Systèmes Logiques Séquentiels : Cours, TD, DS et Examens

Telechargé par ayissifabien7
Cours, TD, DS et Examens Les systèmes logiques séquentiels
ISET Nabeul 4 Département génie électrique
Chapitre 1 :
Circuits séquentiels : Présentation Générale
I. Classification des circuits numériques
1. Circuit combinatoire: Les sorties du circuit à l’instant t ne dépendent que de l’état de ses
entrées au même instant
Figure 1 : Schéma générique d’un circuit combinatoire
2. Circuits séquentiels : Un circuit logique séquentiel est un circuit logique possédant des
entrées et des sorties et présentant un comportement où les sorties ne dépendent pas seulement
des entrées, mais également des séquences des entrées passées. Pour ce faire, le circuit utilise
une partie mémoire qui va lui permettre de retrouver l’état induit par les entrées passées. La
sortie est par conséquent calculée en fonction de l’état présent et des entrées qui arrivent au
système.
. Figure 2 : Schéma générique d’un circuit séquentiel
3. Circuit asynchrone: les sorties du circuit peuvent changer d’état à tout instant
4. Circuit synchrone: les sorties du circuit ne peuvent changer d’état qu’à des instants
particuliers (synchronisation par une horloge de période Tck)
Circuit
combinatoire
Entrées
Sorties
Circuit
combinatoire
Entrées
Sorties
Mémoire
Cours, TD, DS et Examens Les systèmes logiques séquentiels
ISET Nabeul 5 Département génie électrique
II. Définitions :
Notion de stabilité : Les machines séquentielles sont des circuits où l'état actuel des variables dépend
de la séquence de leurs états antérieurs. Les séquences sont caractérisées par une phase d'instabilité
avant d'atteindre l'état stable final de l'étape.
Exemple : Le circuit suivant est dans son état initial A = Y = 0:
Figure 3 : Réseau séquentiel simple.
L'état initial est stable.
Une transition de A vers 1 entraîne un état instable pendant le temps ∆t où Y = 1 et y = 0.
Au moment où y devient 1, le système est stable.
Une transition de A vers 0 n'affecte pas le circuit qui reste dans un état stable où y = 1.
Entrée
Excitation
Etat
A=0
Y= 0
0 état stable
A=1
Y=1
0 état instable
A=1
Y=1
1 état stable
A=0
Y=1
1 état stable
Lorsque l'excitation et la variable d'état sont à des niveaux logiques identiques, on a la stabilité.
Cette notion se généralise à plusieurs états.
État : L'état d'une machine séquentielle est une combinaison d'états logiques de variables internes en
contre-réaction ayant une valeur particulière.
Cette valeur peut, ou non, avoir une signification particulière à haut niveau.
Par exemple, il est possible de définir au moins trois états pour un four micro-onde à contrôle
numérique:
1. Programmation;
2. Activation;
3. Attente.
Il est cependant probable que le système utilise, à l'interne, beaucoup plus de trois états.
A
t
y
Y
Cours, TD, DS et Examens Les systèmes logiques séquentiels
ISET Nabeul 6 Département génie électrique
III. Structures d’un système séquentiel :
Un système logique séquentiel peut être représenté :
- soit par le circuit suivant appelé machine de Mealy dans lequel les sorties principales du
système S(t) sont fonction des variables principales d’entrées E(t) et de variables internes dites variables
secondaires de sorties des bascules Q(t) : S(t) = f(E(t), Q(t))
Figure 4 : Machine de Mealy
- soit par le circuit suivant appelé machine de Moore dans lequel les sorties principales S(t) ne
sont fonction que des variables internes Q(t). Les états internes sont eux-mêmes fonction des entrées
principales E(t), dont l’une d’elles au moins est le signal d’horloge H(t).
S(t) = f(Q(t))
Figure 5 : Machine de Moore
Entrées
E(t)
Mémoire
d’états
(Bascules)
Sorties
S(t)
Logique d’entrée
Circuit
Combinatoire
Q
(t)
Logique de sortie
Circuit
Combinatoire
Entrées
E(t)
Mémoire
d’états
(Bascules)
Sorties
S(t)
Logique d’entrée
Circuit
Combinatoire
Q
(t)
Logique de sortie
Circuit
Combinatoire
Cours, TD, DS et Examens Les systèmes logiques séquentiels
ISET Nabeul 7 Département génie électrique
Ainsi, deux types de graphes peuvent être établis :
1) cas Sk = f(Qi) : machine de Moore
2) cas Sk = f'(Ex, Qi) : machine de Mealy
A
B
C
0 / 1
1 / 0
Etat
Sortie
Entrée
B
1
0
1
Etat
Sortie
Entrée
A
0
C
0
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans l'interface ou les textes ? Ou savez-vous comment améliorer l'interface utilisateur de StudyLib ? N'hésitez pas à envoyer vos suggestions. C'est très important pour nous!