_______________________________________________________________________
PROBLEM (9.11) A thin-walled cylindrical tank of radius r and thickness t is subjected to an
internal pressure p, axial compression P , and a torque T applied to the tank through the rigid end plates
(Fig. P9.11). Calculate the maximum principal stress in the cylinder wall.
Given: d = 10 in, t = 0.2 in., p = 400 ksi, P = 5 kips, T = 250 kipin.
SOLUTION
2dr=
2Art
π
=
y
σ
y
3
2Jrt
π
=
Stresses are:
2
xPpr
At
σ
=− +
50.4(5)
4.2 ksi
2 (5)(0.2) 2(0.2)
π
=− + =
0.4(5) 10
0.2
ypr ksi
t
σ
== =
22
250 7.96
2 2 (5) (0.2)
xy Tr T ksi
Jrt
τππ
=− =− =− =−
Maximum principal stress is then
22
14.2 10 4.2 10
( ) ( 7.96) 15.57
22 ksi
σ
+−
=+ +=
x
σ
x
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or
instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other
reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States
Copyright Act without the permission of the copyright owner is unlawful.
1 / 1 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !