HU ª GDQV OH IRUPDOLVPH DVVRFLp j OD FRQVWDQWH G¶pTXLOLEUH VRQ H[SUHVVLRQ
HVW SURSUH j O¶pTXLOLEUH pWXGLp GRQF D SULRUL GLIIpUHQWH j FKDTXH H[HUFLFH 0DLV OHV Pp
WKRGHV GH UpVROXWLRQ VRQW UHSURGXFWLEOHV j FRQGLWLRQ G¶DYRLU HQ WrWH OH FDGUH G¶XWLOLVDWLRQ
GHV GRQQpHV IRXUQLHV &RQFUqWHPHQW LO HVW VRXYHQW SOXV HIILFDFH GH SDUWLU GHV GRQQpHV
SOXW{W TXH G¶H[SULPHU GLUHFWHPHQW Kƒ j SDUWLU GHV DFWLYLWpV j O¶pTXLOLEUH GHV HVSqFHV FKL
PLTXHV SUpVHQWHV GDQV OH V\VWqPH
&YFNQMF USBJU©
2Q pWXGLH O¶pTXLOLEUH 62 (J) + 2 (J) = 62 (J) j OD WHPSpUDWXUH T = 700 . IL[pH
/H UpDFWHXU FRQWLHQW LQLWLDOHPHQW OHV UpDFWLIV VHXOV HQ SURSRUWLRQV VW°FKLRPpWULTXHV
(YDOXHU OD FRQVWDQWH G¶pTXLOLEUH SRXU XQH SUHVVLRQ WRWDOH GDQV O¶HQFHLQWH P = 1, 0 EDU
'pWHUPLQHU OD FRPSRVLWLRQ ILQDOH GX V\VWqPH j T = 700 . HW P = 1, 0 EDU
'RQQpHV HQWKDOSLHV VWDQGDUG GH IRUPDWLRQ HW HQWURSLHV PRODLUHV j 298 .
&RPSRVp
62 (J)
2 (J)
62 (J)
436
Chimie
Δf Hƒ HQ N-PRO−1
−297
0
−396
Sƒm HQ -.−1 PRO−1
248
205
256
40-65*0/
/HV GRQQpHV SHUPHWWHQW GH FDOFXOHU O¶HQWKDOSLH HW O¶HQWURSLH VWDQGDUGV GH OD UpDFWLRQ
2Q XWLOLVH DORUV OH OLHQ HQWUH Kƒ(T ) HW ΔrGƒ = ΔrHƒ − T × ΔrSƒ
Kƒ(T ) = H[S
−ΔrGƒ
R×T
= H[S
−ΔrHƒ + T × ΔrSƒ
R×T
/¶HQWKDOSLH VWDQGDUG GH UpDFWLRQ HVW GpWHUPLQpH JUkFH j OD ORL GH +HVV FI )LFKH 1ƒ
© &DOFXOHU XQH HQWKDOSLH VWDQGDUG GH UpDFWLRQ ª νi × Δf Hƒi = −2 × Δf Hƒ62 (J) − Δf Hƒ2 (J) + 2 × Δf Hƒ62 (J)
ΔrHƒ =
i
6RLW ΔrHƒ(298K) = −2 × (−297) − 0 + 2 × (−396) = −198 N-PRO−1 /¶HQWURSLH VWDQGDUG GH UpDFWLRQ HVW GpWHUPLQpH JUkFH j OD IRUPXOH ΔrSƒ =
νi × Sƒm,i = −2 × Sƒm,62 (J) − Sƒm,2 (J) + 2 × Sƒm,62 (J)
i
6RLW ΔrSƒ(298K) = −2 × 248 − 205 + 2 × 256 = −189 -.−1 PRO−1 8WLOLVRQV O¶DSSUR[LPDWLRQ G¶(OOLQJKDP ΔrHƒ(700K) = ΔrHƒ(298K) HW ΔrSƒ(700K) = ΔrSƒ(298K)
Kƒ(700K) = H[S
−(−198) × 103 + 700 × (−189)
8, 314 × 700
= 7, 99 × 104
/D FRQVWDQWH G¶pTXLOLEUH V¶pFULW pJDOHPHQW P62 (J) 2
2
2
P62
× Pƒ
a62 (J)
Pƒ
(J)
=
=
Kƒ(700K) = 2
2
a62 (J) × a2 (J)
P62
× P2 (J)
P62 (J) 2
P2 (J)
(J)
×
Pƒ
Pƒ
2
×P
× Pƒ
n262 (J) × ntot
Pƒ
ntot
Kƒ(700K) = ×
2 = 2
n62 (J)
n2 (J)
P
n62 (J) × n2 (J)
×P
×
×P
ntot
ntot
n62 (J)
$ O¶DLGH G¶XQ WDEOHDX G¶DYDQFHPHQW RQ pWDEOLW OH OLHQ HQWUH OHV TXDQWLWpV GH PDWLqUH ni
j O¶pTXLOLEUH HW O¶DYDQFHPHQW GH OD UpDFWLRQ ξéq (WDW LQLWLDO
(WDW G¶pTXLOLEUH
62 (J) + 2 (J) = 62 (J)
0
2 n0
n0
2 (n0 −ξéq )
n0 −ξéq
2 ξéq
ntot GH JD]
3 n0
3 n0 − ξéq
68. Établir la composition d’un système à l’ état final
437
/D FRQVWDQWH G¶pTXLOLEUH YpULILH Kƒ(700K) > 104 ,O HVW SRVVLEOH GH IDLUH O¶K\SRWKqVH
G¶XQH UpDFWLRQ WUqV DYDQFpH
/HV UpDFWLIV pWDQW HQ SURSRUWLRQ VW°FKLRPpWULTXH ξéq � n0 R n0 HVW OD TXDQWLWp LQLWLDOH
GH 2 /D WDEOHDX G¶DYDQFHPHQW GHYLHQW 62 (J) + 2 (J) = 62 (J)
(WDW LQLWLDO
0
2 n0
n0
(WDW G¶pTXLOLEUH
2 n0
2ε
ε
DYHF ε ≈ 0 XQH WUqV SHWLWH TXDQWLWp
ntot GH JD]
3 n0
2 n0
/D FRQVWDQWH G¶pTXLOLEUH VH VLPSOLILH Kƒ(700K) =
n262 (J) × ntot
×
n262 (J) × n2 (J)
4 n20 × 2 n0
n30
Pƒ
=
×
1
=
P
4 ε2 × 2 ε
ε3
1
6RLW ε = n0 × (Kƒ(700K))− 3 � 0, 023 × n0 � n0
/¶K\SRWKqVH GH OD UpDFWLRQ WUqV DYDQFpH HVW YDOLGpH
/D FRPSRVLWLRQ GX V\VWqPH j O¶pTXLOLEUH HVW 0, 046 n0 GH 62 (J)
0, 023 n0 GH 2 (J)
2 n0 GH 62 (J)
DYHF n0 OD TXDQWLWp LQLWLDOH HQ 2 (J) &YFSDJDFT
&9&3$*$& 3LOH pOHFWURFKLPLTXH
2Q UpDOLVH XQH SLOH pOHFWURFKLPLTXH j O¶DLGH G¶XQ EDUUHDX GH ]LQF SORQJHDQW GDQV XQH VROXWLRQ
GH QLWUDWH GH ]LQF ,, =Q+ 12 − HW G¶XQ EDUUHDX G¶DUJHQW SORQJHDQW GDQV XQH VROXWLRQ
GH QLWUDWH G¶DUJHQW , $J+ 12 − /HV GHX[ VROXWLRQV VRQW LQWURGXLWHV GDQV GHX[ EpFKHUV
GLVWLQFWV UHOLpV HQWUH HX[ SDU XQ SRQW VDOLQ
&DOFXOHU OD FRQVWDQWH GH UpDFWLRQ
/HV FRQFHQWUDWLRQV LQLWLDOHV GHV VROXWLRQV VRQW [$J+ ]0 = [=Q+ ]0 = 0, 1 PRO/−1 &DOFXOHU OHV FRQFHQWUDWLRQV GHV HVSqFHV HQ SUpVHQFH ORUVTXH OD SLOH HVW © XVpH ª
'RQQpHV j 25 ƒ& Eƒ=Q+ /=Q = −0, 76 9 Eƒ$J+ /$J = +0, 80 9
438
Chimie
&9&3$*$& 7LWUDJH
2Q UpDOLVH OH WLWUDJH GH V0 P/ G¶XQH VROXWLRQ G¶DFLGH F\DQK\GULTXH +&1 GH FRQFHQWUDWLRQ
C0 LQFRQQXH SDU XQH VROXWLRQ GH VRXGH 1D+ 2+− GH FRQFHQWUDWLRQ C = 0, 1 PRO/−1 2Q QRWH V OH YROXPH GH VROXWLRQ GH VRXGH DMRXWp DX FRXUV GX WLWUDJH
(FULUH O¶pTXDWLRQELODQ GH OD UpDFWLRQ GH WLWUDJH
([SULPHU SXLV FDOFXOHU VD FRQVWDQWH G¶pTXLOLEUH Kƒ &RPPHQWHU OH UpVXOWDW REWHQX
2Q QRWH Véquiv OH YROXPH GH VROXWLRQ GH VRXGH LQWURGXLW j O¶pTXLYDOHQFH 'pILQLU OH WHUPH
© pTXLYDOHQFH ª HW pFULUH OD UHODWLRQ HQWUH V0 C0 C HW Véquiv &RQVWUXLUH OH WDEOHDX G¶DYDQFHPHQW GH OD UpDFWLRQ GH WLWUDJH HQ PRO/−1 HQ IDLVDQW
DSSDUDvWUH OHV FDV V < Véquiv V = Véquiv HW V > Véquiv 4X¶REVHUYHWRQ GH SDUWLFXOLHU j OD GHPLpTXLYDOHQFH VRLW SRXU V =
Véquiv
"
2
'RQQpHV j 298 . pKa (+&1 » &1− ) = 9, 2
SURGXLW LRQLTXH GH O¶HDX Ke = 10−14
1PVS WPVT BJEFS
E©NBSSFS
&9&3$*$& (TXLOLEUHU OD UpDFWLRQ G¶R[\GRUpGXFWLRQ TXL D OLHX GDQV OD SLOH j SDUWLU
GHV GHPLpTXDWLRQV UpGR[
3URSRVHU XQH K\SRWKqVH SRXU GpWHUPLQHU OD FRPSRVLWLRQ
1H SDV RXEOLHU GH YpULILHU TXH O¶K\SRWKqVH SURSRVpH HVW FRUUHFWH
&9&3$*$& $VWXFH SRXU GpWHUPLQHU Kƒ PXOWLSOLHU SDU [+ 2+ ]éq DX QXPpUDWHXU
HW DX GpQRPLQDWHXU DILQ GH IDLUH DSSDUDLWUH Ka HW Ke
1H SDV RXEOLHU GH GLYLVHU OHV SURGXLWV C × V SDU OH YROXPH WRWDO DILQ
GH UpDOLVHU XQ WDEOHDX G¶DYDQFHPHQW HQ FRQFHQWUDWLRQ
8WLOLVHU OD UHODWLRQ j O¶pTXLYDOHQFH SRXU VLPSOLILHU OHV H[SUHVVLRQV GDQV
OH WDEOHDX G¶DYDQFHPHQW
68. Établir la composition d’un système à l’ état final
439
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& /RUVTXH OD SLOH IRQFWLRQQH LO VH SURGXLW FHV GHPLUpDFWLRQV UpGR[ DX[ pOHFWURGHV j OD FDWKRGH $J+ + e− → $J(V)
j O¶DQRGH =Q(V) → =Q+ + 2 e−
=Q(V) + $J+ = =Q+ + $J(V)
/D UpDFWLRQ JOREDOH HVW /D FRQVWDQWH G¶XQH UpDFWLRQ UpGR[ VH GpWHUPLQH j SDUWLU GHV SRWHQWLHOV UpGR[ VWDQGDUGV
2
Kƒ(298K) = 10 0,06
×(Eƒ$J+ /$J −Eƒ=Q+ /=Q )
2
= 10 0,06
×(0,80−(−0,76))
= 1052
/D FRQVWDQWH GH OD UpDFWLRQ HVW pQRUPH FH TXL HVW DVVH] IUpTXHQW SRXU GHV UpDFWLRQ UpGR[
/D SLOH HVW © XVpH ª ORUVTXH OD UpDFWLRQ HVW j O¶pTXLOLEUH
=Q(V) +
(WDW LQLWLDO
(WDW G¶pTXLOLEUH
H[FqV
$J+ =
=Q+ + $J(V)
0, 1
0, 1
H[FqV
0, 1 − 2 ξéq 0, 1 + ξéq
/D FRQVWDQWH G¶pTXLOLEUH HVW WUqV VXSpULHXUH j 104 ,O HVW SRVVLEOH GH IDLUH O¶K\SRWKqVH
G¶XQH UpDFWLRQ WUqV DYDQFpH F¶HVW j GLUH GH FRQVLGpUHU TXH ξéq = 0, 5 PRO/−1 (WDW LQLWLDO
(WDW G¶pTXLOLEUH
=Q(V) + $J+ = =Q+ + $J(V)
0, 1
0, 1
H[FqV
H[FqV
ε
0, 15
'pWHUPLQDWLRQ GH ε j SDUWLU GH OD FRQVWDQWH G¶pTXLOLEUH Kƒ =
[=Q+ ]éq × C0
1, 5 × 1
=
+ 2
ε2
[$J ]éq
1, 5
= 1, 22 × 10−26 PRO/−1
=⇒ ε =
Kƒ
9pULILFDWLRQ GH O¶K\SRWKqVH ε � 0, 1 PRO/−1 /¶K\SRWKqVH HVW YDOLGpH
/RUVTXH OD SLOH HVW © XVpH ª OHV FRQFHQWUDWLRQV GHV HVSqFHV SUpVHQWHV VRQW [=Q+ ]éq = 0, 15 PRO/−1
[$J+ ]éq = 1, 22 × 10−26 PRO/−1
5HPDUTXH OD YDOHXU WUqV EDVVH GH FHWWH GHUQLqUH FRQFHQWUDWLRQ VLJQLILH TXH 5000 / GH
VROXWLRQ FRQWLHQGUDLW 1 VHXO LRQ $J+ 440
Chimie
&9&3$*$& /D UpDFWLRQ DFLGREDVLTXH GH WLWUDJH V¶pFULW +&1 DT + +2−DT = &1−DT + + 2(O)
/D FRQVWDQWH G¶pTXLOLEUH GH FHWWH UpDFWLRQ HVW [&1− ]éq × [+ 2+ ]éq × C02
[&1− ]éq × C0
Ka
=
=
−
+
−
Ke
[+&1]éq × [+2 ]éq
[+&1]éq × C0 × [+ 2 ]éq × [+2 ]éq
/¶DVWXFH FRQVLVWH j PXOWLSOLHU SDU [+ 2+ ]éq DX QXPpUDWHXU HW DX GpQRPLQDWHXU DILQ GH
IDLUH DSSDUDLWUH GHV FRQVWDQWHV FRQQXHV HQ JUDV OH SURGXLW LRQLTXH GH O¶HDX Ke Kƒ =
10−9,2
= 10 4,8
10−14
/D FRQVWDQWH G¶pTXLOLEUH HVW VXSpULHXUH j 104 /D UpDFWLRQ HVW SVHXGRTXDQWLWDWLYH FH
TXL HVW XQH FRQGLWLRQ QpFHVVDLUH SRXU XQH UpDFWLRQ GH WLWUDJH
Kƒ =
/¶pTXLYDOHQFH HVW O¶LQVWDQW GX WLWUDJH R OHV UpDFWLIV RQW pWp LQWURGXLWV H[DFWHPHQW HQ
SURSRUWLRQ VW°FKLRPpWULTXH
$ O¶pTXLYDOHQFH RQ D n acide = n base ⇔ C0 × V0 = C × Véquiv
/H WDEOHDX G¶DYDQFHPHQW YROXPLTXH GH OD UpDFWLRQ GH WLWUDJH introduite
+&1 DT
(WDW LQLWLDO
(WDW ILQDO V < Véquiv
(WDW ILQDO V = Véquiv
(WDW ILQDO V > Véquiv
+2−DT
&1−DT
=
C × Véquiv
C 0 × V0
=
V0 + V
V0 + V
C ×V
V0 + V
≈0
C × (Véquiv − V )
V0 + V
≈0
C ×V
V0 + V
≈0
≈0
C × Véquiv
V0 + V
≈0
C × (V − Véquiv )
V0 + V
C × Véquiv
V0 + V
$MRXWRQV XQH OLJQH FRUUHVSRQGDQW j
+&1 DT
(WDW ILQDO Véquiv
V =
2
+
C × Véquiv
2 (V0 + V )
+ + 2(O)
Solutions
introduit
([FqV
Véquiv
DX WDEOHDX G¶DYDQFHPHQW 2
+
+2−DT
≈0
&1−DT
=
+ + 2(O)
C × Véquiv
2 (V0 + V )
([FqV
/HV FRQFHQWUDWLRQV HQ +&1 HW HQ &1− VRQW LGHQWLTXHV j OD GHPLpTXLYDOHQFH
/D IRUPXOH G¶+HQGHUVRQ VH VLPSOLILH j OD GHPLpTXLYDOHQFH [&1− ]éq
pH = pKa + ORJ
⇐⇒ pH = pKa
[+&1]éq
68. Établir la composition d’un système à l’ état final
441
69
Exploiter les degrés
de liberté d’un système
&YQMPJUFS MFT EFHS©T EF MJCFSU©
EšVO TZTU¨NF
2VBOE PO OF TBJU QBT /HV GHJUpV GH OLEHUWp G¶XQ V\VWqPH VRQW OHV SDUDPqWUHV LQWHQVLIV LQGpSHQGDQWV TXH O¶RQ SHXW
IDLUH YDULHU SRXU GpFOHQFKHU XQH PRGLILFDWLRQ GH O¶pWDW G¶pTXLOLEUH SK\VLFRFKLPLTXH GH FH
V\VWqPH 2Q SDUOH DORUV GH IDFWHXUV G¶pTXLOLEUH
8QH YDULDEOH HVW LQWHQVLYH ORUVTX¶HOOH QH GpSHQG SDV GH OD TXDQWLWp GH PDWLqUH 8QH SKDVH
HVW XQH UpJLRQ GH O¶HVSDFH GDQV ODTXHOOH OHV JUDQGHXUV LQWHQVLYHV YDULHQW GH IDoRQ FRQWLQXH
O¶DWPRVSKqUH SDU H[HPSOH 8QH SKDVH HVW XQLIRUPH VL WRXWHV OHV JUDQGHXUV LQWHQVLYHV FRQVL
GpUpHV RQW XQH YDOHXU LGHQWLTXH TXHOOH TXH VRLW OD SDUWLH GX V\VWqPH pWXGLpH
2Q GLVWLQJXHUD GHX[ FDWpJRULHV GH YDULDEOHV LQWHQVLYHV 9DULDEOHV SK\VLTXHV
9DULDEOHV GH FRPSRVLWLRQ FKLPLTXH
FRQFHQWUDWLRQ [i] =
ni
DYHF V OH YROXPH GH OD VROXWLRQ
V
ni
WHPSpUDWXUH T
IUDFWLRQ PRODLUH xi =
SUHVVLRQ P
IUDFWLRQ PDVVLTXH wi =
mi
mtotale
PDVVH YROXPLTXH ρi =
mi
Vi
ntotale
4XHOV SDUDPqWUHV LQWHQVLIV SHUPHWWHQW OD PHLOOHXUH GHVFULSWLRQ G¶XQ V\VWqPH "
/D UpSRQVH GpSHQG GX W\SH GH V\VWqPH pWXGLp RQ GLVWLQJXHUD SDU OD VXLWH OH FDV GX FRUSV
SXU OH FDV G¶XQ PpODQJH GH FRQVWLWXDQWV Ai HW OH FDV G¶XQ V\VWqPH VRXPLV j XQ RX SOXVLHXUV
pTXLOLEUHV FKLPLTXHV
442
Chimie
)DFWHXUV G¶pTXLOLEUHV GDQV OH FDV GH V\VWqPHV VLqJHV G¶XQH UpDFWLRQ FKLPLTXH 7\SH GH V\VWqPH
pTXLOLEUHV FKLPLTXHV GH W\SH
ν i Ai = 0
i
DYHF Ai XQ FRQVWLWXDQW
HW νi VRQ FRHIILFLHQW
VW°FKLRPpWULTXH DOJpEULTXH
Kj ƒ(T ) OD FRQVWDQWH G¶pTXLOLEUH
DVVRFLpH j O¶pTXLOLEUH j
)DFWHXUV G¶pTXLOLEUHV
WHPSpUDWXUH T
SUHVVLRQ P
IUDFWLRQ PRODLUH xi RX IUDFWLRQ PDVVLTXH wi GHV Ai
VL FHV SDUDPqWUHV DSSDUDLVVHQW GDQV
O¶H[SUHVVLRQ GH Kj ƒ(T ) FRQVWDQWH G¶pTXLOLEUH
&9&.1-& 6RLW XQ V\VWqPH VLqJH GH OD UpDFWLRQ GH V\QWKqVH G¶DPPRQLDF G¶pTXDWLRQ ELODQ 1 (J) + + (J) = 1+ (J)
/D FRQVWDQWH G¶pTXLOLEUH D O¶H[SUHVVLRQ VXLYDQWH P1+ , HT 2
x21+ , HT
Pƒ 2
Pƒ
×
Kƒ(T ) = =
PHT
x1 , HT × x3+ , HT
P+ , HT 3
P1 , HT
×
Pƒ
Pƒ
/HV YDULDEOHV LQWHQVLYHV T ; P ; x1 ; x+ ; x1+ GpFULYHQW HQWLqUHPHQW FH V\VWqPH
&9&.1-& 6RLW XQ V\VWqPH VLqJH GH OD UpDFWLRQ GH GLVVRFLDWLRQ GX FDOFDLUH G¶pTXDWLRQ
ELODQ &D&2 (V) = &D2(V) + &2 (J)
/D FRQVWDQWH G¶pTXLOLEUH D O¶H[SUHVVLRQ VXLYDQWH Kƒ(T ) =
P&2 , HT
PHT
=
Pƒ
Pƒ
/HV YDULDEOHV LQWHQVLYHV T ; P GpFULYHQW HQWLqUHPHQW FH V\VWqPH
&9&.1-& 6RLW XQ V\VWqPH VLqJH GH OD UpDFWLRQ GH IRUPDWLRQ GH PRQR[\GH GH FDUERQH
G¶pTXDWLRQ ELODQ &2 (J) + + (J) = &2(J) + + 2(J)
69. Exploiter les degrés de liberté d’un système
443
/D FRQVWDQWH G¶pTXLOLEUH D O¶H[SUHVVLRQ VXLYDQWH P+ 2, HT
P&2, HT
×
x
× x+ 2, HT
Pƒ
Pƒ
= &2, HT
Kƒ(T ) = P&2 , HT
P+ , HT
x&2 , HT × x+ , HT
×
Pƒ
Pƒ
/HV YDULDEOHV LQWHQVLYHV T ; x&2 ; x+ ; x&2 ; x+ 2 GpFULYHQW HQWLqUHPHQW FH V\VWqPH 3DU
FRQWUH OD SUHVVLRQ Q¶HVW SDV XQ IDFWHXU G¶pTXLOLEUH GDQV FH FDV &RPPHQW GpQRPEUHU OHV GHJUpV GH OLEHUWp G¶XQ V\VWqPH "
/H QRPEUH GH GHJUpV GH OLEHUWp G¶XQ V\VWqPH FRUUHVSRQG j VD YDULDQFH QRWpH v
2Q FDOFXOH OD YDULDQFH v G¶XQ V\VWqPH SDU OD IRUPXOH v = X − Y
R X HVW OH QRPEUH GH IDFWHXUV G¶pTXLOLEUH
HW Y HVW OH QRPEUH GH UHODWLRQV OLDQW FHV GHUQLHUV
/H GpQRPEUHPHQW GHV IDFWHXUV G¶pTXLOLEUH D pWp GpFULW FLGHVVXV ,O UHVWH j GpWHUPLQHU Y
FRUUHFWHPHQW VHORQ OH V\VWqPH pWXGLp
7\SH GH V\VWqPH
pTXLOLEUHV FKLPLTXHV GH W\SH
ν i Ai = 0
DYHF Ai XQ FRQVWLWXDQW
HW νi VRQ FRHIILFLHQW
VW°FKLRPpWULTXH DOJpEULTXH
Kƒ(T ) OD FRQVWDQWH G¶pTXLOLEUH
5HODWLRQV
i
xi = 1 RX
wi = 1 GDQV FKDTXH SKDVH
i
FRQVWDQWH G¶pTXLOLEUH Kƒ(T ) = f (xi , P )
5HWRXU VXU ൾඑൾආඉඅൾ 1 (J) + + (J) = 1+ (J)
2Q FRPSWH OHV UHODWLRQV x1 + x+ + x1+ = 1 HW Kƒ(T )
/D YDULDQFH HVW GRQF v = 5 − 2 = 3
'DQV FHUWDLQV FDV O¶RSpUDWHXU LPSRVH XQH RX SOXVLHXUV FRQGLWLRQV VXSSOpPHQWDLUHV j
SUHQGUH HQ FRPSWH GDQV OD GpWHUPLQDWLRQ GH Y 2Q SDUOH DORUV G¶XQ V\VWqPH SDUWLFXOD
ULVp DVVRFLp j XQH YDULDQFH UpGXLWH SDUIRLV QRWpH v 3RXU OHV V\VWqPHV VLqJHV G¶XQH UpDFWLRQ FKLPLTXH RQ SHXW SDU H[HPSOH LQWURGXLUH OHV
UpDFWLIV G¶XQH PrPH SKDVH HQ SURSRUWLRQV VW°FKLRPpWULTXHV
5HWRXU VXU ൾඑൾආඉඅൾ 1 (J) + + (J) = 1+ (J)
VL OH GLD]RWH HW OH GLK\GURJqQH VRQW LQWURGXLWV HQ SURSRUWLRQV VW°FKLRPpWULTXHV DORUV LO
x+
H[LVWH XQH UHODWLRQ VXSSOpPHQWDLUH HQWUH OHV IUDFWLRQV PRODLUHV GHV JD] x1 = 3
/D YDULDQFH UpGXLWH YDXW v = v − 1 = 2
444
Chimie
&RPPHQW LQWHUSUpWHU OD YDULDQFH G¶XQ V\VWqPH "
/D YDULDQFH HVW OH QRPEUH GH SDUDPqWUHV LQWHQVLIV LQGpSHQGDQWV TX¶LO IDXW FKRLVLUIL[HU SRXU
GpFULUH HQWLqUHPHQW XQ V\VWqPH j O¶pTXLOLEUH 8QH IRLV FHV v SDUDPqWUHV IL[pV WRXV OHV DXWUHV
OH VRQW DXVVL &HOD GRQQH ELHQ SDU FRQVpTXHQW OH QRPEUH GH GHJUpV GH OLEHUWp G¶XQ V\VWqPH
&¶HVW XQH LQIRUPDWLRQ LQGLVSHQVDEOH GDQV O¶pWXGH GHV RSWLPLVDWLRQV SRWHQWLHOOHV GH FH V\V
WqPH VL v = 0 WRXV OHV SDUDPqWUHV VRQW IL[pV SRXU XQ pTXLOLEUH FKLPLTXH GRQQp 0RGLILHU
O¶XQ G¶HQWUH HX[ HQWUDLQH V\VWpPDWLTXHPHQW OD GLVSDULWLRQ G¶DX PRLQV XQH SKDVH RX
G¶XQH HVSqFH FKLPLTXH FDV GH UXSWXUH G¶pTXLOLEUH VL v = 1 OD PRGLILFDWLRQ G¶XQ SDUDPqWUH V¶DFFRPSDJQHUD IRUFpPHQW GH OD PRGLILFD
WLRQ GHV DXWUHV
'H SOXV VL RQ IDLW YDULHU XQ SDUDPqWUH WRXW HQ PDLQWHQDQW OHV DXWUHV IL[pV RQ UHYLHQW
DX FDV SUpFpGHQW v = 0 VRLW GH QRXYHDX XQ FDV GH UXSWXUH G¶pTXLOLEUH
VL v ≥ 2 O¶RSpUDWHXU SHXW MRXHU VXU DX PRLQV XQ SDUDPqWUH HW pWXGLHU GLVWLQFWHPHQW OHV
FRQVpTXHQFHV GH OD PRGLILFDWLRQ RSpUpH FI )LFKH 1ƒ © 2SWLPLVHU XQ SURFHVVXV ª 2VF GBJSF 'UHVVHU PpWKRGLTXHPHQW OD OLVWH GHV IDFWHXUV G¶pTXLOLEUH X SXLV OD OLVWH GHV UHODWLRQV Y
HQWUH FHV IDFWHXUV G¶pTXLOLEUH
$POTFJMT
/D YDOHXU GH OD YDULDQFH UHVWH UHODWLYHPHQW OLPLWpH 'DQV OD SOXSDUW GHV H[HUFLFHV RQ WURX
YHUD VXUWRXW GHV YDOHXUV pJDOHV j RX 8QH YDULDQFH QpJDWLYH HVW TXRL TX¶LO HQ VRLW
LPSRVVLEOH $WWHQWLRQ GH QH SDV RXEOLHU GH FRPSWHU FRPPH UHODWLRQ O¶H[SUHVVLRQ GH OD FRQVWDQWH G¶pTXL
OLEUH Kƒ(T ) = f (xi , P ) GDQV O¶pWXGH GHV SURFHVVXV FKLPLTXHV $WWHQWLRQ pJDOHPHQW GDQV OH FDV GHV V\VWqPHV FRQWHQDQW GHV FRQVWLWXDQWV JD]HX[ OD ORL
GHV JD] SDUIDLWV Pi V = ni RT Q¶HVW SDV XQH UHODWLRQ j FRPSWHU GDQV OH WHUPH Y 69. Exploiter les degrés de liberté d’un système
445
&YFNQMF USBJU©
2Q FRQVLGqUH OD UpDFWLRQ GH V\QWKqVH GH O¶pWKDQRO SDU K\GUDWDWLRQ GH O¶pWK\OqQH FDWDO\VpH SDU
O¶DFLGH SKRVSKRULTXH + 32 PRGpOLVpH SDU O¶pTXLOLEUH VXLYDQW & + (J) + + 2(J) = & + 2+(J)
,GHQWLILHU OHV IDFWHXUV G¶pTXLOLEUH
'pWHUPLQHU OH QRPEUH GH GHJUpV GH OLEHUWp GX V\VWqPH
40-65*0/
3RXU LGHQWLILHU OHV IDFWHXUV G¶pTXLOLEUH LO IDXW G¶DERUG H[SULPHU OD FRQVWDQWH G¶pTXLOLEUH
SXLV UpDOLVHU O¶LQYHQWDLUH GHV IDFWHXUV G¶pTXLOLEUH TXL \ DSSDUDLVVHQW
/D FRQVWDQWH G¶pTXLOLEUH D O¶H[SUHVVLRQ VXLYDQWH P& + 2+, HT
x& + 2+, HT
Pƒ
Pƒ
=
×
Kƒ(T ) = P+ 2, HT
P& + , HT
x& + , HT × x+ 2, HT PHT
×
Pƒ
Pƒ
/HV IDFWHXUV G¶pTXLOLEUH VRQW T ; P ; x& + ; x+ 2 HW x& + 2+ 3RXU GpWHUPLQHU OH QRPEUH GH GHJUpV GH OLEHUWp LO IDXW FDOFXOHU OD YDULDQFH v 3RXU FH
IDLUH LO UHVWH j UpDOLVHU O¶LQYHQWDLUH GHV UHODWLRQV H[LVWDQW HQWUH OHV SDUDPqWUHV LQWHQVLIV /D FRQVWDQWH G¶pTXLOLEUH Kƒ(T ) = f (xi , P )
/D UHODWLRQ GDQV OD SKDVH JD] x& + + x+ 2 + x& + 2+ = 1
/D YDULDQFH YDXW v = X − Y = 5 − 2 = 3 ,O H[LVWH GRQF WURLV GHJUpV GH OLEHUWp
&YFSDJDFT
&9&3$*$& /H GLK\GURJqQH HVW JpQpUDOHPHQW SURGXLW SDU YDSRUHIRUPDJH GX JD] QDWXUHO /D UpDFWLRQ
FKLPLTXH SULQFLSDOH HVW FDWDO\VpH SDU OH QLFNHO N i 6RQ pTXDWLRQ ELODQ HVW OD VXLYDQWH &+ (J) + + 2(J) = &2(J) + + (J)
$ O¶HQWUpH GX UpDFWHXU OH PpODQJH JD]HX[ FRQWLHQW XQLTXHPHQW GX PpWKDQH HW GH O¶HDX
(YDOXHU OD YDULDQFH GX V\VWqPH 6XU TXHO V SDUDPqWUH V SHXWRQ MRXHU SRXU RSWLPLVHU FHWWH
V\QWKqVH "
aQm`+2 , 1ti`Bi **S kyR3 SaA
446
Chimie
&9&3$*$& /D SUHPLqUH pWDSH GH OD PpWDOOXUJLH GX PLQHUDL GH SORPE FRQVLVWH j JULOOHU OD JDOqQH GH
IRUPXOH 3E6 VHORQ OD UpDFWLRQ GH ELODQ 3E6(V) + 2 (J) = 3E2(V) + 62 (J)
&DOFXOHU OD YDULDQFH GX V\VWqPH &RQFOXUH
1PVS WPVT BJEFS
aQm`+2 , 1ti`Bi **S kyR9
E©NBSSFS
&9&3$*$& 5pDOLVHU O¶LQYHQWDLUH GHV IDFWHXUV G¶pTXLOLEUH HW GHV UHODWLRQV SUpVHQWHV
DYDQW GH FDOFXOHU OD YDULDQFH
&9&3$*$& 5pDOLVHU O¶LQYHQWDLUH GHV IDFWHXUV G¶pTXLOLEUH HW GHV UHODWLRQV SUpVHQWHV
DYDQW GH FDOFXOHU OD YDULDQFH
&9&3$*$& Solutions
4PMVUJPOT EFT FYFSDJDFT
6RLW O¶pTXLOLEUH VXLYDQW &+ (J) + + 2(J) = &2(J) + + (J)
3RXU pYDOXHU OD YDULDQFH GH FHW pTXLOLEUH LO IDXW FRPPHQFHU SDU H[SULPHU OD FRQVWDQWH G¶pTXL
OLEUH SXLV UpDOLVHU O¶LQYHQWDLUH GHV IDFWHXUV G¶pTXLOLEUH HW GHV UHODWLRQV HQWUH OHV SDUDPqWUHV
LQWHQVLIV
/D FRQVWDQWH G¶pTXLOLEUH D O¶H[SUHVVLRQ VXLYDQWH P&2, HT
P+ , HT 3
×
x&2, HT × x3+ , HT
PHT 2
Pƒ
Pƒ
=
×
Kƒ(T ) = P+ 2, HT
P&+ , HT
x&+ , HT × x+ 2, HT
Pƒ
×
Pƒ
Pƒ
/HV IDFWHXUV G¶pTXLOLEUHV VRQW T ; P ; x&2 ; x+ ; x&+ ; x+ 2 ,O H[LVWH OHV UHODWLRQV VXLYDQWHV OD FRQVWDQWH G¶pTXLOLEUH Kƒ(T ) = f (xi , P )
OD UHODWLRQ GDQV OD SKDVH JD] x&2 + x+ + x&+ + x+ 2 = 1
OD UHODWLRQ SDUWLFXOLqUH GXH DX IDLW TX¶DX GpSDUW LO Q¶\ DYDLW SDV GH SURGXLW x+ = 3x&2 /D YDULDQFH UpGXLWH YDXW v = X − Y = 5 − 3 = 2 ,O H[LVWH GRQF GHX[ GHJUpV GH OLEHUWp
3RXU RSWLPLVHU FHWWH V\QWKqVH RQ SHXW D SULRUL MRXHU VXU Q¶LPSRUWH TXHO IDFWHXU G¶pTXLOLEUH
69. Exploiter les degrés de liberté d’un système
447
&9&3$*$& 6RLW O¶pTXLOLEUH VXLYDQW 3E6(V) + 2 (J) = 3E2(V) + 62 (J)
3RXU FDOFXOHU OD YDULDQFH GH FHW pTXLOLEUH LO IDXW FRPPHQFHU SDU H[SULPHU OD FRQVWDQWH
G¶pTXLOLEUH SXLV UpDOLVHU O¶LQYHQWDLUH GHV IDFWHXUV G¶pTXLOLEUH HW GHV UHODWLRQV HQWUH OHV SD
UDPqWUHV LQWHQVLIV
/D FRQVWDQWH G¶pTXLOLEUH D O¶H[SUHVVLRQ VXLYDQWH P62 , HT 2
x262 , HT
Pƒ
Pƒ
×
Kƒ(T ) = = 3
PHT
x2 ,HT
P2 , HT 3
Pƒ
/HV IDFWHXUV G¶pTXLOLEUHV VRQW T ; P ; x62 ; x2 ,O H[LVWH OHV UHODWLRQV VXLYDQWHV OD FRQVWDQWH G¶pTXLOLEUH Kƒ(T ) = f (xi , P )
OD UHODWLRQ GDQV OD SKDVH JD] x62 + x2 = 1
LO Q¶\ D SDV GH UHODWLRQ SDUWLFXOLqUH /D YDULDQFH YDXW v = X − Y = 4 − 2 = 2 ,O H[LVWH GRQF GHX[ GHJUpV GH OLEHUWp
448
Chimie
70
Optimiser un processus
0QUJNJTFS VO QSPDFTTVT
2VBOE PO OF TBJU QBT /HV SULQFLSDX[ UpVXOWDWV GHV pWXGHV PHQpHV GDQV OD )LFKH 1ƒ © 3UpYRLU OH VHQV G¶pYROXWLRQ
VSRQWDQpH G¶XQ V\VWqPH ª DLQVL TXH GDQV OD ILFKH 1ƒ © ([SORLWHU OHV GHJUpV GH OLEHUWp G¶XQ
V\VWqPH ª VRQW UDSSHOpV LFL OD YDULDQFH v G¶XQ V\VWqPH HVW OH QRPEUH GH GHJUpV GH OLEHUWp TXH FH GHUQLHU SUpVHQWH
F¶HVW j GLUH OH QRPEUH GH IDFWHXUV G¶pTXLOLEUH TXH O¶RQ SHXW IDLUH YDULHU GH IDoRQ LQGp
SHQGDQWH /H FDOFXO HVW PHQp SDU v = X −Y DYHF X OH QRPEUH GH IDFWHXUV G¶pTXLOLEUH
GX V\VWqPH HW Y OH QRPEUH GH UHODWLRQV H[LVWDQW HQWUH FHV IDFWHXUV G¶pTXLOLEUH
OH VHQV G¶pYROXWLRQ VSRQWDQpH G¶XQ V\VWqPH HVW GRQQp SDU OH VLJQH GH O¶HQWKDOSLH OLEUH
GH UpDFWLRQ OXL PrPH REWHQX SDU FRPSDUDLVRQ j T HW P FRQVWDQWHV G¶XQ TXRWLHQW GH
UpDFWLRQ Qr HW GH OD FRQVWDQWH G¶pTXLOLEUH Kƒ 6L Qr < Kƒ OH V\VWqPH pYROXH GDQV OH
VHQV GLUHFW → 6L Qr > Kƒ OH V\VWqPH pYROXH GDQV OH VHQV LQGLUHFW ← 2SWLPLVHU XQ SURFHVVXV F¶HVW FKHUFKHU j REWHQLU XQH TXDQWLWp PD[LPDOH GH SURGXLW GpVLUp
HQ PLQLPLVDQW VL SRVVLEOH OD IRUPDWLRQ GH SURGXLW V VHFRQGDLUH V &HWWH RSWLPLVDWLRQ VRXV
HQWHQG XQH DFWLRQ GH O¶RSpUDWHXU TXL YD SHUWXUEHU XQ pTXLOLEUH GpMj H[LVWDQW
&RQFUqWHPHQW XQ IDFWHXU G¶pTXLOLEUH HVW PRGLILp WRXV OHV DXWUHV pWDQW PDLQWHQXV j OHXU YDOHXU
G¶RULJLQH FHOOH DVVRFLpH j O¶pTXLOLEUH GpMj H[LVWDQW 6\VWqPH LQLWLDOHPHQW
j O¶pTXLOLEUH
3HUWXEDWLRQ
PRGLILFDWLRQ G¶XQ
IDFWHXU G¶pTXLOLEUH
6\VWqPH
KRUV pTXLOLEUH
(YROXWLRQ
VSRQWDQpH
6\VWqPH GH QRXYHDX
j O¶pTXLOLEUH
5XSWXUH
G¶pTXLOLEUH
70. Optimiser un processus
449
6L OD YDULDQFH GX V\VWqPH HVW WHOOH TXH v = 1 OD SHUWXUEDWLRQ YD SURYRTXHU XQH UXSWXUH
G¶pTXLOLEUH 6L v ≥ 2 OD SHUWXUEDWLRQ YD HQJHQGUHU XQH pYROXWLRQ VSRQWDQpH GX V\VWqPH
GDQV OH EXW GH UHWURXYHU XQ pTXLOLEUH &¶HVW FH GHUQLHU FDV PDMRULWDLUHPHQW WUDLWp GDQV OHV
H[HUFLFHV HW OHV VXMHWV TXL HVW DSSURIRQGL GDQV OD VXLWH
/D SHUWXUEDWLRQ SHXW rWUH UpDOLVpH GH GHX[ PDQLqUHV GLIIpUHQWHV SDU PRGLILFDWLRQ GH OD FRQVWDQWH G¶pTXLOLEUH Kƒ(T ) /D FRQVWDQWH G¶pTXLOLEUH QH GpSHQGDQW TXH OD WHPSpUDWXUH FHOD UHYLHQW j PRGLILHU T WRXW
HQ IL[DQW OHV DXWUHV IDFWHXUV G¶pTXLOLEUH
6\VWqPH LQLWLDOHPHQW
j O¶pTXLOLEUH
Qr = Kƒ(T1 )
0RGLILFDWLRQ GH
OD WHPSpUDWXUH SDVVDJH j T2 �= T1
6\VWqPH
KRUV pTXLOLEUH
Qr �= Kƒ(T2 )
(YROXWLRQ
VSRQWDQpH
6\VWqPH GH QRXYHDX
j O¶pTXLOLEUH
Qr = Kƒ(T2 )
$SUqV OD SHUWXUEDWLRQ OH V\VWqPH pYROXH VSRQWDQpPHQW MXVTX¶j FH TXH OH TXRWLHQW GH Up
DFWLRQ YpULILH Qr = Kƒ(T2 ) /H VHQV G¶pYROXWLRQ HVW GRQF GRQQp SDU OD FRPSDUDLVRQ GH
Kƒ(T1 ) HW GH Kƒ(T2 )
d OQKƒ
ΔrHƒ
/¶pYROXWLRQ GH Kƒ(T ) HVW GRQQpH SDU OD ORL GH 9DQ¶W +RII =−
dT
R × T2
2Q SHXW JpQpUDOLVHU FHWWH pWXGH HQ GLVDQW TX¶XQH pOpYDWLRQ GH WHPSpUDWXUH IDYRULVH WRX
MRXUV OH VHQV HQGRWKHUPLTXH 6HORQ OH FDV pWXGLp LO V¶DJLW GX VHQV GLUHFW VL ΔrHƒ > 0 RX
GX VHQV LQGLUHFW VL ΔrHƒ < 0 DYHF ΔrHƒ O¶HQWKDOSLH VWDQGDUG GH UpDFWLRQ
&9&.1-& (IIHW G¶XQH YDULDWLRQ GH WHPSpUDWXUH VXU OD V\QWKqVH G¶DPPRQLDF GH ELODQ 1 (J) + + (J) = 1+ (J)
HW G¶HQWKDOSLH VWDQGDUG GH UpDFWLRQ ΔrHƒ = −92, 2 N-PRO−1 $ SUHVVLRQ HW FRPSRVLWLRQ IL[pHV DXJPHQWHU OD WHPSpUDWXUH IDYRULVH OH VHQV HQGRWKHU
PLTXH VRLW LFL OH VHQV LQGLUHFW 6L O¶REMHFWLI HVW DX FRQWUDLUH GH SURGXLUH SOXV G¶DPPR
QLDTXH LO HVW GRQF FRQVHLOOp GH WUDYDLOOHU j EDVVH WHPSpUDWXUH
450
Chimie
SDU PRGLILFDWLRQ GH OD YDOHXU GX TXRWLHQW GH UpDFWLRQ 8Q IDFWHXU G¶pTXLOLEUH SUHVVLRQ RX YDULDEOH GH FRPSRVLWLRQ HVW PRGLILp OHV DXWUHV ± GRQW
OD WHPSpUDWXUH T ± pWDQW PDLQWHQXV FRQVWDQWV
6\VWqPH LQLWLDOHPHQW
j O¶pTXLOLEUH
Qr = Kƒ(T )
0RGLILFDWLRQ G¶XQ
SDUDPqWUH KRUV T 6\VWqPH
KRUV pTXLOLEUH
Qr �= Kƒ(T )
(YROXWLRQ
VSRQWDQpH
6\VWqPH GH QRXYHDX
j O¶pTXLOLEUH
Qr = Kƒ(T )
/H V\VWqPH pYROXH VSRQWDQpPHQW MXVTX¶j FH TXH OH TXRWLHQW GH UpDFWLRQ YpULILH
Qr = Kƒ(T ) /H VHQV G¶pYROXWLRQ HVW GRQQp SDU OD FRPSDUDLVRQ GH Qr HW GH Kƒ(T )
&DV G¶XQH PRGLILFDWLRQ GH OD SUHVVLRQ VL F¶HVW XQ IDFWHXU G¶pTXLOLEUH j WHPSpUD
WXUH HW FRPSRVLWLRQ IL[pHV
2XWUH OD FRPSDUDLVRQ V\VWpPDWLTXH GH Qr HW GH Kƒ(T ) OD ORL GH /H &KkWHOLHU JpQpUDOLVH
O¶pYROXWLRQ VXLYDQWH XQH pOpYDWLRQ GH SUHVVLRQ IDYRULVH WRXMRXUV OD GLPLQXWLRQ GH OD
TXDQWLWp JOREDOH GH JD]
$LQVL ORUV G¶XQH DXJPHQWDWLRQ GH P HQ QRWDQW νi (g) OH FRHIILFLHQW VW°FKLRPpWULTXH
DOJpEULTXH G¶XQH HVSqFH FKLPLTXH
Ai SUpVHQWH j O¶pWDW JD]HX[ OH VHQV G¶pYROXWLRQ GH
OD UpDFWLRQ GpSHQG GX VLJQH GH νi (g) i
6LJQH GH
i
<0
>0
5HPDUTXH VL
νi (g)
6HQV G¶pYROXWLRQ
GLUHFW →
LQGLUHFW ←
νi (g) = 0 DORUV OD SUHVVLRQ Q¶HVW SDV XQ IDFWHXU G¶pTXLOLEUH i
&9&.1-& (IIHW G¶XQH YDULDWLRQ GH SUHVVLRQ VXU OD V\QWKqVH GH O¶DPPRQLDF 1 (J) + + (J) = 1+ (J)
$ WHPSpUDWXUH HW FRPSRVLWLRQ IL[pHV
DXJPHQWHU OD SUHVVLRQ IDYRULVH OD GLPLQXWLRQ GH
νi (g) = −1 − 3 + 2 = −2 GRQF FHOD FRUUHVSRQG
OD TXDQWLWp JOREDOH GH JD] ,FL
i
DX VHQV GLUHFW 3RXU SURGXLUH SOXV G¶DPPRQLDF LO HVW GRQF FRQVHLOOp GH WUDYDLOOHU VRXV
KDXWH SUHVVLRQ
70. Optimiser un processus
451
&DV G¶XQH PRGLILFDWLRQ GH OD FRPSRVLWLRQ j WHPSpUDWXUH HW SUHVVLRQ IL[pHV RX j
WHPSpUDWXUH HW YROXPH IL[pV
i
LO HVW QpFHVVDLUH
3RXU VLPSOLILHU OD FRPSDUDLVRQ GH Qr = aνi i HW GH Kƒ(T ) = aνi,éq
i
i
GH IDLUH DSSDUDvWUH GDQV OHXU H[SUHVVLRQ UHVSHFWLYH OH WHUPH PRGLILp HW FHX[ PDLQWHQXV
FRQVWDQWV &HOD LPSOLTXH XQ FHUWDLQ QRPEUH G¶pWDSH GH IRUPDOLVDWLRQ VHORQ OHV V\VWqPHV
pWXGLpV HQ SDUWLFXOLHU SRXU OHV V\VWqPHV JD]HX[
(QRQFp GH OD
SHUWXEDWLRQ
LQWURGXFWLRQ G¶XQ
FRPSRVp LQDFWLI
JD]HX[ GDQV XQ
V\VWqPH FRQWHQDQW
Ai (g)
LQDFWLI TXL
Q¶LQWHUYLHQW SDV
GDQV OD UpDFWLRQ
7HUPHV
PDLQWHQXV
FRQVWDQWV
7HUPH
PRGLILp
([SUHVVLRQ GHV DFWLYLWpV ai
Pi
Pƒ
nAi (g) × P
ai =
QWRW × P ƒ
ai =
T, P, nAi (g)
VRLW
TXDQWLWp GH
PDWLqUH WRWDOH
HQ JD] QWRW
ai =
VRLW ai =
T, V, nAi (g)
Pi
Pƒ
nAi (g) × QWRW × R × T
QWRW × P ƒ × V
FDU P × V = ntot × R × T
nAi (g) × R × T
G¶R ai =
Pƒ × V
&21&/86,21 O¶LQWURGXFWLRQ G¶XQ FRPSRVp LQDFWLI JD]HX[ SURYRTXH XQH pYROXWLRQ GDQV
OH VHQV GH O¶DXJPHQWDWLRQ GH OD TXDQWLWp GH PDWLqUH JOREDOH HQ JD] DFWLIV VL OH V\VWqPH HVW
LVRWKHUPH HW LVREDUH RX QH SURYRTXH ULHQ VL OH V\VWqPH HVW LVRWKHUPH HW LVRFKRUH
LQWURGXFWLRQ G¶XQ
FRPSRVp DFWLI
JD]HX[ GDQV XQ
V\VWqPH FRQWHQDQW
Ai (g)
T, P, nAi (g)
T, V, nAi (g)
TXDQWLWp GH
PDWLqUH
Q$M (J)
TXDQWLWp GH
PDWLqUH WRWDOH
HQ JD] QWRW
nAi (g) × P
QWRW × P ƒ
Q$M (J) × P
aj =
QWRW × P ƒ
ai =
nAi (g) × R × T
Pƒ × V
Q$M (J) × R × T
aj =
Pƒ × V
ai =
&21&/86,21 O¶LQWURGXFWLRQ G¶XQ FRPSRVp DFWLI JD]HX[ SURYRTXH XQH pYROXWLRQ GDQV
OH VHQV GH OD FRQVRPPDWLRQ GH FH FRPSRVp VL OH V\VWqPH HVW LVRWKHUPH HW LVRFKRUH
$WWHQWLRQ LO Q¶\ D SDV GH FRQFOXVLRQ JpQpUDOH SRVVLEOH VL OH V\VWqPH HVW LVRWKHUPH HW LVREDUH
452
Chimie
(QRQFp GH OD
SHUWXEDWLRQ
LQWURGXFWLRQ G¶XQH
SKDVH FRQGHQVpH
SXUH GDQV XQ
V\VWqPH FRQWHQDQW
Ai
7HUPHV
PDLQWHQXV
FRQVWDQWV
7HUPH
PRGLILp
([SUHVVLRQ GHV DFWLYLWpV ai
T, nAi
DXFXQH O¶DFWLYLWp GX
FRQVWLWXDQW
DMRXWp YDXW 1
/
&21&/86,21 O¶LQWURGXFWLRQ G¶XQH SKDVH FRQGHQVpH QH SURYRTXH DXFXQH pYROXWLRQ
LQWURGXFWLRQ GH
VROYDQW GDQV XQ
V\VWqPH FRQWHQDQW
Ai VROYDWp
T, nAi (solvaté)
YROXPH GH OD
VROXWLRQ 9
ai =
VRLW ai =
[Ai(solvaté) ]
C0
nAi(solvaté)
C0 × 9
&21&/86,21 O¶LQWURGXFWLRQ GH VROYDQW SURYRTXH XQH pYROXWLRQ GDQV OH VHQV GH OD GL
PLQXWLRQ GH OD TXDQWLWp GH PDWLqUH JOREDOH HQ HVSqFHV GLVVRXWHV
LQWURGXFWLRQ G¶XQ
VROXWp Aj VROYDWp
GDQV XQ V\VWqPH
FRQWHQDQW Ai
VROYDWp
T, V,
nAi (solvaté)
TXDQWLWp GH
PDWLqUH
Q$M (solvaté)
ai =
aj =
nAi(solvaté)
C0 × V
Q$M (solvaté)
C0 × V
&21&/86,21 O¶LQWURGXFWLRQ G¶XQ VROXWp SURYRTXH XQH pYROXWLRQ GDQV OH VHQV GH OD
FRQVRPPDWLRQ GH FH VROXWp
/¶HIIHW GH WHOOH RX WHOOH SHUWXUEDWLRQ Q¶HVW SDV WRXMRXUV pYLGHQW j H[SOLFLWHU &KDTXH H[HU
FLFH GHYUD rWUH WUDLWp GH IDoRQ SDUWLFXOLqUH
&9&.1-& (IIHW GH O¶LQWURGXFWLRQ G¶DUJRQ $U j WHPSpUDWXUH HW SUHVVLRQ IL[pHV VXU OD
V\QWKqVH GH O¶DPPRQLDF 1 (J) + + (J) = 1+ (J)
/¶H[SUHVVLRQ GH OD FRQVWDQWH G¶pTXLOLEUH DVVRFLpH DX V\VWqPH DYDQW O¶LQWURGXFWLRQ G¶DUJRQ
HVW (P1+ ,éq )2
(n1+ ,éq )2
Pƒ 2
2
2
Kƒ =
× (P ƒ) =
× (ntot,éq ) ×
P1 ,éq × (P+ ,éq )3
n1 ,éq × (n+ ,éq )3
Péq
/¶H[SUHVVLRQ GX TXRWLHQW GH UpDFWLRQ DVVRFLp DX V\VWqPH DSUqV O¶LQWURGXFWLRQ GH O¶DUJRQ
HVW (n1+ ,éq )2
Pƒ 2
× (QWRW ) ×
Qr =
n1 ,éq × (n+ ,éq )3
Péq
70. Optimiser un processus
453
6HXOH OD TXDQWLWp GH PDWLqUH WRWDOH HQ JD] ntot HVW PRGLILpH
ntot > ntot,éq G¶R Q�r > Kƒ /H V\VWqPH pYROXH VSRQWDQpPHQW GDQV OH VHQV LQGLUHFW
3RXU SURGXLUH SOXV G¶DPPRQLDF LO HVW GRQF FRQVHLOOp GH V¶DVVXUHU GH O¶DEVHQFH GH WRXW
JD] LQDFWLI GDQV OH V\VWqPH SRXU FHOD RQ UpDOLVH XQH SXUJH GHV WX\DX[ &9&.1-& (IIHW GH O¶LQWURGXFWLRQ GH FKORUXUH GH VRGLXP 1D&O(V) VXU OD GLVVROXWLRQ GX
FKORUXUH G¶DUJHQW G¶pTXDWLRQELODQ $J&O(V) = $J+DT + &O−DT
/¶H[SUHVVLRQ GH OD FRQVWDQWH G¶pTXLOLEUH DVVRFLpH DX V\VWqPH DYDQW O¶LQWURGXFWLRQ GH FKOR
UXUH GH VRGLXP HVW Kƒ =
n$J+ ,éq × n&O− ,éq
[$J+ ]éq × [&O− ]éq
=
2
(C0 )
Véq2 × (C0 )2
(Q QpJOLJHDQW WRXWH YDULDWLRQ GH YROXPH O¶H[SUHVVLRQ GX TXRWLHQW GH UpDFWLRQ DVVRFLp DX
V\VWqPH DSUqV O¶LQWURGXFWLRQ GX FKORUXUH GH VRGLXP HVW Q�r =
n$J+ ,éq × Q&O−
Véq2 × (C0 )2
n&O− > n&O− ,éq G¶R Q�r > Kƒ /H V\VWqPH pYROXH GDQV OH VHQV LQGLUHFW /D SUpVHQFH
G¶LRQV UHQG GRQF PRLQV HIILFDFH OD VROXELOLVDWLRQ G¶XQ SUpFLSLWp
2VF GBJSF (WDEOLU OD OLVWH GHV IDFWHXUV G¶pTXLOLEUH SRXU XQ V\VWqPH GRQQp HQ pFULYDQW O¶H[SUHVVLRQ
GH OD FRQVWDQWH G¶pTXLOLEUH Kƒ DVVRFLpH
&DOFXOHU OD YDULDQFH GX V\VWqPH SRXU DQWLFLSHU OD QDWXUH GH OD UpSRQVH GX V\VWqPH j XQH
SHUWXUEDWLRQ H[HUFpH SDU O¶RSpUDWHXU UXSWXUH RX GpSODFHPHQW G¶pTXLOLEUH &RQQDvWUH OD ORL GH 9DQ¶W +RII HW OD ORL GH /H &KkWHOLHU SRXU SUpGLUH O¶HIIHW G¶XQH YDULDWLRQ
GH WHPSpUDWXUH RX GH SUHVVLRQ VXU OH V\VWqPH
'DQV WRXV OHV FDV VDYRLU H[SULPHU OH TXRWLHQW GH UpDFWLRQ Qr HQ WHQDQW FRPSWH GH OD
SHUWXUEDWLRQ UpDOLVpH &RPSDUHU Qr j Kƒ SRXU FRQFOXUH VXU OH VHQV G¶pYROXWLRQ VSRQWDQpH
GX V\VWqPH
454
Chimie
$POTFJMT
&HWWH ILFKH V¶LQVFULW GDQV OD FRQWLQXLWp GH OD )LFKH 1ƒ © 3UpYRLU OH VHQV G¶pYROXWLRQ VSRQ
WDQpH G¶XQ V\VWqPH ªHW GH OD )LFKH 1ƒ © ([SORLWHU OHV GHJUpV GH OLEHUWp G¶XQ V\VWqPH ª
,O HVW YLYHPHQW UHFRPPDQGp GH OHV UHOLUH VL EHVRLQ
1H SDV VH © QR\HU ª GDQV OH IRUPDOLVPH DVVRFLp j OD FRQVWDQWH G¶pTXLOLEUH HW DX TXRWLHQW GH
UpDFWLRQ OHXU H[SUHVVLRQ HVW SURSUH j O¶pTXLOLEUH pWXGLp GRQF D SULRUL GLIIpUHQWH j FKDTXH
H[HUFLFH 0DLV OHV PpWKRGHV GH UpVROXWLRQ VRQW UHSURGXFWLEOHV j FRQGLWLRQ G¶DYRLU HQ WrWH
OH FDGUH G¶XWLOLVDWLRQ GHV GRQQpHV IRXUQLHV
&YFNQMF USBJU©
/D UpGXFWLRQ SDU OH GLK\GURJqQH GX GLR[\GH GH FDUERQH FRQGXLW DX PpWKDQRO VHORQ O¶pTXD
WLRQ &2 (J) + + (J) = &+ 2+(J) + + 2(J)
/¶HQWKDOSLH VWDQGDUG GH UpDFWLRQ HVW ΔrHƒ = −59 N-PRO−1 3RXU PD[LPLVHU OH UHQGHPHQW GH FHWWH V\QWKqVH GRLWRQ 6H SODFHU j KDXWH RX EDVVH WHPSpUDWXUH "
6H SODFHU j KDXWH RX EDVVH SUHVVLRQ "
,QWURGXLUH GX GLD]RWH GH IDoRQ LVRWKHUPH HW LVRFKRUH "
,QWURGXLUH GX GLD]RWH GH IDoRQ LVRWKHUPH HW LVREDUH "
$MRXWHU XQ FRQVWLWXDQW " /HTXHO HW GDQV TXHOOH FRQGLWLRQ "
40-65*0/
'¶DSUqV OD ORL GH PRGpUDWLRQ GH 9DQ¶W +RII XQH DXJPHQWDWLRQ GH WHPSpUDWXUH j SUHVVLRQ
HW FRPSRVLWLRQ IL[pHV HQWUDLQH XQ GpSODFHPHQW G¶pTXLOLEUH GDQV OH VHQV HQGRWKHUPLTXH
/¶HQWKDOSLH VWDQGDUG GH UpDFWLRQ ΔrHƒ < 0 OD UpDFWLRQ HVW H[RWKHUPLTXH
3RXU SURGXLUH SOXV GH PpWKDQRO LO HVW GRQF SUpIpUDEOH GH VH SODFHU j EDVVH WHPSpUDWXUH
'¶DSUqV OD ORL GH PRGpUDWLRQ GH /H &KkWHOLHU XQH DXJPHQWDWLRQ GH SUHVVLRQ j WHPSp
UDWXUH HW FRPSRVLWLRQ IL[pHV HQWUDLQH XQ GpSODFHPHQW G¶pTXLOLEUH GDQV OH VHQV G¶XQH
GLPLQXWLRQ GH OD TXDQWLWp JOREDOH GH JD]
νi = −1 − 3 + 1 + 1 = −2 LO \ D GLPLQXWLRQ GH OD TXDQWLWp JOREDOH GH JD] GDQV
,FL
i gaz
OH VHQV GLUHFW
3RXU SURGXLUH SOXV GH PpWKDQRO LO HVW GRQF FRQVHLOOp GH WUDYDLOOHU VRXV KDXWH SUHVVLRQ
70. Optimiser un processus
455
/¶LQWURGXFWLRQ G¶XQH HVSqFH FKLPLTXH LQDFWLYH j T HW V IL[pV QH PRGLILH SDV O¶pTXLOLEUH
/¶LQWURGXFWLRQ G¶XQH HVSqFH FKLPLTXH LQDFWLYH j T HW P IL[pHV HQWUDLQH XQ GpSODFHPHQW
G¶pTXLOLEUH GDQV OH VHQV G¶XQH DXJPHQWDWLRQ GH OD TXDQWLWp JOREDOH GH JD]
,FL FHOD FRUUHVSRQG j XQ GpSODFHPHQW GDQV OH VHQV LQGLUHFW
3RXU PD[LPLVHU OH UHQGHPHQW LO QH IDXW SDV DMRXWHU GH GLD]RWH GH IDoRQ LVRWKHUPH HW
LVREDUH
,O HVW QpFHVVDLUH G¶H[SULPHU OH TXRWLHQW GH UpDFWLRQ DILQ GH YRLU TXHO DMRXW GH FRQVWLWXDQW
DFWLI SHUPHWWUDLW G¶DPpOLRUHU OH UHQGHPHQW P+ 2(J)
P&+ 2+(J)
×
P&+ 2+(J) × P+ 2(J) × (P ƒ)2
Pƒ
Pƒ
Qr = 3 =
P&2 (J) × (P+ (J) )3
P&2 (J)
P+ (J)
×
Pƒ
Pƒ
Qr =
n&+ 2+(J) × n+ 2(J) × (ntot )2
n&2 (J) × (n+ (J) )3
×
Pƒ
P
2
=
n&+ 2+(J) × n+ 2(J)
n&2 (J) × (n+ (J) )3
×
Pƒ × V
R×T
2
3RXU TXH O¶pTXLOLEUH VH GpSODFH GDQV OH VHQV GLUHFW LO IDXW TXH O¶DMRXW HQWUDLQH XQH GLPL
QXWLRQ GX TXRWLHQW DILQ TXH Qr < Kƒ
j T HW V FRQVWDQWV ,O IDXW WUDYDLOOHU DYHF Qr =
n&+ 2+(J) × n+ 2(J)
n&2 (J) × (n+ (J) )3
×
Pƒ × V
R×T
2
'DQV FHV FRQGLWLRQV O¶DMRXW GH &2 RX GH + j GLPLQXHUDLW Qr HW GpSODFHUDLW O¶pTXL
OLEUH GDQV OH VHQV GLUHFW VRXKDLWp WDQGLV TXH O¶DMRXW GH &+ 2+ RX GH + 2 OH GpSOD
FHUDLW GDQV OH VHQV LQGLUHFW
j T HW P FRQVWDQWV ,O IDXW WUDYDLOOHU DYHF Qr =
n&+ 2+(J) × n+ 2(J) × (ntot )2
n&2 (J) × (n+ (J) )3
×
Pƒ
P
2
/¶DQDO\VH HVW PRLQV GLUHFWH (Q HIIHW DMRXWHU XQ FRQVWLWXDQW Ai DFWLI GDQV VHV FRQGL
WLRQV HQWUDLQH XQH DXJPHQWDWLRQ GH VD TXDQWLWp GH PDWLqUH nAi PDLV pJDOHPHQW GH OD
TXDQWLWp JOREDOH GH JD] ntot 1pDQPRLQV LO HVW FODLU TX¶DMRXWHU GX PpWKDQRO RX GH O¶HDX DXJPHQWH REOLJDWRLUHPHQW
OD YDOHXU GX TXRWLHQW GRQF HQWUDLQH XQ GpSODFHPHQW O¶pTXLOLEUH GDQV OH VHQV LQGLUHFW
FH TXL Q¶HVW SDV VRXKDLWDEOH
(Q FH TXL FRQFHUQH O¶DMRXW GH &2 RX GH + 2 LO IDXW SURFpGHU j OD GLIIpUHQWLHOOH
ORJDULWKPLTXH $MRXW GH &2 j T P n+ (J) n&+ 2+(J) HW n+ 2(J) IL[pHV
6HXOV n&2 (J) HW ntot YDULHQW 456
Chimie
d Qr
<0
/H TXRWLHQW GH UpDFWLRQ Qr GLPLQXH VL d OQ Qr =
Qr
2 2
n
×
n
×
(n
)
tot
&+
2+
+
2
Pƒ
(J)
(J)
×
OQ Qr = OQ
P
n&2 (J) × (n+ (J) )3
$MRXW GH &2 j T P n+ (J) n&+ 2+(J) HW n+ 2(J) IL[pHV
6HXOV n&2 (J) HW ntot YDULHQW d Qr
<0
/H TXRWLHQW GH UpDFWLRQ Qr GLPLQXH VL d OQ Qr =
Qr
2 2
n
×
n
×
(n
)
tot
&+
2+
+
2
Pƒ
(J)
(J)
×
OQ Qr = OQ
3
n&2 (J) × (n+ (J) )
P
2 n&+ 2+(J) × n+ 2(J)
Pƒ
(ntot )2
+ OQ
×
OQ Qr = OQ
(n+ (J) )3
P
n&2 (J)
(Q SDVVDQW j OD GLIIpUHQWLHOOH 2
n
×
n
&+
2+
+
2
(ntot )2
P
ƒ
(J)
(J)
×
+
d
OQ
d OQ Qr = d OQ
(n+ (J) )3
P
n&2 (J)
= 0 FDU WRXV FHV WHUPHV VRQW FRQVWDQWV
d OQ Qr = d OQ(ntot )2 − d OQ(n&2 (J) )
d Qr
= 2 d OQ(ntot ) − d OQ(n&2 (J) ) < 0
6RLW d OQ Qr =
Qr
2
1
1
d ntot d n&2 (J)
−
<0⇔
−
<0⇔2−
<0
⇔2
ntot
n&2 (J)
ntot n&2 (J)
x&2 (J)
FDU d ntot = d n&2 (J)
1
⇔ x&2 (J) >
2
6L O¶DMRXW GH &2 VH IDLW GH VRUWH TXH VD IUDFWLRQ PRODLUH GpSDVVH 0, 5 DORUV
O¶pTXLOLEUH VHUD GpSODFp GDQV OH VHQV GLUHFW
$MRXW GH + j T P n&2 (J) n&+ 2+(J) HW n+ 2(J) IL[pHV
6HXOV n+ (J) HW ntot YDULHQW 'H PrPH SDU OD PpWKRGH GH OD GLIIpUHQWLHOOH ORJDULWKPLTXH RQ WURXYH TXH 2
n
×
n
&+
2+
+
2
P
ƒ
(ntot )2
(J)
(J)
×
+
d
OQ
d OQ Qr = d OQ
n&2 (J)
P
(n+ (J) )3
= 0 FDU WRXV FHV WHUPHV VRQW FRQVWDQWV
d n+ (J)
d Qr
d ntot
2
3
<
0
⇔
2
−
3
<0⇔
−
<0
d OQ Qr =
Qr
ntot
n+ (J)
ntot n+ (J)
FDU d ntot = d n+ (J)
3
⇔2−
<0
x+ (J)
6RLW x+ (J) >
3
&¶HVW LPSRVVLEOH
2
/¶DMRXW GH + QH GpSODFHUD SDV O¶pTXLOLEUH GDQV OH VHQV VRXKDLWp TXHOOH TXH VRLW
OD IUDFWLRQ PRODLUH DWWHLQWH
&YFSDJDFT
&9&3$*$& 70. Optimiser un processus
457
/¶DMRXW
/¶DMRXWGH
GH++ QH
QHGpSODFHUD
GpSODFHUDSDV
SDVO¶pTXLOLEUH
O¶pTXLOLEUHGDQV
GDQVOH
OH VHQV
VHQV VRXKDLWp
VRXKDLWp TXHOOH TXH VRLW
ODODIUDFWLRQ
IUDFWLRQPRODLUH
PRODLUHDWWHLQWH
DWWHLQWH
&YFSDJDFT
&YFSDJDFT
&9&3$*$&
&9&3$*$&
/H
/HGLK\GURJqQH
GLK\GURJqQHHVW
HVWJpQpUDOHPHQW
JpQpUDOHPHQWSURGXLW
SURGXLW SDU
SDU YDSRUHIRUPDJH
YDSRUHIRUPDJH GX
GX JD]
JD] QDWXUHO
QDWXUHO /D UpDFWLRQ
6RQ
6RQ
pTXDWLRQ
pTXDWLRQ
ELODQ QRWpH (a)
FKLPLTXH
FKLPLTXHSULQFLSDOH
SULQFLSDOHHVW
HVWFDWDO\VpH
FDWDO\VpHSDU
SDUOHOHQLFNHO
QLFNHOVROLGH
VROLGH 1L
1L(V)
(V)
HVW
HVWODODVXLYDQWH
VXLYDQWH +++22(J)
=&2
&2(J)
+++(J)
(a)
(a)
&+
&+(J)
(J)+
(J)
(J)=
(J)+
¬¬O¶HQWUpH
O¶HQWUpHGX
GXUpDFWHXU
UpDFWHXUOHOHPpODQJH
PpODQJHJD]HX[
JD]HX[FRQWLHQW
FRQWLHQW XQLTXHPHQW
XQLTXHPHQW GX
GX PpWKDQH
PpWKDQH HW GH O¶HDX /H
PpWKDQH
PpWKDQHHVW
HVWODODVXEVWDQFH
VXEVWDQFHpFRQRPLTXHPHQW
pFRQRPLTXHPHQWFR€WHXVH
FR€WHXVHGH
GHFHWWH
FHWWH V\QWKqVH
V\QWKqVH
eYDOXHU
eYDOXHUODODYDULDQFH
YDULDQFHGH
GHFHFHV\VWqPH
V\VWqPH6XU
6XUTXHO
TXHO VV SDUDPqWUH
SDUDPqWUH VV SHXWRQ
SHXWRQ MRXHU
MRXHU SRXU RSWLPLVHU
FHWWH
FHWWHV\QWKqVH
V\QWKqVH""
/D/DILJXUH
ILJXUHFLGHVVRXV
FLGHVVRXVGRQQH
GRQQHJUDSKLTXHPHQW
JUDSKLTXHPHQWO¶pYROXWLRQ
O¶pYROXWLRQGH
GHOD
ODFRQVWDQWH
FRQVWDQWH G¶pTXLOLEUH
G¶pTXLOLEUH Kƒ(a) GH OD
UpDFWLRQ
UpDFWLRQ(a)
(a)HQHQIRQFWLRQ
IRQFWLRQGH
GHODODWHPSpUDWXUH
WHPSpUDWXUHTT HQ
HQƒ&
ƒ& 'LVFXWHU
'LVFXWHUGHV
GHVHIIHWV
HIIHWVG¶XQH
G¶XQHDXJPHQWDWLRQ
DXJPHQWDWLRQGH
GHODODWHPSpUDWXUH
WHPSpUDWXUHHW
HWGH
GHOD
OD SUHVVLRQ
SUHVVLRQ VXU OD SRVLWLRQ
GHGHO¶pTXLOLEUH
O¶pTXLOLEUHFKLPLTXH
FKLPLTXHSXLV
SXLVMXVWLILHU
MXVWLILHUOHV
OHVFRQGLWLRQV
FRQGLWLRQVRSpUDWRLUHV
RSpUDWRLUHV OO ƒ&
ƒ& HW EDUV GH
FHWWH
FHWWHV\QWKqVH
V\QWKqVH
/¶DMRXW
/¶DMRXWGHGHQLFNHO
QLFNHOSHUPHWLO
SHUPHWLOG¶DPpOLRUHU
G¶DPpOLRUHUOHOHUHQGHPHQW
UHQGHPHQW""
458
Chimie
aQm`+2
aQm`+2 ,, 1ti`Bi
1ti`Bi **S SaA kyR3
&9&3$*$& $SSURFKH GRFXPHQWDLUH
/D V\QWKqVH GH O¶DPPRQLDF HVW UpDOLVpH SDU UpDFWLRQ GLUHFWH HQWUH OH GLK\GURJqQH HW OH GLD]RWH
HQ SUpVHQFH G¶R[\GHV GH IHU FRPPH FDWDO\VHXU VHORQ 1 (J) + + (J) = 1+ (J)
(1)
2Q RSqUH j GHV SUHVVLRQV pOHYpHV 200 j 300 EDUV HW XQH WHPSpUDWXUH GH O¶RUGUH GH 500 ƒ&
FHWWH WHPSpUDWXUH pWDQW XQH WHPSpUDWXUH GH FRPSURPLV
2Q IDLW GH SOXV UpDJLU OH GLD]RWH HW OH GLK\GURJqQH GDQV GHV SURSRUWLRQV VW°FKLRPpWULTXHV
/H GLD]RWH SURYLHQW GH O¶DLU /H GLK\GURJqQH HVW SURGXLW SDU UHIRUPDJH GX PpWKDQH RX
G¶DXWUHV K\GURFDUEXUHV SOXV ORXUGV SDU OD YDSHXU G¶HDX
,O HVW QpFHVVDLUH GH OLPLWHU OD SUpVHQFH GH JD] LQHUWHV GDQV OH UpDFWHXU DILQ G¶DPpOLRUHU OH
UHQGHPHQW GH OD UpDFWLRQ ,O IDXW GH SOXV pOLPLQHU WRXWH WUDFH GH &2 HW &2 DILQ G¶pYLWHU
QRWDPPHQW OD GpVDFWLYDWLRQ GX FDWDO\VHXU GH OD V\QWKqVH G¶DPPRQLDF
/H SURFpGp LQGXVWULHO GH +DEHU%RVFK ILQDOLVp HQ UpSRQG DX[ GLIIpUHQWHV FRQWUDLQWHV
pYRTXpHV FLGHVVXV 8Q VFKpPD GH SULQFLSH VLPSOLILp VRXUFH :LNLSpGLD HVW GRQQp FL
GHVVRXV /H EORF UpDOLVH OD SURGXFWLRQ GH + SDU UHIRUPDJH GX PpWKDQH HQ GHX[ pWDSHV /H UHIRUPDJH SULPDLUH R VH GpURXOHQW SULQFLSDOHPHQW OHV UpDFWLRQV
&+ (J) + + 2(J) = &2(J) + + (J)
/H UHIRUPDJH VHFRQGDLUH
(2)
&2(J) + + 2(J) = &2 (J) + + (J)
(3)
&+ (J) + 2 (J) = &2(J) + + 2(J)
(4)
/H EORF UpDOLVH OD SXULILFDWLRQ GX PpODQJH SDU &RQYHUVLRQ GX PRQR[\GH GH FDUERQH HQ GLR[\GH GH FDUERQH VHORQ OD UpDFWLRQ (3)
eOLPLQDWLRQ GX GLR[\GH GH FDUERQH GpFDUERQDWDWLRQ SDU DEVRUSWLRQ HQ VROXWLRQ DTXHXVH
eOLPLQDWLRQ GHV WUDFHV GH &2 HW &2 SDU XQ GLVSRVLWLI QRQ UHSUpVHQWp VXU OH VFKpPD GH
SULQFLSH PpWKDQDWLRQ 70. Optimiser un processus
459
/H EORF UpDOLVH OD V\QWKqVH GH 1+ HW VRQ VWRFNDJH VRXV IRUPH OLTXLGH
3RXU OD VXLWH RQ V¶LQWpUHVVH SOXV SDUWLFXOLqUHPHQW DX EORF VRLW j OD SURGXFWLRQ GH + /H UHIRUPDJH VH IDLW HQ GHX[ pWDSHV OH UHIRUPDJH SULPDLUH HW OH UHIRUPDJH VHFRQGDLUH RX
SRVWFRPEXVWLRQ (QWUH FHV GHX[ pWDJHV VH WURXYHQW GHV pFKDQJHXUV GH UpFXSpUDWLRQ G¶pQHUJLH
WKHUPLTXH TXL SHUPHWWHQW GH SUpFKDXIIHU FHUWDLQV IOX[ GX SURFpGp /¶DOLPHQWDWLRQ GX EORF HQ PpWKDQH VH IDLW j XQH SUHVVLRQ GH O¶RUGUH GH 25 EDUV
/HV FRXUEHV GRQQDQW OHV FRQVWDQWHV G¶pTXLOLEUH GHV UpDFWLRQV (2) HW (3) HQ IRQFWLRQ GH OD
WHPSpUDWXUH T VRQW UHSUpVHQWpHV FLGHVVRXV 'H SOXV XQH UpDFWLRQ SDUDVLWH GH FRNDJH SHXW VH SURGXLUH j FHUWDLQHV WHPSpUDWXUHV VHORQ (5)
&+ (J) = &(JU) + + (J)
/¶HQWKDOSLH OLEUH VWDQGDUG GH FHWWH UpDFWLRQ YDXW Δr Gƒ(T ) = 74400 − 80, 77 × T -PRO−1
(Q SUDWLTXH RQ WUDYDLOOH j XQH SUHVVLRQ GH 2530 EDUV
¬ OD WHPSpUDWXUH GH WUDYDLO OD FRQYHUVLRQ GX PpWKDQH HVW G¶HQYLURQ 90 ,O IDXW GRQF XQH
pWDSH VXSSOpPHQWDLUH SRXU EU€OHU OH PpWKDQH UHVWDQW
'RQQpHV 7DX[ GH FRQYHUVLRQ WKpRULTXH HQ GH OD V\QWKqVH GH 1+ SRXU XQH WUDQVIRUPDWLRQ VH
IDLVDQW GDQV OHV SURSRUWLRQV VW°FKLRPpWULTXHV j P HW T T = 200 ƒ&
T = 400 ƒ&
T = 500 ƒ&
T = 700 ƒ&
460
Chimie
P = 10 EDU
70, 8
13, 3
5, 2
1, 2
P = 100 EDU
90, 4
51, 5
31, 2
10, 7
P = 200 EDU
93, 1
63, 5
44, 3
18, 6
P = 300 EDU
94, 4
69, 5
52, 0
24, 6
'RQQpHV WKHUPRG\QDPLTXHV UHODWLYHV DX[ UpDFWLRQV (1) HW (3) WRXV OHV FRQVWLWXDQWV VRQW
JD]HX[ N-PRO−1
Δf Hƒ
Sƒ -.−1 PRO−1
1
0
191, 5
+
0
130, 6
1+
−46, 3
192, 3
+ 2
−241, 8
188, 7
&2
−110, 5
197, 6
&2
−393, 5
213, 7
-XVWLILHU GH OD IDoRQ OD SOXV FRPSOqWH SRVVLEOH OHV SRLQWV HW (Q DQDO\VDQW OH VFKpPD GH SULQFLSH GH OD ILJXUH HW SOXV SDUWLFXOLqUHPHQW GX EORF SUpFLVHU OH PRGH G¶DFWLRQ SHUPHWWDQW O¶REWHQWLRQ G¶XQ PpODQJH VW°FKLRPpWULTXH HQ 1
HW + /RUV GH O¶pWDSH GH UHIRUPDJH SULPDLUH OD UpDFWLRQ (5) GH FRNDJH HVW TXDOLILpH GH SDUDVLWH
ELHQ TX¶HOOH SHUPHWWH XQH SURGXFWLRQ GH GLK\GURJqQH 3URSRVHU XQH H[SOLFDWLRQ SRXU
FHWWH GpQRPLQDWLRQ
3URSRVHU HQ OH MXVWLILDQW XQ RUGUH GH JUDQGHXU SRXU OD WHPSpUDWXUH GH IRQFWLRQQHPHQW
GX UHIRUPDJH SULPDLUH &RPPHQWHU OH FKRL[ GH OD SUHVVLRQ GH WUDYDLO
1PVS WPVT BJEFS
E©NBSSFS
&9&3$*$& 5HOLUH OD )LFKH 1ƒ © ([SORLWHU OHV GHJUpV GH OLEHUWp G¶XQ V\VWqPH ª
SRXU YRXV DLGHU j FDOFXOHU OD YDULDQFH
8WLOLVHU OD ILJXUH DILQ GH GLVFXWHU GH O¶HIIHW GH OD PRGLILFDWLRQ WHPSp
UDWXUH j P FRQVWDQWH VXU O¶pTXLOLEUH
&DOFXOHU OD YDULDWLRQ GH TXDQWLWp GH JD] DX FRXUV GH OD UpDFWLRQ FKL
PLTXH SRXU GLVFXWHU GH O¶HIIHW G¶XQH PRGLILFDWLRQ GH SUHVVLRQ j T
FRQVWDQWH VXU O¶pTXLOLEUH
/H QLFNHO HVW XQ FRQVWLWXDQW VROLGH VHXO GDQV VD SKDVH
&9&3$*$& /LUH DWWHQWLYHPHQW O¶HQVHPEOH GHV GRFXPHQWV HW GRQQpHV
,GHQWLILHU OH W\SH GH SHUWXUEDWLRQ HW XWLOLVHU OHV ORLV GH PRGpUDWLRQ GH
9DQ¶W +RII HW GH /H &KkWHOLHU RX OH JUDQG WDEOHDX GH OD SDUWLH © 4XDQG
RQ QH VDLW SDV ª SRXU MXVWLILHU OHV GpSODFHPHQWV G¶pTXLOLEUH HQ IRQF
WLRQ GH OD SHUWXUEDWLRQ
70. Optimiser un processus
461
4PMVUJPOT EFT FYFSDJDFT
&9&3$*$& /HV SDUDPqWUHV LQWHQVLIV GX V\VWqPH VRQW P T x&+ x+ 2 x&2 HW x+ 2Q FRPSWH OHV UHODWLRQV HQWUH FHV SDUDPqWUHV Kƒ(T ) x&+ + x+ 2 + x&2 + x+ = 1
,O H[LVWH XQH UHODWLRQ SDUWLFXOLqUH GX IDLW TX¶j O¶pWDW LQLWLDO LO Q¶\ DYDLW QL &2 QL + x+ = 3 × x&2 /D YDULDQFH UpGXLWH YDXW v = 6 − 3 = 3 ,O H[LVWH GHJUpV GH OLEHUWp $ SULRUL RQ SHXW MRXHU VXU OHV SDUDPqWUHV T P HW xi (IIHW G¶XQH DXJPHQWDWLRQ GH OD WHPSpUDWXUH '¶DSUqV OH GRFXPHQW OD FRQVWDQWH Kƒ DXJPHQWH ORUVTXH OD WHPSpUDWXUH DXJPHQWH
'H SOXV ORJ Kƒ = 0 ⇔ Kƒ = 1 SRXU XQH WHPSpUDWXUH Ti = 840ƒC
5HPDUTXH Ti HVW DSSHOpH WHPSpUDWXUH G¶LQYHUVLRQ
,O IDXW UpDOLVHU OD UpDFWLRQ j XQH WHPSpUDWXUH VXSpULHXUH j Ti SRXU TXH O¶pTXLOLEUH VRLW
GpSODFp GDQV OH VHQV GLUHFW /H FKRL[ GH 1000 ƒ& SDUDLW FRQYHQLU
7UDYDLOOHU j XQH WHPSpUDWXUH HQFRUH SOXV JUDQGH VHUDLW DYDQWDJHX[ QLYHDX UHQGHPHQW
PDLV FRXWHUDLW SOXV FKHU j O¶LQGXVWULHO
(IIHW G¶XQH DXJPHQWDWLRQ GH OD SUHVVLRQ /D ORL GH PRGpUDWLRQ GH /H &KkWHOLHU VWLSXOH TX¶XQH DXJPHQWDWLRQ GH SUHVVLRQ j T
HW FRPSRVLWLRQ FRQVWDQWHV GpSODFHUDLW O¶pTXLOLEUH GDQV OH VHQV G¶XQH GLPLQXWLRQ GH OD
TXDQWLWp JOREDO GH JD] F¶HVW j GLUH GDQV OH VHQV LQGLUHFW LFL
,O HVW GRQF SUpIpUDEOH GH QH SDV WUDYDLOOHU j KDXWH SUHVVLRQ /H FKRL[ H[SpULPHQWDO G¶XQH
SUHVVLRQ GH 25 EDUV SDUDLW LFL FULWLTXDEOH ,O V¶DJLW SHXW rWUH G¶XQH FRQVLGpUDWLRQ FLQp
WLTXH WUDYDLOOHU j KDXWH SUHVVLRQ GRLW SHUPHWWUH G¶DFFpOpUHU O¶REWHQWLRQ GX SURGXLW
/¶DMRXW G¶XQ FRQVWLWXDQW VROLGH VHXO GDQV VD SKDVH j WHPSpUDWXUH HW SUHVVLRQ FRQVWDQWHV
QH PRGLILH SDV O¶pTXLOLEUH
/¶DMRXW GH 1L QH SHUPHW GRQF SDV G¶DPpOLRUHU OH UHQGHPHQW
462
Chimie
&9&3$*$& -XVWLILRQV OHV SRLQWV GDQV O¶RUGUH &DOFXORQV O¶HQWKDOSLH VWDQGDUG GH OD UpDFWLRQ (1) JUkFH j OD ORL GH +HVV ΔrHƒ = 2 × Δf Hƒ1+ (J) = −92, 6 N-PRO−1 /D UpDFWLRQ (1) HVW GRQF H[RWKHUPLTXH
'¶DSUqV OD ORL GH 9DQ¶W +RII XQH pOpYDWLRQ GH WHPSpUDWXUH GpSODFHUDLW O¶pTXLOLEUH
GDQV OH VHQV HQGRWKHUPLTXH LFL OH VHQV LQGLUHFW 'RQF OHV LQGXVWULHOV DXUDLHQW DYDQ
WDJH j WUDYDLOOHU j EDVVH WHPSpUDWXUH ,O IDXW QpDQPRLQV XQH WHPSpUDWXUH DVVH] pOHYpH
G¶XQ SRLQW GH YXH FLQpWLTXH ,O IDXW GRQF IDLUH XQ FRPSULV HW WUDYDLOOHU j XQH WHPSp
UDWXUH LQWHUPpGLDLUH
'¶DSUqV OH SULQFLSH GH PRGpUDWLRQ GH /H &KkWHOLHU XQH DXJPHQWDWLRQ GH SUHVVLRQ Gp
SODFHUDLW O¶pTXLOLEUH GDQV OH VHQV GH OD GLPLQXWLRQ GH OD TXDQWLWp G¶HVSqFHV JD]HXVHV
F¶HVWjGLUH GDQV OH VHQV GLUHFW GH (1) /¶LQGXVWULHO DXUD DYDQWDJH j WUDYDLOOHU j KDXWH
SUHVVLRQ
Solutions
,O Q¶\ D SDV GH UqJOH VLPSOH SRXU SUpYRLU XQ GpSODFHPHQW G¶pTXLOLEUH G¶XQH UpDFWLRQ
HQ SKDVH JD] ORUV GH O¶DMRXW j P HW T IL[pHV G¶XQ FRQVWLWXDQW DFWLI
7RXWHIRLV O¶LQGXVWULHO D WRXW LQWpUrW j XWLOLVHU OHV SURSRUWLRQV VW°FKLRPpWULTXHV
+ HVW OH UpDFWLI SURYHQDQW GH &+ SD\DQW RQ SRXUUDLW SHQVHU DORUV PHWWUH 1 HQ IRUW
H[FqV
0DLV ELHQ TXH 1 VRLW JUDWXLW SXLVTXH SULV GH O¶DLU LO Q¶HVW SDV SXU (Q FDV G¶XQ IRUW
H[FqV GH 1 LO \ DXUDLW DXVVL XQ IRUW H[FqV GH 2 TX¶LO IDXGUDLW pOLPLQHU SRXU QH SDV
TX¶LO QH UHVWH GHV JD] LQHUWHV
/RUV GH O¶DMRXW G¶XQ FRQVWLWXDQW LQHUWH JD]HX[ j T HW P IL[pHV O¶pTXLOLEUH pYROXH
GDQV OH VHQV GH O¶DXJPHQWDWLRQ GH OD TXDQWLWp GH JD] F¶HVWjGLUH GDQV OH VHQV LQGLUHFW
GH (1) F¶HVW SRXUTXRL LO IDXW OLPLWHU OD SUpVHQFH GH JD] LQHUWH 'H SOXV &2 HW &2
HPSRLVVRQQHQW OH FDWDO\VHXU ,O IDXW GRQF DEVROXPHQW pYLWHU WRXWH SUpVHQFH GH FHV
PROpFXOHV
/H EORF 1 HVW OH VLqJH GH UHIRUPDJHV VXFFHVVLIV
'DQV OH UHIRUPDJH SULPDLUH &+ HVW FRQVRPPp j 5DLVRQQRQV VXU PROH GH &+ DX GpSDUW
(Q UHJURXSDQW OHV UpDFWLRQV (2) HW (3) TXL RQW OLHX GDQV OD qUH SDUWLH GX EORF 1 &+ + + 2 = &2 + +
(WDW LQLWLDO
(WDW G¶pTXLOLEUH
&+ (J) + + 2(J)
1
///
0, 2
///
=
&2 (J) + + (J)
0
0
0, 9
3, 6
,O UHVWH HQYLURQ GH &+ TXL GRLW rWUH R[\Gp SDU 2 GH O¶DLU ORUV GX UHIRUPDJH
VHFRQGDLUH
70. Optimiser un processus
463
8Q V\VWqPH GH YDQQH j GpELW YDULDEOH SHUPHW GH FRQWU{OHU OD TXDQWLWp G¶DLU GRQF GH 2
HW 1 LQWURGXLWH GDQV OD qPH SDUWLH GX EORF 1 /¶LQWpUrW HVW GRXEOH D DMRXWHU 1 HQ TXDQWLWp VW°FKLRPpWULTXH SDU UDSSRUW j + $ SDUWLU G¶XQH PROH GH &+ LO HVW IRUPp 3, 6 PRO GH + ,O IDXW GRQF LQWURGXLUH 1, 2 PRO
GH 1 SRXU DYRLU OHV UpDFWLIV GH (1) HQ SURSRUWLRQV VW°FKLRPpWULTXHV
/D YDQQH j GpELW YDULDEOH GRLW LQWURGXLUH 1, 5 PRO G¶DLU HQ FRQVLGpUDQW TXH O¶DLU HVW
FRPSRVp GH 80 GH 1 HW GH 20 GH 2 /D TXDQWLWp GH 2 GDQV OH PLOLHX HVW DORUV GH
0, 3 PRO
E DMRXWHU 2 TXL UpDOLVH O¶R[\GDWLRQ GH FH TXL UHVWH HQ &+ VXLYDQW OD UpDFWLRQ (WDW LQLWLDO
(WDW G¶pTXLOLEUH
&+ (J) +
0, 1
ε
2 (J)
0, 3
0, 15
=
&2(J) + + 2(J)
0
0
0, 1
0, 2
/D UpDFWLRQ (5) GHYLHQW VSRQWDQpH ΔrGƒ < 0 j SDUWLU G¶XQH WHPSpUDWXUH GH 921 .
&¶HVW XQH UpDFWLRQ SDUDVLWH SRXU GHX[ UDLVRQV HQ SDUWDQW G¶XQ pTXLYDOHQW GH &+ HW HQ FRQVLGpUDQW OHV UpDFWLRQV TXDQWLWDWLYHV
RQ Q¶REWLHQW TXH pTXLYDOHQWV GH + DORUV TXH O¶RQ HQ REWLHQW pTXLYDOHQWV SDU
OH UHIRUPDJH SULPDLUH
FHWWH UpDFWLRQ SURGXLW GX FDUERQH & TXL HVW VROLGH PrPH DX[ WHPSpUDWXUHV pOH
YpHV XWLOLVpHV ORUV GX UHIRUPDJH &HOD SHXW SRVHU SUREOqPH G¶HQFUDVVHPHQW GX
V\VWqPH
8Q GRFXPHQW SUpVHQWH OHV pYROXWLRQV GHV FRQVWDQWHV WKHUPRG\QDPLTXHV G¶pTXLOLEUH GH
UpDFWLRQ (2) HW (3) QRWpHV UHVSHFWLYHPHQW Kƒ2 HW Kƒ3 HQ IRQFWLRQ GH OD WHPSpUDWXUH 2Q
REVHUYH TXH OHV FRQVWDQWHV pYROXHQW GH IDoRQ FRQWUDLUH (Q HIIHW Kƒ2 DXJPHQWH DYHF
T DORUV TXH Kƒ3 GLPLQXH ORUVTXH T DXJPHQWH ,O IDXW GRQF FKRLVLU XQH WHPSpUDWXUH GH
WUDYDLO GH VRUWH TXH OHV UpDFWLRQV (2) HW (3) VRLW IDYRUDEOHV WKHUPRG\QDPLTXHPHQW
F¶HVW j GLUH DYHF XQ Kƒ(T ) OH SOXV JUDQG SRVVLEOH
3RXU (2) Kƒ2 > 1 SRXU T > 900 .
3RXU (3) Kƒ3 > 1 SRXU T < 1050 .
'H SOXV DILQ G¶pYLWHU OD UpDFWLRQ SDUDVLWH GH FRNDJH LO IDXW XQH WHPSpUDWXUH LQIpULHXUH
j 921 .
8QH WHPSpUDWXUH GH 920 . VHPEOH XQH ERQQH WHPSpUDWXUH GH WUDYDLO
(Q FH TXL FRQFHUQH OD SUHVVLRQ HOOH Q¶HVW SDV IDFWHXU G¶pTXLOLEUH SRXU OD UpDFWLRQV (3) &2(J) + + 2(J) = &2 (J) + + (J)
FDU LO Q¶\ D SDV GH PRGLILFDWLRQ GH OD TXDQWLWp GH PRO GH JD] DX FRXUV GH OD UpDF
WLRQ
464
Chimie
'H SOXV DILQ G¶pYLWHU OD UpDFWLRQ SDUDVLWH GH FRNDJH LO IDXW XQH WHPSpUDWXUH LQIpULHXUH
j 921 .
8QH WHPSpUDWXUH GH 920 . VHPEOH XQH ERQQH WHPSpUDWXUH GH WUDYDLO
(Q FH TXL FRQFHUQH OD SUHVVLRQ HOOH Q¶HVW SDV IDFWHXU G¶pTXLOLEUH SRXU OD UpDFWLRQV (3) &2(J) + + 2(J) = &2 (J) + + (J)
FDU LO Q¶\ D SDV GH PRGLILFDWLRQ GH OD TXDQWLWp GH PRO GH JD] DX FRXUV GH OD UpDF
WLRQ
/D UpDFWLRQ (2) LQGXLW XQH DXJPHQWDWLRQ GH OD TXDQWLWp GH PRO GH JD] &+ (J) + + 2(J) = &2(J) + + (J)
Solutions
8QH DXJPHQWDWLRQ GH OD SUHVVLRQ HQWUDLQHUDLW XQ GpSODFHPHQW GH O¶pTXLOLEUH GDQV OH VHQV
LQGLUHFW
/H UHIRUPDJH HVW UpDOLVp j GHV SUHVVLRQV GH O¶RUGUH GH 25 EDU SOXW{W EDVVHV SRXU O¶LQGXV
WULH
70. Optimiser un processus
465
Les ouvrages de cette collection ont pour objectif de faciliter l’acquisition
et la maîtrise des notions fondamentales du programme. Le but est de
faire en sorte que chacun sache « quoi faire », même lorsqu’il pense se
trouver face à un obstacle insurmontable.
Chaque fiche de ce livre est conçue de la façon suivante :
„ Quand on ne sait pas !
Les raisons expliquant pourquoi on ne sait pas, avec parfois des rappels
de cours et les premières pistes à explorer afin de s’en sortir.
„ Que faire ?
Les méthodes permettant de solutionner le type de problème étudié,
assorties des rappels de cours essentiels à leur mise en œuvre.
„ Conseils
Les conseils de rédaction et une ou deux astuces pratiques.
„ Exemple traité
Mise en pratique et en lumière de ce qui a été vu précédemment.
„ Pour vous aider à démarrer
Les idées permettant de démarrer sereinement les exercices proposés.
„ Solutions des exercices
Les solutions complètes et détaillées des exercices.
-:HSMDOA=UXXWZW:
Illustration de couverture : © diego1012 - Fotolia.com
„ Exercices
Énoncés choisis soigneusement afin de balayer largement le thème étudié,
certains étant extraits de sujets de concours.
Téléchargement