
Formulaire de primitives
Zdt
t= ln |t|+k, t ∈R∗,
Si f:I−→ R∗est d´erivable, Zf′(t)
f(t)dt = ln |f(t)|+k.
Zln(t)dt =tln t−t+k.
pour tout complexe a̸=−1, Ztadt =ta+1
a+ 1 +k.
Pour tout complexe m̸= 0, Zemt dt =1
memt +k.
Zcos(t)dt = sin(t) + k,Zsin(t)dt =−cos(t) + k.
Zch(t)dt = sh(t) + k,Zsh(t)dt = ch(t) + k.
Ztan(t)dt =−ln |cos(t)|+k, t ∈R\(π
2+πZ).
Zcotan (t)dt = ln |sin(t)|+k, t ∈R\πZ.
Zth(t)dt = ln(ch(t)) + kZcoth(t)dt = ln |sh(t)|+k, t ∈R∗.
Zdt
cos2t= tan(t) + k, t ∈R\(π
2+πZ)Zdt
sin2t=−cotan (t) + k, t ∈R\πZ.
Zdt
ch2t= th(t) + kZdt
sh2t=−coth(t) + k, t ∈R∗.