
Contents
Contents iii
1 Compact surfaces 5
1.1 Topological manifolds . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Orientability............................. 7
2 Triangulation and polygonal presentation 9
2.1 Triangulation of compact surfaces . . . . . . . . . . . . . . . . 9
2.2 Labelling scheme of polygons . . . . . . . . . . . . . . . . . . . 12
2.3 Representation of the standard surfaces . . . . . . . . . . . . . 13
2.3.1 Thesphere.......................... 13
2.3.2 Thetorus........................... 13
2.3.3 The projective plane . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Triangulation of the standard surfaces . . . . . . . . . . 15
2.4 The Euler characteristic . . . . . . . . . . . . . . . . . . . . . . . 15
3 Connected sums 19
3.1 Euler characteristic of connected sums . . . . . . . . . . . . . . 20
3.2 Connected sum of spheres . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 A sphere connected to an arbitrary surface . . . . . . . 20
3.3 Connected sum of tori . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Connected sum of projective planes . . . . . . . . . . . . . . . 22
3.5 The M¨
obius strip in the projective plane . . . . . . . . . . . . . 23
3.6 The Klein bottle or two connected projective planes . . . . . . 23
3.7 A torus connected to a projective plane . . . . . . . . . . . . . 24
3.8 The monoid of compact surfaces up to homeomorphism . . . 27
4 Classification of surfaces 31
4.1 Part I: Classification of a surface . . . . . . . . . . . . . . . . . 32
4.1.1 Step 1: Polygonal presentation of the surface . . . . . . 32
iii