_______________________________________________________________________
PROBLEM (8.127) The 60o strain rosette (Fig. P8.127) is mounted on the surface of an
automobile frame. The following readings are obtained during a static test:
a
ε
= 1,110
μ
, b
ε
= 420
μ
, c
ε
= -240
μ
Determine:
(a) The principal strains.
(b) The maximum shear strain.
Sketch the results obtained in (a) on a properly oriented deformed element.
SOLUTION
1,110 420 240
abc
ε
με με
===
μ
a
0 60 120
oo
ab c
θθ θ
==− =
Thus
22
cos sin sin cos
ax ay axy a
ε
εθεθγθ
=++
θ
xyxy
με ε γ
=++ 1,100
x
,
22
1,110 cos 0 sin 0 sin0 cos0
oooo
μ
=
o
ε
Similarly,
22
420 cos ( 60 ) sin ( 60 ) sin( 60 )cos( 60 )
ooo
xyxy
με ε γ
=−++− −
or
420 0.25 0.75 0.443
x
yxy
μ
εε
=+−
γ
o
(1)
Likewise,
22
240 cos ( 120 ) sin ( 120 ) sin( 120 )cos( 120 )
ooo
xyxy
με ε γ
−= + + −
or
240 0.25 0.75 0.443
x
yxy
μ
εε
−= + +
γ
(2)
Subtract Eq. (2) from Eq. (1):
660 0.866 , 762
xy xy
γγ
=− =−
μ
Then Eq. (2) gives 250
y
ε
μ
=−
Continued on next slide
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or
instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other
reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States
Copyright Act without the permission of the copyright owner is unlawful.
(a)
1(
2
avg x y
Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or
instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other
reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States
Copyright Act without the permission of the copyright owner is unlawful.
)
ε
εε
=+
1(1110 250) 430
2
μ
=−=
22
(1110 430) (381)R=−+
779.5
μ
=
1,2 avg
R
ε
ε
1430 779.5 1210
ε
μ
=+ =
2430 779.5 350
ε
μ
=− =
(b) max 1 2 1210 350 1560
γ
εε μ
=−= + =
Sketch:
381
tan2 ' , ' 14.6
1110 430 o
pp
θθ
==
1210
μ
14.6o
x’
x
y’
y
350
μ
2
ε
ε
(
μ
)
1
ε
γ
(μ)
430
2
O
C
'
2
p
θ
1110
381
R
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !