Donc fest constante sur R∗et on a
f(x) = C1,si x∈]− ∞,0[
C2,si x∈] 0; +∞[
D´etermination des constantes C1et C2:
Sur ] − ∞,0[:
On a −1∈]− ∞,0⇒f(−1) = arctan(−1) + arctan(−1) = 2 −π
4=−π
2
Sur ]0,+∞[ :
on a 1 ∈]0i+∞⇒f(1) = arctan(1) + arctan(1) = 2 π
4=π
2
Donc arctan x+ arctan 1
x=−π
2, x ∈− ∞,0[
π
2, x ∈0,+∞[
Par cons´equent:
arctan x+ arctan 1
x= sgn(x)π
2
3. arctan(a) + arctan(b) = arctan a+b
1−ab ,(a, b)∈(] −1,1[)2
On a (a, b)∈(] −1,1[)2⇒arctan a∈]−π
4,π
4[ et arctan b∈]−π
4,π
4[
Donc
(arctan(a) + arctan(b)) ∈]−π
2,π
2[ on pose z= arctan(a) + arctan(b) et t=a+b
1−ab
z= arctan(t)⇒tan(z) = t.
On sait que
tan(u+v) = tan(u) + tan(v)
1−tan(u)·tan(v)
tan(arctan(a) + arctan(b)) = tan(arctan(a)) + tan(arctan(b))
1−tan(arctan(a)) ·tan(arctan(b))
=a+b
1−ab
et comme tan z=talors
z= arctan(t) = arctan 1 + b
1−ab
4. tan(arcsin x) = x
√1−x2, x ∈]−1,1[
on a tan(t) = sin(t)
cos(t)
Alors
tan(arcsin x) = sin(arcsin x)
cos(arcsin x)=x
√1−x2
Exercice 4.
1. R´esoudre l’´equation arccos(x) = 2 arccos 3
4.
2. Soit θ= arctan 1
5.
•a) Calculer tan(2θ) puis tan(4θ).
•b) Montrer que 0 ≤θ≤π
6.
•c) En d´eduire un encadrement de 4θ−π
4.
4