________________________________________________________________________
PROBLEM (*7.171) The circular cross section of a curved beam is shown in Fig. P7.171. Derive
the expression for the radius R along the neutral axis and compare the result with that given for Fig. B in
Table 7.1.
*SOLUTION
2
Ac
π
=
Through use of the polar coordinates we write:
2sin coswc rrc
α
α
==
sindr c d
α
α
=
22
2sindA wdr c d
α
α
==
22
0
2sin
cos
dA c d
rrc
π
α
α
α
=
∫∫
22 2222
00
(1 cos ) cos ( )
22
cos cos
crc
rc rc
ππ
αα
αβ
−−
==
−−
∫∫ 2
rc
22
00
2( cos) 2( ) cos
d
rc d r c rc
ππ
α
αα
α
=+
∫∫
22
22 1
00 22
0
tan
22
22sin2() tan
rc
rc rc rc
rc
π
ππ
α
αα
=+ − +
w
dr
α
r
c
ccos
α
r
C
This gives
22
2( )
dA rrc
r
π
=−
Hence, it can be shown that
22
1()
2
A
R
rrc
dA
r
==++
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or
instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other
reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States
Copyright Act without the permission of the copyright owner is unlawful.
1 / 1 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !