Independent Biasing (7/14/00) Page 1
ECE 4430 - Analog Integrated Circuits and Systems P.E. Allen,
2000
SUPPLY AND TEMPERATURE INDEPENDENT BIASING
INTRODUCTION
Objective
The objective of this presentation is:
1.) Characterize the dependence of bias circuits on the power supply
2.) Introduce circuits that have various degrees of power supply independence
Outline
• Characterization of power supply dependence
• Simple bias circuits
• Bootstrapped bias circuits
• Temperature characterization of bias circuits
• Summary
Independent Biasing (7/14/00) Page 2
ECE 4430 - Analog Integrated Circuits and Systems P.E. Allen,
2000
CHARACTERIZATION OF POWER SUPPLY DEPENDENCE
Characteristics of a Voltage or Current Reference
What is a Voltage or Current Reference?
A voltage or current reference is an independent voltage or current source that has a high degree of
precision and stability.
Requirements of a Reference Circuit:
Should be independent of power supply
Should be independent of temperature
Should be independent of processing variations
Should be independent of noise and other interference
Reference
Noise
Temperature
Power Supply
Nominal
Value
Fig. 4.5-1
Independent Biasing (7/14/00) Page 3
ECE 4430 - Analog Integrated Circuits and Systems P.E. Allen,
2000
Power Supply Independence
How do you characterize power supply independence?
Use the concept of sensitivity (we will use voltage although IREF can be substituted for VREF in the
following):
S
VREF
VDD
= VREF/VREF
VDD/VDD
= VDD
VREF
VREF
VDD
Application of sensitivity to determining power supply dependence:
VREF
VREF =
S
VREF
VDD
VDD
VDD
Thus, the fractional change in the reference voltage is equal to the sensitivity times the fractional change in
the power supply voltage.
For example, if the sensitivity is 1, then a 10% change in VDD will cause a 10% change in VREF.
Ideally, we want S
VREF
VDD
to be zero for power supply independence.
Independent Biasing (7/14/00) Page 4
ECE 4430 - Analog Integrated Circuits and Systems P.E. Allen,
2000
SIMPLE BIAS/REFERENCE CIRCUITS
Voltage References using Voltage Division
M2
M1
VDD
VDD
R1
R2
+
-
VREF
+
-
VREF
Resistor voltage divider. Active device voltage divider. Fig. 4.5-2
VREF = R2
R1+R2 VDD VREF =
VTN +
β
P
β
N
(VDD-|VTP|)
1 +
β
P
β
N
S
VREF
VDD
= 1 S
VREF
VDD
= VDD
VREF
β
P
β
N
1+
β
P
β
N
=
VDD
β
P
β
N
VTN +
β
P
β
N
(VDD-|VTP|)
Assume
β
N =
β
P and VTN = |VTP| S
VREF
VDD
= 1
Independent Biasing (7/14/00) Page 5
ECE 4430 - Analog Integrated Circuits and Systems P.E. Allen,
2000
MOSFET-Resistance Voltage References
vout
VDD
+
-
R
VREF
VDD
+
-
R
VREF
R1
R2
Fig. 4.5-4
VREF = VGS = VT +
2(VDD-VREF)
β
R
or VREF = VT - 1
β
R + 2(VDD-VT)
β
R+ 1
(
β
R)2
S
VREF
VDD
=
1
1 +
β
(VREF-VT)R
VDD
VREF
Assume that VDD = 5V, W/L = 2 and R = 100k,
Thus, VREF 1.281V and S
VDD
VREF
= 0.283
This circuit allows VREF to be larger.
If the current in R1 (and R2) is small compared to the
current flowing through the transistor, then
VREF
R1 + R2
R2 VGS
1 / 27 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !