Mouvements Périodiques
I-Définition, exemples et grandeurs caractéristiques d’un mouvement périodique
1) Définition : Un mouvement est dit périodique s’il se répète identique à lui-même à
des intervalles de temps successifs de même durée T.
2) Exemples : Battements de cœur ; va-et-vient des essuie-glaces d’une automobile ;
rotation de la terre sur elle-même mouvement d’un pendule élastique ; mouvement
d’un stroboscope.
3) Grandeurs caractéristiques d’un mouvement périodique : Un mouvement
périodique est caractérisé par :
- Sa période T : La plus petite durée au bout de laquelle un phénomène périodique se
reproduit identique à lui-même.
- Sa fréquence N : Le nombre de périodes pendant une seconde. C’est l’inverse de la
période :  
- Sa pulsation W : Vitesse angulaire :   
T s’exprime en seconde (s) ; N en Hertz (Hz) et w en rad.s-1
II- Etude expérimentale du mouvement d’un stroboscope :
1) Définition d’un stroboscope : Un stroboscope est un appareil qui émet des éclairs
très brefs à des intervalles de temps réguliers.
2) Expérience de stroboscopie : Le phénomène étudié est celui d’un disque D animé
d’un mouvement de rotation uniforme de période T (fréquence N) et portant un
secteur blanc sur un fond noir.
Le secteur blanc n’est visible qu’à l’instant où l’éclair est émis. Le secteur blanc fait un tour
en un temps T.
Notons Te la période des éclairs du stroboscope (intervalles de temps entre deux éclairs) et
Ne la fréquence des éclairs par seconde (nombres éclairs par seconde).
a) Première observation : Immobilité apparente du disque avec un secteur unique.
- On suppose : Te=T
Entre deux éclairs le secteur blanc fait exactement un tour. Le secteur blanc est donc vu à
chaque fois dans la même position, il parait immobile. C’est l’immobilité apparente.
Disque immobile
Disque en mouvement rapide parait gris foncé
- On suppose Te= kT
Entre deux éclairs le secteur blanc fait k tours complets (pendant la durée kT). Il est alors
éclairé dans la même position. Il y a donc immobilité apparente du disque avec un secteur
unique.
Pour Te= kT soit

ou Ne=KN donc 
La plus grande valeur de la fréquence Ne du stroboscope qui donne l’immobilité apparente à
un aspect est obtenue lorsque k est minimal soit k=1
Un stroboscope étalonné permet de mesurer la fréquence d’un mouvement vibratoire : elle
est égale à la fréquence des éclairs la plus élevée permettant d’obtenir l’immobilité
apparente.
b) Deuxième observation : Immobilité apparente du disque avec plusieurs secteurs.
- On suppose T= 2Te
Pendant que le disque fait un tour, le stroboscope émet deux éclairs. Comme chaque éclair
surprend le secteur blanc, ce dernier sera vu deux fois pendant un tour. On a l’illusion de voir
2 secteurs blancs immobiles équidistants.
- On suppose T=3Te ou Te=
Entre deux éclairs consécutifs, le disque fait un tiers de tour. A cause de la persistance
des images rétiniennes, l’œil voit trois secteurs immobiles pour un tour du disque.
Généralisation T= kTe ou Ne=kN
Le stroboscope émet k éclairs pendant que le secteur blanc fait un tour comme chaque éclair
surprend le secteur, ce sera vu K fois pendant un tour. On a tendance à voir k secteurs blancs
apparemment immobiles et équidistants.
c) Troisième observation : Mouvement apparent ralenti
On suppose Te légèrement supérieure à T soit Te=T+ε
D’un éclair à l’autre on observe le passage du secteur blanc de la position 1 à la position 2. Le
secteur semble tourner lentement (au ralenti) dans le même sens que celui du mouvement
réel à la fréquence apparente Na
Comme est Te légèrement supérieure à T, alors entre deux éclairs, pendant la durée Te, le
disque fait un peu plus d’un tour soit un tour et une fraction de tour.
Le secteur blanc tourne donc de 2π+α pendant la durée Te. Si W est la vitesse de rotation du
disque et 2π+α l’angle balayé alors on a : 2π+α =WTe =˃ α= WTe-2π (1).
Pour un profane, le disque a tourné d’un angle α pendant la durée Te. Si Wa est la vitesse
angulaire apparente de rotation du secteur blanc alors : α= WaTe (2)
En égalant (1) et (2) on a : WTe-2π= WaTe or  
 et W=
Il vient donc 
  
 <=> 2π(
=2π(
) 
=
<=> Te(
-
)=1
=
 ou
-
=
 soit N-Ne=Na
- On suppose Te légèrement inferieure à T (Te= T-ε)
On observe un mouvement apparent ralenti dans le sens contraire de celui du mouvement
réel à la fréquence apparente Na= Ne-N.
Exercices
Exercice1
Un dis que blanc portant un secteur noir est fixé sur l’arbre d’un moteur dont on veut
déterminer la vitesse angulaire de rotation.
Mouvement apparent
Sens réel
2
1
Le moteur étant en rotation uniforme, on éclaire le disque avec une lumière
stroboscopique. Le secteur noir semble mobile lorsque la fréquence des éclairs est
Ne=60 Hz.
1) Déterminer les valeurs possibles de la fréquence et de la vitesse angulaire de
rotation du disque.
2) Lorsqu’on augmente progressivement la valeur de la fréquence des éclairs on
observe à nouveau l’immobilité apparente pour Ne= 120 Hz puis on ne l’observe
plus. En déduire la valeur de la vitesse angulaire du disque.
3) Qu’observe-t-on sur le disque pour les valeurs suivantes de la fréquence des
éclairs : Ne= 240 Hz, Ne= 360 Hz, Ne= 118 Hz.
Exercice2 : Un disque D, entrainé par un moteur électrique, effectue autour de son axe X’OX
un mouvement de rotation uniforme. Pour déterminer sa vitesse de rotation, on éclaire le
disque D par un faisceau lumineux que démasquent successivement les 10 trous d’un disque
D’, régulièrement repartis sur une circonférence, qui tourne avec une réglable et connue à
tout instant. On constate alors que la plus grande vitesse de D’pour laquelle un secteur noir
dessiné sur D parait unique et immobile est 10 tours par seconde (on suppose que D’tourne
dans le sens que D).
1) Qu’elle est la vitesse de rotation du disque D (exprimée en radian par seconde) ?
2) Qu’elle l’aspect du disque D lorsque D à raison de 5, puis 20, puis 9,5 tr/s ?
Mouvements Vibratoires
I-Définitions :
On appelle mouvement vibratoire un mouvement périodique rapide
s’effectuant de part et d’autre d’une position d’équilibre.
Un ébranlement(onde) est un signal mécanique court.
II-Ebranlement transversal-ébranlement longitudinal :
1) Ebranlement transversal
a) Etude expérimentale : Considérons une longue corde de caoutchouc légèrement
tendue dont l’une des extrémités O est subitement déplacée jusqu’en O’ puis
ramenée à sa position initiale. La portion de circuit immédiatement voisine de O
se déforme, mais reprend aussitôt sa forme d’équilibre pendant que la portion
suivante se déforme à son tour et ainsi de suite de proche en proche. On dit qu’il
Ya propagation d’un ébranlement le long de la corde élastique.
b) Définition : Un ébranlement est transversal si les déformations du milieu sont
perpendiculaires à la direction de propagation.
2) Ebranlement longitudinal
a) Etude expérimentale : Utilisons un long ressort très souple et faiblement tendu.
Comprimons quelques spires au voisinage de l’extrémité O puis abandonnons-les
à elles-mêmes. Elles reprennent leurs positions d’équilibre tandis que les spires
voisines se rapprochent à leur tour et ainsi de suite de proche en proche. Il y a
propagation du déplacement D et par suite de la compression.
b) Définition : Un ébranlement est longitudinal si les déformations du milieu sont
parallèles à la direction de propagation.
NB :la propagation d’un ébranlement ne correspond pas à un transfert de matière mais
d’énergie à une célérité c.
3) Lois et célérité des ébranlements :
a) Lois de l’ébranlement :
L’ébranlement se propage à vitesse(célérité) constante.
Le mouvement de propagation ne dépend pas des grandeurs géométriques de
l’ébranlement mais seulement de la nature du milieu élastique.
Chaque reprend le mouvement du point de départ avec un retard d’un temps θ qui
dépend de la distance à laquelle il se trouve de ce dernier.
b) Célérité des ébranlements : La célérité de propagation ne dépend ni de la forme,
ni de l’amplitude de l’ébranlement à condition toute fois que la déformation qui
résulte ne soit pas trop importante.
Par contre, la célérité dépend de la nature et de l’état actuel du milieu de
propagation.
1 / 7 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !