24 Trig Identity Problems cscθ = 1 sinθ secθ = 1 cosθ tanθ = sinθ cosθ cot θ = cosθ sinθ sin(−θ) = −sinθ sin(π −θ) = sinθ sin2 θ + cos2 θ = 1 cos(−θ) = cosθ cos(π −θ) = −cosθ tan2 θ + 1= sec2 θ tan(−θ) = −tanθ tan(π −θ) = −tanθ 1+ cot 2 θ = csc2 θ sin(θ +2n π) = sinθ sin( π2 −θ) = cosθ cos(θ +2n π) = cosθ sec( π2 −θ) = cscθ sin2 θ = tan(θ +n π) = tanθ tan( π2 −θ) = cot θ sin(2θ) = 2sinθ cosθ cos(2θ) = cos2 θ −sin2 θ = 2cos2 θ − 1 = 1−2sin2 θ tan(2θ) = 2 tanθ2 1− tan θ () cos( θ ) = ± 1+ cosθ 2 2 tan( θ ) = 1−cosθ 2 sinθ sin θ = ± 1−cosθ 2 2 = 1−cos(2θ) 2 1+ cos(2θ) cos2 θ = 2 1−sin2 θ = (1−sinθ)(1+ sinθ) = cos2 θ 1−cos2 θ = (1−cosθ)(1+ cosθ) = sin2 θ sinαcos β = 21 (sin(α − β)+ sin(α + β)) sinαsinβ = 21 (cos(α − β)−cos(α + β)) cosαcos β = 21 (cos(α − β)+ cos(α + β)) sinθ 1+ cosθ sin(α + β) = sinαcos β + cosαsinβ sinα + sinβ = 2sin(α+2 β )cos(α −β 2 ) sin(α − β) = sinαcos β −cosαsinβ α+ β sinα −sinβ = 2sin(α −β 2 )cos ( 2 ) cos(α + β) = cosαcos β −sinαsinβ cos(α − β) = cosαcos β + sinαsinβ tanα + tanβ tan(α + β) = 1− tanα tanβ tanα − tanβ tan(α − β) = 1+ tanα tanβ cosα + cos β = 2cos(α+2 β )cos(α −β 2 ) cosα −cos β = −2sin(α+2 β )sin(α −β 2 ) a sinθ + b cosθ = k sin(θ + φ), where k = a 2 + b 2 a b sinφ = and φ satisfies cosφ = and a2 + b 2 a2 + b 2 @blackpenredpen 9/4/2023 1 (Q1.) sin x + cot x cos x = (A) csc x (B) sec x (C) cos x sec x −cos x = sin x (A) sec x (B) tan x (C) cot x cot x = csc x −sin x (A) tan x (B) csc x (C) sec x 1+ 2cos x = 2 + sec x (A) cos x (B) sin x (C) tan x 1 1 + = 1−sin x 1+ sin x (A) 2 tan2 x (B) 2sec x (C) 2csc2 x (B) tan2 x (C) sin2 x (Q2.) (Q3.) (Q4.) (Q5.) 2 + cot 2 x (Q6.) − 1= csc2 x (A) cos2 x ( 2 ) (Q7.) tan x + π = 4 1+ tan x (A) 1− tan x (B) 1+ 2 tan x 1− 2 tan x (C) 1− tan x 1+ tan x (Q8.) cos(3 x ) = (A) 2cos3 x + 3cos x (B) 4 cos3 x −3cos x (C) −4 cos3 x + cos x (Q9.) cos(4 x ) = (A) 4 cos 4 x + 8cos2 x + 1 (B) 8cos 4 x − 4 cos2 x + 3 (C) 8cos 4 x −8cos2 x + 1 (Q10.) sec(sin−1 x ) = 1 (A) 1− x 2 (Q11.) cos(2 tan−1 x ) = x2 (A) x2 +1 (B) x 1− x 2 (C) 1− x 2 (B) 2 x +1 (C) x 1+ x 2 1−2 x 2 x2 +1 (Q12.) tan(2sin−1 x ) = (A) x 1− x 2 1−2 x 2 (B) 2 x 1−2 x 2 1− x 2 2 (C) 2 x 1− x 2 1−2 x 2 (Q13.) csc2 x + sec2x = (A) csc2 x sec2 x (Q14.) cos x cos(2 x ) 1 (A) (cos x −cos(3 x )) 2 (C) tan2 x (B) 1 (B) 1 (cos x + cos(3x )) 2 (B) 3 3 1 1 −cos(2 x )−cos(4 x ) (C) − cos(2 x )+ cos(4 x ) 4 8 2 8 (B) −3 1 cos(4 x )− 4 4 (C) 1 3 cos(4 x )+ 4 4 (A) tan( x + y ) (B) sin( x + y ) cos x cos y (C) sin( x + y ) cos x + cos y 2 tan x = 1+ tan2 x (A) tan(2 x ) (B) cos(2 x ) (C) sin(2 x ) 1 1 + = sec x − 1 sec x + 1 (A) 2cot x csc x (B) 2sin x tan x (C) 2sec2 x sin x + tan x = 1+ cos(−x ) (A) sin x (B) tan x (C) sin(2 x ) (Q21.) cos2 x −sin4 x sec2 x = (A) sec2 x (B) tan2 x (C) 1− tan2 x (Q22.) (sin x + cos x )2 = (A) 1+ sin(2 x ) (B) 1+ cos(2 x ) (C) sin(2 x )+ cos(2 x ) (B) sin x + cos x (C) sin x + tan x ⎛x ⎞ (B) csc2 ⎜⎜ ⎟⎟ ⎝2⎠ (C) (Q15.) sin4 x = 3 (A) 1− cos(4 x ) 8 (Q16.) sin4 x −cos 4 x = (A) −cos(2 x ) (Q17.) tan x + tan y = (C) cos(3 x ) (Q18.) (Q19.) (Q20.) sin x cos x + = 1−cot x 1− tan x (A) sin x −cos x (Q23.) ⎛x ⎞ (Q24.) sec2 ⎜⎜ ⎟⎟ = ⎝2⎠ cos x (A) 1−cos x 3 2 1+ cos x Hello there! As a community college math teacher and a YouTuber, I am passionate about making math education accessible and enjoyable for all. If you find my videos and worksheets helpful, please consider supporting me on Patreon. Your support helps me continue to create high-quality educational content and provide valuable resources for math students and teachers. By becoming a patron, you'll get access to exclusive content, including the written solutions to the worksheets. Together, we can make math education more accessible and fun for everyone. Thank you for your support! www.patreon.com/blackpenredpen 4