________________________________________________________________________
PROBLEM (12.31) Determine the strain-energy density and its components for the triaxial state of
stress shown in Fig. P12.31.
Given: 3
σ
= 30 MPa, 2
σ
= 40 MPa, 1
σ
= 100 MPa, E = 110 GPa,
ν
= 0.3
SOLUTION
110 42.3
2(1 0.3)
GG==
+Pa
Equation (12.17):
12 22 2
09
10 [30 40 100 2 0.3(30 40 40 100 30 100)]
2(110 10 )
U=++××+×+
××
3
34.46 kJ m=
Equation (12.19) yields
12 23
09
(1 2 0.3)10 (30 40 100) 17.52
6(110 10 )
v
Uk
−×
=++=
×Jm
Equation (12.20):
12 222
09
10 (10 60 70 ) 16.94
12(42.3 10 )
d
Uk=++=
×
3
Jm
Check:
3
00 0
34.46
vd
UU U kJm=+=
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or
instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other
reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States
Copyright Act without the permission of the copyright owner is unlawful.
1 / 1 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans l'interface ou les textes ? Ou savez-vous comment améliorer l'interface utilisateur de StudyLib ? N'hésitez pas à envoyer vos suggestions. C'est très important pour nous!