![](//s1.studylibfr.com/store/data-gzf/718fcdbb0319653e9f6e5460df11243d/1/010130958.htmlex.zip/bg2.jpg)
Advanced Abstract Algebra Spring 2018
Contents
0 Hello! 3
I Topics in Group Theory 4
1 Groups Actions 5
1.1 Definition of a group action . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Orbitsandstabilizers................................ 6
1.3 Orbit-Stabilizer Theorem and Burnside’s Lemma . . . . . . . . . . . . . . . . 8
1.4 SylowTheorems .................................. 9
2 The Transfer Homomorphism & Applications 11
2.1 Thetransferfunction................................ 11
2.2 Properties of the transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Making the transfer prettier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 The transfer homomorphism in action . . . . . . . . . . . . . . . . . . . . . . 13
3 Solvable and Nilpotent Groups 19
3.1 Revisiting linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Solvable and Nilpotent Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Twospecialsubgroups............................... 23
3.4 An application to finite groups . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4 Free Groups 28
4.1 Construction of free groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Cayleygraphs.................................... 29
4.3 Funwithfreegroups................................ 30
II Representation Theory of Finite Groups 34
5 Basic Notions 35
5.1 What is a representation? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Maps between representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Maschke’s Theorem and Schur’s Lemma . . . . . . . . . . . . . . . . . . . . . 37
6 Characters and Burnside’s Theorems 41
6.1 Whatisacharacter?................................ 41
6.2 Orthogonality relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3 AlgebraicIntegers ................................. 45
6.4 Two Theorems of Burnside . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7 More Character Theory 50
7.1 Inducedcharacters ................................. 50
7.2 Frobeniusgroups.................................. 53
7.3 The Second Orthogonality Relation . . . . . . . . . . . . . . . . . . . . . . . . 55
7.4 MoreApplications ................................. 56
2