Telechargé par mouadaissaoui2018

24 Trig Identity Problems

publicité
24 Trig Identity Problems
cscθ = 1
sinθ
secθ = 1
cosθ
tanθ = sinθ
cosθ
cot θ = cosθ
sinθ
sin(−θ) = −sinθ
sin(π −θ) = sinθ
sin2 θ + cos2 θ = 1
cos(−θ) = cosθ
cos(π −θ) = −cosθ
tan2 θ + 1= sec2 θ
tan(−θ) = −tanθ
tan(π −θ) = −tanθ
1+ cot 2 θ = csc2 θ
sin(θ +2n π) = sinθ
sin( π2 −θ) = cosθ
cos(θ +2n π) = cosθ
sec( π2 −θ) = cscθ
sin2 θ =
tan(θ +n π) = tanθ
tan( π2 −θ) = cot θ
sin(2θ) = 2sinθ cosθ
cos(2θ) = cos2 θ −sin2 θ
= 2cos2 θ − 1
= 1−2sin2 θ
tan(2θ) = 2 tanθ2
1− tan θ
()
cos( θ ) = ± 1+ cosθ
2
2
tan( θ ) = 1−cosθ
2
sinθ
sin θ = ± 1−cosθ
2
2
=
1−cos(2θ)
2
1+ cos(2θ)
cos2 θ =
2
1−sin2 θ = (1−sinθ)(1+ sinθ) = cos2 θ
1−cos2 θ = (1−cosθ)(1+ cosθ) = sin2 θ
sinαcos β = 21 (sin(α − β)+ sin(α + β))
sinαsinβ = 21 (cos(α − β)−cos(α + β))
cosαcos β = 21 (cos(α − β)+ cos(α + β))
sinθ
1+ cosθ
sin(α + β) = sinαcos β + cosαsinβ
sinα + sinβ = 2sin(α+2 β )cos(α −β
2 )
sin(α − β) = sinαcos β −cosαsinβ
α+ β
sinα −sinβ = 2sin(α −β
2 )cos ( 2 )
cos(α + β) = cosαcos β −sinαsinβ
cos(α − β) = cosαcos β + sinαsinβ
tanα + tanβ
tan(α + β) =
1− tanα tanβ
tanα − tanβ
tan(α − β) =
1+ tanα tanβ
cosα + cos β = 2cos(α+2 β )cos(α −β
2 )
cosα −cos β = −2sin(α+2 β )sin(α −β
2 )
a sinθ + b cosθ = k sin(θ + φ), where k = a 2 + b 2
a
b
sinφ
=
and φ satisfies cosφ =
and
a2 + b 2
a2 + b 2
@blackpenredpen
9/4/2023
1
(Q1.) sin x + cot x cos x =
(A) csc x
(B) sec x
(C) cos x
sec x −cos x
=
sin x
(A) sec x
(B) tan x
(C) cot x
cot x
=
csc x −sin x
(A) tan x
(B) csc x
(C) sec x
1+ 2cos x
=
2 + sec x
(A) cos x
(B) sin x
(C) tan x
1
1
+
=
1−sin x 1+ sin x
(A) 2 tan2 x
(B) 2sec x
(C) 2csc2 x
(B) tan2 x
(C) sin2 x
(Q2.)
(Q3.)
(Q4.)
(Q5.)
2 + cot 2 x
(Q6.)
− 1=
csc2 x
(A) cos2 x
(
2
)
(Q7.) tan x + π =
4
1+ tan x
(A)
1− tan x
(B)
1+ 2 tan x
1− 2 tan x
(C)
1− tan x
1+ tan x
(Q8.) cos(3 x ) =
(A) 2cos3 x + 3cos x
(B) 4 cos3 x −3cos x
(C) −4 cos3 x + cos x
(Q9.) cos(4 x ) =
(A) 4 cos 4 x + 8cos2 x + 1
(B) 8cos 4 x − 4 cos2 x + 3
(C) 8cos 4 x −8cos2 x + 1
(Q10.) sec(sin−1 x ) =
1
(A)
1− x 2
(Q11.) cos(2 tan−1 x ) =
x2
(A)
x2 +1
(B)
x
1− x 2
(C)
1− x 2
(B) 2
x +1
(C)
x
1+ x 2
1−2 x 2
x2 +1
(Q12.) tan(2sin−1 x ) =
(A)
x 1− x 2
1−2 x 2
(B)
2 x 1−2 x 2
1− x 2
2
(C)
2 x 1− x 2
1−2 x 2
(Q13.) csc2 x + sec2x =
(A) csc2 x sec2 x
(Q14.) cos x cos(2 x )
1
(A) (cos x −cos(3 x ))
2
(C) tan2 x
(B) 1
(B)
1
(cos x + cos(3x ))
2
(B)
3
3 1
1
−cos(2 x )−cos(4 x ) (C) − cos(2 x )+ cos(4 x )
4
8 2
8
(B)
−3
1
cos(4 x )−
4
4
(C)
1
3
cos(4 x )+
4
4
(A) tan( x + y )
(B)
sin( x + y )
cos x cos y
(C)
sin( x + y )
cos x + cos y
2 tan x
=
1+ tan2 x
(A) tan(2 x )
(B) cos(2 x )
(C) sin(2 x )
1
1
+
=
sec x − 1 sec x + 1
(A) 2cot x csc x
(B) 2sin x tan x
(C) 2sec2 x
sin x + tan x
=
1+ cos(−x )
(A) sin x
(B) tan x
(C) sin(2 x )
(Q21.) cos2 x −sin4 x sec2 x =
(A) sec2 x
(B) tan2 x
(C) 1− tan2 x
(Q22.) (sin x + cos x )2 =
(A) 1+ sin(2 x )
(B) 1+ cos(2 x )
(C) sin(2 x )+ cos(2 x )
(B) sin x + cos x
(C) sin x + tan x
⎛x ⎞
(B) csc2 ⎜⎜ ⎟⎟
⎝2⎠
(C)
(Q15.) sin4 x =
3
(A) 1− cos(4 x )
8
(Q16.) sin4 x −cos 4 x =
(A) −cos(2 x )
(Q17.) tan x + tan y =
(C) cos(3 x )
(Q18.)
(Q19.)
(Q20.)
sin x
cos x
+
=
1−cot x 1− tan x
(A) sin x −cos x
(Q23.)
⎛x ⎞
(Q24.) sec2 ⎜⎜ ⎟⎟ =
⎝2⎠
cos x
(A)
1−cos x
3
2
1+ cos x
Hello there! As a community college math teacher and a YouTuber, I am passionate
about making math education accessible and enjoyable for all. If you find my videos
and worksheets helpful, please consider supporting me on Patreon. Your support
helps me continue to create high-quality educational content and provide valuable
resources for math students and teachers. By becoming a patron, you'll get
access to exclusive content, including the written solutions to the worksheets.
Together, we can make math education more accessible and fun for everyone. Thank
you for your support!
www.patreon.com/blackpenredpen
4
Téléchargement