u0, un+1 = 2un+ 1 u0= 1, un+1 =un+1
2
(un),(vn)
u0= 1, v0= 2 ∀n∈N, un+1 = 3un+ 2vnvn+1 = 2un+ 3vn.
(un−vn)
(un) (vn)
(un) (vn)
2
u0= 1, u1= 0, un+2 −4un+1 + 4un= 0
u0= 1, u1=−1, un+2 −3un+1 +un= 0
u0= 1, u1= 2, un+2 −un+1 +un= 0
u0= 1, u1= 1, un+2 −2cos(θ)un+1 +un= 0
f:R∗
+→R∗
+
∀x > 0, f(f(x)) = 6x−f(x).
a∈R∗
+(un)u0=a un+1 =f(un)
(un) 2
(un)n
f(a)f