sm10 53 54

Telechargé par Gingermon
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or
instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other
reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States
Copyright Act without the permission of the copyright owner is unlawful.
________________________________________________________________________
PROBLEMS (*10.53 and *10.54) An overhanging beam is supported and loaded as shown in
Fig. P10.53 and P10.54. Determine the equation of the elastic curve and deflection at point A.
SOLUTION (*10.53)
Refer to the above figure:
22 2 0
'' ( )
222 2
wwwa a
EIv x a x x a w x=− + + < > + < >+ < >
33 22 1
'()
664 2
wwwa a
EIv x a x x a w x C=− + + < > + < > + < >+
2
44 3 2
12
()
24 24 12 2 2
wwwaawa
EIv x a x x x C x C=− + + < > + < > + < > + + (1)
Using boundary conditions:
44
22
(0) 0: 0,
24 24
wa wa
vCC=− += =
444 4
4 3
11
23
() 0: 0,
324128 24 8
wa wa wa wa
va wa Ca C wa= +++++= =
Equation (1) becomes
44 32 234
[( ) 2 12 9 ]
24 2
wa
vxaxaxaxaxa
EI
=−++<>+<>+<>++
Let x=-a:
4
3
Cwa
vEI
=↓
SOLUTION (*10.54)
From conditions of equilibrium:
20
AB
RP R=↑ =
Using singularity functions:
22
M
Px P x a P x a=− + < − >− < − >
Using singularity functions:
2
222
dv
EI Px P x a P x a
dx =− + < − >− < − > (1)
Continued on next slide
R
A=wa/2
A
C
B
wa2
w
x
w
a
R
B
y
Equivalent loading
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or
instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other
reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States
Copyright Act without the permission of the copyright owner is unlawful.
22 2
1
11
2
22
dv
EI Px P x a P x a C
dx =− + < > − < > + (2)
33 3
12
11 1 2
63 6
EIv Px P x a P x a C x C
=
+ <−>− <− >+ + (3)
Boundary conditions:
3
12
1
() 0: 6
EIv a C a C Pa=+= (4)
2
12
(3 ) 0: 3 2EIv a aC C Pa=+= (5)
Eq.(5)-Eq.(4): 2
111
12
CPa=, then 3
23
4
CPa=−
Equation (3) is therefore
3323
2113
[]
63 6 124
Px xa xa axa
vEI
<−> <− >
=−+ +
At the free end (x=0), we have
33
33
44
CPa Pa
vEI EI
=− = ↓
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !