
Contents
1 Divisibility 4
1.1 Euclidean and Division Algorithm . . . . . . . . . . . . . . . . . . 5
1.2 Bezout’sIdentity ........................... 16
1.3 Fundamental Theorem of Arithmetic . . . . . . . . . . . . . . . . 22
1.4 Challenging Division Problems . . . . . . . . . . . . . . . . . . . . 27
1.5 Problems................................ 35
2 Modular Arithmetic 38
2.1 Inverses ................................ 38
2.2 Chinese Remainder Theorem . . . . . . . . . . . . . . . . . . . . . 40
2.3 Euler’s Totient Theorem and Fermat’s Little Theorem . . . . . . . 45
2.4 The equation x2≡ −1 (mod p) ................... 57
2.5 Order ................................. 60
3 p-adic Valuation 69
3.1 Definition and Basic Theorems . . . . . . . . . . . . . . . . . . . . 69
3.2 p-adic Valuation of Factorials . . . . . . . . . . . . . . . . . . . . 72
3.3 Lifting the Exponent . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.4 General Problems for the Reader . . . . . . . . . . . . . . . . . . 84
4 Diophantine equations 85
4.1 Bounding ............................... 85
4.2 The Modular Contradiction Method . . . . . . . . . . . . . . . . . 85
4.3 General Problems for the Reader . . . . . . . . . . . . . . . . . . 92
5 Problem Solving Strategies 93
5.1 Chicken Mcnuggets anyone? . . . . . . . . . . . . . . . . . . . . . 93
5.2 VietaJumping ............................ 98
5.3 Wolstenholme’s Theorem . . . . . . . . . . . . . . . . . . . . . . . 102
5.4 BonusProblems............................ 109
2