Telechargé par Abdellatif Mouch

symbols-a4

publicité
The Comprehensive LATEX Symbol List
Scott Pakin <[email protected]>∗
25 June 2020
Abstract
This document lists 14599 symbols and the corresponding LATEX commands that produce them.
Some of these symbols are guaranteed to be available in every LATEX 2𝜀 system; others require fonts
and packages that may not accompany a given distribution and that therefore need to be installed.
All of the fonts and packages used to prepare this document—as well as this document itself—are
freely available from the Comprehensive TEX Archive Network (http://www.ctan.org/).
Contents
Contents
1
1
Introduction
12
1.1 Document Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Frequently Requested Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2
Body-text symbols
Table 1:
LATEX 2𝜀 Escapable “Special” Characters . . . . . . . . . . . . . . . .
Table 2:
Predefined LATEX 2𝜀 Text-mode Commands . . . . . . . . . . . . . .
Table 3:
LATEX 2𝜀 Commands Defined to Work in Both Math and Text Mode
Table 4:
𝒜ℳ𝒮 Commands Defined to Work in Both Math and Text Mode . .
Table 5:
Non-ASCII Letters (Excluding Accented Letters) . . . . . . . . . . .
Table 6:
textgreek Upright Greek Letters . . . . . . . . . . . . . . . . . . . . .
Table 7:
Letters Used to Typeset African Languages . . . . . . . . . . . . . .
Table 8:
Letters Used to Typeset Vietnamese . . . . . . . . . . . . . . . . . .
Table 9:
Punctuation Marks Not Found in OT1 . . . . . . . . . . . . . . . . .
Table 10: pifont Decorative Punctuation Marks . . . . . . . . . . . . . . . . . .
Table 11: tipa Phonetic Symbols . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 12: tipx Phonetic Symbols . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 13: wsuipa Phonetic Symbols . . . . . . . . . . . . . . . . . . . . . . . . .
Table 14: wasysym Phonetic Symbols . . . . . . . . . . . . . . . . . . . . . . . .
Table 15: phonetic Phonetic Symbols . . . . . . . . . . . . . . . . . . . . . . . .
Table 16: t4phonet Phonetic Symbols . . . . . . . . . . . . . . . . . . . . . . . .
Table 17: semtrans Transliteration Symbols . . . . . . . . . . . . . . . . . . . .
Table 18: Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 19: tipa Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . . . .
Table 20: extraipa Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . .
Table 21: wsuipa Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . . .
Table 22: phonetic Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . .
Table 23: metre Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . . .
Table 24: t4phonet Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . .
Table 25: arcs Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . . . .
Table 26: semtrans Accents . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 27: ogonek Accents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
14
14
14
15
15
15
15
16
16
16
16
17
18
19
19
19
20
20
20
21
22
22
23
23
23
23
24
24
∗ The original version of this document was written by David Carlisle, with several additional tables provided by Alexander Holt. See Section 10.8 on page 238 for more information about who did what.
1
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
3
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
combelow Accents . . . . . . . . . . . . . . .
wsuipa Diacritics . . . . . . . . . . . . . . .
textcomp Diacritics . . . . . . . . . . . . . .
marvosym Diacritics . . . . . . . . . . . . . .
textcomp Currency Symbols . . . . . . . . .
marvosym Currency Symbols . . . . . . . . .
fontawesome Currency Symbols . . . . . . .
wasysym Currency Symbols . . . . . . . . .
ChinA2e Currency Symbols . . . . . . . . . .
teubner Currency Symbols . . . . . . . . . .
tfrupee Currency Symbols . . . . . . . . . .
eurosym Euro Signs . . . . . . . . . . . . . .
fourier Euro Signs . . . . . . . . . . . . . . .
textcomp Legal Symbols . . . . . . . . . . .
fontawesome Legal Symbols . . . . . . . . .
cclicenses Creative Commons License Icons .
ccicons Creative Commons License Icons . .
textcomp Old-style Numerals . . . . . . . . .
Miscellaneous textcomp Symbols . . . . . . .
Miscellaneous wasysym Text-mode Symbols
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
24
24
24
25
25
25
25
25
26
26
26
26
26
26
26
27
27
27
27
27
Mathematical symbols
Table 48: Math-mode Versions of Text Symbols . . . . . . . .
Table 49: cmll Unary Operators . . . . . . . . . . . . . . . . .
Table 50: Binary Operators . . . . . . . . . . . . . . . . . . .
Table 51: 𝒜ℳ𝒮 Binary Operators . . . . . . . . . . . . . . .
Table 52: stmaryrd Binary Operators . . . . . . . . . . . . . .
Table 53: wasysym Binary Operators . . . . . . . . . . . . . .
Table 54: txfonts/pxfonts Binary Operators . . . . . . . . . .
Table 55: mathabx Binary Operators . . . . . . . . . . . . . .
Table 56: MnSymbol Binary Operators . . . . . . . . . . . . .
Table 57: fdsymbol Binary Operators . . . . . . . . . . . . . .
Table 58: boisik Binary Operators . . . . . . . . . . . . . . .
Table 59: stix Binary Operators . . . . . . . . . . . . . . . . .
Table 60: mathdesign Binary Operators . . . . . . . . . . . .
Table 61: cmll Binary Operators . . . . . . . . . . . . . . . .
Table 62: shuffle Binary Operators . . . . . . . . . . . . . . .
Table 63: ulsy Geometric Binary Operators . . . . . . . . . .
Table 64: mathabx Geometric Binary Operators . . . . . . . .
Table 65: MnSymbol Geometric Binary Operators . . . . . . .
Table 66: fdsymbol Geometric Binary Operators . . . . . . .
Table 67: boisik Geometric Binary Operators . . . . . . . . .
Table 68: stix Geometric Binary Operators . . . . . . . . . .
Table 69: halloweenmath Halloween-Themed Math Operators
Table 70: stix Small Integrals . . . . . . . . . . . . . . . . . .
Table 71: stix Small Integrals with Explicit Slant . . . . . . .
Table 72: Variable-sized Math Operators . . . . . . . . . . .
Table 73: 𝒜ℳ𝒮 Variable-sized Math Operators . . . . . . . .
Table 74: stmaryrd Variable-sized Math Operators . . . . . .
Table 75: wasysym Variable-sized Math Operators . . . . . .
Table 76: mathabx Variable-sized Math Operators . . . . . .
Table 77: txfonts/pxfonts Variable-sized Math Operators . . .
Table 78: esint Variable-sized Math Operators . . . . . . . . .
Table 79: bigints Variable-sized Math Operators . . . . . . . .
Table 80: MnSymbol Variable-sized Math Operators . . . . .
Table 81: fdsymbol Variable-sized Math Operators . . . . . .
Table 82: boisik Variable-sized Math Operators . . . . . . . .
Table 83: stix Variable-sized Math Operators . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
29
29
29
30
30
30
31
31
31
31
32
33
34
34
35
35
35
35
36
36
37
38
38
39
39
40
40
40
40
41
42
43
43
44
44
45
46
2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
stix Integrals with Explicit Slant . . . . . . . .
cmupint Variable-sized Upright Integrals . . .
mathdesign Variable-sized Math Operators . .
prodint Variable-sized Math Operators . . . .
cmll Large Math Operators . . . . . . . . . .
Binary Relations . . . . . . . . . . . . . . . .
𝒜ℳ𝒮 Binary Relations . . . . . . . . . . . . .
𝒜ℳ𝒮 Negated Binary Relations . . . . . . . .
stmaryrd Binary Relations . . . . . . . . . . .
wasysym Binary Relations . . . . . . . . . . .
txfonts/pxfonts Binary Relations . . . . . . . .
txfonts/pxfonts Negated Binary Relations . . .
mathabx Binary Relations . . . . . . . . . . .
mathabx Negated Binary Relations . . . . . .
MnSymbol Binary Relations . . . . . . . . . .
MnSymbol Negated Binary Relations . . . . .
fdsymbol Binary Relations . . . . . . . . . . .
fdsymbol Negated Binary Relations . . . . . .
boisik Binary Relations . . . . . . . . . . . . .
boisik Negated Binary Relations . . . . . . . .
stix Binary Relations . . . . . . . . . . . . . .
stix Negated Binary Relations . . . . . . . . .
mathtools Binary Relations . . . . . . . . . . .
turnstile Binary Relations . . . . . . . . . . . .
trsym Binary Relations . . . . . . . . . . . . .
trfsigns Binary Relations . . . . . . . . . . . .
cmll Binary Relations . . . . . . . . . . . . . .
colonequals Binary Relations . . . . . . . . . .
fourier Binary Relations . . . . . . . . . . . .
Subset and Superset Relations . . . . . . . . .
𝒜ℳ𝒮 Subset and Superset Relations . . . . .
stmaryrd Subset and Superset Relations . . . .
wasysym Subset and Superset Relations . . . .
txfonts/pxfonts Subset and Superset Relations
mathabx Subset and Superset Relations . . . .
MnSymbol Subset and Superset Relations . .
fdsymbol Subset and Superset Relations . . .
boisik Subset and Superset Relations . . . . .
stix Subset and Superset Relations . . . . . .
Inequalities . . . . . . . . . . . . . . . . . . .
𝒜ℳ𝒮 Inequalities . . . . . . . . . . . . . . . .
wasysym Inequalities . . . . . . . . . . . . . .
txfonts/pxfonts Inequalities . . . . . . . . . . .
mathabx Inequalities . . . . . . . . . . . . . .
MnSymbol Inequalities . . . . . . . . . . . . .
fdsymbol Inequalities . . . . . . . . . . . . . .
boisik Inequalities . . . . . . . . . . . . . . . .
stix Inequalities . . . . . . . . . . . . . . . . .
𝒜ℳ𝒮 Triangle Relations . . . . . . . . . . . .
stmaryrd Triangle Relations . . . . . . . . . .
mathabx Triangle Relations . . . . . . . . . .
MnSymbol Triangle Relations . . . . . . . . .
fdsymbol Triangle Relations . . . . . . . . . .
boisik Triangle Relations . . . . . . . . . . . .
stix Triangle Relations . . . . . . . . . . . . .
Arrows . . . . . . . . . . . . . . . . . . . . . .
Harpoons . . . . . . . . . . . . . . . . . . . .
textcomp Text-mode Arrows . . . . . . . . . .
3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
47
48
49
50
50
50
50
51
51
51
51
51
52
52
52
54
55
56
57
57
58
59
59
60
61
61
61
61
61
61
62
62
62
62
62
63
63
63
64
64
64
65
65
65
66
67
68
68
69
69
69
70
71
71
71
72
72
72
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
𝒜ℳ𝒮 Arrows . . . . . . . . . . . . . .
𝒜ℳ𝒮 Negated Arrows . . . . . . . . .
𝒜ℳ𝒮 Harpoons . . . . . . . . . . . . .
stmaryrd Arrows . . . . . . . . . . . . .
txfonts/pxfonts Arrows . . . . . . . . .
mathabx Arrows . . . . . . . . . . . . .
mathabx Negated Arrows . . . . . . . .
mathabx Harpoons . . . . . . . . . . .
MnSymbol Arrows . . . . . . . . . . . .
MnSymbol Negated Arrows . . . . . . .
MnSymbol Harpoons . . . . . . . . . .
MnSymbol Negated Harpoons . . . . .
fdsymbol Arrows . . . . . . . . . . . . .
fdsymbol Negated Arrows . . . . . . .
fdsymbol Harpoons . . . . . . . . . . .
fdsymbol Negated Harpoons . . . . . .
boisik Arrows . . . . . . . . . . . . . .
boisik Negated Arrows . . . . . . . . .
boisik Harpoons . . . . . . . . . . . . .
stix Arrows . . . . . . . . . . . . . . .
stix Negated Arrows . . . . . . . . . .
stix Harpoons . . . . . . . . . . . . . .
harpoon Extensible Harpoons . . . . .
chemarrow Arrows . . . . . . . . . . . .
fge Arrows . . . . . . . . . . . . . . . .
old-arrows Arrows . . . . . . . . . . . .
old-arrows Harpoons . . . . . . . . . .
esrelation Restrictions . . . . . . . . . .
MnSymbol Spoons . . . . . . . . . . . .
MnSymbol Pitchforks . . . . . . . . . .
MnSymbol Smiles and Frowns . . . . .
fdsymbol Spoons . . . . . . . . . . . . .
fdsymbol Pitchforks . . . . . . . . . . .
fdsymbol Smiles and Frowns . . . . . .
halloweenmath Brooms and Pitchforks
ulsy Contradiction Symbols . . . . . .
Extension Characters . . . . . . . . . .
stmaryrd Extension Characters . . . . .
txfonts/pxfonts Extension Characters .
mathabx Extension Characters . . . . .
stix Extension Characters . . . . . . .
Log-like Symbols . . . . . . . . . . . .
𝒜ℳ𝒮 Log-like Symbols . . . . . . . . .
mismath Log-like Symbols . . . . . . .
mismath Asymptotic Notation . . . . .
ChinA2e Number Sets . . . . . . . . . .
Greek Letters . . . . . . . . . . . . . .
𝒜ℳ𝒮 Greek Letters . . . . . . . . . . .
txfonts/pxfonts Upright Greek Letters .
upgreek Upright Greek Letters . . . . .
fourier Variant Greek Letters . . . . . .
txfonts/pxfonts Variant Latin Letters .
boisik Variant Greek Letters . . . . . .
boisik Variant Latin Letters . . . . . .
stix Variant Greek Letters . . . . . . .
stix Transformed Greek Letters . . . .
𝒜ℳ𝒮 Hebrew Letters . . . . . . . . . .
MnSymbol Hebrew Letters . . . . . . .
4
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
72
72
72
73
73
73
73
74
74
75
77
77
78
79
81
82
82
83
83
84
86
86
87
87
87
87
88
88
88
88
89
89
90
90
90
90
90
90
90
91
91
91
91
92
92
92
93
93
94
94
94
95
95
95
95
95
95
95
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
fdsymbol Hebrew Letters . . . . . . . . . . . .
boisik Hebrew Letters . . . . . . . . . . . . . .
stix Hebrew Letters . . . . . . . . . . . . . . .
Letter-like Symbols . . . . . . . . . . . . . . .
𝒜ℳ𝒮 Letter-like Symbols . . . . . . . . . . .
txfonts/pxfonts Letter-like Symbols . . . . . .
mathabx Letter-like Symbols . . . . . . . . . .
MnSymbol Letter-like Symbols . . . . . . . . .
fdsymbol Letter-like Symbols . . . . . . . . . .
boisik Letter-like Symbols . . . . . . . . . . .
stix Letter-like Symbols . . . . . . . . . . . . .
trfsigns Letter-like Symbols . . . . . . . . . . .
mathdesign Letter-like Symbols . . . . . . . .
fge Letter-like Symbols . . . . . . . . . . . . .
fourier Letter-like Symbols . . . . . . . . . . .
cmll Letter-like Symbols . . . . . . . . . . . .
𝒜ℳ𝒮 Delimiters . . . . . . . . . . . . . . . . .
stmaryrd Delimiters . . . . . . . . . . . . . . .
mathabx Delimiters . . . . . . . . . . . . . . .
boisik Delimiters . . . . . . . . . . . . . . . .
stix Delimiters . . . . . . . . . . . . . . . . . .
nath Delimiters . . . . . . . . . . . . . . . . .
Variable-sized Delimiters . . . . . . . . . . . .
Large, Variable-sized Delimiters . . . . . . . .
𝒜ℳ𝒮 Variable-sized Delimiters . . . . . . . .
stmaryrd Variable-sized Delimiters . . . . . . .
mathabx Variable-sized Delimiters . . . . . . .
MnSymbol Variable-sized Delimiters . . . . . .
fdsymbol Variable-sized Delimiters . . . . . . .
stix Variable-sized Delimiters . . . . . . . . .
mathdesign Variable-sized Delimiters . . . . .
nath Variable-sized Delimiters (Double) . . . .
nath Variable-sized Delimiters (Triple) . . . .
fourier Variable-sized Delimiters . . . . . . . .
textcomp Text-mode Delimiters . . . . . . . .
metre Text-mode Delimiters . . . . . . . . . .
Math-mode Accents . . . . . . . . . . . . . .
𝒜ℳ𝒮 Math-mode Accents . . . . . . . . . . .
MnSymbol Math-mode Accents . . . . . . . .
fdsymbol Math-mode Accents . . . . . . . . .
boisik Math-mode Accents . . . . . . . . . . .
stix Math-mode Accents . . . . . . . . . . . .
fge Math-mode Accents . . . . . . . . . . . .
yhmath Math-mode Accents . . . . . . . . . .
halloweenmath Halloween-Themed Math-mode
realhats Math-mode Hat Accents . . . . . . .
Extensible Accents . . . . . . . . . . . . . . .
overrightarrow Extensible Accents . . . . . . .
yhmath Extensible Accents . . . . . . . . . . .
𝒜ℳ𝒮 Extensible Accents . . . . . . . . . . . .
MnSymbol Extensible Accents . . . . . . . . .
fdsymbol Extensible Accents . . . . . . . . . .
stix Extensible Accents . . . . . . . . . . . . .
mathtools Extensible Accents . . . . . . . . .
mathabx Extensible Accents . . . . . . . . . .
fourier Extensible Accents . . . . . . . . . . .
esvect Extensible Accents . . . . . . . . . . .
abraces Extensible Accents . . . . . . . . . . .
5
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
Accents
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
95
95
96
96
96
96
96
96
97
97
97
97
97
97
98
98
98
98
98
98
98
98
99
99
99
99
100
100
101
102
103
104
104
104
104
105
105
105
105
106
106
106
106
106
106
107
107
107
108
108
108
108
109
109
109
109
110
110
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
258:
259:
260:
261:
262:
263:
264:
265:
266:
267:
268:
269:
270:
271:
272:
273:
274:
275:
276:
277:
278:
279:
280:
281:
282:
283:
284:
285:
286:
287:
288:
289:
290:
291:
292:
293:
294:
295:
296:
297:
298:
299:
300:
301:
302:
303:
304:
305:
306:
307:
308:
309:
310:
311:
312:
313:
314:
315:
undertilde Extensible Accents . . . . . . . . . . .
ushort Extensible Accents . . . . . . . . . . . . .
mdwmath Extensible Accents . . . . . . . . . . .
actuarialangle Extensible Accents . . . . . . . . .
𝒜ℳ𝒮 Extensible Arrows . . . . . . . . . . . . . .
mathtools Extensible Arrows . . . . . . . . . . . .
chemarr Extensible Arrows . . . . . . . . . . . . .
chemarrow Extensible Arrows . . . . . . . . . . .
extarrows Extensible Arrows . . . . . . . . . . . .
extpfeil Extensible Arrows . . . . . . . . . . . . .
DotArrow Extensible Arrows . . . . . . . . . . . .
halloweenmath Extensible Arrows . . . . . . . . .
trfsigns Extensible Transform Symbols . . . . . .
esrelation Extensible Relations . . . . . . . . . . .
halloweenmath Extensible Brooms and Pitchforks
halloweenmath Extensible Witches . . . . . . . . .
halloweenmath Extensible Ghosts . . . . . . . . .
halloweenmath Extensible Bats . . . . . . . . . . .
holtpolt Non-commutative Division Symbols . . .
Dots . . . . . . . . . . . . . . . . . . . . . . . . .
𝒜ℳ𝒮 Dots . . . . . . . . . . . . . . . . . . . . . .
wasysym Dots . . . . . . . . . . . . . . . . . . . .
MnSymbol Dots . . . . . . . . . . . . . . . . . . .
fdsymbol Dots . . . . . . . . . . . . . . . . . . . .
stix Dots . . . . . . . . . . . . . . . . . . . . . . .
mathdots Dots . . . . . . . . . . . . . . . . . . . .
yhmath Dots . . . . . . . . . . . . . . . . . . . . .
teubner Dots . . . . . . . . . . . . . . . . . . . . .
begriff Begriffsschrift Symbols . . . . . . . . . . .
frege Begriffsschrift Symbols . . . . . . . . . . . .
mathcomp Math Symbols . . . . . . . . . . . . . .
marvosym Math Symbols . . . . . . . . . . . . . .
marvosym Digits . . . . . . . . . . . . . . . . . . .
fge Digits . . . . . . . . . . . . . . . . . . . . . .
dozenal Base-12 Digits . . . . . . . . . . . . . . .
mathabx Mayan Digits . . . . . . . . . . . . . . .
stix Infinities . . . . . . . . . . . . . . . . . . . . .
stix Primes . . . . . . . . . . . . . . . . . . . . . .
stix Empty Sets . . . . . . . . . . . . . . . . . . .
𝒜ℳ𝒮 Angles . . . . . . . . . . . . . . . . . . . . .
MnSymbol Angles . . . . . . . . . . . . . . . . . .
fdsymbol Angles . . . . . . . . . . . . . . . . . . .
boisik Angles . . . . . . . . . . . . . . . . . . . . .
stix Angles . . . . . . . . . . . . . . . . . . . . . .
Miscellaneous LATEX 2𝜀 Math Symbols . . . . . .
Miscellaneous 𝒜ℳ𝒮 Math Symbols . . . . . . . .
Miscellaneous wasysym Math Symbols . . . . . .
Miscellaneous txfonts/pxfonts Math Symbols . . .
Miscellaneous mathabx Math Symbols . . . . . .
Miscellaneous MnSymbol Math Symbols . . . . .
Miscellaneous Internal MnSymbol Math Symbols
Miscellaneous fdsymbol Math Symbols . . . . . .
Miscellaneous boisik Math Symbols . . . . . . . .
Miscellaneous stix Math Symbols . . . . . . . . .
endofproofwd End-of-Proof Symbols . . . . . . . .
Miscellaneous textcomp Text-mode Math Symbols
Miscellaneous fge Math Symbols . . . . . . . . .
Miscellaneous mathdesign Math Symbols . . . . .
6
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
110
110
110
111
111
111
111
111
112
112
112
112
112
113
113
113
114
114
114
114
114
115
115
115
115
115
116
116
116
116
116
116
117
117
117
117
117
117
117
117
117
118
118
118
118
119
119
119
119
119
120
120
120
121
121
121
122
122
Table 316: Math Alphabets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4
5
Science and technology symbols
Table 317: gensymb Symbols Defined to Work in Both Math and Text
Table 318: wasysym Electrical and Physical Symbols . . . . . . . . . .
Table 319: ifsym Pulse Diagram Symbols . . . . . . . . . . . . . . . .
Table 320: ar Aspect Ratio Symbol . . . . . . . . . . . . . . . . . . .
Table 321: textcomp Text-mode Science and Engineering Symbols . .
Table 322: steinmetz Extensible Phasor Symbol . . . . . . . . . . . .
Table 323: emf Electromotive Force Symbols . . . . . . . . . . . . . .
Table 324: wasysym Astronomical Symbols . . . . . . . . . . . . . . .
Table 325: marvosym Astronomical Symbols . . . . . . . . . . . . . .
Table 326: fontawesome Astronomical Symbols . . . . . . . . . . . . .
Table 327: mathabx Astronomical Symbols . . . . . . . . . . . . . . .
Table 328: stix Astronomical Symbols . . . . . . . . . . . . . . . . . .
Table 329: starfont Astronomical Symbols . . . . . . . . . . . . . . . .
Table 330: wasysym APL Symbols . . . . . . . . . . . . . . . . . . . .
Table 331: stix APL Symbols . . . . . . . . . . . . . . . . . . . . . . .
Table 332: apl APL Symbols . . . . . . . . . . . . . . . . . . . . . . .
Table 333: marvosym Computer Hardware Symbols . . . . . . . . . .
Table 334: keystroke Computer Keys . . . . . . . . . . . . . . . . . . .
Table 335: ascii Control Characters (CP437) . . . . . . . . . . . . . .
Table 336: logic Logic Gates . . . . . . . . . . . . . . . . . . . . . . .
Table 337: marvosym Communication Symbols . . . . . . . . . . . . .
Table 338: marvosym Engineering Symbols . . . . . . . . . . . . . . .
Table 339: wasysym Biological Symbols . . . . . . . . . . . . . . . . .
Table 340: stix Biological Symbols . . . . . . . . . . . . . . . . . . . .
Table 341: marvosym Biological Symbols . . . . . . . . . . . . . . . .
Table 342: fontawesome Biological Symbols . . . . . . . . . . . . . . .
Table 343: marvosym Safety-related Symbols . . . . . . . . . . . . . .
Table 344: feyn Feynman Diagram Symbols . . . . . . . . . . . . . . .
Table 345: svrsymbols Physics Ideograms . . . . . . . . . . . . . . . .
Mode
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
125
125
125
125
125
125
126
126
126
126
127
127
127
128
128
128
129
129
129
130
130
130
131
131
131
131
131
131
132
132
Dingbats
Table 346:
Table 347:
Table 348:
Table 349:
Table 350:
Table 351:
Table 352:
Table 353:
Table 354:
Table 355:
Table 356:
Table 357:
Table 358:
Table 359:
Table 360:
Table 361:
Table 362:
Table 363:
Table 364:
Table 365:
Table 366:
Table 367:
Table 368:
Table 369:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
134
134
134
134
135
135
135
135
135
135
135
136
136
136
136
136
136
136
136
137
137
137
137
137
137
bbding Arrows . . . . . . . . . .
pifont Arrows . . . . . . . . . .
adfsymbols Arrows . . . . . . .
adforn Arrows . . . . . . . . . .
arev Arrows . . . . . . . . . . .
fontawesome Arrows . . . . . .
fontawesome Chevrons . . . . .
marvosym Scissors . . . . . . . .
bbding Scissors . . . . . . . . .
pifont Scissors . . . . . . . . . .
dingbat Pencils . . . . . . . . .
arev Pencils . . . . . . . . . . .
fontawesome Pencils . . . . . . .
bbding Pencils and Nibs . . . .
pifont Pencils and Nibs . . . . .
dingbat Fists . . . . . . . . . . .
bbding Fists . . . . . . . . . . .
pifont Fists . . . . . . . . . . . .
fourier Fists . . . . . . . . . . .
arev Fists . . . . . . . . . . . .
fontawesome Fists . . . . . . . .
bbding Crosses and Plusses . . .
pifont Crosses and Plusses . . .
adfsymbols Crosses and Plusses
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
7
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
6
370:
371:
372:
373:
374:
375:
376:
377:
378:
379:
380:
381:
382:
383:
384:
385:
386:
387:
388:
389:
390:
391:
392:
393:
394:
395:
396:
397:
398:
399:
400:
401:
402:
403:
404:
405:
406:
407:
408:
409:
410:
arev Crosses . . . . . . . . . . . . . . . . . . .
bbding Xs and Check Marks . . . . . . . . . .
pifont Xs and Check Marks . . . . . . . . . .
wasysym Xs and Check Marks . . . . . . . . .
marvosym Xs and Check Marks . . . . . . . .
arev Xs and Check Marks . . . . . . . . . . .
fontawesome Xs and Check Marks . . . . . . .
pifont Circled Numerals . . . . . . . . . . . .
wasysym Stars . . . . . . . . . . . . . . . . . .
bbding Stars, Flowers, and Similar Shapes . .
pifont Stars, Flowers, and Similar Shapes . . .
adfsymbols Stars, Flowers, and Similar Shapes
adforn Stars . . . . . . . . . . . . . . . . . . .
fontawesome Stars . . . . . . . . . . . . . . . .
fourier Fleurons and Flowers . . . . . . . . . .
adforn Fleurons and Flowers . . . . . . . . . .
wasysym Geometric Shapes . . . . . . . . . . .
MnSymbol Geometric Shapes . . . . . . . . .
fdsymbol Geometric Shapes . . . . . . . . . .
boisik Geometric Shapes . . . . . . . . . . . .
stix Geometric Shapes . . . . . . . . . . . . .
ifsym Geometric Shapes . . . . . . . . . . . .
bbding Geometric Shapes . . . . . . . . . . . .
pifont Geometric Shapes . . . . . . . . . . . .
universa Geometric Shapes . . . . . . . . . . .
adfsymbols Geometric Shapes . . . . . . . . .
fontawesome Geometric Shapes . . . . . . . .
oplotsymbl Geometric Shapes . . . . . . . . .
LATEX 2𝜀 Playing-Card Suits . . . . . . . . . .
txfonts/pxfonts Playing-Card Suits . . . . . .
MnSymbol Playing-Card Suits . . . . . . . . .
fdsymbol Playing-Card Suits . . . . . . . . . .
boisik Playing-Card Suits . . . . . . . . . . . .
stix Playing-Card Suits . . . . . . . . . . . . .
arev Playing-Card Suits . . . . . . . . . . . .
adforn Flourishes . . . . . . . . . . . . . . . .
Miscellaneous oplotsymbl Symbols . . . . . . .
Miscellaneous dingbat Dingbats . . . . . . . .
Miscellaneous bbding Dingbats . . . . . . . . .
Miscellaneous pifont Dingbats . . . . . . . . .
Miscellaneous adforn Dingbats . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
137
137
138
138
138
138
138
138
139
139
139
139
139
140
140
140
140
140
141
141
141
143
143
144
144
144
144
144
145
145
145
145
145
146
146
146
146
146
146
146
147
Ancient languages
Table 411: phaistos Symbols from the Phaistos Disk . . . . . .
Table 412: protosem Proto-Semitic Characters . . . . . . . . .
Table 413: hieroglf Hieroglyphics . . . . . . . . . . . . . . . . .
Table 414: linearA Linear A Script . . . . . . . . . . . . . . . .
Table 415: linearb Linear B Basic and Optional Letters . . . .
Table 416: linearb Linear B Numerals . . . . . . . . . . . . . .
Table 417: linearb Linear B Weights and Measures . . . . . . .
Table 418: linearb Linear B Ideograms . . . . . . . . . . . . . .
Table 419: linearb Unidentified Linear B Symbols . . . . . . .
Table 420: cypriot Cypriot Letters . . . . . . . . . . . . . . . .
Table 421: sarabian South Arabian Letters . . . . . . . . . . .
Table 422: teubner Archaic Greek Letters and Greek Numerals
Table 423: boisik Archaic Greek Letters and Greek Numerals .
Table 424: epiolmec Epi-Olmec Script . . . . . . . . . . . . . .
Table 425: epiolmec Epi-Olmec Numerals . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
148
148
148
149
149
152
152
152
153
153
153
154
154
154
154
156
8
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Table 426: allrunes Runes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Table 427: allrunes Rune Separators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7
Musical symbols
Table 428: LATEX 2𝜀 Musical Symbols . .
Table 429: textcomp Musical Symbols . .
Table 430: wasysym Musical Symbols . .
Table 431: MnSymbol Musical Symbols .
Table 432: fdsymbol Musical Symbols . .
Table 433: boisik Musical Symbols . . . .
Table 434: stix Musical Symbols . . . . .
Table 435: arev Musical Symbols . . . . .
Table 436: MusiXTEX Musical Symbols .
Table 437: MusiXTEX Alternative Clefs .
Table 438: harmony Musical Symbols . .
Table 439: musicography Musical Symbols
Table 440: musicography Time Signatures
Table 441: harmony Musical Accents . . .
lilyglyphs
Single Notes . . . .
Table 442:
lilyglyphs
Beamed Notes . . .
Table 443:
Table 444:
Table 445:
Table 446:
Table 447:
Table 448:
Table 449:
Table 450:
Table 451:
Table 452:
Table 453:
Table 454:
Table 455:
Table 456:
Table 457:
Table 458:
Table 459:
Table 460:
Table 461:
Table 462:
Table 463:
Table 464:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
158
158
158
158
158
158
158
158
158
159
160
160
160
161
161
161
. . .
lilyglyphs
Clefs . . . . . . . . . . .
lilyglyphs
Time Signatures . . . . .
lilyglyphs
Accidentals . . . . . . . .
lilyglyphs
Rests . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 162
lilyglyphs
Dynamics Letters . . . .
lilyglyphs
Dynamics Symbols . . . .
lilyglyphs
Articulations . . . . . . .
lilyglyphs
Scripts . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 163
. . . . . . . . . . . . . . . . . . . . . . . . . . . 162
. . . . . . . . . . . . . . . . . . . . . . . . . . . 163
. . . . . . . . . . . . . . . . . . . . . . . . . . . 163
. . . . . . . . . . . . . . . . . . . . . . . . . . . 163
. . . . . . . . . . . . . . . . . . . . . . . . . . . 163
. . . . . . . . . . . . . . . . . . . . . . . . . . . 164
. .
lilyglyphs
Accordion Notation . . . . .
lilyglyphs
Named Time Signatures . . .
lilyglyphs
Named Scripts . . . . . . . .
lilyglyphs
Named Rests . . . . . .
lilyglyphs
Named Pedals . . . . .
lilyglyphs
Named Flags . . . . . .
lilyglyphs
Named Custodes . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 164
. . . . . . . . . . . . . . . . . . . . . . . . . 164
. . . . . . . . . . . . . . . . . . . . . . . . . 164
. . . . . . . . . . . . . . . . . . . . . . . . . 165
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
. .
lilyglyphs
Named Clefs . . . . . . . .
lilyglyphs
Named Noteheads . . . . .
lilyglyphs
Named Accordion Symbols
. . . . . . . . . . . . . . . . . . . . . . . . . . 167
. . . . . . . . . . . . . . . . . . . . . . . . . . 168
. . . . . . . . . . . . . . . . . . . . . . . . . . 169
. . . . . . . .
lilyglyphs
Named Accidentals . . . . . . . . . . . .
lilyglyphs
Named Arrowheads . . . . . . . . . . . .
lilyglyphs
Named Alphanumerics and Punctuation .
Table 465: Miscellaneous
8
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . . . . . . . . . . . . . . . . 173
. . . . . . . . . . . . . . . . . . 174
. . . . . . . . . . . . . . . . . . 174
. . . . . . . . . . . . . . . . . . 175
lilyglyphs
Named Musical Symbols . . . . . . . . . . . . . . . . . . . 175
Other symbols
Table 466: textcomp Genealogical Symbols .
Table 467: wasysym General Symbols . . . .
Table 468: manfnt Dangerous Bend Symbols
Table 469: Miscellaneous manfnt Symbols . .
Table 470: marvosym Media Control Symbols
Table 471: marvosym Laundry Symbols . . .
Table 472: marvosym Information Symbols .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
9
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
176
176
176
176
176
177
177
177
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
9
473:
474:
475:
476:
477:
478:
479:
480:
481:
482:
483:
484:
485:
486:
487:
488:
489:
490:
491:
492:
493:
494:
495:
496:
497:
498:
499:
500:
501:
502:
503:
504:
505:
506:
507:
508:
509:
510:
511:
512:
513:
514:
515:
516:
517:
518:
519:
520:
Other marvosym Symbols . . . . . . . . . .
Miscellaneous universa Symbols . . . . . .
Miscellaneous fourier Symbols . . . . . . .
ifsym Weather Symbols . . . . . . . . . . .
ifsym Alpine Symbols . . . . . . . . . . . .
ifsym Clocks . . . . . . . . . . . . . . . . .
Other ifsym Symbols . . . . . . . . . . . .
clock Clocks . . . . . . . . . . . . . . . . .
epsdice Dice . . . . . . . . . . . . . . . . .
hhcount Dice . . . . . . . . . . . . . . . . .
stix Dice . . . . . . . . . . . . . . . . . . .
bullcntr Tally Markers . . . . . . . . . . .
hhcount Tally Markers . . . . . . . . . . .
dozenal Tally Markers . . . . . . . . . . .
skull Symbols . . . . . . . . . . . . . . . .
Non-Mathematical mathabx Symbols . . .
skak Chess Informator Symbols . . . . . .
skak Chess Pieces and Chessboard Squares
igo Go Symbols . . . . . . . . . . . . . . .
go Go Symbols . . . . . . . . . . . . . . .
metre Metrical Symbols . . . . . . . . . .
metre Small and Large Metrical Symbols .
teubner Metrical Symbols . . . . . . . . . .
dictsym Dictionary Symbols . . . . . . . .
simpsons Characters from The Simpsons .
pmboxdraw Box-Drawing Symbols . . . . .
staves Magical Staves . . . . . . . . . . . .
pigpen Cipher Symbols . . . . . . . . . . .
ChinA2e Phases of the Moon . . . . . . . .
ChinA2e Recycling Symbols . . . . . . . . .
marvosym Recycling Symbols . . . . . . .
recycle Recycling Symbols . . . . . . . . .
Other ChinA2e Symbols . . . . . . . . . . .
soyombo Soyombo Symbols . . . . . . . . .
knitting Knitting Symbols . . . . . . . . .
countriesofeurope Country Maps . . . . . .
euflag European Union flag . . . . . . . .
Miscellaneous arev Symbols . . . . . . . .
cookingsymbols Cooking Symbols . . . . .
tikzsymbols Cooking Symbols . . . . . . .
tikzsymbols Emoticons . . . . . . . . . . .
tikzsymbols 3D Emoticons . . . . . . . . .
tikzsymbols Trees . . . . . . . . . . . . . .
Miscellaneous tikzsymbols Symbols . . . .
scsnowman Snowmen . . . . . . . . . . . .
Miscellaneous bclogo Symbols . . . . . . .
fontawesome Web-Related Icons . . . . . .
rubikcube Rubik’s Cube Rotations . . . . .
Fonts with minimal LATEX support
Table 521: hands Fists . . . . . . . . . . . . .
Table 522: greenpoint Recycling Symbols . .
Table 523: nkarta Map Symbols . . . . . . .
Table 524: moonphase Astronomical Symbols
Table 525: astrosym Astronomical Symbols .
Table 526: webomints Decorative Borders . .
Table 527: umranda Decorative Borders . . .
Table 528: umrandb Decorative Borders . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
10
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
177
177
177
178
178
178
178
179
179
179
179
180
180
180
181
181
181
182
182
183
183
183
184
184
184
185
185
186
186
186
187
187
187
187
188
188
190
190
191
191
191
191
192
192
192
192
194
198
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
199
199
199
199
201
201
204
205
206
Table
Table
Table
Table
Table
Table
Table
Table
529:
530:
531:
532:
533:
534:
535:
536:
dingbat Decorative Borders . . . . . . . . . . . . . . . .
knot Celtic Knots . . . . . . . . . . . . . . . . . . . . .
dancers Dancing Men . . . . . . . . . . . . . . . . . . .
semaphor Semaphore Alphabet . . . . . . . . . . . . .
cryst Crystallography Symbols . . . . . . . . . . . . . .
dice Dice . . . . . . . . . . . . . . . . . . . . . . . . . .
magic Trading Card Symbols . . . . . . . . . . . . . .
bartel-chess-fonts Chess Pieces and Chessboard Squares
10 Additional Information
10.1 Symbol Name Clashes . . . . . . . .
10.2 Resizing symbols . . . . . . . . . . .
10.3 Where can I find the symbol for . . . ?
10.4 Math-mode spacing . . . . . . . . . .
10.5 Bold mathematical symbols . . . . .
10.6 ASCII and Latin 1 quick reference .
10.7 Unicode characters . . . . . . . . . .
10.8 About this document . . . . . . . . .
10.9 Copyright and license . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
207
207
211
213
215
216
217
217
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
219
219
219
219
232
233
233
235
238
240
References
241
Index
242
11
1
Introduction
Welcome to the Comprehensive LATEX Symbol List! This document strives to be your primary source of
LATEX symbol information: font samples, LATEX commands, packages, usage details, caveats—everything
needed to put thousands of different symbols at your disposal. All of the fonts covered herein meet the
following criteria:
1. They are freely available from the Comprehensive TEX Archive Network (http://www.ctan.org/).
2. All of their symbols have LATEX 2𝜀 bindings. That is, a user should be able to access a symbol by
name (e.g., \bigtriangleup)
As of version 12 of the Comprehensive LATEX Symbol List, that second restriction has been relaxed with
the inclusion of Section 9, which showcases fonts that provide, at a minimum, either TEX font-metric
files (.tfm) or the METAFONT sources (.mf) that produce those font-metric files. Some of the Section 9
fonts do include LATEX font-definition files (.fd). However, what sets the fonts in Section 9 apart from
the fonts in rest of the document is that they lack a LATEX style file (.sty) that individually names each
of the glyphs.
The restrictions listed above are not particularly limiting criteria; the Comprehensive LATEX Symbol
List contains samples of 14599 symbols—quite a large number. Some of these symbols are guaranteed to be available in every LATEX 2𝜀 system; others require fonts and packages that may not accompany a given distribution and that therefore need to be installed. See http://www.tex.ac.uk/
FAQ-installthings.html for help with installing new fonts and packages.
1.1
Document Usage
Each section of this document contains a number of font tables. Each table shows a set of symbols,
with the corresponding LATEX command to the right of each symbol. A table’s caption indicates what
package needs to be loaded in order to access that table’s symbols. For example, the symbols in Table 45, “textcomp Old-Style Numerals”, are made available by putting “\usepackage{textcomp}” in
your document’s preamble. “𝒜ℳ𝒮” means to use the 𝒜ℳ𝒮 packages, viz. amssymb and/or amsmath.
Notes below a table provide additional information about some or all the symbols in that table.
One note that appears a few times in this document, particularly in Section 2, indicates that certain
symbols do not exist in the OT1 font encoding (Donald Knuth’s original, 7-bit font encoding, which is the
default font encoding for LATEX) and that you should use fontenc to select a different encoding, such as T1
(a common 8-bit font encoding). That means that you should put “\usepackage[⟨encoding⟩]{fontenc}”
in your document’s preamble, where ⟨encoding⟩ is, e.g., T1 or LY1. To limit the change in font encoding
to the current group, use “\fontencoding{⟨encoding⟩}\selectfont”.
Section 10 contains some additional information about the symbols in this document. It discusses
how certain mathematical symbols can vary in height, shows which symbol names are not unique across
packages, gives examples of how to create new symbols out of existing symbols, explains how symbols
are spaced in math mode, compares various schemes for boldfacing symbols, presents LATEX ASCII and
Latin 1 tables, shows how to input and output Unicode characters, and provides some information about
this document itself. The Comprehensive LATEX Symbol List ends with an index of all the symbols in
the document and various additional useful terms.
A companion document, Raw Font Tables, also presents a large number of symbols but with a very
different structure from this document. Raw Font Tables includes only symbols produced via a font file,
while this document also includes composite symbols (combinations of two or more glyphs) and symbols
drawn as pictures (using, e.g., Tik Z). This document sorts symbols by category while Raw Font Tables
sorts symbols by underlying font file. The two documents are intended to complement each other. It is
usually easier to find a desired symbol in The Comprehensive LATEX Symbol List, but Raw Font Tables
is helpful for identifying related symbols, for finding symbols that exist in some font but are not exposed
to the user via a LATEX package (or that this document inadvertently overlooked), and for the font name
and character position needed to typeset a single symbol in isolation. The last of those is especially
important for math symbols. TEX imposes a limitation of at most 16 math alphabets per document, but
symbols typeset with \font and \char are text symbols and do not consume a math alphabet. (They
are less convenient to use within a mathematical expression, however.)
12
1.2
Frequently Requested Symbols
There are a number of symbols that are requested over and over again on comp.text.tex. If you’re
looking for such a symbol the following list will help you find it quickly.
, as in “Spaces are significant.”
.....
ı̄, ı̃, ı̋, ı̆, ı̌, etc. (versus ī, ĩ, i̋, ĭ, and ǐ)
14
..
.
...........................
..
20
¢
............................
25
e
ℒ, ℱ, etc.
...........................
25
N, Z, R, etc.
©, ®, and ™
...................
26
‰
...........................
27
...........................
42
∴
............................
50
°, as in “180°” or “15℃”
115
...........
121
.....................
123
...................
123
r
............................
123
∫︀
............................
225
−
´ā, `^e, etc. (i.e., several accents per character)
227
B and F
......................
51
<, >, and | (instead of ¡, ¿, and —)
. and &
......................
64
^ and ˜ (or ∼)
13
...
233
..................
234
2
Body-text symbols
This section lists symbols that are intended for use in running text, such as punctuation marks,
accents, ligatures, and currency symbols.
Table 1: LATEX 2𝜀 Escapable “Special” Characters
$
%
\$
*
\%
\_ *
}
&
\}
\&
#
\#
{
The underscore package redefines “_” to produce an underscore in text mode
(i.e., it makes it unnecessary to escape the underscore character).
Table 2: Predefined LATEX 2𝜀 Text-mode Commands
^
˜
*
∖
|
‖
○
{
}
∙
c
○
†
‡
$
...
—
–
¡
>
∗
‖
○
•
©
†
‡
$
\textasciicircum*
\textasciitilde*
\textasteriskcentered
\textbackslash
\textbar
\textbardbl
\textbigcircle
\textbraceleft†
\textbraceright†
\textbullet
\textcopyright†
\textdagger†
\textdaggerdbl†
\textdollar†
\textellipsis†
\textemdash
\textendash
\textexclamdown
\textgreater
<
a
o
¶
·
%
%
¿
“
”
‘
’
r
○
S
$
TM
ª
º
¶
·
‱
‰
®
§
£
™
\textless
\textordfeminine
\textordmasculine
\textparagraph†
\textperiodcentered
\textpertenthousand
\textperthousand
\textquestiondown
\textquotedblleft
\textquotedblright
\textquoteleft
\textquoteright
\textregistered
\textsection†
\textsterling†
\texttrademark
\textunderscore†
\textvisiblespace
The first symbol column represents the—sometimes “faked”—symbol that
LATEX 2𝜀 provides by default. The second symbol column represents the symbol as redefined by textcomp (if textcomp redefines it). The textcomp package
is generally required to typeset Table 2’s symbols in italic, and some symbols
additionally require the T1 font encoding for italic.
*
\^{} and \~{} can be used instead of \textasciicircum
\textasciitilde. See the discussion of “˜” on page 234.
†
It’s generally preferable to use the corresponding symbol from Table 3 on the
following page because the symbols in that table work properly in both text
mode and math mode.
14
and
\{
Table 3: LATEX 2𝜀 Commands Defined to Work in Both Math and Text Mode
{
}
$
$
\{
\}
\$
c
○
†
©
†
‡
...
¶
\_
\copyright
\dag
‡
¶
£
S
\ddag
\dots
\P
§
\pounds
\S
The first symbol column represents the—sometimes “faked”—symbol that
LATEX 2𝜀 provides by default. The second symbol column represents the symbol as redefined by textcomp (if textcomp redefines it). The textcomp package
is generally required to typeset Table 3’s symbols in italic, and some symbols
additionally require the T1 font encoding for italic.
Table 4: 𝒜ℳ𝒮 Commands Defined to Work in Both Math and Text Mode
X
\checkmark
r
\circledR
z
\maltese
Table 5: Non-ASCII Letters (Excluding Accented Letters)
å
Å
Æ
æ
ð
*
\aa
\AA
\AE
\ae
\dh*
Ð
Ð
đ
IJ
ij
\DH*
\DJ*
\dj*
\IJ
\ij
L
l
Ŋ
ŋ
Ø
\L
\l
\NG*
\ng*
\O
ø
œ
Œ
ß
SS
þ
Þ
\o
\oe
\OE
\ss
\SS
\th*
\TH*
Not available in the OT1 font encoding. Use the fontenc package to select an
alternate font encoding, such as T1.
Table 6: textgreek Upright Greek Letters
α
β
γ
δ
ε
ζ
\textalpha
\textbeta
\textgamma
\textdelta
\textepsilon
\textzeta
η
θ
ι
κ
λ
μ
\texteta
\texttheta
\textiota
\textkappa
\textlambda
\textmu*
ν
ξ
ο
π
ρ
σ
\textnu
\textxi
\textomikron
\textpi
\textrho
\textsigma
τ
υ
φ
χ
ψ
ω
\texttau
\textupsilon
\textphi
\textchi
\textpsi
\textomega
Α
Β
Γ
Δ
Ε
Ζ
\textAlpha
\textBeta
\textGamma
\textDelta
\textEpsilon
\textZeta
Η
Θ
Ι
Κ
Λ
Μ
\textEta
\textTheta
\textIota
\textKappa
\textLambda
\textMu
Ν
Ξ
Ο
Π
Ρ
Σ
\textNu
\textXi
\textOmikron
\textPi
\textRho
\textSigma
Τ
Υ
Φ
Χ
Ψ
Ω
\textTau
\textUpsilon
\textPhi
\textChi
\textPsi
\textOmega
*
Synonyms for \textmu include \textmicro and \textmugreek.
textgreek tries to use a Greek font that matches the body text. As a result,
the glyphs may appear slightly different from the above.
Unlike upgreek (Table 191 on page 94), textgreek works in text mode.
The symbols in this table are intended to be used sporadically throughout a
document (e.g., in phrases such as “β-decay”). In contrast, Greek body text
can be typeset using the babel package’s greek (or polutonikogreek) option—
and, of course, a font that provides the glyphs for the Greek alphabet.
15
Ð
ž
‡
§
·
—
€

\B{D}
\B{d}
\B{H}
\B{h}
\B{t}
\B{T}
\m{b}
\m{B}
\m{C}
°

ð
Ð
¡
‚
¢
ƒ
£
Table 7: Letters Used to Typeset African Languages
¤
„
†
¦
À
à
‰
©
ˆ
\m{c}
\m{D}
\M{d}
\M{D}
\m{d}
\m{E}
\m{e}
\M{E}
\M{e}
¨

­
ª
Š
‘
±
¬
Œ
\m{f}
\m{F}
\m{G}
\m{g}
\m{I}
\m{i}
\m{J}
\m{j}
\m{K}
\m{k}
\m{N}
\m{n}
\m{o}
\m{O}
\m{P}
\m{p}
\m{s}
\m{S}
»
›
º
š
®
Ž

¯
¶
–
Â
â
Å
å
\M{t}
\M{T}
\m{t}
\m{T}
\m{u}*
\m{U}*
\m{Y}
\m{y}
\m{z}
\m{Z}
\T{E}
\T{e}
\T{O}
\T{o}
These characters all need the T4 font encoding, which is provided by the fc
package.
*
\m{v} and \m{V} are synonyms for \m{u} and \m{U}.
Table 8: Letters Used to Typeset Vietnamese
Ơ
ơ
\OHORN
Ư
\ohorn
\UHORN
ư
\uhorn
These characters all need the T5 font encoding, which is provided by the vntex
package.
Table 9: Punctuation Marks Not Found in OT1
«
»
\guillemetleft*
\guillemetright*
*
‹
›
„
‚
\guilsinglleft
\guilsinglright
\quotedblbase
\quotesinglbase
"
\textquotedbl
Older versions of LATEX misspelled these as \guillemotleft and
\guillemotright. The older names are still retained for backward compatibility.
To get these symbols, use the fontenc package to select an alternate font encoding, such as T1.
Table 10: pifont Decorative Punctuation Marks
{
|
\ding{123}
\ding{124}
}
~
\ding{125}
\ding{126}
¡
¢
16
\ding{161}
\ding{162}
£
\ding{163}
Table 11: tipa Phonetic Symbols
È
b
c
d
é
g
Ü
1
ł
8
Ý
0
ì
β
ò
χ
Å
Ñ
Æ
Þ
^
ă
ą
g
è
Û
ň
2
C
ć
ćý
š
J
ő
ť
ťC
ÿ
ý
dý
S
}
=
/
{
Ş
Ť
Ã
dz
ε
S
R
\textbabygamma
\textbarb
\textbarc
\textbard
\textbardotlessj
\textbarg
\textbarglotstop
\textbari
\textbarl
\textbaro
\textbarrevglotstop
\textbaru
\textbeltl
\textbeta
\textbullseye
\textceltpal
\textchi
\textcloseepsilon
\textcloseomega
\textcloserevepsilon
\textcommatailz
\textcorner
\textcrb
\textcrd
\textcrg
\textcrh
\textcrinvglotstop
\textcrlambda
\textcrtwo
\textctc
\textctd
\textctdctzlig
\textctesh
\textctj
\textctn
\textctt
\textcttctclig
\textctyogh
\textctz
\textdctzlig
\textdoublebaresh
\textdoublebarpipe
\textdoublebarslash
\textdoublepipe
\textdoublevertline
\textdownstep
\textdyoghlig
\textdzlig
\textepsilon
\textesh
\textfishhookr
P
;
ż
#
á
ê
Á
â
ä
H
Ê
Î
Ò
Ó
č
É
Ö
ß
Û
K
ι
λ
:
ş
ę
ű
Ô
¡
M
ñ
ë
Ð
Í
ŋ
ω
_
O
%
φ
|
"
ij
ğ
7
\
9
3
Q
ź
Ç
Ä
\textglotstop
\texthalflength
\texthardsign
\texthooktop
\texthtb
\texthtbardotlessj
\texthtc
\texthtd
\texthtg
\texthth
\texththeng
\texthtk
\texthtp
\texthtq
\texthtrtaild
\texthtscg
\texthtt
\texthvlig
\textinvglotstop
\textinvscr
\textiota
\textlambda
\textlengthmark
\textlhookt
\textlhtlongi
\textlhtlongy
\textlonglegr
\textlptr
\textltailm
\textltailn
\textltilde
\textlyoghlig
\textObardotlessj
\textOlyoghlig
\textomega
\textopencorner
\textopeno
\textpalhook
\textphi
\textpipe
\textprimstress
\textraiseglotstop
\textraisevibyi
\textramshorns
\textrevapostrophe
\textreve
\textrevepsilon
\textrevglotstop
\textrevyogh
\textrhookrevepsilon
\textrhookschwa
ï
ó
ù
ú
ü
$
À
à
ď
å
Ë
@
I
ĺ
Ï
ð
Œ
ś
ö
A
g
V
Ú
Y
­
ž
Â
tC
Ù
θ
þ
£
ţ
5
ŕ
4
ľ
Õ
W
î
ô
õ
6
Ø
2
û
L
υ
Ţ
Š
ğ
\textrtailn
\textrtailr
\textrtails
\textrtailt
\textrtailz
\textrthook
\textsca
\textscb
\textsce
\textscg
\textsch
\textschwa
\textsci
\textscj
\textscl
\textscn
\textscoelig
\textscomega
\textscr
\textscripta
\textscriptg
\textscriptv
\textscu
\textscy
\textsecstress
\textsoftsign
\textstretchc
\texttctclig
\textteshlig
\texttheta
\textthorn
\texttoneletterstem
\texttslig
\textturna
\textturncelig
\textturnh
\textturnk
\textturnlonglegr
\textturnm
\textturnmrleg
\textturnr
\textturnrrtail
\textturnscripta
\textturnt
\textturnv
\textturnw
\textturny
\textupsilon
\textupstep
\textvertline
\textvibyi
(continued on next page)
17
(continued from previous page)
ě
γ
Ů
Ű
~
¿
ã
í
\textg
\textgamma
\textglobfall
\textglobrise
\textrhoticity
\textrptr
\textrtaild
\textrtaill
ů
ß
Z
\textvibyy
\textwynn
\textyogh
tipa defines shortcut characters for many of the above. It also defines a command \tone for denoting tone letters (pitches). See the tipa documentation
for more information.
Table 12: tipx Phonetic Symbols
"
B
.
D
2
%
&
@
)
H
G
ˇ
7
5
’
(
?
T
U
V
,
0
4
\textaolig
\textbenttailyogh
\textbktailgamma
\textctinvglotstop
\textctjvar
\textctstretchc
\textctstretchcvar
\textctturnt
\textdblig
\textdoublebarpipevar
\textdoublepipevar
\textdownfullarrow
\textfemale
\textfrbarn
\textfrhookd
\textfrhookdvar
\textfrhookt
\textfrtailgamma
\textglotstopvari
\textglotstopvarii
\textglotstopvariii
\textgrgamma
\textheng
\texthmlig
3
;
p
!
I
#
<
1
>
6
9
ˆ
˜
F
=
¨
˚
v
z
*
+
:
/
\texthtbardotlessjvar
\textinvomega
\textinvsca
\textinvscripta
\textlfishhookrlig
\textlhookfour
\textlhookp
\textlhti
\textlooptoprevesh
\textnrleg
\textObullseye
\textpalhooklong
\textpalhookvar
\textpipevar
\textqplig
\textrectangle
\textretractingvar
\textrevscl
\textrevscr
\textrhooka
\textrhooke
\textrhookepsilon
\textrhookopeno
\textrtailhth
18
´
q
r
s
t
w
x
y
˝
$
˙
¯
P
Q
R
S
E
u
{
C
A
8
˘
\textrthooklong
\textscaolig
\textscdelta
\textscf
\textsck
\textscm
\textscp
\textscq
\textspleftarrow
\textstretchcvar
\textsubdoublearrow
\textsubrightarrow
\textthornvari
\textthornvarii
\textthornvariii
\textthornvariv
\textturnglotstop
\textturnsck
\textturnscu
\textturnthree
\textturntwo
\textuncrfemale
\textupfullarrow
Table 13: wsuipa Phonetic Symbols
!
'
.
<
A
+
X
T
;
R
?
#
3
N
a
^
(
e
8
M
D
b
$
%
"
\babygamma
\barb
\bard
\bari
\barl
\baro
\barp
\barsci
\barscu
\baru
\clickb
\clickc
\clickt
\closedniomega
\closedrevepsilon
\crossb
\crossd
\crossh
\crossnilambda
\curlyc
\curlyesh
\curlyyogh
\curlyz
\dlbari
\dz
\ejective
,
d
&
I
5
G
K
Z
\
\eng
\er
\esh
\eth
\flapr
\glotstop
\hookb
\hookd
\hookg
\hookh
\hookheng
\hookrevepsilon
\hv
\inva
\invf
\invglotstop
\invh
\invlegr
\invm
\invr
\invscr
\invscripta
\invv
\invw
\invy
\ipagamma
4
/
6
E
1
[
)
2
>
C
O
S
V
7
@
=
f
c
\labdentalnas
\latfric
\legm
\legr
\lz
\nialpha
\nibeta
\nichi
\niepsilon
\nigamma
\niiota
\nilambda
\niomega
\niphi
\nisigma
\nitheta
\niupsilon
\nj
\oo
\openo
\reve
\reveject
\revepsilon
\revglotstop
\scd
\scg
*
:
J
Y
W
]
U
H
0
9
F
L
P
_
Q
B
`
\schwa
\sci
\scn
\scr
\scripta
\scriptg
\scriptv
\scu
\scy
\slashb
\slashc
\slashd
\slashu
\taild
\tailinvr
\taill
\tailn
\tailr
\tails
\tailt
\tailz
\tesh
\thorn
\tildel
\yogh
Table 14: wasysym Phonetic Symbols
k
D
\dh
\DH
U
l
O
Þ
\inve
\openo
þ
\roundz
\Thorn
\thorn
Table 15: phonetic Phonetic Symbols
j
M
n
N
"
s
d
F
\barj
\barlambda
\emgma
\engma
\enya
\epsi
\esh
\eth
\fj
f
?
B
b
D
T
k
K
D
\flap
\glottal
\hausaB
\hausab
\hausad
\hausaD
\hausak
\hausaK
\hookd
ī
c
h̄
U
m
r
\ibar
\openo
\planck
\pwedge
\revD
\riota
\rotm
\rotOmega
\rotr
19
A
w
y
e
p
u
u
a
G
\rotvara
\rotw
\roty
\schwa
\thorn
\ubar
\udesc
\vara
\varg
i
C
v
˚
h
x
\vari
\varomega
\varopeno
\vod
\voicedh
\yogh
ž
§
¢
¬

°
Table 16: t4phonet Phonetic Symbols
¡
¨
±
º
à
©
ª
\textcrd
\textcrh
\textepsilon
\textesh
\textfjlig
\texthtb
\texthtc
\texthtd
\texthtk
\texthtp
\texthtt
\textiota
\textltailn
\textopeno
|
ð
»
¡
¬
œ
¶
\textpipe
\textrtaild
\textrtailt
\textschwa
\textscriptv
\textteshlig
\textyogh
The idea behind the t4phonet package’s phonetic symbols is to provide an
interface to some of the characters in the T4 font encoding (Table 7 on page 16)
but using the same names as the tipa characters presented in Table 11 on
page 17.
Table 17: semtrans Transliteration Symbols
˒
Ää
Áá
Ȧȧ
Āā
^a
A^
Àà
\"{A}\"{a}
\’{A}\’{a}
\.{A}\.{a}
\={A}\={a}
\^{A}\^{a}
\‘{A}\‘{a}
a
A
A¿ ¿a
Ãã
Aa
¯¯
A̧a̧
a
A
A
. a.
\Alif
˓
\Ayn
Table 18: Text-mode Accents
 a \f{A}\f{a}¶
\|{A}\|{a}‡
A
\~{A}\~{a}
AŸ Ÿa \G{A}\G{a}‡
\b{A}\b{a}
Ảả \h{A}\h{a}S
\c{A}\c{a}
A̋a̋ \H{A}\H{a}
\C{A}\C{a}¶
A˛a˛ \k{A}\k{a}†
\d{A}\d{a}
Åå \r{A}\r{a}
\newtie{A}\newtie{a}*
A○
a
○
a
A
Ăă
A¼ ¼a
a
A
Ǎǎ
\t{A}\t{a}
\u{A}\u{a}
\U{A}\U{a}‡
\U{A}\U{a}¶
\v{A}\v{a}
\textcircled{A}\textcircled{a}
*
Requires the textcomp package.
†
Not available in the OT1 font encoding. Use the fontenc package to select an
alternate font encoding, such as T1.
‡
Requires the T4 font encoding, provided by the fc package.
S
Requires the T5 font encoding, provided by the vntex package.
¶
Requires one of the Cyrillic font encodings (T2A, T2B, T2C, or X2). Use the
fontenc package to select an encoding.
Also note the existence of \i and \j, which produce dotless versions of “i”
and “j” (viz., “ı” and “ȷ”). These are useful when the accent is supposed to
replace the dot in encodings that need to composite (i.e., combine) letters and
accents. For example, “na\"{\i}ve” always produces a correct “naı̈ve”, while
“na\"{i}ve” yields the rather odd-looking “naïve” when using the OT1 font
encoding and older versions of LATEX. Font encodings other than OT1 and
newer versions of LATEX properly typeset “na\"{i}ve” as “naı̈ve”.
20
Table 19: tipa Text-mode Accents
´´
Ā
ā
´´
Ǎ
ǎ
\textacutemacron{A}\textacutemacron{a}
A
ffi affi
A<
a
<
˘
Ā˘
ā
Ża
AŻ
ˆˆ
Ȧ
ȧ
\textadvancing{A}\textadvancing{a}
§a
A§
˙ ă˙
Ă
\textdotacute{A}\textdotacute{a}
‚a
A‚
İa
Aİ
\textacutewedge{A}\textacutewedge{a}
\textbottomtiebar{A}\textbottomtiebar{a}
\textbrevemacron{A}\textbrevemacron{a}
\textcircumacute{A}\textcircumacute{a}
\textcircumdot{A}\textcircumdot{a}
\textdotbreve{A}\textdotbreve{a}
\textdoublegrave{A}\textdoublegrave{a}
\textdoublevbaraccent{A}\textdoublevbaraccent{a}
Ża
AŻ
Ža
AŽ
\textfallrise{A}\textfallrise{a}
đa
Ađ
` ā
`
Ā
Ź
AŹ
a
\textgravedot{A}\textgravedot{a}
Ÿa
AŸ
\texthighrise{A}\texthighrise{a}
A
„a
„
\textinvsubbridge{A}\textinvsubbridge{a}
A
fl afl
Ź
AŹ
a
\textlowering{A}\textlowering{a}
Ÿa
AŸ
‰a
A‰
——
Aa
\textmidacute{A}\textmidacute{a}
A
˛ a˛
A
fi afi
\textpolhook{A}\textpolhook{a}
\textraising{A}\textraising{a}
A
ffl affl
˚
Ā˚
ā
Ž
AŽ
a
“a
A“
\textretracting{A}\textretracting{a}
A
a
\textseagull{A}\textseagull{a}
Aa
››
Aa
““
Aa
¯¯
A
”a
”
\textsubacute{A}\textsubacute{a}
Aa
ˆˆ
Aa
˙˙
Aa
‹‹
A
– a–
A
ff aff
\textsubcircum{A}\textsubcircum{a}
A
» a»
Aa
˚˚
\textsubrhalfring{A}\textsubrhalfring{a}
\textgravecircum{A}\textgravecircum{a}
\textgravemacron{A}\textgravemacron{a}
\textgravemid{A}\textgravemid{a}
\textlowrise{A}\textlowrise{a}
\textovercross{A}\textovercross{a}
\textoverw{A}\textoverw{a}
\textringmacron{A}\textringmacron{a}
\textrisefall{A}\textrisefall{a}
\textroundcap{A}\textroundcap{a}
\textsubarch{A}\textsubarch{a}
\textsubbar{A}\textsubbar{a}
\textsubbridge{A}\textsubbridge{a}
\textsubdot{A}\textsubdot{a}
\textsubgrave{A}\textsubgrave{a}
\textsublhalfring{A}\textsublhalfring{a}
\textsubplus{A}\textsubplus{a}
\textsubring{A}\textsubring{a}
(continued on next page)
21
(continued from previous page)
A
«a
«
\textsubsquare{A}\textsubsquare{a}
Aa
˜˜
Aa
¨¨
A
—a
—
\textsubtilde{A}\textsubtilde{a}
Aa
ˇˇ
A
a
&&
Aa
"
˜" ȧ
˜
Ȧ
>>
Aa
\textsubwedge{A}\textsubwedge{a}
IJa
AIJ
\textvbaraccent{A}\textvbaraccent{a}
\textsubumlaut{A}\textsubumlaut{a}
\textsubw{A}\textsubw{a}
\textsuperimposetilde{A}\textsuperimposetilde{a}
\textsyllabic{A}\textsyllabic{a}
\texttildedot{A}\texttildedot{a}
\texttoptiebar{A}\texttoptiebar{a}
tipa defines shortcut sequences for many of the above. See the tipa documentation for more information.
Table 20: extraipa Text-mode Accents
””
A
”a
”
Ŕ Ŕ
Ãã
.. .
Ãã.
˜˜
Ã
ã
A»a»
ˇˇ
A»a»
˚˚
a
–A
ˇ–ˇ
a
–A
”–˚
”
˚
Aa
a
–A
ˇ»–ˇ»
\partvoiceless{A}\partvoiceless{a}
\crtilde{A}\crtilde{a}
–A»–a»
˚˚
Āā
\dottedtilde{A}\dottedtilde{a}
Ȧȧ
\spreadlips{A}\spreadlips{a}
\doubletilde{A}\doubletilde{a}
Aa
^^
Aa
¯¯
Aa
"" ""
Aa
¡¡
Aa
¿¿
A
a
Ţ Ţ
\subcorner{A}\subcorner{a}
\bibridge{A}\bibridge{a}
\finpartvoice{A}\finpartvoice{a}
\finpartvoiceless{A}\finpartvoiceless{a}
\inipartvoice{A}\inipartvoice{a}
\inipartvoiceless{A}\inipartvoiceless{a}
\overbridge{A}\overbridge{a}
\sliding{A}\sliding{a}
\subdoublebar{A}\subdoublebar{a}
\subdoublevert{A}\subdoublevert{a}
\sublptr{A}\sublptr{a}
\subrptr{A}\subrptr{a}
\whistle{A}\whistle{a}
\partvoice{A}\partvoice{a}
Table 21: wsuipa Text-mode Accents
A
g ag
\dental{A}\dental{a}
A
 a
\underarch{A}\underarch{a}
22
Table 22: phonetic Text-mode Accents
Aa
\hill{A}\hill{a}
Aa
\rc{A}\rc{a}
Aa
˚
{˚
A
a{
\od{A}\od{a}
Aa
\syl{A}\syl{a}
\ohill{A}\ohill{a}
A
a
.. ..
\td{A}\td{a}
{ {
Aa
˜˜
\ut{A}\ut{a}
The phonetic package provides a few additional macros for linguistic accents.
\acbar and \acarc compose characters with multiple accents; for example,
{
\acbar{\’}{a} produces “´
ā” and \acarc{\"}{e} produces “¨e”.
\labvel joins
⌢
two characters with an arc: \labvel{mn} → “mn”. \upbar is intended to go
between characters as in “x\upbar{}y’’ → “x y”. Lastly, \uplett behaves
like \textsuperscript but uses a smaller font. Contrast “p\uplett{h}’’ →
“ph ” with “p\textsuperscript{h}’’ → “ph ”.
Table 23: metre Text-mode Accents
Áá
Ăă
Ãã
Ää
Àà
Āā
AŸ Ÿa
A¿ ¿a
A¼ ¼a
\acutus{A}\acutus{a}
\breve{A}\breve{a}
\circumflexus{A}\circumflexus{a}
\diaeresis{A}\diaeresis{a}
\gravis{A}\gravis{a}
\macron{A}\macron{a}
Table 24: t4phonet Text-mode Accents
\textdoublegrave{A}\textdoublegrave{a}
\textvbaraccent{A}\textvbaraccent{a}
\textdoublevbaraccent{A}\textdoublevbaraccent{a}
The idea behind the t4phonet package’s text-mode accents is to provide an
interface to some of the accents in the T4 font encoding (accents marked with
“‡” in Table 18 on page 20) but using the same names as the tipa accents
presented in Table 19 on page 21.
Table 25: arcs Text-mode Accents
⌢⌢
Aa
\overarc{A}\overarc{a}
Aa
⌣⌣
\underarc{A}\underarc{a}
The accents shown above scale only to a few characters wide. An optional
macro argument alters the effective width of the accented characters. See the
arcs documentation for more information.
At the time of this writing (2015/11/12), there exists an incompatibility between the arcs package and the relsize package, upon which arcs depends. As
a workaround, one should apply the patch proposed by Michael Sharpe on the
XETEX mailing list (Subject: “The arcs package”, dated 2013/08/25) to pre⌢
vent spurious text from being added to the document (as in, “5.0ptA” when
⌢
“A” is expected).
23
Table 26: semtrans Accents
Aa
¨¨
Aa
˘˘
\D{A}\D{a}
\U{A}\U{a}
\T{A}\T{a}*
aA
\T is not actually an accent but a command that rotates its argument 180°
using the graphicx package’s \rotatebox command.
Table 27: ogonek Accents
A˓ a˓
\k{A}\k{a}
Table 28: combelow Accents
A, a,
\cb{A}\cb{a}
\cb places a comma above letters with descenders. Hence, while “\cb{s}”
produces “s, ”, “\cb{g}” produces “g‘ ”.
Table 29: wsuipa Diacritics
s
k
u
m
p
\ain
\corner
\downp
\downt
\halflength
v
n
q
{
z
\leftp
\leftt
\length
\midtilde
\open
x
~
w
o
i
\overring
\polishhook
\rightp
\rightt
\secstress
h
j
r
y
|
\stress
\syllabic
\underdots
}
t
l
\underwedge
\upp
\upt
\underring
\undertilde
The wsuipa package defines all of the above as ordinary characters, not
as accents. However, it does provide \diatop and \diaunder commands,
which are used to compose diacritics with other characters. For example,
\diatop[\overring|a] produces “x
a ”, and \diaunder[\underdots|a] produces “r
a”. See the wsuipa documentation for more information.
Table 30: textcomp Diacritics
˝
´
˘
\textacutedbl
\textasciiacute
\textasciibreve
ˇ
¨
`
\textasciicaron
\textasciidieresis
\textasciigrave
¯

\textasciimacron
\textgravedbl
The textcomp package defines all of the above as ordinary characters, not as
accents. You can use \llap or \rlap to combine them with other characters.
See the discussion of \llap and \rlap on page 226 for more information.
24
Table 31: marvosym Diacritics
p
P
g
\arrowOver
\ArrowOver
G
_
\barOver
\BarOver
\StrikingThrough
The marvosym package defines all of the above as ordinary characters, not as
accents. You can use \llap or \rlap to combine them with other characters.
See the discussion of \llap and \rlap on page 226 for more information.
Table 32: textcomp Currency Symbols
฿
¢

₡
¤
\textbaht
\textcent
\textcentoldstyle
\textcolonmonetary
\textcurrency
*
\textdollar*
\textdollaroldstyle
\textdong
\texteuro
\textflorin
$

₫
€
ƒ

₤
₦
‘
£
\textguarani
\textlira
\textnaira
\textpeso
\textsterling*
₩
¥
It’s generally preferable to use the corresponding symbol from Table 3 on
page 15 because the symbols in that table work properly in both text mode
and math mode.
Table 33: marvosym Currency Symbols
¢

e
\Denarius
\Ecommerce
\EUR
d
D
c
\EURcr
\EURdig
\EURhv
e
¦
í
\EURtm
\EyesDollar
\Florin
£
¡
\Pfund
\Shilling
The different euro signs are meant to be visually compatible with different
fonts—Courier (\EURcr), Helvetica (\EURhv), Times Roman (\EURtm), and
the marvosym digits listed in Table 290 (\EURdig). The mathdesign package
redefines \texteuro to be visually compatible with one of three additional
fonts: Utopia (€), Charter (€), or Garamond (€).
Table 34: fontawesome Currency Symbols
S
\faBtc
\faEur
\faGbp
j
£
\faIls
\faInr
\faJpy
¦
ù
\faKrw
\faRub
\faTry
f
Ž
\faUsd
\faViacoin
fontawesome defines \faBitcoin as a synonym for \faBtc; \faCny, \faYen,
and \faRmb as synonyms for \faJpy; \faDollar as a synonym for \faUsd;
\faEuro as a synonym for \faEur; \faRouble and \faRuble as synonyms for
\faRub; \faRupee as a synonym for \faInr; \faShekel and \faSheqel as
synonyms for \faIls; \faTurkishLira as a synonym for \faTry; and \faWon
as a synonym for \faKrw.
Table 35: wasysym Currency Symbols
*
¢
\cent
¤
\currency
€
\wasyeuro*
\wasyeuro is also available as \euro unless you specify the noeuro package
option.
25
\textwon
\textyen
Table 36: ChinA2e Currency Symbols
ÿ
þ
\Euro
\Pound
Table 37: teubner Currency Symbols
Ε
Δ
Α
῝
\denarius
\dracma
Β
\hemiobelion
\stater
\tetartemorion
Table 38: tfrupee Currency Symbols
|
\rupee
Table 39: eurosym Euro Signs
A
C
\geneuro
B
C
C
C
\geneuronarrow
\geneurowide
e
\officialeuro
\euro is automatically mapped to one of the above—by default,
\officialeuro—based on a eurosym package option. See the eurosym documentation for more information. The \geneuro. . . characters are generated
from the current body font’s “C” character and therefore may not appear
exactly as shown.
Table 40: fourier Euro Signs
(
\eurologo
€
\texteuro
Table 41: textcomp Legal Symbols
℗
«
\textcircledP
\textcopyleft
c
○
r
○
©
®
\textcopyright
\textregistered
TM
℠
™
\textservicemark
\texttrademark
The first symbol column represents the—sometimes “faked”—symbol that
LATEX 2𝜀 provides by default. The second symbol column represents the symbol as redefined by textcomp. The textcomp package is generally required to
typeset Table 41’s symbols in italic.
See http://www.tex.ac.uk/FAQ-tradesyms.html for solutions to common
r when you
problems that occur when using these symbols (e.g., getting a “○”
expected to get a “®”).
Table 42: fontawesome Legal Symbols
Z
³
\faCopyright
\faCreativeCommons
26
²
±
\faRegistered
\faTrademark
Table 43: cclicenses Creative Commons License Icons
*
$
○
=
○
∖
\cc
\ccby
\ccnc*
\ccnd
\ccsa*
○
C
CC
○
BY:
○
These symbols utilize the rotating package and therefore display improperly in
some DVI viewers.
Table 44: ccicons Creative Commons License Icons
b
©
c
d
n
e
y
p
r
m
\ccAttribution
\ccCopy
\ccLogo
\ccNoDerivatives
\ccNonCommercial
s
a
z
\ccNonCommercialEU
\ccNonCommercialJP
\ccPublicDomain
\ccRemix
\ccSampling
\ccShare
\ccShareAlike
\ccZero
ccicons additionally defines a set of commands for typesetting many complete
Creative Commons licenses (i.e., juxtapositions of two or more of the preceding icons). For example, the \ccbyncnd command typesets the “Attribution–
Noncommercial–No Derivative Works” license (“c b n d”). See the ccicons
documentation for more information.
Table 45: textcomp Old-style Numerals




\textzerooldstyle
\textoneoldstyle
\texttwooldstyle
\textthreeoldstyle




\textfouroldstyle
\textfiveoldstyle
\textsixoldstyle
\textsevenoldstyle


\texteightoldstyle
\textnineoldstyle
Rather than use the bulky \textoneoldstyle, \texttwooldstyle, etc. commands shown above, consider using \oldstylenums{. . .} to typeset an oldstyle number.
Table 46: Miscellaneous textcomp Symbols
␢
¦

œ
℮
‽
•
№
◦
\textblank
\textbrokenbar
\textdblhyphen
\textdblhyphenchar
\textdiscount
\textestimated
\textinterrobang
\textinterrobangdown
\textnumero
\textopenbullet
¶
'
‚
„
“
※

~
\textpilcrow
\textquotesingle
\textquotestraightbase
\textquotestraightdblbase
\textrecipe
\textreferencemark
\textthreequartersemdash
\texttildelow
\texttwelveudash
Table 47: Miscellaneous wasysym Text-mode Symbols
*
ſ
\longs
h
\permil
M
\wasyparagraph*
wasysym defines \Paragraph as a synonym for \wasyparagraph.
27
28
3
Mathematical symbols
Most, but not all, of the symbols in this section are math-mode only. That is, they yield a “Missing $
inserted” error message if not used within $. . .$, \[. . .\], or another math-mode environment. Operators marked as “variable-sized” are taller in displayed formulas, shorter in in-text formulas, and possibly
shorter still when used in various levels of superscripts or subscripts.
Alphanumeric symbols (e.g., “ℒ ” and “š”) are usually produced using one of the math alphabets
in Table 316 rather than with an explicit symbol command. Look there first if you need a symbol for a
transform, number set, or some other alphanumeric.
Although there have been many requests on comp.text.tex for a contradiction symbol, the
ensuing discussion invariably reveals innumerable ways to represent contradiction in a proof, including “ ” (\blitza), “⇒⇐” (\Rightarrow\Leftarrow), “⊥” (\bot), “=” (\nleftrightarrow),
and “※” (\textreferencemark). Because of the lack of notational consensus, it is probably better to spell out “Contradiction!” than to use a symbol for this purpose. Similarly, discussions on
comp.text.tex have revealed that there are a variety of ways to indicate the mathematical notion
of “is defined as”. Common candidates include “,” (\triangleq), “≡” (\equiv), “B” (various 1 ), and
def
“ =” (\stackrel{\text{\tiny def}}{=}). See also the example
of \equalsfill on page 227. Depend∐︀
· (\dotcup),
ing upon the context, disjoint union may be represented as “ ” (\coprod), “⊔” (\sqcup), “∪”
“⊕” (\oplus), or any of a number of other symbols.2 Finally, the average value of a variable 𝑥 is written
by some people as “𝑥” (\overline{x}), by some people as “⟨𝑥⟩” (\langle x \rangle), and by some
people as “𝑥” or “∅𝑥” (\diameter x or \varnothing x). The moral of the story is that you should be
careful always to explain your notation to avoid confusing your readers.
Table 48: Math-mode Versions of Text Symbols
$
...
\mathdollar
\mathellipsis
¶
S
\mathparagraph
\mathsection
£
\mathsterling
\mathunderscore
It’s generally preferable to use the corresponding symbol from Table 3 on
page 15 because the symbols in that table work properly in both text mode
and math mode.
Table 49: cmll Unary Operators
!
˜
*
\oc*
\shift
ˆ
´
\shneg
\shpos
?
\wn*
\oc and \wn differ from “!” and “?” in terms of their math-mode spacing:
$A=!B$ produces “𝐴 =!𝐵”, for example, while $A=\oc B$ produces “𝐴 = !𝐵”.
1 In txfonts, pxfonts, and mathtools the symbol is called \coloneqq. In mathabx and MnSymbol it’s called \coloneq. In
colonequals it’s called \colonequals.
2 Bob Tennent listed these and other disjoint-union symbol possibilities in a November 2007 post to comp.text.tex.
29
Table 50: Binary Operators
⨿
*
○
▽
△
∙
∩
·
∘
*
\amalg
\ast
\bigcirc
\bigtriangledown
\bigtriangleup
\bullet
\cap
\cdot
\circ
∪
†
‡
◇
÷
C
∓
⊙
⊖
\cup
\dagger
\ddagger
\diamond
\div
\lhd*
\mp
\odot
\ominus
⊕
⊘
⊗
±
B
∖
⊓
⊔
⋆
\oplus
\oslash
\otimes
\pm
\rhd*
\setminus
\sqcap
\sqcup
\star
×
▷
◁
E
D
⊎
∨
∧
≀
\times
\triangleleft
\triangleright
\unlhd*
\unrhd*
\uplus
\vee
\wedge
\wr
Not predefined by the LATEX 2𝜀 core. Use the latexsym package to expose this
symbol.
Table 51: 𝒜ℳ𝒮 Binary Operators
Z
e
~
*
\barwedge
\boxdot
\boxminus
\boxplus
\boxtimes
\Cap
\centerdot
\circledast
}

d
g
f
>
u
[
\circledcirc
\circleddash
\Cup
\curlyvee
\curlywedge
\divideontimes
\dotplus
\doublebarwedge
|
h
n
i
o
r
Y
\intercal*
\leftthreetimes
\ltimes
\rightthreetimes
\rtimes
\smallsetminus
\veebar
Some people use a superscripted \intercal for matrix transpose:
“A^\intercal” ↦→ “𝐴| ”. (See the May 2009 comp.text.tex thread, “raising
math symbols”, for suggestions about altering the height of the superscript.)
\top (Table 203 on page 96), T, and \mathsf{T} are other popular choices:
“𝐴⊤ ”, “𝐴𝑇 ”, “𝐴T ”.
Table 52: stmaryrd Binary Operators
N
O
i
k
j
l
.
/
'
&
)
#
(
\baro
\bbslash
\binampersand
\bindnasrepma
\boxast
\boxbar
\boxbox
\boxbslash
\boxcircle
\boxdot
\boxempty
\boxslash
\curlyveedownarrow
\curlyveeuparrow
\curlywedgedownarrow
\curlywedgeuparrow
\fatbslash
\fatsemi
\fatslash
9
2
!
`
:
@
;
=
<
>
?
3
8
,
\interleave
\leftslice
\merge
\minuso
\moo
\nplus
\obar
\oblong
\obslash
\ogreaterthan
\olessthan
\ovee
\owedge
\rightslice
\sslash
\talloblong
\varbigcirc
\varcurlyvee
\varcurlywedge
30
5
4
6
7
"
\varoast
\varobar
\varobslash
\varocircle
\varodot
\varogreaterthan
\varolessthan
\varominus
\varoplus
\varoslash
\varotimes
\varovee
\varowedge
\vartimes
\Ydown
\Yleft
\Yright
\Yup
Table 53: wasysym Binary Operators
C
\lhd
\LHD
#
B
\ocircle
\rhd
E
\RHD
\unlhd
D
\unrhd
Table 54: txfonts/pxfonts Binary Operators
V
W
U
\circledbar
\circledbslash
\circledvee
T
M
\circledwedge
\invamp
\medbullet
\medcirc
\sqcapplus
\sqcupplus
}
|
Table 55: mathabx Binary Operators
˚
˚
X
‹
›
˛
X
˘
ˇ
ˇ
˙
Y
O
\ast
\Asterisk
\barwedge
\bigstar
\bigvarstar
\blackdiamond
\cap
\circplus
\coasterisk
\coAsterisk
\convolution
\cup
\curlyvee
N
˜
¸
´
`
ˆ
Z
\
]
˙
¯
¸
‚
\curlywedge
\divdot
\divideontimes
\dotdiv
\dotplus
\dottimes
\doublebarwedge
\doublecap
\doublecup
\ltimes
\pluscirc
\rtimes
\sqbullet
[
\
^
_
˝
]
¨
Z
›
_
Y
[
^
\sqcap
\sqcup
\sqdoublecap
\sqdoublecup
\square
\squplus
\udot
\uplus
\varstar
\vee
\veebar
\veedoublebar
\wedge
Many of the preceding glyphs go by multiple names. \centerdot is equivalent
to \sqbullet, and \ast is equivalent to *. \asterisk produces the same
glyph as \ast, but as an ordinary symbol, not a binary operator. Similarly,
\bigast produces a large-operator version of the \Asterisk binary operator,
and \bigcoast produces a large-operator version of the \coAsterisk binary
operator.
Table 56: MnSymbol Binary Operators
∐
∗
&
●
∩
⩀
?
⋅
○
\amalg
\ast
\backslashdiv
\bowtie
\bullet
\cap
\capdot
\capplus
\cdot
\circ
⩏
⩔
⩕
∵
+
"
ˆ
⌜
\doublesqcup
\doublevee
\doublewedge
\downtherefore
\downY
\dtimes
\fivedots
\hbipropto
\hdotdot
\lefthalfcap
⋌
(
⋊
∏
⊓
E
G
⊔
\righttherefore
\rightthreetimes
\rightY
\rtimes
\slashdiv
\smallprod
\sqcap
\sqcapdot
\sqcapplus
\sqcup
(continued on next page)
31
(continued from previous page)
¾
¼
∪
⊍
⊎
⋎
5
⋏
4
\closedcurlyvee
\closedcurlywedge
\cup
\cupdot
\cupplus
\curlyvee
\curlyveedot
\curlywedge
\curlywedgedot
\ddotdot
\diamonddots
\div
\dotmedvert
\dotminus
\doublecap
\doublecup
\doublecurlyvee
\doublecurlywedge
\doublesqcap
÷
⋒
⋓
7
6
⩎
⌞
⋋
*
⋉
∖
◯
∕
∣
−
∓
‰
‹
+
±
⌝
⌟
\lefthalfcup
\lefttherefore
\leftthreetimes
\leftY
\ltimes
\medbackslash
\medcircle
\medslash
\medvert
\medvertdot
\minus
\minusdot
\mp
\neswbipropto
\nwsebipropto
\plus
\pm
\righthalfcap
\righthalfcup
D
F
∷
×
∴
)
$
Š
∶
∨
/
⧖
∧
.
≀
\sqcupdot
\sqcupplus
\squaredots
\times
\udotdot
\uptherefore
\upY
\utimes
\vbipropto
\vdotdot
\vee
\veedot
\vertbowtie
\vertdiv
\wedge
\wedgedot
\wreath
MnSymbol defines \setminus and \smallsetminus as synonyms for
\medbackslash; \Join as a synonym for \bowtie; \wr as a synonym for
\wreath; \shortmid as a synonym for \medvert; \Cap as a synonym for
\doublecap; \Cup as a synonym for \doublecup; and, \uplus as a synonym
for \cupplus.
Table 57: fdsymbol Binary Operators
⨿
∗
⊼
∩
⩀
C
⋅
∪
⊍
⊎
⋎
⋏
÷
⋇
/
∸
∔
\amalg
\ast
\barwedge
\cap
\capdot
\capplus
\cdot
\centerdot
\cup
\cupdot
\cupplus
\curlyvee
\curlywedge
\ddotdot
\div
\divideontimes
\divslash
\dotminus
\dotplus
⩖
⩕
/
⨲
⊺
⨼
⨽
⋋
.
⋉
∖
∕
−
⨪
⨫
⨬
∓
+
\doublevee
\doublewedge
\downY
\dtimes
\hdotdot
\intercal
\intprod
\intprodr
\leftthreetimes
\leftY
\ltimes
\medbackslash
\medslash
\minus
\minusdot
\minusfdots
\minusrdots
\mp
\plus
⋊
\
⊓
I
K
⊔
H
J
×
⨱
⧖
(
⨿
∶
⋮
∨
⊻
\rtimes
\setminus
\sqcap
\sqcapdot
\sqcapplus
\sqcup
\sqcupdot
\sqcupplus
\times
\timesbar
\udotdot
\upbowtie
\upY
\utimes
\varamalg
\vdotdot
\vdots
\vee
\veebar
(continued on next page)
32
(continued from previous page)
⨰
⩞
⋒
⋓
⩎
⩏
\dottimes
\doublebarwedge
\doublecap
\doublecup
\doublesqcap
\doublesqcup
⨥
±
⟓
⟔
⋌
,
\plusdot
\pm
\pullback
\pushout
\rightthreetimes
\rightY
⟇
⩣
∧
⟑
≀
\veedot
\veedoublebar
\wedge
\wedgedot
\wreath
fdsymbol defines \btimes as a synonym for \dtimes; \Cap as a synonym for
\doublecap; \Cup as a synonym for \doublecup; \hookupminus as a synonym
for \intprodr; \hourglass as a synonym for \upbowtie; \land as a synonym
for \wedge; \lor as a synonym for \vee; \minushookup as a synonym for
\intprod; \smalldivslash as a synonym for \medslash; \smallsetminus
as a synonym for \medbackslash; \Sqcap as a synonym for \doublesqcap;
\Sqcup as a synonym for \doublesqcup; \ttimes as a synonym for \utimes;
\lJoin as a synonym for \ltimes; \rJoin as a synonym for \rtimes; \Join
and \lrtimes as synonyms for \bowtie; \uplus as a synonym for \cupplus;
\veeonvee as a synonym for \doublevee; \wedgeonwedge as a synonym for
\doublewedge; and \wr as a synonym for \wreath).
Table 58: boisik Binary Operators
{
ç
Ñ
=
î
ï
ë
è
„
Ë
y
î
‹
`
@
ƒ
Ê
¯
Ï
Î
ñ
ò
|
Ã
Þ
\ast
\baro
\barwedge
\bbslash
\binampersand
\bindnasrepma
\blackbowtie
\bowtie
\cap
\Cap
\cdot
\centerdot
\circplus
\coAsterisk
\convolution
\cup
\Cup
\cupleftarrow
\curlyvee
\curlywedge
\dagger
\ddagger
\div
\divideontimes
\dotplus
Œ
Ò
ý
Å
þ
Þ
ì
Ð
Ó
Ä
Ô
é
Ž
é
æ
ÿ
¾
è
õ
~
ß
í
Ñ
Ô
Õ
\dottimes
\doublebarwedge
\fatsemi
\gtrdot
\intercal
\lbag
\lblackbowtie
\leftslice
\leftthreetimes
\lessdot
\ltimes
\ltimesblack
\merge
\minuso
\moo
\mp
\nplus
\pluscirc
\plustrif
\pm
\rbag
\rblackbowtie
\rightslice
\rightthreetimes
\rtimes
33
ê
Ú
ö
¿
<
z
±
°
ó
³
²

‡
û
Ð

†
ü
Ô
Ö
×
Õ
\rtimesblack
\smallsetminus
\smashtimes
\squplus
\sslash
\times
\uplus
\varcap
\varcup
\varintercal
\varsqcap
\varsqcup
\vartimes
\vee
\Vee
\veebar
\veeonvee
\wedge
\Wedge
\Ydown
\Yleft
\Yright
\Yup
Table 59: stix Binary Operators
⨿
∗
⩃
⩂
⊽
⊼
⩗
⩘
⨲
∩
⋒
⩉
⩀
⩇
⩄
⩍
⩌
⩐
⨩
∪
⋓
⩈
⊍
⊌
⩆
⩅
⋎
⋏
†
‡
÷
⋇
∸
∔
⨰
⩢
⩞
⧺
⧶
⩱
\amalg
\ast
\barcap
\barcup
\barvee
\barwedge
\bigslopedvee
\bigslopedwedge
\btimes
\cap
\Cap
\capbarcup
\capdot
\capovercup
\capwedge
\closedvarcap
\closedvarcup
\closedvarcupsmashprod
\commaminus
\cup
\Cup
\cupbarcap
\cupdot
\cupleftarrow
\cupovercap
\cupvee
\curlyvee
\curlywedge
\dagger
\ddagger
\div
\divideontimes
\dotminus
\dotplus
\dottimes
\doublebarvee
\doublebarwedge
\doubleplus
\dsol
\eqqplus
⨾
⁄
⊺
⫴
⨼
⨽
∾
⋋
⊲
⋉
⩝
⩜
⨪
⨫
⨬
∓
⫵
⨭
⨮
⨴
⨵
⨥
⩲
⨣
⨦
⨧
⨨
±
⊳
⋌
⨢
⧷
⋊
⧵
⧢
⨤
∖
⨳
⊓
⩎
\fcmp
\fracslash
\intercal
\interleave
\intprod
\intprodr
\invlazys
\leftthreetimes
\lhd
\ltimes
\midbarvee
\midbarwedge
\minusdot
\minusfdots
\minusrdots
\mp
\nhVvert
\opluslhrim
\oplusrhrim
\otimeslhrim
\otimesrhrim
\plusdot
\pluseqq
\plushat
\plussim
\plussubtwo
\plustrif
\pm
\rhd
\rightthreetimes
\ringplus
\rsolbar
\rtimes
\setminus
\shuffle
\simplus
\smallsetminus
\smashtimes
\sqcap
\Sqcap
⊔
⩏
⫽
⫶
×
⨱
⧿
⧾
⧻
⫻
⩋
⩊
⦂
⩁
⊴
⊵
⅋
⊎
⌅
⌆
⩡
⨯
⩔
∨
⊻
⟇
⩣
⩛
⩒
⩖
⩓
∧
⩟
⟑
⩠
⩚
⩑
⩕
≀
\sqcup
\Sqcup
\sslash
\threedotcolon
\times
\timesbar
\tminus
\tplus
\tripleplus
\trslash
\twocaps
\twocups
\typecolon
\uminus
\unlhd
\unrhd
\upand
\uplus
\varbarwedge
\vardoublebarwedge
\varveebar
\vectimes
\Vee
\vee
\veebar
\veedot
\veedoublebar
\veemidvert
\veeodot
\veeonvee
\Wedge
\wedge
\wedgebar
\wedgedot
\wedgedoublebar
\wedgemidvert
\wedgeodot
\wedgeonwedge
\wr
stix defines \land as a synonym for \wedge, \lor as a synonym for \vee,
\doublecap as a synonym for \Cap, and \doublecup as a synonym for \Cup.
Table 60: mathdesign Binary Operators
_
\dtimes
]
\udtimes
^
\utimes
The mathdesign package additionally provides versions of each of the binary
operators shown in Table 51 on page 30.
34
Table 61: cmll Binary Operators
`
\parr*
&
\with†
*
cmll defines \invamp as a synonym for \parr.
†
\with differs from \& in terms of its math-mode spacing: $A \& B$ produces
“𝐴 & 𝐵”, for example, while $A \with B$ produces “𝐴 & 𝐵”.
Table 62: shuffle Binary Operators
\cshuffle
\shuffle
Table 63: ulsy Geometric Binary Operators
\odplus
Table 64: mathabx Geometric Binary Operators
İ
đ
§
IJ
f
n
k
e
g
c
d
h
a
‘
\blacktriangledown
\blacktriangleleft
\blacktriangleright
\blacktriangleup
\boxasterisk
\boxbackslash
\boxbot
\boxcirc
\boxcoasterisk
\boxdiv
\boxdot
\boxleft
\boxminus
\boxplus
i
m
b
j
o
l
f
n
k
e
g
c
d
h
\boxright
\boxslash
\boxtimes
\boxtop
\boxtriangleup
\boxvoid
\oasterisk
\obackslash
\obot
\ocirc
\ocoasterisk
\odiv
\odot
\oleft
35
a
‘
i
m
b
j
o
l
Ź
Ž
Ż
Ÿ
\ominus
\oplus
\oright
\oslash
\otimes
\otop
\otriangleup
\ovoid
\smalltriangledown
\smalltriangleleft
\smalltriangleright
\smalltriangleup
Table 65: MnSymbol Geometric Binary Operators
⧅
⧈
⊡
⊟
⊞
⧄
⊠
q
{

⟐
x
|
z
}
y
Â
◆
∎
\boxbackslash
\boxbox
\boxdot
\boxminus
\boxplus
\boxslash
\boxtimes
\boxvert
\diamondbackslash
\diamonddiamond
\diamonddot
\diamondminus
\diamondplus
\diamondslash
\diamondtimes
\diamondvert
\downslice
\filleddiamond
\filledmedsquare
▼
◀
▶
▲
◾
★
▾
◂
▸
▴
◇
◻
☆
▽
◁
▷
△
⊛
⦸
\filledmedtriangledown
\filledmedtriangleleft
\filledmedtriangleright
\filledmedtriangleup
\filledsquare
\filledstar
\filledtriangledown
\filledtriangleleft
\filledtriangleright
\filledtriangleup
\meddiamond
\medsquare
\medstar
\medtriangledown
\medtriangleleft
\medtriangleright
\medtriangleup
\oast
\obackslash
⊚
⊙
⊖
⊕
⊘
⍟
⊗
d
⦶
„
◇
◽
☆
▿
◃
▹
▵
⋆
À
\ocirc
\odot
\ominus
\oplus
\oslash
\ostar
\otimes
\otriangle
\overt
\pentagram
\smalldiamond
\smallsquare
\smallstar
\smalltriangledown
\smalltriangleleft
\smalltriangleright
\smalltriangleup
\thinstar
\upslice
MnSymbol defines \blacksquare as a synonym for \filledmedsquare;
\square and \Box as synonyms for \medsquare; \diamond as a synonym for
\smalldiamond; \Diamond as a synonym for \meddiamond; \star as a synonym for \thinstar; \circledast as a synonym for \oast; \circledcirc as
a synonym for \ocirc; and, \circleddash as a synonym for \ominus.
Table 66: fdsymbol Geometric Binary Operators
⧅
⧈
⊡
⊟
⊞
⧄
⊠
◫
ˆ
Œ
⟐
‰
‡
Š
†
●
◆
■
⭑
\boxbackslash
\boxbox
\boxdot
\boxminus
\boxplus
\boxslash
\boxtimes
\boxvert
\diamondbackslash
\diamonddiamond
\diamonddot
\diamondminus
\diamondplus
\diamondslash
\diamondtimes
\diamondvert
\medblackcircle
\medblackdiamond
\medblacksquare
\medblackstar
▼
◀
▶
▲
○
◇
∕
□
▽
◁
▷
△
⭐
⊛
⦸
⊚
⊝
⊙
⊜
⊖
\medblacktriangledown
\medblacktriangleleft
\medblacktriangleright
\medblacktriangleup
\medcircle
\meddiamond
\medslash
\medsquare
\medtriangledown
\medtriangleleft
\medtriangleright
\medtriangleup
\medwhitestar
\oast
\obackslash
\ocirc
\odash
\odot
\oequal
\ominus
⊕
⊘
⊗
⦶
•
⬩
▪
⋆
▾
◂
▸
▴
◦
⋄
▫
▿
◃
▹
▵
⭒
\oplus
\oslash
\otimes
\overt
\smallblackcircle
\smallblackdiamond
\smallblacksquare
\smallblackstar
\smallblacktriangledown
\smallblacktriangleleft
\smallblacktriangleright
\smallblacktriangleup
\smallcircle
\smalldiamond
\smallsquare
\smalltriangledown
\smalltriangleleft
\smalltriangleright
\smalltriangleup
\smallwhitestar
fdsymbol defines synonyms for most of the preceding symbols:
36
⬩
▲
▼
◀
▶
□
◫
⧅
⧄
•
◦
⊛
⊚
⊝
⊜
⦶
\blackdiamond
\blacktriangle
\blacktriangledown
\blacktriangleleft
\blacktriangleright
\Box
\boxbar
\boxbslash
\boxdiag
\bullet
\circ
\circledast
\circledcirc
\circleddash
\circledequal
\circledvert
⋄
◇
ˆ
⟐
◆
■
●
◆
■
○
◇
□
◇
□
⭑
⦸
\diamond
\Diamond
\diamondbslash
\diamondcdot
\mdblkdiamond
\mdblksquare
\mdlgblkcircle
\mdlgblkdiamond
\mdlgblksquare
\mdlgwhtcircle
\mdlgwhtdiamond
\mdlgwhtsquare
\mdwhtdiamond
\mdwhtsquare
\medstar
\obslash
•
⬩
▪
⭒
◦
⋄
▫
□
⋆
△
▽
◁
▷
△
\smblkcircle
\smblkdiamond
\smblksquare
\smwhitestar
\smwhtcircle
\smwhtdiamond
\smwhtsquare
\square
\star
\triangle
\triangledown
\triangleleft
\triangleright
\vartriangle
Table 67: boisik Geometric Binary Operators
ã
ï
ë
è
ê
é
¤
¡
ž
§
œ
¥
¦
ô
Ÿ
ñ
ð
\blacklozenge
\blacksquare
\blacktriangle
\blacktriangledown
\blacktriangleleft
\blacktriangleright
\boxast
\boxbar
\boxbot
\boxbox
\boxbslash
\boxcircle
\boxdivision
\boxdot
\boxleft
\boxminus
\boxplus
\boxright
¢ \boxslash
ò
\boxtimes
ö
\circledast
\circledcirc
\circleddash
\diamond
\diamondbar
\diamondcircle
\diamondminus
\diamondop
\diamondplus
\diamondtimes
\diamondtriangle
\obar
 \boxtop
£ \boxtriangle
õ
÷
}
ª
®
©
¨
¬
«
­
•
37
:
’

™
“
˜

€
”
–
‚
‘
—
š
›
ø
;
\oblong
\obot
\obslash
\ogreaterthan
\oleft
\olessthan
\ominus
\oplus
\oright
\oslash
\otimes
\otop
\otriangle
\ovee
\owedge
\star
\talloblong
Table 68: stix Geometric Binary Operators
⧗
⧆
◫
⧈
⧅
⧇
⧄
⊡
⊟
⊞
⊠
⊛
⊚
⊝
⊜
⦷
⦶
⦵
⟡
\blackhourglass
\boxast
\boxbar
\boxbox
\boxbslash
\boxcircle
\boxdiag
\boxdot
\boxminus
\boxplus
\boxtimes
\circledast
\circledcirc
\circleddash
\circledequal
\circledparallel
\circledvert
\circlehbar
\concavediamond
⟢
⟣
⋄
⩤
⧖
⟠
⧫
○
⌽
⦺
⦸
⨸
⊙
⦼
⧁
⦻
⧀
⊖
⦹
\concavediamondtickleft
\concavediamondtickright
\diamond
\dsub
\hourglass
\lozengeminus
\mdlgblklozenge
\mdlgwhtcircle
\obar
\obot*
\obslash
\odiv
\odot
\odotslashdot*
\ogreaterthan
\olcross*
\olessthan
\ominus
\operp
⊕
⊘
⊗
⨷
⨶
⩥
•
⋆
⫾
△
⨺
⨹
⧍
⨻
∙
∘
⟤
⟥
\oplus
\oslash
\otimes
\Otimes
\otimeshat
\rsub
\smblkcircle
\star
\talloblong
\triangle
\triangleminus
\triangleplus
\triangleserifs
\triangletimes
\vysmblkcircle†
\vysmwhtcircle
\whitesquaretickleft
\whitesquaretickright
*
Defined as an ordinary character, not as a binary relation. However, these
symbols more closely resemble the other symbols in this table than they do
the geometric shapes presented in Table 390, which is why they are included
here.
†
stix defines \bullet as a synonym for \vysmblkcircle.
Table 69: halloweenmath Halloween-Themed Math Operators
†
\bigpumpkin‡
\mathleftghost
\reversemathcloud
\bigskull
\mathrightbat
\reversemathwitch†
\mathbat
\mathrightghost
\reversemathwitch*†
\mathcloud
\mathwitch*†
\skull
\mathghost
\mathwitch
\mathleftbat
\pumpkin
†
These
symbols
accept
limits.
\mathwitch*_{i=0}^{\infty} f(x) produces “
and
∞
𝑓 (𝑥)
𝑖=0
in display mode.
‡
\greatpumpkin is a synonym for \bigpumpkin.
38
∞
𝑖=0
For
example,
𝑓 (𝑥)” in text mode
Table 70: stix Small Integrals
⨑
⨐
⨏
⨌
∭
∬
∫
⨍
⨎
\smallawint
\smallcirfnint
\smallfint
\smalliiiint
\smalliiint
\smalliint
\smallint
\smallintbar
\smallintBar
⨙
∱
⨚
⨗
⨘
⨜
⨔
∰
∯
\smallintcap
\smallintclockwise
\smallintcup
\smallintlarhk
\smallintx
\smalllowint
\smallnpolint
\smalloiiint
\smalloiint
∮
∳
⨕
⨒
⨓
⨖
⨋
⨛
∲
\smalloint
\smallointctrclockwise
\smallpointint
\smallrppolint
\smallscpolint
\smallsqint
\smallsumint
\smallupint
\smallvarointclockwise
By default, each of the preceding commands points to a slanted version of the
glyph, as shown. The upint package option typesets each integral instead as
an upright version. Slanted and upright integrals can be mixed, however, by
explicitly using the commands shown in Table 71.
Table 71: stix Small Integrals with Explicit Slant
⨑
⨐
⨏
⨌
∭
∬
⨍
⨎
⨙
∱
⨚
⨗
∫
⨘
⨜
⨔
∰
∯
∳
∮
⨕
⨒
⨓
⨖
⨋
⨛
∲
⨑
⨐
⨏
⨌
∭
∬
⨎
⨍
⨙
∱
⨚
⨗
∫
⨘
⨜
⨔
∰
∯
∳
∮
⨕
⨒
⨓
⨖
⨋
⨛
∲
\smallawintsl
\smallcirfnintsl
\smallfintsl
\smalliiiintsl
\smalliiintsl
\smalliintsl
\smallintbarsl
\smallintBarsl
\smallintcapsl
\smallintclockwisesl
\smallintcupsl
\smallintlarhksl
\smallintsl
\smallintxsl
\smalllowintsl
\smallnpolintsl
\smalloiiintsl
\smalloiintsl
\smallointctrclockwisesl
\smallointsl
\smallpointintsl
\smallrppolintsl
\smallscpolintsl
\smallsqintsl
\smallsumintsl
\smallupintsl
\smallvarointclockwisesl
\smallawintup
\smallcirfnintup
\smallfintup
\smalliiiintup
\smalliiintup
\smalliintup
\smallintBarup
\smallintbarup
\smallintcapup
\smallintclockwiseup
\smallintcupup
\smallintlarhkup
\smallintup
\smallintxup
\smalllowintup
\smallnpolintup
\smalloiiintup
\smalloiintup
\smallointctrclockwiseup
\smallointup
\smallpointintup
\smallrppolintup
\smallscpolintup
\smallsqintup
\smallsumintup
\smallupintup
\smallvarointclockwiseup
Instead of using the preceding symbols directly, it is generally preferable to use
the symbols listed in Table 70 either with or without the upint package option.
Specifying upint selects each integral’s upright (up) variant, while omitting
upint selects each integral’s slanted (sl) variant. Use the symbols shown in
Table 71 only when you need to include both upright and slanted variations of
a symbol in the same document.
39
⋂︀ ⋂︁
⋃︀ ⋃︁
⨀︀ ⨀︁
⨁︀ ⨁︁
Table 72: Variable-sized Math Operators
⨂︀ ⨂︁
⋀︀ ⋀︁
\bigcap
\bigotimes
\bigwedge
⨆︀ ⨆︁
∐︀ ∐︁
\bigcup
\bigsqcup
\coprod
∫︁
⨄︁
∫︀
⨄︀
\bigodot
\biguplus
\int
∮︁
∮︀
⋁︀ ⋁︁
\bigoplus
\bigvee
\oint
∏︀ ∏︁
\prod
∑︀ ∑︁
\sum
Table 73: 𝒜ℳ𝒮 Variable-sized Math Operators
∫︁ ∫︁
∫︁ ∫︁ ∫︁
∫︀∫︀
∫︀∫︀∫︀
\iint
\iiint
∫︀∫︀∫︀∫︀
em
bj
ck
∫︁ ∫︁ ∫︁ ∫︁
\iiiint
∫︀
···
∫︀
∫︁
∫︁
···
Table 74: stmaryrd Variable-sized Math
g o
\bigbox
\biginterleave
\bignplus
\bigcurlyvee
f n
\bigcurlywedge
\bigparallel
\idotsint
Operators
\bigsqcap
`h
\bigtriangledown
ai
\bigtriangleup
Table 75: wasysym Variable-sized Math Operators
r w
\int
sx
\iint
uz
\oint
v{
\oiint
ty
\iiint
If wasysym is loaded without package options then none of the preceding symbols are defined. However, \varint produces wasysym’s \int glyph, and
\varoint produces wasysym’s \oint glyph.
If wasysym is loaded with the integrals option then all of the preceding symbols
are defined, but \varint and \varoint are left undefined.
If wasysym is loaded with the nointegrals option then none of the preceding
symbols, \varint, or \varoint are defined.
40
Table 76: mathabx Variable-sized Math Operators
IJň
\bigcurlyvee
Ýý
\bigboxslash
Éé
\bigoright
Ű ę
\bigsqcap
Òò
\bigboxtimes
Íí
\bigoslash
Żń
\bigcurlywedge
Úú
\bigboxtop
Êê
\bigotop
Öö
\bigboxasterisk
ßß
\bigboxtriangleup
Ïï
\bigotriangleup
Þþ
\bigboxbackslash
Üü
\bigboxvoid
Ìì
\bigovoid
Ûû
\bigboxbot
Š ć
\bigcomplementop
Řă
\bigplus
Õõ
\bigboxcirc
Ææ
\bigoasterisk
Ÿ ĺ
\bigsquplus
Œœ
\bigboxcoasterisk
Îî
\bigobackslash
Śą
\bigtimes
Óó
\bigboxdiv
Ëë
\bigobot
ţ
Ôô
\bigboxdot
Åå
\bigocirc
ť
Øø
\bigboxleft
Çç
\bigocoasterisk
ş
Ññ
\bigboxminus
Ãã
\bigodiv
ů
Ðð
\bigboxplus
Èè
\bigoleft
ű
Ùù
\bigboxright
Áá
\bigominus
¡
\iiint
ij
\iint
ż
\int
£
\oiint
¿
41
\oint
Table 77: txfonts/pxfonts Variable-sized Math Operators
>
?
\ointclockwise
\bigsqcupplus
\ointctrclockwise
R S
\fint
' (
% &
#
$
!
"
L
M
D
E
)
*
H
I
@
A
\bigsqcapplus
P Q
\idotsint
\iiiint
\sqint
N O
\iint
B C
\oiiintclockwise
J K
\oiiintctrclockwise
\oiiint
\oiintclockwise
-
.
+
,
\oiint
42
\varoiiintclockwise
\varoiiintctrclockwise
\varoiintclockwise
\varoiintctrclockwise
\varointclockwise
\oiintctrclockwise
\sqiint
F G
\iiint
\sqiiint
\varointctrclockwise
\varprod
Table 78: esint Variable-sized Math Operators
¯
˙
\dotsint
ffl
ˇ
˝
˜
%
#
‚

ı
\ointclockwise
‰
\fint
˘
\ointctrclockwise
„
”
\iiiint
˚
\sqiint
“
›
\iiint
¨
\sqint
"
!
\iint
&
\landdownint
$
\landupint
\varoiint
fi
ff
\varointclockwise
ffi
fl
\varointctrclockwise
‹
\oiint
Table 79: bigints Variable-sized Math Operators
∫︀
∫︀
∫︀
∫︀
∫︀
∫︁
∮︀
\bigint
∫︁
∮︀
\bigints
∫︁
∮︀
\bigintss
∫︁
∮︀
\bigintsss
∫︁
∮︀
\bigintssss
43
∮︁
\bigoint
∮︁
\bigoints
∮︁
\bigointss
∮︁
\bigointsss
∮︁
\bigointssss
Table 80: MnSymbol Variable-sized Math Operators
⋂
⋂
\bigcap
⊖
⊖
\bigominus
∁
∁
\complement
⩀
⩀
\bigcapdot
⊕
⊕
\bigoplus
∐
∐
\coprod
$
%
\bigcapplus
⊘
⊘
\bigoslash
∫…∫
∫…∫
\idotsint
◯
◯
\bigcircle
⍟
⍟
\bigostar
⨌
⨌
\iiiint
⋃
⋃
\bigcup
⊗
⊗
\bigotimes
∭
∭
\iiint
⊍
⊍
\bigcupdot
F
G
\bigotriangle
∬
∬
\iint
⊎
⊎
\bigcupplus*
⦶
⦶
\bigovert
∫
∫
\int
⋎
⋎
\bigcurlyvee
+
+
\bigplus
⨚
⨚
\landdownint
\bigcurlyveedot
⊓
⊓
\bigsqcap
⨙
⨙
\landupint
⋏
⋏
\bigcurlywedge
,
-
\bigsqcapdot
∲
∲
\lcircleleftint
\bigcurlywedgedot
0
1
\bigsqcapplus
∲
∲
\lcirclerightint
\bigdoublecurlyvee
⊔
⊔
\bigsqcup
∯
∯
\oiint
\bigdoublecurlywedge
.
/
\bigsqcupdot
∮
∮
\oint
⩔
⩔
\bigdoublevee
2
3
\bigsqcupplus
∏
∏
\prod
⩕
⩕
\bigdoublewedge
⨉
⨉
\bigtimes
∳
∳
\rcircleleftint
⊛
⊛
\bigoast
⋁
⋁
\bigvee
∳
∳
\rcirclerightint
⦸
⦸
\bigobackslash
\bigveedot
⨏
⨏
\strokedint
⊚
⊚
\bigocirc
⋀
\bigwedge
∑
∑
\sum
⊙
⊙
\bigodot
\bigwedgedot
⨋
⨋
\sumint
*
⋀
MnSymbol defines \biguplus as a synonym for \bigcupplus.
Table 81: fdsymbol Variable-sized Math Operators
⋂
⋂
\bigcap
⨆
⨆
\bigsqcup
∱
∱
\landupint
\bigcapdot
&
'
\bigsqcupdot
∲
∲
\lcircleleftint
(continued on next page)
44
(continued from previous page)
\bigcapplus
*
+
\bigsqcupplus
∲
∲
⋃
⋃
\bigcup
⨉
⨉
\bigtimes
∰
∰
\oiiint
⨃
⨃
\bigcupdot
⋁
⋁
\bigvee
∯
∯
\oiint
⨄
⨄
\bigcupplus
\bigveedot
∮
∮
\oint
\bigcurlyvee
⋀
\bigwedge
⨊
⨊
\osum
\bigcurlywedge
\bigwedgedot
∏
∏
\prod
⨈
⨈
\bigdoublevee
∐
∐
\coprod
∳
∳
\rcircleleftint
⨇
⨇
\bigdoublewedge
⨏
⨏
\fint
∳
∳
\rcirclerightint
2
3
\bigoast
∫⋯∫
∫⋯∫
\idotsint
∑
∑
\sum
⨀
⨀
\bigodot
⨌
⨌
\iiiint
⨋
⨋
\sumint
⨁
⨁
\bigoplus
∭
∭
\iiint
∐
∐
\varcoprod
⨂
⨂
\bigotimes
∬
∬
\iint
⨊
⨊
\varosum
\bigplus
∫
∫
\int
∏
∏
\varprod
⨅
⨅
\bigsqcap
⨍
⨍
\intbar
∑
∑
\varsum
$
%
\bigsqcapdot
⨎
⨎
\intBar
⨋
⨋
\varsumint
(
)
\bigsqcapplus
⨑
⨑
\landdownint
*
⋀
\lcirclerightint
fdsymbol defines \awint as a synonym for \landdownint, \biguplus as a
synonym for \bigcupplus, \conjquant as a synonym for \bigdoublewedge,
\disjquant as a synonym for \bigdoublevee, \dotsint as a synonym for
\idotsint, \intclockwise as a synonym for \landupint, \intctrclockwise
as a synonym for \landdownint, \modtwosum as a synonym for \osum,
\ointclockwise as a synonym for \lcircleleftint, \ointctrclockwise
as a synonym for \rcirclerightint, \varmodtwosum as a synonym for
\varosum, \varointclockwise as a synonym for \lcirclerightint, and
\varointctrclockwise as a synonym for \rcircleleftint.
Table 82: boisik Variable-sized Math Operators
Š
‹
\intup
boisik additionally provides all of the symbols in Table 72.
45
Table 83: stix Variable-sized Math Operators
⨑
⨑
⅀
⅀
⋂
⋃
⨃
⨀
⨁
⨂
⨅
⨆
⫿
⨉
⨄
⋁
⋀
⋂
⋃
⨃
⨀
⨁
⨂
⨅
⨆
⫿
⨉
⨄
⋁
⋀
⨐
⨐
⨇
⨇
\awint
\Bbbsum
∐
⨈
∐
⨈
\coprod
∰
∰
\oiiint
\disjquant
∯
∯
\oiint
\fint
∮
∮
\oint
\bigcap
⨏
⨏
\bigcup
⨌
⨌
\iiiint
∳
∳
\ointctrclockwise
\bigcupdot
∭
∭
\iiint
⨕
⨕
\pointint
\bigodot
∬
∏
∏
∬
\iint
\bigoplus
∫
∫
\int
⨒
⨒
\rppolint
\bigotimes
⨍
⨍
\intbar
⨓
⨓
\scpolint
\bigsqcap
⨎
⨎
\intBar
⨖
⨖
\sqint
\bigsqcup
⨙
\intcap
∑
∑
⨙
\bigtalloblong
∱
∱
\intclockwise
⨋
⨋
\sumint
\bigtimes
⨚
⨚
\intcup
⨛
⨛
\upint
\biguplus
⨗
⨗
\intlarhk
∲
∲
\varointclockwise
\bigvee
⨘
\intx
⧹
⧹
⨘
\bigwedge
⨜
\lowint
⧸
⧸
⨜
⨊
⨊
⨔
⨔
\cirfnint
\conjquant
\prod
\sum
\xbsol
\xsol
\modtwosum
\npolint
By default, each of the integral-producing commands in Table 83 points to a
slanted version of the glyph, as shown. The upint package option typesets each
integral instead as an upright version. Slanted and upright integrals can be
mixed, however, by explicitly using the commands shown in Table 84.
46
Table 84: stix Integrals with Explicit Slant
∫
∫
\intsl
∫
∫
\intup
∬
∬
\iintsl
∬
∬
\iintup
∭
∭
\iiintsl
∭
∭
\iiintup
∮
∮
\ointsl
∮
∮
\ointup
∯
∯
\oiintsl
∯
∯
\oiintup
∰
∰
\oiiintsl
∰
∰
\oiiintup
∱
∱
\intclockwisesl
∱
∱
\intclockwiseup
∲
∲
\varointclockwisesl
∲
∲
\varointclockwiseup
∳
∳
\ointctrclockwisesl
∳
∳
\ointctrclockwiseup
⨋
⨋
\sumintsl
⨋
⨋
\sumintup
\iiiintsl
⨌ ⨌
\iiiintup
⨌ ⨌
⨍
⨍
\intbarsl
⨍
⨍
\intbarup
⨎
⨎
\intBarsl
⨎
⨎
\intBarup
⨏
⨏
\fintsl
⨏
⨏
\fintup
⨐
⨐
\cirfnintsl
⨐
⨐
\cirfnintup
⨑
⨑
\awintsl
⨑
⨑
\awintup
⨒
⨒
\rppolintsl
⨒
⨒
\rppolintup
⨓
⨓
\scpolintsl
⨓
⨓
\scpolintup
⨔
⨔
\npolintsl
⨔
⨔
\npolintup
(continued on next page)
47
(continued from previous page)
⨕
⨕
\pointintsl
⨕
⨕
\pointintup
⨖
⨖
\sqintsl
⨖
⨖
\sqintup
⨗
⨗
\intlarhksl
⨗
⨗
\intlarhkup
⨘
⨘
\intxsl
⨘
⨘
\intxup
⨙
⨙
\intcapsl
⨙
⨙
\intcapup
⨚
⨚
\intcupsl
⨚
⨚
\intcupup
⨛
⨛
\upintsl
⨛
⨛
\upintup
⨜
⨜
\lowintsl
⨜
⨜
\lowintup
Instead of using the preceding symbols directly, it is generally preferable to use
the symbols listed in Table 83 either with or without the upint package option.
Specifying upint selects each integral’s upright (up) variant, while omitting
upint selects each integral’s slanted (sl) variant. Use the symbols shown in
Table 84 only when you need to include both upright and slanted variations of
a symbol in the same document.
Table 85: cmupint Variable-sized Upright Integrals
⨑
⨍
⨑
\awint
⨍
\barint
⨐
⨐
⨎
⨎
⨜
⨜
⨏
⨏
\cirfnint
\doublebarint
\downint
\fint
⨔
∰
⨔
\npolint
∰
\oiiint
∯
∯
∮
∮
∲
∲
∳
∳
\oiint
\oint
\ointclockwise
\ointctrclockwise
(continued on next page)
48
(continued from previous page)
∫
∫
···
⨌
∭
∬
∫
∫
···
⨌
\iiiint
∭
\iiint
∬
\iint
∫
∫
⨙
\idotsint*
\int
⨙
\intcap
∱
∱
\intclockwise
⨚
⨚
⨗
⨗
∫
∫
∫
∫
\intcup
\intlarhk
\landdownint
\landupint
⨕
⨕
⨒
⨒
\pointint
\rppolint
⨓
⨓
\scpolint
⨖
⨖
\sqiint
⨖
⨖
\sqint
⨋
⨋
\sumint
⨛
⨛
\upint
∬ ∬
∲
∲
∳
∳
⨘
⨘
\varidotsint*
\varointclockwise
\varointctrclockwise
\xint
cmupint additionally provides \longint, \longiint, \longoint, and
\longoiint commands that stretch arbitrarily tall. See the cmupint documentation for more information.
*
\varidotsint is always drawn as is. \idotsint is drawn identically to
\varidotsint when amsmath is not loaded or with more space surrounding
each dot when amsmath is loaded.
Table 86: mathdesign Variable-sized Math Operators
€

ˆ ‰
†
„
\intclockwise
‚
\oiiint
\ointclockwise
ƒ
\ointctrclockwise
‡
\oiint
The mathdesign package provides three versions of each integral—in
fact, Rof
R
every symbol—to accompany different text fonts: Utopia ( ), Garamond ( ),
R
and Charter ( ).
49
Table 87: prodint Variable-sized Math Operators
P
\prodi
R
\Prodi
T
\PRODI
prodint currently requires the author to manually specify \prodi for inlined
expressions ($. . . $), \Prodi for displayed math (\[. . . \]), and \PRODI for displayed math involving tall integrands. The package does not define a product
integral command that scales automatically akin to the symbols in Table 72.
Table 88: cmll Large Math Operators
˙
*
\bigparr*
˘
\bigwith
cmll defines \biginvamp as a synonym for \bigparr.
Table 89: Binary Relations
≈
≍
◁▷
⊣
\approx
\asymp
\bowtie
\cong
\dashv
\doteq
≡
⌢
Z
|
|=
‖
\equiv
\frown
\Join*
\mid†
\models
\parallel
⊥
≺
⪯
∝
∼
≃
\perp
\prec
\preceq
\propto
\sim
\simeq
⌣
≻
⪰
⊢
\smile
\succ
\succeq
\vdash
*
Not predefined by the LATEX 2𝜀 core. Use the latexsym package to expose this
symbol.
†
The difference between \mid and | is that the former is a binary relation
while the latter is a math ordinal. Consequently, LATEX typesets the two
with different surrounding spacing. Contrast “P(A | B)” ↦→ “𝑃 (𝐴|𝐵)” with
“P(A \mid B)” ↦→ “𝑃 (𝐴 | 𝐵)”.
Table 90: 𝒜ℳ𝒮 Binary Relations
u

v
w
∵
G
m
l
$
2
3
+
\approxeq
\backepsilon
\backsim
\backsimeq
\because
\between
\Bumpeq
\bumpeq
\circeq
\curlyeqprec
\curlyeqsucc
\doteqdot
P
;
(
t
w
4
:
p
q
a
`
\eqcirc
\fallingdotseq
\multimap
\pitchfork
\precapprox
\preccurlyeq
\precsim
\risingdotseq
\shortmid
\shortparallel
\smallfrown
\smallsmile
50
v
<
%
∴
≈
∼
∝
\succapprox
\succcurlyeq
\succsim
\therefore
\thickapprox
\thicksim
\varpropto
\Vdash
\vDash
\Vvdash
Table 91: 𝒜ℳ𝒮 Negated Binary Relations
∦
⊀
.
\ncong
\nmid
\nparallel
\nprec
\npreceq
\nshortmid
/
/
2
0
\nshortparallel
\nsim
\nsucc
\nsucceq
\nvDash
\nvdash
3
\nVDash
\precnapprox
\precnsim
\succnapprox
\succnsim
Table 92: stmaryrd Binary Relations
A
\inplus
B
\niplus
Table 93: wasysym Binary Relations
Z
\invneg
\Join
{
\leadsto
\logof
\wasypropto
Table 94: txfonts/pxfonts Binary Relations
S
R
D
H
F
B
I
E
C
G
h
*
\circledgtr
\circledless
\colonapprox
\Colonapprox
\coloneq
\Coloneq
\Coloneqq
\coloneqq*
\Colonsim
\colonsim
\Eqcolon
\eqcolon
\eqqcolon
\Eqqcolon
\eqsim
X
\
(
•
˜
—
–
[
\lJoin
\lrtimes
\multimap
\multimapboth
\multimapbothvert
\multimapdot
\multimapdotboth
\multimapdotbothA
\multimapdotbothAvert
\multimapdotbothB
\multimapdotbothBvert
\multimapdotbothvert
\multimapdotinv
\multimapinv
\openJoin
]
y
Y
K
J
L
∥
\opentimes
\Perp
\preceqq
\precneqq
\rJoin
\strictfi
\strictif
\strictiff
\succeqq
\succneqq
\varparallel
\varparallelinv
\VvDash
As an alternative to using txfonts/pxfonts, a “:=” symbol can be constructed
with “\mathrel{\mathop:}=”.
Table 95: txfonts/pxfonts Negated Binary Relations
6
*
+
(
)
.
7
\napproxeq
\nasymp
\nbacksim
\nbacksimeq
\nbumpeq
\nBumpeq
\nequiv
\nprecapprox
$
9
;
8
%
:
\npreccurlyeq
\npreceqq
\nprecsim
\nsimeq
\nsuccapprox
\nsucccurlyeq
\nsucceqq
\nsuccsim
51
5
h
g
1
\nthickapprox
\ntwoheadleftarrow
\ntwoheadrightarrow
\nvarparallel
\nvarparallelinv
\nVdash
Table 96: mathabx Binary Relations
\between
\botdoteq
\Bumpedeq
\bumpedeq
\circeq
\coloneq
\corresponds
\curlyeqprec
\curlyeqsucc
\DashV
\Dashv
\dashVv
”
ı

–
fl
ű
ů
)
)
-
„
‰
ff
—
»
Ï
Î
Æ
ď
Ì
À
\divides
\dotseq
\eqbumped
\eqcirc
\eqcolon
\fallingdotseq
\ggcurly
\llcurly
\precapprox
\preccurlyeq
\precdot
\precsim
«
Ç
ě
Í
Á
6
“
(
,
(
,
\risingdotseq
\succapprox
\succcurlyeq
\succdot
\succsim
\therefore
\topdoteq
\vDash
\Vdash
\VDash
\Vvdash
Table 97: mathabx Negated Binary Relations
ff
fl
ÿ
ź
+
/
’
+
/
‰
ffi
ffl
ı
\napprox
\ncong
\ncurlyeqprec
\ncurlyeqsucc
\nDashv
\ndashV
\ndashv
\nDashV
\ndashVv
\neq
\notasymp
\notdivides
\notequiv
M
ć
È
ę
ł
Â

fi
č
É
ğ
ń
Ã
\notperp
\nprec
\nprecapprox
\npreccurlyeq
\npreceq
\nprecsim
\nsim
\nsimeq
\nsucc
\nsuccapprox
\nsucccurlyeq
\nsucceq
\nsuccsim
*
*
.
&
.
Ê
ň
Ä
Ë
ŋ
Å
\nvDash
\nVDash
\nVdash
\nvdash
\nVvash
\precnapprox
\precneq
\precnsim
\succnapprox
\succneq
\succnsim
The \changenotsign command toggles the behavior of \not to produce either
a vertical or a diagonal slash through a binary operator. Thus, “$a \not= b$”
can be made to produce either “𝑎 ­= 𝑏” or “𝑎 ­= 𝑏”.
Table 98: MnSymbol Binary Relations
≈
≊
≌
∽
⋍
”
≏
\approx
\approxeq
\backapprox
\backapproxeq
\backcong
\backeqsim
\backsim
\backsimeq
\backtriplesim
\between
\bumpeq
≙

z
‚
â
ò
∝
Ð
Ô
⪦
ê
\hateq
\hcrossing
\leftfootline
\leftfree
\leftmodels
\leftModels
\leftpropto
\leftrightline
\Leftrightline
\leftslice
\leftVdash
Ž
⪧
⊩
⊢
≓

‡
÷
ç
•
ï
\rightpropto
\rightslice
\rightVdash
\rightvdash
\risingdotseq
\sefootline
\sefree
\seModels
\semodels
\separated
\seVdash
(continued on next page)
52
(continued from previous page)
≎
≗
Ü
½
»
∶=
≅
⋞
⋟
≑
≐
{
⫝
ã
ó

⊤
⍑
≖
⩦
≂
=
Ý
≡
Þ
≒
\Bumpeq
\circeq
\closedequal
\closedprec
\closedsucc
\coloneq
\cong
\curlyeqprec
\curlyeqsucc
\Doteq
\doteq
\downfootline
\downfree
\downmodels
\downModels
\downpropto
\downvdash
\downVdash
\eqbump
\eqcirc
\eqdot
\eqsim
\equal
\equalclosed
\equiv
\equivclosed
\fallingdotseq
⊣
|
„
ô
ä
Ò
Ö
ì
Ü
}
å
õ
“
×
Ó
Ý
í
≺
⪷
≼
⪯
≾
x
€
⊧
⊫
\leftvdash
\nefootline
\nefree
\neModels
\nemodels
\neswline
\Neswline
\neVdash
\nevdash
\nwfootline
\nwfree
\nwmodels
\nwModels
\nwsecrossing
\Nwseline
\nwseline
\nwvdash
\nwVdash
\prec
\precapprox
\preccurlyeq
\preceq
\precsim
\rightfootline
\rightfree
\rightmodels
\rightModels
ß
∥
∼
≃
≻
⪸
≽
⪰
≿
~
†
ö
æ
î
Þ
≋
∣
∥
y

ñ
á

⊥
⍊
’
⊪
\sevdash
\shortparallel
\sim
\simeq
\succ
\succapprox
\succcurlyeq
\succeq
\succsim
\swfootline
\swfree
\swModels
\swmodels
\swVdash
\swvdash
\triplesim
\updownline
\Updownline
\upfootline
\upfree
\upModels
\upmodels
\uppropto
\upvdash
\upVdash
\vcrossing
\Vvdash
MnSymbol additionally defines synonyms for some of the preceding symbols:
⊣
Ó
Ò
Ò
≑
⊧
∥
⊥
∝
Ð
Ô
∝
⊧
⊫
⊢
⊩
\dashv
\diagdown
\diagup
\divides
\doteqdot
\models
\parallel
\perp
\propto
\relbar
\Relbar
\varpropto
\vDash
\VDash
\vdash
\Vdash
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
53
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
\leftvdash)
\nwseline)
\neswline)
\updownline)
\Doteq)
\rightmodels)
\Updownline)
\upvdash)
\leftpropto)
\leftrightline)
\Leftrightline)
\leftpropto)
\rightmodels)
\rightModels)
\rightvdash)
\rightVdash)
Table 99: MnSymbol Negated Binary Relations
≉
≊̸
̸
̸
≌̸
̸
∽̸
⋍̸
̸
≏̸
≎̸
≗̸
̸
≇
⋞̸
⋟̸
≐̸
≑̸
̸
⫝̸
̸
̸
⍑̸
⊤̸
̸
≖̸
⩦̸
≂̸
≠
̸
≢
̸
‘
≒̸
≙̸
\napprox
\napproxeq
\nbackapprox
\nbackapproxeq
\nbackcong
\nbackeqsim
\nbacksim
\nbacksimeq
\nbacktriplesim
\nbumpeq
\nBumpeq
\ncirceq
\nclosedequal
\ncong
\ncurlyeqprec
\ncurlyeqsucc
\ndoteq
\nDoteq
\ndownfootline
\ndownfree
\ndownModels
\ndownmodels
\ndownVdash
\ndownvdash
\neqbump
\neqcirc
\neqdot
\neqsim
\nequal
\nequalclosed
\nequiv
\nequivclosed
\neswcrossing
\nfallingdotseq
\nhateq
̸
̸
̸
̸
̸
̸
⊣̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
⊀
⪷̸
⋠
⪯̸
≾̸
̸
̸
⊯
⊭
⊬
⊮
\nleftfootline
\nleftfree
\nleftmodels
\nleftModels
\nleftrightline
\nLeftrightline
\nleftvdash
\nleftVdash
\nnefootline
\nnefree
\nnemodels
\nneModels
\nneswline
\nNeswline
\nneVdash
\nnevdash
\nnwfootline
\nnwfree
\nnwmodels
\nnwModels
\nNwseline
\nnwseline
\nnwvdash
\nnwVdash
\nprec
\nprecapprox
\npreccurlyeq
\npreceq
\nprecsim
\nrightfootline
\nrightfree
\nrightModels
\nrightmodels
\nrightvdash
\nrightVdash
≓̸
̸
̸
̸
̸
̸
̸
∤
∦
≁
≄
⊁
⪸̸
⋡
⪰̸
≿̸
̸
̸
̸
̸
̸
̸
≋̸
∦
∤
̸
̸
̸
̸
⍊̸
⊥̸
⪹
⋨
⪺
⋩
\nrisingdotseq
\nsefootline
\nsefree
\nseModels
\nsemodels
\nsevdash
\nseVdash
\nshortmid
\nshortparallel
\nsim
\nsimeq
\nsucc
\nsuccapprox
\nsucccurlyeq
\nsucceq
\nsuccsim
\nswfootline
\nswfree
\nswModels
\nswmodels
\nswvdash
\nswVdash
\ntriplesim
\nUpdownline
\nupdownline
\nupfootline
\nupfree
\nupModels
\nupmodels
\nupVdash
\nupvdash
\precnapprox
\precnsim
\succnapprox
\succnsim
MnSymbol additionally defines synonyms for some of the preceding symbols:
⊣̸
̸
̸
∤
≠
≠
∤
⊭
∦
⊥̸
̸
̸
⊭
⊬
⊮
⊯
\ndashv
\ndiagdown
\ndiagup
\ndivides
\ne
\neq
\nmid
\nmodels
\nparallel
\nperp
\nrelbar
\nRelbar
\nvDash
\nvdash
\nVdash
\nVDash
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
54
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
\nleftvdash)
\nnwseline)
\nneswline)
\nupdownline)
\nequal)
\nequal)
\nupdownline)
\nrightmodels)
\nUpdownline)
\nupvdash)
\nleftrightline)
\nLeftrightline)
\nrightmodels)
\nrightvdash)
\nrightVdash)
\nrightModels)
Table 100: fdsymbol Binary Relations
≈
≊
≌
›
∽
⋍
≬
⋈
≏
≎
⪮
≗
≔
≅
œ
⋞
⋟
ý
ÿ
≅˙
≐
≑
∺
⫧
⫟
ï
⫪
⍑
⊤
û
≖
≕
⩦
≂
=
\approx
\approxeq
\backcong
\backpropto
\backsim
\backsimeq
\between
\bowtie
\bumpeq
\Bumpeq
\bumpeqq
\circeq
\coloneq
\cong
\crossing
\curlyeqprec
\curlyeqsucc
\dashVv
\Ddashv
\dotcong
\doteq
\Doteq
\dotsminusdots
\downAssert
\downassert
\downmodels
\downvDash
\downVdash
\downvdash
\downVDash
\eqcirc
\eqcolon
\eqdot
\eqsim
\equal
≡
≒
⌢
≘
⁐
∈
⫞
⫣
¬
î
⊣
⫤
⫣
⫥
⟝
⟽
⟻
⟞
∣
∋
∥
≺
⪷
≼
⪯
⪳
⪹
⪱
⪵
⋨
≾
∝
⊦
⊩
­
\equiv
\fallingdotseq
\frown
\frowneq
\frownsmile
\in
\leftassert
\leftAssert
\leftfootline
\leftmodels
\leftvdash
\leftvDash
\leftVdash
\leftVDash
\longleftfootline
\Longmapsfrom
\longmapsfrom
\longrightfootline
\mid
\owns
\parallel
\prec
\precapprox
\preccurlyeq
\preceq
\preceqq
\precnapprox
\precneq
\precneqq
\precnsim
\precsim
\propto
\rightassert
\rightAssert
\rightfootline
⊧
⊩
⊫
⊢
⊨
≓
∣
∥
∼
≃
⌣
≍
≛
≻
⪸
≽
⪰
⪴
≿
≈
∼
≋
⫠
⫨
í
⊥
⫫
⍊
ù
⫢
≚
⊪
≙
\rightmodels
\rightVdash
\rightVDash
\rightvdash
\rightvDash
\risingdotseq
\shortmid
\shortparallel
\sim
\simeq
\smile
\smileeq
\smilefrown
\stareq
\succ
\succapprox
\succcurlyeq
\succeq
\succeqq
\succsim
\thickapprox
\thicksim
\triplesim
\upassert
\upAssert
\upmodels
\upvdash
\upvDash
\upVdash
\upVDash
\vDdash
\veeeq
\Vvdash
\wedgeq
fdsymbol defines synonyms for many of the preceding symbols:
≋
≘
⊩
⊦
≍
⫧
⫪
⁐
≔
⊣
⫥
⫤
\approxident
\arceq
\Assert
\assert
\asymp
\Barv
\barV
\closure
\coloneqq
\dashv
\DashV
\Dashv
⫣
≑
≕
≙
⋈
⟞
⊧
∋
⊥
›
⫟
⫞
\dashV
\doteqdot
\eqqcolon
\hateq
\Join
\longdashv
\models
\ni
\perp
\propfrom
\shortdowntack
\shortlefttack
55
⊦
⫠
⌢
⌣
∝
⫨
⫫
⊨
⊫
⊩
⊢
⟝
\shortrighttack
\shortuptack
\smallfrown
\smallsmile
\varpropto
\vBar
\Vbar
\vDash
\VDash
\Vdash
\vdash
\vlongdash
Table 101: fdsymbol Negated Binary Relations
Ó
≉
≊̸
≌̸
∽̸
⋍̸
≏̸
≎̸
⪮̸
≗̸
≇
⋞̸
⋟̸
̸
̸
≐̸
≑̸
⫟̸
⫧̸
̸
⊤̸
⍑̸
̸
⫪̸
≖̸
⩦̸
≂̸
≠
≢
≒̸
⌢̸
≘̸
⁐̸
\backsimneqq
\napprox
\napproxeq
\nbackcong
\nbacksim
\nbacksimeq
\nbumpeq
\nBumpeq
\nbumpeqq
\ncirceq
\ncong
\ncurlyeqprec
\ncurlyeqsucc
\ndashVv
\nDdashv
\ndoteq
\nDoteq
\ndownassert
\ndownAssert
\ndownmodels
\ndownvdash
\ndownVdash
\ndownVDash
\ndownvDash
\neqcirc
\neqdot
\neqsim
\nequal
\nequiv
\nfallingdotseq
\nfrown
\nfrowneq
\nfrownsmile
∉
⫣̸
⫞̸
̸
̸
⫤̸
⊣̸
⫣̸
⫥̸
⟝̸
⟽̸
⟻̸
⟞̸
∤
∌
∦
⊀
⪷̸
⋠
⪯̸
⪳̸
≾̸
⊦̸
⊮
̸
⊧̸
⊬
⊮
⊭
⊯
≓̸
∤
∦
\nin
\nleftAssert
\nleftassert
\nleftfootline
\nleftmodels
\nleftvDash
\nleftvdash
\nleftVdash
\nleftVDash
\nlongleftfootline
\nLongmapsfrom
\nlongmapsfrom
\nlongrightfootline
\nmid
\nowns
\nparallel
\nprec
\nprecapprox
\npreccurlyeq
\npreceq
\npreceqq
\nprecsim
\nrightassert
\nrightAssert
\nrightfootline
\nrightmodels
\nrightvdash
\nrightVdash
\nrightvDash
\nrightVDash
\nrisingdotseq
\nshortmid
\nshortparallel
≁
≄
⌣̸
̸
≭
≛̸
⊁
⪸̸
⋡
⪰̸
⪴̸
≿̸
≋̸
⫠̸
⫨̸
̸
̸
⫫̸
⍊̸
⊥̸
⫢̸
≚̸
⊪̸
≙̸
⪱
⪵
≆
⪺
⪲
⪶
⋩
\nsim
\nsimeq
\nsmile
\nsmileeq
\nsmilefrown
\nstareq
\nsucc
\nsuccapprox
\nsucccurlyeq
\nsucceq
\nsucceqq
\nsuccsim
\ntriplesim
\nupassert
\nupAssert
\nupmodels
\nupVDash
\nupvDash
\nupVdash
\nupvdash
\nvDdash
\nveeeq
\nVvdash
\nwedgeq
\precneq
\precneqq
\simneqq
\succnapprox
\succneq
\succneqq
\succnsim
fdsymbol defines synonyms for many of the preceding symbols:
≋̸
≘̸
⊮
⊦̸
≭
⫧̸
⫪̸
⁐̸
⫥̸
⫤̸
⊣̸
\napproxident
\narceq
\nAssert
\nassert
\nasymp
\nBarv
\nbarV
\nclosure
\nDashV
\nDashv
\ndashv
⫣̸
≠
≠
≙̸
⟞̸
⊧̸
∌
∉
⊥̸
⫟̸
⫞̸
\ndashV
\ne
\neq
\nhateq
\nlongdashv
\nmodels
\nni
\notin
\nperp
\nshortdowntack
\nshortlefttack
56
⊦̸
⫠̸
≄
⫨̸
⫫̸
⊮
⊭
⊯
⊬
⟝̸
\nshortrighttack
\nshortuptack
\nsime
\nvBar
\nVbar
\nVdash
\nvDash
\nVDash
\nvdash
\nvlongdash
Table 102: boisik Binary Relations
ð
Ý
‚
Ñ
Ó
`
¶
·
Æ
Ç
Ù
„
æ

Ì
Í
Û
Ú
Ø
Ê
Ë
<
ƒ
Û
†
‰
Ú
Ò
ô
Ý
?
\ac
\approxeq
\arceq
\backsim
\backsimeq
\bagmember
\because
\between
\bumpeq
\Bumpeq
\circeq
\CircledEq
\cong
\corresponds
\curlyeqprec
\curlyeqsucc
\dashV
\DashV
\dashVv
\dfourier
\Dfourier
\disin
\doteq
\doteqdot
\dotminus
\dotsim
\eqbumped
\eqcirc
\eqsim
\equalparallel
\fallingdotseq
\fatbslash
>
þ
ý
ë
>
¶
ˆ
ê
³
À
Æ
´
Á
Ã
É
Â
È
Ç
Å
Ä
·
=
å
ß
¸
Î
œ
–
”
º
:
Ü
;
\fatslash
\forkv
\frown
\ggcurly
\hash
\inplus
\kernelcontraction
\llcurly
\multimap
\multimapboth
\multimapbothvert
\multimapdot
\multimapdotboth
\multimapdotbothA
\multimapdotbothAvert
\multimapdotbothB
\multimapdotbothBvert
\multimapdotbothvert
\multimapdotinv
\multimapinv
\niplus
\nisd
\Perp
\pitchfork
\precapprox
\preccurlyeq
\precnapprox
\precneqq
\precnsim
\precsim
\prurel
\risingdotseq
\scurel
\shortmid
\shortparallel
\simrdots
\smallfrown
\smallsmile
\smile
\strictfi
\strictif
\succapprox
\succcurlyeq
\succnapprox
\succneqq
\succnsim
\succsim
\therefore
\thickapprox
\thicksim
\topfork
\triangleq
\varhash
\varisins
\varnis
\varpropto
\Vdash
\vDash
\VDash
\veeeq
\Vvdash
\ztransf
\Ztransf
¾
¿
Š
½
¼
ü
ì
í
¹
Ï

—
•
»
µ
Â
Ð
ÿ
Ø
?
¸
¹
ß
¸
»
º
€
¹
Ì
Í
Table 103: boisik Negated Binary Relations
™
ä
@
­
¬
†
\ncong
\neq
\nequiv
\nmid
\nparallel
\nprec
Ž
®
¯
˜
‡

\npreceq
\nshortmid
\nshortparallel
\nsim
\nsucc
\nsucceq
57
³
±
°
²
\nVDash
\nVdash
\nvdash
\nvDash
Table 104: stix Binary Relations
≈
≊
⩰
≋
≘
⊦
⩮
≍
≌
∽
⋍
⋿
⫧
⫪
≬
⫭
⋈
≎
≏
⪮
⟟
≗
⫯
⁐
⩴
≔
≅
⩭
⋞
⋟
∹
⊣
⫣
⫤
⫥
⟚
⟛
⩷
⋲
≑
≐
⩧
⩪
∺
⥿
⧟
⧣
≖
≕
≝
⩦
\approx
\approxeq
\approxeqq
\approxident
\arceq
\assert
\asteq
\asymp
\backcong
\backsim
\backsimeq
\bagmember
\Barv
\barV
\between
\bNot
\bowtie
\Bumpeq
\bumpeq
\bumpeqq
\cirbot
\circeq
\cirmid
\closure
\Coloneq
\coloneq
\cong
\congdot
\curlyeqprec
\curlyeqsucc
\dashcolon
\dashv
\dashV
\Dashv
\DashV
\DashVDash
\dashVdash
\ddotseq
\disin
\Doteq
\doteq
\dotequiv
\dotsim
\dotsminusdots
\downfishtail
\dualmap
\eparsl
\eqcirc
\eqcolon
\eqdef
\eqdot
⧥
≒
⧓
⫝
⫙
⌢
⧦
⩯
⊷
∈
⋵
⋹
⋷
⋴
⋸
∻
⤛
⥼
⤙
⧑
⧔
⟞
⫍
≞
∣
⫰
⫛
⊧
⊸
⟜
∋
⋾
⋼
⋺
⫬
̸
⊶
∥
⫳
⟂
⋔
≺
⪻
⪷
≼
⪯
⪳
⪹
⪱
⪵
⋨
\eqvparsl
\fallingdotseq
\fbowtie
\forksnot
\forkv
\frown
\gleichstark
\hatapprox
\imageof
\in
\isindot
\isinE
\isinobar
\isins
\isinvb
\kernelcontraction
\leftdbltail
\leftfishtail
\lefttail
\lfbowtie
\lftimes
\longdashv
\lsqhook
\measeq
\mid
\midcir
\mlcp
\models
\multimap
\multimapinv
\ni
\niobar
\nis
\nisd
\Not
\notchar
\origof
\parallel
\parsim
\perp
\pitchfork
\prec
\Prec
\precapprox
\preccurlyeq
\preceq
\preceqq
\precnapprox
\precneq
\precneqq
\precnsim
⥽
⥰
⤚
≓
⫎
⧴
⊱
⫟
⫞
∣
∥
⫠
∼
≃
⩬
≆
⩫
⌢
∊
∍
⌣
⧤
⌣
≛
≻
⪼
⪸
≽
⪰
⪴
⪺
⪲
⪶
⋩
≿
≈
∼
⫚
⥾
⟒
⋶
⋳
⋽
⋻
∝
⫦
⫨
⫫
⫩
⊩
⊢
\rightfishtail
\rightimply
\righttail
\risingdotseq
\rsqhook
\ruledelayed
\scurel
\shortdowntack
\shortlefttack
\shortmid
\shortparallel
\shortuptack
\sim
\simeq
\simminussim
\simneqq
\simrdots
\smallfrown
\smallin
\smallni
\smallsmile
\smeparsl
\smile
\stareq
\succ
\Succ
\succapprox
\succcurlyeq
\succeq
\succeqq
\succnapprox
\succneq
\succneqq
\succnsim
\succsim
\thickapprox
\thicksim
\topfork
\upfishtail
\upin
\varisinobar
\varisins
\varniobar
\varnis
\varpropto
\varVdash
\vBar
\Vbar
\vBarv
\Vdash
\vdash
(continued on next page)
58
(continued from previous page)
⩵
⩶
⩳
≂
⋕
≡
≣
⩸
⩨
⩩
≾
∝
⊰
⟓
⟔
≟
⫮
⧒
⧕
⤜
\eqeq
\eqeqeq
\eqqsim
\eqsim
\equalparallel
\equiv
\Equiv
\equivDD
\equivVert
\equivVvert
⊨
⊫
⫢
⋮
≚
⩙
\precsim
\propto
\prurel
\pullback
\pushout
\questeq
\revnmid
\rfbowtie
\rftimes
\rightdbltail
⃒
⟝
⊪
≙
\vDash
\VDash
\vDdash
\vdots
\veeeq
\veeonwedge
\vertoverlay
\vlongdash
\Vvdash
\wedgeq
stix defines \owns as a synonym for \ni and \doteqdot as a synonym for
\Doteq.
Table 105: stix Negated Binary Relations
⫝̸
≉

≭


≇

≠

≢
\forks
\napprox
\napproxeqq
\nasymp
\nBumpeq
\nbumpeq
\ncong
\ncongdot
\ne
\neqsim
\nequiv
⫲
∤
∌
∉
∦
⊀
⋠

∤
∦
≁
\nhpar
\nmid
\nni
\notin
\nparallel
\nprec
\npreccurlyeq
\npreceq
\nshortmid
\nshortparallel
\nsim
≄
⊁
⋡



⊭
⊬
⊯
⊮
\nsime
\nsucc
\nsucccurlyeq
\nsucceq
\nvarisinobar
\nvarniobar
\nvDash
\nvdash
\nVDash
\nVdash
stix defines \neq as a synonym for \ne, \nsimeq as a synonym for \nsime, and
\nforksnot as a synonym for \forks.
Table 106: mathtools Binary Relations
::≈
:≈
:=
::=
::−
\Colonapprox
\colonapprox
\coloneqq
\Coloneqq
\Coloneq
:−
:∼
::∼
::
−:
\coloneq
\colonsim
\Colonsim
\dblcolon
\eqcolon
−::
=:
=::
\Eqcolon
\eqqcolon
\Eqqcolon
Similar symbols can be defined using mathtools’s \vcentcolon, which produces
a colon centered on the font’s math axis:
=:=
“=:=”
=:=
vs.
“=\vcentcolon=”
59
Table 107: turnstile Binary Relations
𝑑𝑒𝑓
𝑑𝑒𝑓
\dddtstile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\nntstile{abc}{def}
\ddststile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\nnttstile{abc}{def}
\ddtstile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\nsdtstile{abc}{def}
\ddttstile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\nsststile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\dndtstile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\nststile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\dnststile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\nsttstile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\dntstile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\dnttstile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\dsdtstile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\dsststile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\dststile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\dsttstile{abc}{def}
𝑎𝑏𝑐
𝑑𝑒𝑓
𝑎𝑏𝑐
𝑑𝑒𝑓
𝑎𝑏𝑐
𝑑𝑒𝑓
𝑎𝑏𝑐
𝑎𝑏𝑐
𝑑𝑒𝑓
𝑎𝑏𝑐
𝑑𝑒𝑓
𝑎𝑏𝑐
𝑎𝑏𝑐
𝑎𝑏𝑐
𝑎𝑏𝑐
𝑎𝑏𝑐
\tddtstile{abc}{def}
𝑎𝑏𝑐
\tdststile{abc}{def}
𝑎𝑏𝑐
\tdtstile{abc}{def}
𝑎𝑏𝑐
\tdttstile{abc}{def}
\nttstile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\tndtstile{abc}{def}
\ntttstile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\tnststile{abc}{def}
\sddtstile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\tntstile{abc}{def}
\sdststile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\tnttstile{abc}{def}
\sdtstile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\tsdtstile{abc}{def}
\sdttstile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\tsststile{abc}{def}
𝑑𝑒𝑓
\dtststile{abc}{def}
\stttstile{abc}{def}
𝑑𝑒𝑓
\ntststile{abc}{def}
𝑑𝑒𝑓
\dtdtstile{abc}{def}
𝑎𝑏𝑐
\sttstile{abc}{def}
𝑑𝑒𝑓
\ntdtstile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
𝑎𝑏𝑐
𝑑𝑒𝑓
\stststile{abc}{def}
𝑑𝑒𝑓
𝑑𝑒𝑓
𝑑𝑒𝑓
𝑎𝑏𝑐
𝑑𝑒𝑓
𝑎𝑏𝑐
𝑑𝑒𝑓
𝑎𝑏𝑐
𝑑𝑒𝑓
\stdtstile{abc}{def}
𝑑𝑒𝑓
𝑑𝑒𝑓
𝑎𝑏𝑐
𝑑𝑒𝑓
𝑎𝑏𝑐
𝑑𝑒𝑓
\dttstile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\sndtstile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\tststile{abc}{def}
\dtttstile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\snststile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\tsttstile{abc}{def}
\nddtstile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\sntstile{abc}{def}
\ndststile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\snttstile{abc}{def}
\ndtstile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\ssdtstile{abc}{def}
\ndttstile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\ssststile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\nndtstile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\sststile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\nnststile{abc}{def}
𝑑𝑒𝑓
𝑎𝑏𝑐
\ssttstile{abc}{def}
𝑎𝑏𝑐
𝑑𝑒𝑓
𝑎𝑏𝑐
𝑑𝑒𝑓
𝑎𝑏𝑐
𝑑𝑒𝑓
𝑎𝑏𝑐
𝑑𝑒𝑓
𝑎𝑏𝑐
𝑑𝑒𝑓
𝑎𝑏𝑐
𝑑𝑒𝑓
𝑎𝑏𝑐
𝑑𝑒𝑓
𝑎𝑏𝑐
𝑑𝑒𝑓
𝑎𝑏𝑐
𝑑𝑒𝑓
𝑎𝑏𝑐
\ttdtstile{abc}{def}
\ttststile{abc}{def}
\tttstile{abc}{def}
\ttttstile{abc}{def}
Each of the above takes an optional argument that controls the size of the upper
and lower expressions. See the turnstile documentation for more information.
60
Table 108: trsym Binary Relations
\InversTransformHoriz
\InversTransformVert
\TransformHoriz
\TransformVert
Table 109: trfsigns Binary Relations
....
....
\dfourier
\fourier
\laplace
\ztransf
....
\Dfourier
\Fourier
\Laplace
\Ztransf
....
Table 110: cmll Binary Relations
¨
˚
‚
˛
\coh
\incoh
\Perp
\multimapboth
˝
ˇ
‹
\scoh
\sincoh
\simperp
Table 111: colonequals Binary Relations
≈:
≈::
:≈
::
::≈
::=
\approxcolon
\approxcoloncolon
\colonapprox
\coloncolon
\coloncolonapprox
\coloncolonequals
::−
::∼
:=
:−
:∼
=:
=::
−:
−::
:
∼:
∼::
\coloncolonminus
\coloncolonsim
\colonequals
\colonminus
\colonsim
\equalscolon
\equalscoloncolon
\minuscolon
\minuscoloncolon
\ratio
\simcolon
\simcoloncolon
Table 112: fourier Binary Relations
Ô
\nparallelslant Ë
\parallelslant
Table 113: Subset and Superset Relations
@
⊑
A
*
\sqsubset*
\sqsubseteq
\sqsupset*
⊒
⊂
⊆
\sqsupseteq
\subset
\subseteq
⊃
⊇
\supset
\supseteq
Not predefined by the LATEX 2𝜀 core. Use the latexsym package to expose this
symbol.
61
Table 114: 𝒜ℳ𝒮 Subset and Superset Relations
\nsubseteq
\nsupseteq
\nsupseteqq
\sqsubset
\sqsupset
\Subset
*
+
#
@
A
b
j
(
$
c
k
)
\subseteqq
\subsetneq
\subsetneqq
\Supset
\supseteqq
\supsetneq
%
&
!
'
\supsetneqq
\varsubsetneq
\varsubsetneqq
\varsupsetneq
\varsupsetneqq
Table 115: stmaryrd Subset and Superset Relations
D
F
\subsetplus
\subsetpluseq
E
G
\supsetplus
\supsetpluseq
Table 116: wasysym Subset and Superset Relations
@
A
\sqsubset
\sqsupset
Table 117: txfonts/pxfonts Subset and Superset Relations
a
@
b
\nsqsubset
\nsqsubseteq
\nsqsupset
A
>
"
\nsqsupseteq
\nSubset
\nsubseteqq
?
\nSupset
Table 118: mathabx Subset and Superset Relations
Ć
Ű
Ę
Ő
Č
Ů
Ğ
Ŕ
Ć
Ű
Ę
Ő
\nsqsubset
\nsqSubset
\nsqsubseteq
\nsqsubseteqq
\nsqsupset
\nsqSupset
\nsqsupseteq
\nsqsupseteqq
\nsubset
\nSubset
\nsubseteq
\nsubseteqq
Č
Ů
Ğ
Ŕ
Ă
Ť
Ď
Ň
Ĺ
Ř
Ţ
Ą
\nsupset
\nSupset
\nsupseteq
\nsupseteqq
\sqsubset
\sqSubset
\sqsubseteq
\sqsubseteqq
\sqsubsetneq
\sqsubsetneqq
\sqSupset
\sqsupset
Ě
Ŋ
Ľ
Ś
Ă
Ť
Ď
Ň
Ĺ
Ř
Ą
Ţ
62
\sqsupseteq
\sqsupseteqq
\sqsupsetneq
\sqsupsetneqq
\subset
\Subset
\subseteq
\subseteqq
\subsetneq
\subsetneqq
\supset
\Supset
Ě
Ŋ
Ľ
Ś
Ł
Š
Ń
Ş
Ł
Š
Ń
Ş
\supseteq
\supseteqq
\supsetneq
\supsetneqq
\varsqsubsetneq
\varsqsubsetneqq
\varsqsupsetneq
\varsqsupsetneqq
\varsubsetneq
\varsubsetneqq
\varsupsetneq
\varsupsetneqq
Table 119: MnSymbol Subset and Superset Relations
̸
⊏̸
⋢
̸
̸
⊐̸
⋣
̸
⋐̸
⊄
⊈
⫅̸
⋑̸
⊅
⊉
⫆̸
^
⊏
⊑
\
\nSqsubset
\nsqsubset
\nsqsubseteq
\nsqsubseteqq
\nSqsupset
\nsqsupset
\nsqsupseteq
\nsqsupseteqq
\nSubset
\nsubset
\nsubseteq
\nsubseteqq
\nSupset
\nsupset
\nsupseteq
\nsupseteqq
\Sqsubset
\sqsubset
\sqsubseteq
\sqsubseteqq
⋤
ö
_
⊐
⊒
]
⋥
÷
⋐
⊂
\sqsubsetneq
\sqsubsetneqq
\Sqsupset
\sqsupset
\sqsupseteq
\sqsupseteqq
\sqsupsetneq
\sqsupsetneqq
\Subset
\subset
⊆
⫅
⊊
⫋
⋑
⊃
⊇
⫆
⊋
⫌
\subseteq
\subseteqq
\subsetneq
\subsetneqq
\Supset
\supset
\supseteq
\supseteqq
\supsetneq
\supsetneqq
MnSymbol additionally defines \varsubsetneq as a synonym for \subsetneq,
\varsubsetneqq as a synonym for \subsetneqq, \varsupsetneq as a synonym
for \supsetneq, and \varsupsetneqq as a synonym for \supsetneqq.
Table 120: fdsymbol Subset and Superset Relations
⊏̸
̸
⋢
̸
⊐̸
̸
⋣
̸
⊄
⋐̸
\nsqsubset
\nSqsubset
\nsqsubseteq
\nsqsubseteqq
\nsqsupset
\nSqsupset
\nsqsupseteq
\nsqsupseteqq
\nsubset
\nSubset
⊈
⫅̸
⊅
⋑̸
⊉
⫆̸
⊏
J
⊑
H
\nsubseteq
\nsubseteqq
\nsupset
\nSupset
\nsupseteq
\nsupseteqq
\sqsubset
\Sqsubset
\sqsubseteq
\sqsubseteqq
⋤
Þ
⊐
K
⊒
I
⋥
ß
⊂
⋐
\sqsubsetneq
\sqsubsetneqq
\sqsupset
\Sqsupset
\sqsupseteq
\sqsupseteqq
\sqsupsetneq
\sqsupsetneqq
\subset
\Subset
⊆
⫅
⊊
⫋
⊃
⋑
⊇
⫆
⊋
⫌
\subseteq
\subseteqq
\subsetneq
\subsetneqq
\supset
\Supset
\supseteq
\supseteqq
\supsetneq
\supsetneqq
fdsymbol additionally defines \varsubsetneqq as a synonym for \subsetneqq,
\varsubsetneq as a synonym for \subsetneq, \varsupsetneqq as a synonym
for \supsetneqq, and \varsupsetneq as a synonym for \supsetneq.
Table 121: boisik Subset and Superset Relations
ž
ª
¢
Ÿ
«
£
à
\nsubset
\nsubseteq
\nsubseteqq
\nsupset
\nsupseteq
\nsupseteqq
\sqsubset
´ \sqSubset
µ \sqSupset
á
È
Ì
¨
¤
\sqsupset
\Subset
\subseteqq
\subsetneq
\subsetneqq
º \subsetplus
½ \supsetpluseq
¼ \subsetpluseq
\varsubsetneq
É
Í
©
¥
»
63
\Supset
\supseteqq
\supsetneq
\supsetneqq
\supsetplus
¦
¡
§
\varsubsetneqq
\varsupsetneq
\varsupsetneqq
Table 122: stix Subset and Superset Relations
⟈
⫏
⫑
⫐
⫒
⥺

⋢

⋣
⊄
⊈

⊅
⊉

⭄
⊏
⊑
⋤
⊐
*
\bsolhsub
\csub
\csube
\csup
\csupe
\leftarrowsubset
\nsqsubset
\nsqsubseteq
\nsqsupset
\nsqsupseteq
\nsubset
\nsubseteq
\nsubseteqq
\nsupset
\nsupseteq
\nsupseteqq
\rightarrowsupset
\sqsubset
\sqsubseteq
\sqsubsetneq
\sqsupset
⊒
⋥
⫃
⫁
⥹
⋐
⊂
⫉
⟃
⪽
⊆
⫅
⊊
⫋
⪿
⫇
⫕
⫓
⫘
⫄
⟉
⫗
⥻
⫂
⋑
⊃
⫊
⟄
⪾
⊇
⫆
⊋
⫌
⫀
⫈
⫔
⫖
⊊
⫋
⊋
⫌
\sqsupseteq
\sqsupsetneq
\subedot
\submult
\subrarr
\Subset
\subset
\subsetapprox
\subsetcirc*
\subsetdot
\subseteq
\subseteqq
\subsetneq
\subsetneqq
\subsetplus
\subsim
\subsub
\subsup
\supdsub
\supedot
\suphsol
\suphsub
\suplarr
\supmult
\Supset
\supset
\supsetapprox
\supsetcirc*
\supsetdot
\supseteq
\supseteqq
\supsetneq
\supsetneqq
\supsetplus
\supsim
\supsub
\supsup
\varsubsetneq
\varsubsetneqq
\varsupsetneq
\varsupsetneqq
Defined as an ordinary character, not as a binary relation.
Table 123: Inequalities
≥
≫
\geq
\gg
≤
\leq
≪
\ll
,
\neq
Table 124: 𝒜ℳ𝒮 Inequalities
1
\eqslantgtr
m
\gtrdot
Q
\lesseqgtr
\ngeq
0
\eqslantless
R
\gtreqless
S
\lesseqqgtr
\ngeqq
=
\geqq
T
\gtreqqless
≶
\lessgtr
>
\geqslant
≷
\gtrless
.
\lesssim
≯
\ngtr
≫
\ggg
&
\gtrsim
≪
\lll
\nleq
\gnapprox
\gvertneqq
\lnapprox
\nleqq
\gneq
5
\leqq
\gneqq
6
\leqslant
\lneqq
\gnsim
/
\lessapprox
\lnsim
'
\gtrapprox
l
\lessdot
\ngeqslant
\lneq
\lvertneqq
64
\nleqslant
≮
\nless
Table 125: wasysym Inequalities
?
>
\apprge
\apprle
Table 126: txfonts/pxfonts Inequalities
4
#
&
\ngg
\ngtrapprox
\ngtrless
!
"
'
\ngtrsim
\nlessapprox
\nlessgtr
3
\nlesssim
\nll
Table 127: mathabx Inequalities
ů
\eqslantgtr
¡
\gtreqless
À
\lesssim
č
\ngtr
ű
\eqslantless
£
\gtreqqless
!
\ll
É
\ngtrapprox
ě
\geq
ż
\gtrless
Î
\lll
Ã
\ngtrsim
ŕ
\geqq
Á
\gtrsim
Ê
\lnapprox
ę
\nleq
"
\gg
ţ
\gvertneqq
ň
\lneq
ř
\nleqq
Ï
\ggg
ď
\leq
š
\lneqq
ć
\nless
Ë
\gnapprox
ő
\leqq
Ä
\lnsim
È
\nlessapprox
ŋ
\gneq
Æ
\lessapprox
ť
\lvertneqq
Â
\nlesssim
ş
\gneqq
Ì
\lessdot
ź
\neqslantgtr
ń
\nvargeq
Å
\gnsim
ij
\lesseqgtr
ÿ
\neqslantless
ł
\nvarleq
Ç
\gtrapprox
¿
\lesseqqgtr
ğ
\ngeq
ľ
\vargeq
Í
\gtrdot
ž
\lessgtr
ś
\ngeqq
ĺ
\varleq
mathabx defines \leqslant and \le as synonyms for \leq, \geqslant and \ge
as synonyms for \geq, \nleqslant as a synonym for \nleq, and \ngeqslant
as a synonym for \ngeq.
65
Table 128: MnSymbol Inequalities
⪖
\eqslantgtr
⪌
\gtreqqless
≲
\lesssim
⋛̸
\ngtreqless
⪕
\eqslantless
≷
\gtrless
≪
\ll
̸
\ngtreqlessslant
≥
\geq
ó
\gtrneqqless
⋘
\lll
⪌̸
\ngtreqqless
⊵
\geqclosed
≳
\gtrsim
⪉
\lnapprox
≹
\ngtrless
u
≧
⩾
⪀
≫
⋙
⪊
≩
≵
>
≤
\geqdot
⊴
\geqq
t
\geqslant
\geqslantdot
\gg
≦
⩽
⩿
\ggg
<
\gnapprox
⪅
\gneqq
⊲
\gnsim
\gtr
⋖
⪆
\gtrapprox
⊳
⋗
⋛
O
≨
\leq
≴
\leqclosed
⪖̸
\leqdot
⪕̸
\leqq
≱
\leqslant
⋭
\leqslantdot
̸
\less
≧̸
\lessapprox
≱
\lessclosed
\lessdot
⪀̸
⋚
\lesseqgtr
\gtrclosed
N
\gtrdot
⪋
\gtreqless
≶
\gtreqlessslant
ò
\lneqq
\lnsim
\neqslantgtr
\neqslantless
\ngeq
\ngeqclosed
\ngeqdot
\ngeqq
\ngeqslant
≰
⋬
̸
≦̸
≰
⩿̸
≮
⋪
⋖̸
\nleq
\nleqclosed
\nleqdot
\nleqq
\nleqslant
\nleqslantdot
\nless
\nlessclosed
\nlessdot
\ngeqslantdot
⋚̸
≫̸
\ngg
̸
\nlesseqgtrslant
\lesseqgtrslant
⋙̸
\nggg
⪋̸
\nlesseqqgtr
\lesseqqgtr
≯
\ngtr
≸
\nlessgtr
\lessgtr
⋫
\lessneqqgtr
⋗̸
\ngtrclosed
≪̸
\ngtrdot
⋘̸
\nlesseqgtr
\nll
\nlll
MnSymbol additionally defines synonyms for some of the preceding symbols:
⋙
≩
⊲
⋘
≨
⋬
⋪
⋭
⋫
⊳
⊴
⊵
⊴
⊵
⊲
⊳
\gggtr
\gvertneqq
\lhd
\llless
\lvertneqq
\ntrianglelefteq
\ntriangleleft
\ntrianglerighteq
\ntriangleright
\rhd
\trianglelefteq
\trianglerighteq
\unlhd
\unrhd
\vartriangleleft
\vartriangleright
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
66
\ggg)
\gneqq)
\lessclosed)
\lll)
\lneqq)
\nleqclosed)
\nlessclosed)
\ngeqclosed)
\ngtrclosed)
\gtrclosed)
\leqclosed)
\geqclosed)
\leqclosed)
\geqclosed)
\lessclosed)
\gtrclosed)
Table 129: fdsymbol Inequalities
⪖
\eqslantgtr
⩿
\leqslantdot
⪆̸
\ngtrapprox
⪕
\eqslantless
⪨
\leqslcc
⪧̸
\ngtrcc
≥
\geq
<
\less
⋫
\ngtrclosed
⊵
\geqclosed
⪅
\lessapprox
⋗̸
\ngtrdot
c
\geqdot
⪦
\lesscc
⋛̸
\ngtreqless
≧
\geqq
⊲
\lessclosed
⪌̸
\ngtreqqless
⩾
\geqslant
⋖
\lessdot
⋛̸
\ngtreqslantless
⪀
\geqslantdot
⋚
\lesseqgtr
≹
\ngtrless
⪩
\geqslcc
⪋
\lesseqqgtr
≵
\ngtrsim
≫
\gg
⋚
\lesseqslantgtr
≰
\nleq
⋙
\ggg
≶
\lessgtr
⋬
\nleqclosed
⪊
\gnapprox
≲
\lesssim
̸
\nleqdot
⪈
≩
\gneq
\gneqq
≪
⋘
\ll
\lll
≦̸
⩽̸
\nleqq
\nleqslant
⋧
\gnsim
⪉
\lnapprox
⩿̸
\nleqslantdot
>
\gtr
⪇
\lneq
⪨̸
\nleqslcc
⪆
\gtrapprox
≨
\lneqq
≮
\nless
⪧
\gtrcc
⋦
\lnsim
⪅̸
\nlessapprox
⊳
\gtrclosed
⪖̸
\neqslantgtr
⪦̸
\nlesscc
⋗
\gtrdot
⪕̸
\neqslantless
⋪
\nlessclosed
⋛
\gtreqless
≱
\ngeq
⋖̸
\nlessdot
⪌
\gtreqqless
⋭
\ngeqclosed
⋚̸
\nlesseqgtr
⋛
\gtreqslantless
̸
\ngeqdot
⪋̸
\nlesseqqgtr
≷
\gtrless
≧̸
\ngeqq
⋚̸
\nlesseqslantgtr
≳
\gtrsim
⩾̸
\ngeqslant
≸
\nlessgtr
≤
\leq
⪀̸
\ngeqslantdot
≴
\nlesssim
⊴
\leqclosed
⪩̸
\ngeqslcc
≪̸
\nll
b
\leqdot
≫̸
\ngg
⋘̸
\nlll
≦
\leqq
⋙̸
\nggg
⩽
\leqslant
≯
\ngtr
fdsymbol defines synonyms for some of the preceding symbols:
≥
\ge
⩿
\lesdot
⪧̸
\ngtcc
⪩
\gescc
⋚
\lesg
⋛̸
\ngtreqlessslant
⪀
\gesdot
⋚
\lesseqgtrslant
⪨̸
\nlescc
⋛
\gesl
⊲
\lhd
⩿̸
\nlesdot
⋙
\gggtr
⋘
\llless
⋚̸
\nlesg
⪧
\gtcc
⪦
\ltcc
⋚̸
\nlesseqgtrslant
⋛
\gtreqlessslant
≨
\lvertneqq
⪦̸
\nltcc
≩
\gvertneqq
⪩̸
\ngescc
⊳
\rhd
(continued on next page)
67
(continued from previous page)
≤
\le
⪀̸
\ngesdot
⊴
\unlhd
⪨
\lescc
⋛̸
\ngesl
⊵
\unrhd
Table 130: boisik Inequalities
Ë
\eqslantgtr
Ê
\eqslantless
Á
\geqq
É
\geqslant
×
\ggg
ú
\glj
›

‰
“
\gneq
¿
Å
Ç
Ã
½

À
\gneqq
È
\gnapprox
\gnsim
Ï
\Gt
\gtreqless
Æ
Â
¼
\gtreqqless
Ö
ù \gtcir
\gtrapprox
š
Œ
ˆ
’
\gtrless
\gtrsim
\gvertneqq
\leqq
\leqslant
¾
Ä
\lessapprox
Î
ø
€
\lesseqgtr
\lesseqqgtr
\lessgtr
\lesssim
ƒ
‘
‹
\lll
\ngeq
\ngeqq
\ngeqslant
\ngtr
\lnapprox
\lneq
\lneqq
\lnsim
‚

Š
„
\nleq
\nleqq
\nleqslant
\nless
\Lt
\ltcir
\lvertneqq
Table 131: stix Inequalities
⪘
\egsdot
⩼
\gtquest
⋦
\lnsim
⪗
\elsdot
⪆
\gtrapprox
⪍
\lsime
⋝
\eqgtr
⥸
\gtrarr
⪏
\lsimg
⋜
\eqless
⋗
\gtrdot
⪡
\Lt
⪚
\eqqgtr
⋛
\gtreqless
⪦
\ltcc
⪙
\eqqless
⪌
\gtreqqless
⩹
\ltcir
⪜
\eqqslantgtr
≷
\gtrless
⥶
\ltlarr
⪛
\eqqslantless
≳
\gtrsim
⩻
\ltquest
⪖
\eqslantgtr
≩
\gvertneqq
≨
\lvertneqq
⪕
\eqslantless
⪫
\lat

\neqslantgtr
≥
\geq
⪭
\late

\neqslantless
≧
\geqq
⥷
\leftarrowless
≱
\ngeq
⫺
\geqqslant
≤
\leq

\ngeqq
⩾
\geqslant
≦
\leqq

\ngeqslant
⪩
\gescc
⫹
\leqqslant

\ngg
⪀
\gesdot
⩽
\leqslant
≯
\ngtr
⪂
\gesdoto
⪨
\lescc
≹
\ngtrless
⪄
\gesdotol
⩿
\lesdot
≵
\ngtrsim
(continued on next page)
68
(continued from previous page)
⪔
\gesles
⪁
\lesdoto
≰
\nleq
≫
\gg
⪃
\lesdotor

\nleqq
⋙
\ggg
⪓
\lesges

\nleqslant
⫸
\gggnest
⪅
\lessapprox
≮
\nless
⪥
\gla
⋖
\lessdot
≸
\nlessgtr
⪒
\glE
⋚
\lesseqgtr
≴
\nlesssim
⪤
\glj
⪋
\lesseqqgtr

\nll
⪊
\gnapprox
≶
\lessgtr
⪣
\partialmeetcontraction
⪈
\gneq
≲
\lesssim
⭃
\rightarrowgtr
≩
\gneqq
⪑
\lgE
⪠
\simgE
⋧
\gnsim
≪
\ll
⪞
\simgtr
⪎
\gsime
⋘
\lll
⪟
\simlE
⪐
\gsiml
⫷
\lllnest
⪝
\simless
⪢
\Gt
⪉
\lnapprox
⪪
\smt
⪧
\gtcc
⪇
\lneq
⪬
\smte
⩺
\gtcir
≨
\lneqq
stix defines \le as a synonym for \leq, \ge as a synonym for \geq, \llless
as a synonym for \lll, \gggtr as a synonym for \ggg, \nle as a synonym for
\nleq, and \nge as a synonym for \ngeq.
Table 132: 𝒜ℳ𝒮 Triangle Relations
J
I
6
5
\blacktriangleleft
\blacktriangleright
\ntriangleleft
\ntrianglelefteq
7
4
E
,
D
C
B
\ntriangleright
\ntrianglerighteq
\trianglelefteq
\triangleq
\trianglerighteq
\vartriangleleft
\vartriangleright
Table 133: stmaryrd Triangle Relations
P
R
\trianglelefteqslant
\ntrianglelefteqslant
Q
S
\trianglerighteqslant
\ntrianglerighteqslant
Table 134: mathabx Triangle Relations
Ž
đ
Ż
§
\ntriangleleft
\ntrianglelefteq
\ntriangleright
\ntrianglerighteq
Ÿ
IJ
Ź
İ
\triangleleft
\trianglelefteq
\triangleright
\trianglerighteq
69
Ÿ
Ź
\vartriangleleft
\vartriangleright
Table 135: MnSymbol Triangle Relations
▼
◀
▶
▲
▾
◂
▸
▴
▽
◁
▷
\filledmedtriangledown
\filledmedtriangleleft
\filledmedtriangleright
\filledmedtriangleup
\filledtriangledown
\filledtriangleleft
\filledtriangleright
\filledtriangleup
\largetriangledown
\largetriangleleft
\largetriangleright
△
▽
◁
▷
△
≜̸
⋪
⋬
⋫
⋭
d
\largetriangleup
\medtriangledown
\medtriangleleft
\medtriangleright
\medtriangleup
\ntriangleeq
\ntriangleleft
\ntrianglelefteq
\ntriangleright
\ntrianglerighteq
\otriangle
▿
◃
▹
▵
≜
⊴
⊵
⊲
⊳
\smalltriangledown
\smalltriangleleft
\smalltriangleright
\smalltriangleup
\triangleeq
\trianglelefteq
\trianglerighteq
\vartriangleleft
\vartriangleright
MnSymbol additionally defines synonyms for many of the preceding symbols: \triangleq is a synonym for \triangleeq; \lhd and \lessclosed
are synonyms for \vartriangleleft; \rhd and \gtrclosed are synonyms for \vartriangleright; \unlhd and \leqclosed are synonyms for \trianglelefteq; \unrhd and \geqclosed are synonyms
for \trianglerighteq;
\blacktriangledown,
\blacktriangleleft,
\blacktriangleright, and \blacktriangle [sic] are synonyms for,
respectively,
\filledmedtriangledown,
\filledmedtriangleleft,
\filledmedtriangleright, and \filledmedtriangleup; \triangleright
is a synonym for \medtriangleright; \triangle, \vartriangle, and
\bigtriangleup are synonyms for \medtriangleup; \triangleleft is a
synonym for \medtriangleleft; \triangledown and \bigtriangledown
are synonyms for \medtriangledown; \nlessclosed is a synonym for
\ntriangleleft; \ngtrclosed is a synonym for \ntriangleright;
\nleqclosed is a synonym for \ntrianglelefteq; and \ngeqclosed is
a synonym for \ntrianglerighteq.
The title “Triangle Relations” is a bit of a misnomer here as only \triangleeq
and \ntriangleeq are defined as TEX relations (class 3 symbols). The
\largetriangle. . . symbols are defined as TEX “ordinary” characters (class 0)
and all of the remaining characters are defined as TEX binary operators
(class 2).
70
Table 136: fdsymbol Triangle Relations
⊵
⊳
_
^
⊴
⊲
▼
◀
▶
▲
\geqclosed
\gtrclosed
\largetriangledown
\largetriangleup
\leqclosed
\lessclosed
\medblacktriangledown
\medblacktriangleleft
\medblacktriangleright
\medblacktriangleup
\medtriangledown
\medtriangleleft
\medtriangleright
\medtriangleup
\ngeqclosed
\ngtrclosed
\nleqclosed
\nlessclosed
\ntriangleeq
\smallblacktriangledown
▽
◁
▷
△
⋭
⋫
⋬
⋪
≜̸
▾
◂
▸
▴
▿
◃
▹
▵
≜
\smallblacktriangleleft
\smallblacktriangleright
\smallblacktriangleup
\smalltriangledown
\smalltriangleleft
\smalltriangleright
\smalltriangleup
\triangleeq
fdsymbol defines synonyms for almost all of the preceding symbols:
_
^
▲
▼
◀
▶
⋪
\bigtriangledown
\bigtriangleup
\blacktriangle
\blacktriangledown
\blacktriangleleft
\blacktriangleright
\ntriangleleft
⋬
⋫
⋭
△
▽
◁
⊴
\ntrianglelefteq
\ntriangleright
\ntrianglerighteq
\triangle
\triangledown
\triangleleft
\trianglelefteq
≜
▷
⊵
△
⊲
⊳
\triangleq
\triangleright
\trianglerighteq
\vartriangle
\vartriangleleft
\vartriangleright
The title “Triangle Relations” is a bit of a misnomer here as only \triangleeq
and \ntriangleeq are defined as TEX relations (class 3 symbols). The
\largetriangle. . . symbols are defined as TEX “ordinary” characters (class 0)
and all of the remaining characters are defined as TEX binary operators
(class 2).
Table 137: boisik Triangle Relations
¶
µ
·
´
ÿ
\ntriangleleft
\ntrianglelefteq
\ntriangleright
\ntrianglerighteq
\triangleleft
ä
\trianglelefteq
ç
Ò \trianglelefteqslant
þ
ì
\triangleright
\trianglerighteq
\trianglerighteqslant
æ
Ó
å
ä
\varlrttriangle
\vartriangle
\vartriangleleft
\vartriangleright
Table 138: stix Triangle Relations
⧡
⧏
⋬
⋭
⋪
\lrtriangleeq
\ltrivb
\ntrianglelefteq
\ntrianglerighteq
\nvartriangleleft
⋫
⧎
⊴
≜
⊵
\nvartriangleright
\rtriltri
\trianglelefteq
\triangleq
\trianglerighteq
71
▵
⊲
⊳
⧐
\vartriangle
\vartriangleleft
\vartriangleright
\vbrtri
Table 139: Arrows
⇓
↓
←˒
˓→
{
←
⇐
⇔
↔
←−
⇐=
←→
⇐⇒
↦−→
=⇒
−→
↦→
↗
\Downarrow
\downarrow
\hookleftarrow
\hookrightarrow
\leadsto*
\leftarrow
\Leftarrow
\Leftrightarrow
\leftrightarrow
↖
⇒
→
↘
↘
↑
⇑
↕
⇕
\longleftarrow
\Longleftarrow
\longleftrightarrow
\Longleftrightarrow
\longmapsto
\Longrightarrow
\longrightarrow
\mapsto
\nearrow†
\nwarrow
\Rightarrow
\rightarrow
\searrow
\swarrow
\uparrow
\Uparrow
\updownarrow
\Updownarrow
*
Not predefined by the LATEX 2𝜀 core. Use the latexsym package to expose this
symbol.
†
See the note beneath Table 246 for information about how to put a diagonal
*0
⃗
arrow across a mathematical expression (as in “
∇ · 𝐵 ”) .
Table 140: Harpoons
↽
↼
⇁
⇀
\leftharpoondown
\leftharpoonup
\rightharpoondown
\rightharpoonup
⇀
↽
\rightleftharpoons
Table 141: textcomp Text-mode Arrows
↓
←
\textdownarrow
\textleftarrow
→
↑
\textrightarrow
\textuparrow
Table 142: 𝒜ℳ𝒮 Arrows
x
y
c
d
⇔
!
W
"
#
\circlearrowleft
\circlearrowright
\curvearrowleft
\curvearrowright
\dashleftarrow
\dashrightarrow
\downdownarrows
\leftarrowtail
\leftleftarrows
\leftrightarrows
\leftrightsquigarrow
\Lleftarrow
\looparrowleft
\looparrowright
\Lsh
\rightarrowtail
⇒
\rightleftarrows
\rightrightarrows
\rightsquigarrow
\Rsh
\twoheadleftarrow
\twoheadrightarrow
\upuparrows
Table 143: 𝒜ℳ𝒮 Negated Arrows
:
8
\nLeftarrow
\nleftarrow
<
=
\nLeftrightarrow
\nleftrightarrow
\nRightarrow
\nrightarrow
;
9
Table 144: 𝒜ℳ𝒮 Harpoons
\downharpoonleft
\downharpoonright
\leftrightharpoons
\rightleftharpoons
72
\upharpoonleft
\upharpoonright
Table 145: stmaryrd Arrows
^
]
⇐=\
←−[
=⇒
\leftarrowtriangle
\leftrightarroweq
\leftrightarrowtriangle
\lightning
\Longmapsfrom
\longmapsfrom
\Longmapsto
⇐\
←[
⇒
1
0
_
\Mapsfrom
\mapsfrom
\Mapsto
\nnearrow
\nnwarrow
\rightarrowtriangle
\shortdownarrow
%
$
\shortleftarrow
\shortrightarrow
\shortuparrow
\ssearrow
\sswarrow
Table 146: txfonts/pxfonts Arrows
‹
ƒ
‚
Š
‰

€
ˆ
”
\boxdotLeft
\boxdotleft
\boxdotright
\boxdotRight
\boxLeft
\boxleft
\boxright
\boxRight
\circleddotleft
“
’
‘
e

‡
†
Ž

\circleddotright
\circleleft
\circleright
\dashleftrightarrow
\DiamonddotLeft
\Diamonddotleft
\Diamonddotright
\DiamonddotRight
\DiamondLeft
„
Œ
f
t
v
V
u
w
\Diamondleft
\Diamondright
\DiamondRight
\leftsquigarrow
\Nearrow
\Nwarrow
\Rrightarrow
\Searrow
\Swarrow
Table 147: mathabx Arrows
ö
œ
ó
õ
ô
ð
ò
ñ
ê
Ó
ß
Œ
ë
\circlearrowleft
\circlearrowright
\curvearrowbotleft
\curvearrowbotleftright
\curvearrowbotright
\curvearrowleft
\curvearrowleftright
\curvearrowright
\dlsh
\downdownarrows
\downtouparrow
\downuparrows
\drsh
Ð
Ð
Ø
Ô
ú
ø
ü
î
ï
ì
í
è
Õ
\leftarrow
\leftleftarrows
\leftrightarrow
\leftrightarrows
\leftrightsquigarrow
\leftsquigarrow
\lefttorightarrow
\looparrowdownleft
\looparrowdownright
\looparrowleft
\looparrowright
\Lsh
\nearrow
Ô
æ
Ñ
Õ
Ñ
ù
ý
é
Œ
Ö
Ö
þ
Ò
\nwarrow
\restriction
\rightarrow
\rightleftarrows
\rightrightarrows
\rightsquigarrow
\righttoleftarrow
\Rsh
\searrow
\swarrow
\updownarrows
\uptodownarrow
\upuparrows
Table 148: mathabx Negated Arrows
ö
Ú
\nLeftarrow
\nleftarrow
Ü
ø
\nleftrightarrow
\nLeftrightarrow
73
Û
œ
\nrightarrow
\nRightarrow
Table 149: mathabx Harpoons
Þ
ß
Û
å
ç
ë
Ü
â
\barleftharpoon
\barrightharpoon
\downdownharpoons
\downharpoonleft
\downharpoonright
\downupharpoons
\leftbarharpoon
\leftharpoondown
à
Ø
à
è
Ý
ã
á
á
\leftharpoonup
\leftleftharpoons
\leftrightharpoon
\leftrightharpoons
\rightbarharpoon
\rightharpoondown
\rightharpoonup
\rightleftharpoon
é
Ù
ê
ä
æ
Ú
\rightleftharpoons
\rightrightharpoons
\updownharpoons
\upharpoonleft
\upharpoonright
\upupharpoons
Table 150: MnSymbol Arrows
Ë
È
Ì
Í
Ê
Ï
Î
É
⇣
⇠
d
e
⇢
g
f
⇡
⇓
↓
#
⇊
£
↧
«

ÿ
⤾
⟳
↻
⤸
º
¼
½
↷
¿
¾
¹
⇐
\curvearrowdownup
\curvearrowleftright
\curvearrownesw
\curvearrownwse
\curvearrowrightleft
\curvearrowsenw
\curvearrowswne
\curvearrowupdown
\dasheddownarrow
\dashedleftarrow
\dashednearrow
\dashednwarrow
\dashedrightarrow
\dashedsearrow
\dashedswarrow
\dasheduparrow
\Downarrow
\downarrow
\downarrowtail
\downdownarrows
\downlsquigarrow
\downmapsto
\downrsquigarrow
\downuparrows
\lcirclearrowdown
\lcirclearrowleft
\lcirclearrowright
\lcirclearrowup
\lcurvearrowdown
\lcurvearrowleft
\lcurvearrowne
\lcurvearrownw
\lcurvearrowright
\lcurvearrowse
\lcurvearrowsw
\lcurvearrowup
\Leftarrow
←Ð
⇐Ô
←→
⇐⇒
z→
Ð→
Ô⇒
↫
↬
↰
↗
⇗
$
¤
,
”
¬
⤡
š
↖
⇖
%
¥
•
­
⤢
›
∲
∲
∳
∳
∲
∲
∳
\longleftarrow
\Longleftarrow
\longleftrightarrow
\Longleftrightarrow
\longmapsto
\longrightarrow
\Longrightarrow
\looparrowleft
\looparrowright
\Lsh
\nearrow
\Nearrow
\nearrowtail
\nelsquigarrow
\nemapsto
\nenearrows
\nersquigarrow
\neswarrow
\Neswarrow
\neswarrows
\nwarrow
\Nwarrow
\nwarrowtail
\nwlsquigarrow
\nwmapsto
\nwnwarrows
\nwrsquigarrow
\nwsearrow
\Nwsearrow
\nwsearrows
\partialvardlcircleleftint*
\partialvardlcirclerightint*
\partialvardrcircleleftint*
\partialvardrcirclerightint*
\partialvartlcircleleftint*
\partialvartlcirclerightint*
\partialvartrcircleleftint*
⤦
9
→
⇒
↣
⇄
↝
↦
⇉
¨
⇛
↱
↘
⇘
'
§
/
Ÿ
¯
—
³
↭
´
µ
²
·
¶
±
↙
⇙
&
¦
.
ž
®
–
↡
\rhookswarrow
\rhookuparrow
\rightarrow
\Rightarrow
\rightarrowtail
\rightleftarrows
\rightlsquigarrow
\rightmapsto
\rightrightarrows
\rightrsquigarrow
\Rrightarrow
\Rsh
\searrow
\Searrow
\searrowtail
\selsquigarrow
\semapsto
\senwarrows
\sersquigarrow
\sesearrows
\squigarrowdownup
\squigarrowleftright
\squigarrownesw
\squigarrownwse
\squigarrowrightleft
\squigarrowsenw
\squigarrowswne
\squigarrowupdown
\swarrow
\Swarrow
\swarrowtail
\swlsquigarrow
\swmapsto
\swnearrows
\swrsquigarrow
\swswarrows
\twoheaddownarrow
(continued on next page)
74
(continued from previous page)
←
↢
⇇
¢
↤
↔
⇔
⇆
↜
3
2
4
⤣
↪
⤥
6
1
☇
⇚
\leftarrow
\leftarrowtail
\leftleftarrows
\leftlsquigarrow
\leftmapsto
\leftrightarrow
\Leftrightarrow
\leftrightarrows
\leftrsquigarrow
\lhookdownarrow
\lhookleftarrow
\lhooknearrow
\lhooknwarrow
\lhookrightarrow
\lhooksearrow
\lhookswarrow
\lhookuparrow
\lightning
\Lleftarrow
∳
û
⟲
⤿
↺
⤹
↶
Ä
Å
À
Ç
Æ
Á
;
↩
⤤
=
8
?
\partialvartrcirclerightint*
\rcirclearrowdown
\rcirclearrowleft
\rcirclearrowright
\rcirclearrowup
\rcurvearrowdown
\rcurvearrowleft
\rcurvearrowne
\rcurvearrownw
\rcurvearrowright
\rcurvearrowse
\rcurvearrowsw
\rcurvearrowup
\rhookdownarrow
\rhookleftarrow
\rhooknearrow
\rhooknwarrow
\rhookrightarrow
\rhooksearrow
↞
↠
↟
↑
⇑
!
↕
⇕
™
¡
↥
©
⇈
\twoheadleftarrow
\twoheadnearrow
\twoheadnwarrow
\twoheadrightarrow
\twoheadsearrow
\twoheadswarrow
\twoheaduparrow
\uparrow
\Uparrow
\uparrowtail
\updownarrow
\Updownarrow
\updownarrows
\uplsquigarrow
\upmapsto
\uprsquigarrow
\upuparrows
MnSymbol additionally defines synonyms for some of the preceding symbols:
↺
↻
↶
↷
⇠
⇢
↩
↪
↝
↭
↦
↝
*
\circlearrowleft
\circlearrowright
\curvearrowleft
\curvearrowright
\dashleftarrow
\dashrightarrow
\hookleftarrow
\hookrightarrow
\leadsto
\leftrightsquigarrow
\mapsto
\rightsquigarrow
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
as
as
as
as
as
as
as
as
as
as
as
as
\rcirclearrowup)
\lcirclearrowup)
\rcurvearrowleft)
\lcurvearrowright)
\dashedleftarrow)
\dashedrightarrow)
\rhookleftarrow)
\lhookrightarrow)
\rightlsquigarrow)
\squigarrowleftright)
\rightmapsto)
\rightlsquigarrow)
The \partialvar. . . int macros are intended to be used internally by MnSymbol to produce various types of integrals.
Table 151: MnSymbol Negated Arrows
̸
̸
̸
̸
̸
̸
̸
̸
\ncurvearrowdownup
\ncurvearrowleftright
\ncurvearrownesw
\ncurvearrownwse
\ncurvearrowrightleft
\ncurvearrowsenw
\ncurvearrowswne
\ncurvearrowupdown
⤣̸
↪̸
⤥̸
̸
̸
⇚̸
↗̸
⇗̸
\nlhooknwarrow
\nlhookrightarrow
\nlhooksearrow
\nlhookswarrow
\nlhookuparrow
\nLleftarrow
\nnearrow
\nNearrow
⇄̸
↝̸
↦̸
⇉̸
̸
⇛̸
⇘̸
↘̸
\nrightleftarrows
\nrightlsquigarrow
\nrightmapsto
\nrightrightarrows
\nrightrsquigarrow
\nRrightarrow
\nSearrow
\nsearrow
(continued on next page)
75
(continued from previous page)
⇣̸
⇠̸
̸
̸
⇢̸
̸
̸
⇡̸
↓̸
⇓̸
̸
⇊̸
̸
↧̸
̸
̸
̸
⤾̸
⟳̸
↻̸
⤸̸
̸
̸
̸
↷̸
̸
̸
̸
⇍
↚
↢̸
⇇̸
̸
↤̸
↮
⇎
⇆̸
↜̸
̸
̸
̸
\ndasheddownarrow
\ndashedleftarrow
\ndashednearrow
\ndashednwarrow
\ndashedrightarrow
\ndashedsearrow
\ndashedswarrow
\ndasheduparrow
\ndownarrow
\nDownarrow
\ndownarrowtail
\ndowndownarrows
\ndownlsquigarrow
\ndownmapsto
\ndownrsquigarrow
\ndownuparrows
\nlcirclearrowdown
\nlcirclearrowleft
\nlcirclearrowright
\nlcirclearrowup
\nlcurvearrowdown
\nlcurvearrowleft
\nlcurvearrowne
\nlcurvearrownw
\nlcurvearrowright
\nlcurvearrowse
\nlcurvearrowsw
\nlcurvearrowup
\nLeftarrow
\nleftarrow
\nleftarrowtail
\nleftleftarrows
\nleftlsquigarrow
\nleftmapsto
\nleftrightarrow
\nLeftrightarrow
\nleftrightarrows
\nleftrsquigarrow
\nlhookdownarrow
\nlhookleftarrow
\nlhooknearrow
̸
̸
̸
̸
̸
̸
⤡̸
̸
⇖̸
↖̸
̸
̸
̸
̸
̸
⤢̸
̸
̸
̸
⟲̸
⤿̸
↺̸
⤹̸
↶̸
̸
̸
̸
̸
̸
̸
̸
↩̸
⤤̸
̸
̸
̸
⤦̸
̸
↛
⇏
↣̸
\nnearrowtail
\nnelsquigarrow
\nnemapsto
\nnenearrows
\nnersquigarrow
\nNeswarrow
\nneswarrow
\nneswarrows
\nNwarrow
\nnwarrow
\nnwarrowtail
\nnwlsquigarrow
\nnwmapsto
\nnwnwarrows
\nnwrsquigarrow
\nnwsearrow
\nNwsearrow
\nnwsearrows
\nrcirclearrowdown
\nrcirclearrowleft
\nrcirclearrowright
\nrcirclearrowup
\nrcurvearrowdown
\nrcurvearrowleft
\nrcurvearrowne
\nrcurvearrownw
\nrcurvearrowright
\nrcurvearrowse
\nrcurvearrowsw
\nrcurvearrowup
\nrhookdownarrow
\nrhookleftarrow
\nrhooknearrow
\nrhooknwarrow
\nrhookrightarrow
\nrhooksearrow
\nrhookswarrow
\nrhookuparrow
\nrightarrow
\nRightarrow
\nrightarrowtail
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
↙̸
⇙̸
̸
̸
̸
̸
̸
̸
↡̸
↞̸
̸
̸
↠̸
̸
̸
↟̸
↑̸
⇑̸
̸
↕̸
⇕̸
̸
̸
↥̸
̸
⇈̸
\nsearrowtail
\nselsquigarrow
\nsemapsto
\nsenwarrows
\nsersquigarrow
\nsesearrows
\nsquigarrowdownup
\nsquigarrowleftright
\nsquigarrownesw
\nsquigarrownwse
\nsquigarrowrightleft
\nsquigarrowsenw
\nsquigarrowswne
\nsquigarrowupdown
\nswarrow
\nSwarrow
\nswarrowtail
\nswlsquigarrow
\nswmapsto
\nswnearrows
\nswrsquigarrow
\nswswarrows
\ntwoheaddownarrow
\ntwoheadleftarrow
\ntwoheadnearrow
\ntwoheadnwarrow
\ntwoheadrightarrow
\ntwoheadsearrow
\ntwoheadswarrow
\ntwoheaduparrow
\nuparrow
\nUparrow
\nuparrowtail
\nupdownarrow
\nUpdownarrow
\nupdownarrows
\nuplsquigarrow
\nupmapsto
\nuprsquigarrow
\nupuparrows
MnSymbol additionally defines synonyms for some of the preceding symbols:
76
↺̸
↻̸
↶̸
↷̸
⇢̸
⇠̸
⇢̸
↚
↩̸
↪̸
↝̸
̸
↦̸
↝̸
↛
\ncirclearrowleft
\ncirclearrowright
\ncurvearrowleft
\ncurvearrowright
\ndasharrow
\ndashleftarrow
\ndashrightarrow
\ngets
\nhookleftarrow
\nhookrightarrow
\nleadsto
\nleftrightsquigarrow
\nmapsto
\nrightsquigarrow
\nto
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
\nrcirclearrowup)
\nlcirclearrowup)
\nrcurvearrowleft)
\nlcurvearrowright)
\ndashedrightarrow)
\ndashedleftarrow)
\ndashedrightarrow)
\nleftarrow)
\nrhookleftarrow)
\nlhookrightarrow)
\nrightlsquigarrow)
\nsquigarrowleftright)
\nrightmapsto)
\nrightlsquigarrow)
\nrightarrow)
Table 152: MnSymbol Harpoons
⇂
⇃
⥯
↽
↼
⥊
⇋
⥋
D
L
R
*
\downharpoonccw
\downharpooncw*
\downupharpoons
\leftharpoonccw*
\leftharpooncw*
\leftrightharpoondownup
\leftrightharpoons
\leftrightharpoonupdown
\neharpoonccw
\neharpooncw
\neswharpoonnwse
*
Z
V
E
M
S
_
W
⇀
⇁
⇌
G
\neswharpoons
\neswharpoonsenw
\nwharpoonccw
\nwharpooncw
\nwseharpoonnesw
\nwseharpoons
\nwseharpoonswne
\rightharpoonccw*
\rightharpooncw*
\rightleftharpoons
\seharpoonccw
O
[
F
N
^
Q
U
⥮
↿
↾
\seharpooncw
\senwharpoons
\swharpoonccw
\swharpooncw
\swneharpoons
\updownharpoonleftright
\updownharpoonrightleft
\updownharpoons
\upharpoonccw*
\upharpooncw*
Where marked, the “ccw” suffix can be replaced with “up” and the “cw” suffix
can be replaced with “down”. (In addition, \upharpooncw can be written as
\restriction.)
Table 153: MnSymbol Negated Harpoons
⇂̸
⇃̸
⥯̸
↽̸
↼̸
⥊̸
⇋̸
⥋̸
̸
̸
̸
\ndownharpoonccw*
\ndownharpooncw*
\ndownupharpoons
\nleftharpoonccw*
\nleftharpooncw*
\nleftrightharpoondownup
\nleftrightharpoons
\nleftrightharpoonupdown
\nneharpoonccw
\nneharpooncw
\nneswharpoonnwse
*
̸
̸
̸
̸
̸
̸
̸
⇀̸
⇁̸
⇌̸
̸
\nneswharpoons
\nneswharpoonsenw
\nnwharpoonccw
\nnwharpooncw
\nnwseharpoonnesw
\nnwseharpoons
\nnwseharpoonswne
\nrightharpoonccw*
\nrightharpooncw*
\nrightleftharpoons
\nseharpoonccw
̸
̸
̸
̸
̸
̸
̸
⥮̸
↿̸
↾̸
\nseharpooncw
\nsenwharpoons
\nswharpoonccw
\nswharpooncw
\nswneharpoons
\nupdownharpoonleftright
\nupdownharpoonrightleft
\nupdownharpoons
\nupharpoonccw*
\nupharpooncw*
Where marked, the “ccw” suffix can be replaced with “up” and the “cw” suffix
can be replaced with “down”. (In addition, \nupharpooncw can be written as
\nrestriction.)
77
Table 154: fdsymbol Arrows
⟲
↺
±
®
⤹
¡
¢
⤺

⤴
⤷
⤻
¥
«
¨
¤
§
ª
©
¦
⟳
µ
↻
´
•
⤵
˜
”
⤸
⤶
™
–
⤋
⇓
↓
#
⇣
⇊
/
↧
⇵
‹
;
↩
⤤
⤣
↪
⤥
⤦
1
↲
\acwcirclearrowdown
\acwcirclearrowleft
\acwcirclearrowright
\acwcirclearrowup
\acwleftarcarrow
\acwnearcarrow
\acwnwarcarrow
\acwoverarcarrow
\acwrightarcarrow
\acwsearcarrow
\acwswarcarrow
\acwunderarcarrow
\bdleftarcarrow
\bdnearcarrow
\bdnwarcarrow
\bdoverarcarrow
\bdrightarcarrow
\bdsearcarrow
\bdswarcarrow
\bdunderarcarrow
\cwcirclearrowdown
\cwcirclearrowleft
\cwcirclearrowright
\cwcirclearrowup
\cwleftarcarrow
\cwnearcarrow
\cwnwarcarrow
\cwoverarcarrow
\cwrightarcarrow
\cwsearcarrow
\cwswarcarrow
\cwunderarcarrow
\Ddownarrow
\Downarrow
\downarrow
\downarrowtail
\downbkarrow
\downdownarrows
\Downmapsto
\downmapsto
\downuparrows
\downwavearrow
\hookdownarrow
\hookleftarrow
\hooknearrow
\hooknwarrow
\hookrightarrow
\hooksearrow
\hookswarrow
\hookuparrow
\Ldsh
←
↢
⇠
⇇
↤
⤆
⇔
↔
⇆
↭
↜
↯
⇚
⟸
⟵
⟷
⟺
⬳
⟽
⟻
⟾
⟼
⟶
⟹
⟿
↫
↬
↰
↗
⇗
$
d
|
⤡
‚
⇖
↖
%
e
}
⤢
ƒ
↳
⇒
→
↣
⇢
⇄
⤇
\leftarrow
\leftarrowtail
\leftbkarrow
\leftleftarrows
\leftmapsto
\Leftmapsto
\Leftrightarrow
\leftrightarrow
\leftrightarrows
\leftrightwavearrow
\leftwavearrow
\lightning
\Lleftarrow
\Longleftarrow
\longleftarrow
\longleftrightarrow
\Longleftrightarrow
\longleftwavearrow
\Longmapsfrom
\longmapsfrom
\Longmapsto
\longmapsto
\longrightarrow
\Longrightarrow
\longrightwavearrow
\looparrowleft
\looparrowright
\Lsh
\nearrow
\Nearrow
\nearrowtail
\nebkarrow
\nenearrows
\Neswarrow
\neswarrow
\neswarrows
\Nwarrow
\nwarrow
\nwarrowtail
\nwbkarrow
\nwnwarrows
\Nwsearrow
\nwsearrow
\nwsearrows
\Rdsh
\Rightarrow
\rightarrow
\rightarrowtail
\rightbkarrow
\rightleftarrows
\Rightmapsto
⇉
↝
⇛
↱
↘
⇘
'
g
‡

⇙
↙
&
f
†
~
↡
↞
↠
↟
↑
⇑
!
⇡
⇕
↕
⇅
‘
↥
⇈

⤊

3
↩
⤤
⤣
↪
⤥
⤦
9
↭
↜
↝
“
‰
\rightrightarrows
\rightwavearrow
\Rrightarrow
\Rsh
\searrow
\Searrow
\searrowtail
\sebkarrow
\senwarrows
\sesearrows
\Swarrow
\swarrow
\swarrowtail
\swbkarrow
\swnearrows
\swswarrows
\twoheaddownarrow
\twoheadleftarrow
\twoheadnearrow
\twoheadnwarrow
\twoheadrightarrow
\twoheadsearrow
\twoheadswarrow
\twoheaduparrow
\uparrow
\Uparrow
\uparrowtail
\upbkarrow
\Updownarrow
\updownarrow
\updownarrows
\updownwavearrow
\upmapsto
\Upmapsto
\upuparrows
\upwavearrow
\Uuparrow
\vardownwavearrow
\varhookdownarrow
\varhookleftarrow
\varhooknearrow
\varhooknwarrow
\varhookrightarrow
\varhooksearrow
\varhookswarrow
\varhookuparrow
\varleftrightwavearrow
\varleftwavearrow
\varrightwavearrow
\varupdownwavearrow
\varupwavearrow
(continued on next page)
78
(continued from previous page)
⇐
\Leftarrow
↦
\rightmapsto
fdsymbol defines synonyms for most of the preceding symbols:
⟲
↺
↺
↻
⤺
”
⟳
↻
⇢
⇠
⇢
⤸
¢
‹
⤹
⤵

§
“
↯
←
⤤
⤣
⤥
⤦
↝
↜
⤶
–
↜
⤺
¤
\acwgapcirclearrow
\acwopencirclearrow
\circlearrowleft
\circlearrowright
\curvearrowleft
\curvearrowright
\cwgapcirclearrow
\cwopencirclearrow
\dasharrow
\dashleftarrow
\dashrightarrow
\downlcurvearrow
\downleftcurvedarrow
\downlsquigarrow
\downrcurvearrow
\downrightcurvedarrow
\downrsquigarrow
\downupcurvearrow
\downupsquigarrow
\downzigzagarrow
\gets
\hknearrow
\hknwarrow
\hksearrow
\hkswarrow
\leadsto
\leftcurvedarrow
\leftdowncurvedarrow
\leftlcurvearrow
\leftlsquigarrow
\leftrcurvearrow
\leftrightcurvearrow
↭
↜
↜
¡
3
↩
⤤
⤣
↪
⤥
⤦
1
⟿
⬳
⟿
↧
/
↤
⤆
↦
⤇
↥
˜
⤴
¨
™
¡
©
;
↩
⤤
\leftrightsquigarrow
\leftrsquigarrow
\leftsquigarrow
\leftupcurvedarrow
\lhookdownarrow
\lhookleftarrow
\lhooknearrow
\lhooknwarrow
\lhookrightarrow
\lhooksearrow
\lhookswarrow
\lhookuparrow
\longleadsto
\longleftsquigarrow
\longrightsquigarrow
\mapsdown
\Mapsdown
\mapsfrom
\Mapsfrom
\mapsto
\Mapsto
\mapsup
\Mapsup
\nelcurvearrow
\nercurvearrow
\neswcurvearrow
\nwlcurvearrow
\nwrcurvearrow
\nwsecurvearrow
\rhookdownarrow
\rhookleftarrow
\rhooknearrow
⤣
↪
⤥
⤦
9
↝
⤷
”
¦
↭
↝
⤻
↝
↝
˜
⤵
«
⤷
⤶
ª
¢
→
¥
‘
•
™
‰

⤴

\rhooknwarrow
\rhookrightarrow
\rhooksearrow
\rhookswarrow
\rhookuparrow
\rightcurvedarrow
\rightdowncurvedarrow
\rightlcurvearrow
\rightleftcurvearrow
\rightleftsquigarrow
\rightlsquigarrow
\rightrcurvearrow
\rightrsquigarrow
\rightsquigarrow
\rightupcurvedarrow
\selcurvearrow
\senwcurvearrow
\sercurvearrow
\swlcurvearrow
\swnecurvearrow
\swrcurvearrow
\to
\updowncurvearrow
\updownsquigarrow
\uplcurvearrow
\upleftcurvedarrow
\uplsquigarrow
\uprcurvearrow
\uprightcurvearrow
\uprsquigarrow
Table 155: fdsymbol Negated Arrows
⟲̸
↺̸
̸
̸
⤹̸
̸
̸
⤺̸
\nacwcirclearrowdown
\nacwcirclearrowleft
\nacwcirclearrowright
\nacwcirclearrowup
\nacwleftarcarrow
\nacwnearcarrow
\nacwnwarcarrow
\nacwoverarcarrow
↚
⇍
↢̸
⇠̸
⇇̸
↤̸
⤆̸
↮
\nleftarrow
\nLeftarrow
\nleftarrowtail
\nleftbkarrow
\nleftleftarrows
\nleftmapsto
\nLeftmapsto
\nleftrightarrow
⇛̸
↘̸
⇘̸
̸
̸
̸
̸
↙̸
\nRrightarrow
\nsearrow
\nSearrow
\nsearrowtail
\nsebkarrow
\nsenwarrows
\nsesearrows
\nswarrow
(continued on next page)
79
(continued from previous page)
̸
⤴̸
⤷̸
⤻̸
̸
̸
̸
̸
̸
̸
̸
̸
⟳̸
̸
↻̸
̸
̸
⤵̸
̸
̸
⤸̸
⤶̸
̸
̸
⤋̸
↓̸
⇓̸
̸
⇣̸
⇊̸
↧̸
̸
⇵̸
̸
̸
↩̸
⤤̸
⤣̸
↪̸
⤥̸
⤦̸
̸
\nacwrightarcarrow
\nacwsearcarrow
\nacwswarcarrow
\nacwunderarcarrow
\nbdleftarcarrow
\nbdnearcarrow
\nbdnwarcarrow
\nbdoverarcarrow
\nbdrightarcarrow
\nbdsearcarrow
\nbdswarcarrow
\nbdunderarcarrow
\ncwcirclearrowdown
\ncwcirclearrowleft
\ncwcirclearrowright
\ncwcirclearrowup
\ncwleftarcarrow
\ncwnearcarrow
\ncwnwarcarrow
\ncwoverarcarrow
\ncwrightarcarrow
\ncwsearcarrow
\ncwswarcarrow
\ncwunderarcarrow
\nDdownarrow
\ndownarrow
\nDownarrow
\ndownarrowtail
\ndownbkarrow
\ndowndownarrows
\ndownmapsto
\nDownmapsto
\ndownuparrows
\ndownwavearrow
\nhookdownarrow
\nhookleftarrow
\nhooknearrow
\nhooknwarrow
\nhookrightarrow
\nhooksearrow
\nhookswarrow
\nhookuparrow
⇎
⇆̸
↭̸
↜̸
⇚̸
⟵̸
⟸̸
⟷̸
⟺̸
⬳̸
⟻̸
⟽̸
⟼̸
⟾̸
⟶̸
⟹̸
⟿̸
↗̸
⇗̸
̸
̸
̸
⤡̸
̸
̸
↖̸
⇖̸
̸
̸
̸
⤢̸
̸
̸
↛
⇏
↣̸
⇢̸
⇄̸
↦̸
⤇̸
⇉̸
↝̸
\nLeftrightarrow
\nleftrightarrows
\nleftrightwavearrow
\nleftwavearrow
\nLleftarrow
\nlongleftarrow
\nLongleftarrow
\nlongleftrightarrow
\nLongleftrightarrow
\nlongleftwavearrow
\nlongmapsfrom
\nLongmapsfrom
\nlongmapsto
\nLongmapsto
\nlongrightarrow
\nLongrightarrow
\nlongrightwavearrow
\nnearrow
\nNearrow
\nnearrowtail
\nnebkarrow
\nnenearrows
\nneswarrow
\nNeswarrow
\nneswarrows
\nnwarrow
\nNwarrow
\nnwarrowtail
\nnwbkarrow
\nnwnwarrows
\nnwsearrow
\nNwsearrow
\nnwsearrows
\nrightarrow
\nRightarrow
\nrightarrowtail
\nrightbkarrow
\nrightleftarrows
\nrightmapsto
\nRightmapsto
\nrightrightarrows
\nrightwavearrow
⇙̸
̸
̸
̸
̸
↡̸
↞̸
̸
̸
↠̸
̸
̸
↟̸
↑̸
⇑̸
̸
⇡̸
↕̸
⇕̸
⇅̸
̸
↥̸
̸
⇈̸
̸
⤊̸
̸
̸
↩̸
⤤̸
⤣̸
↪̸
⤥̸
⤦̸
̸
↭̸
↜̸
↝̸
̸
̸
\nSwarrow
\nswarrowtail
\nswbkarrow
\nswnearrows
\nswswarrows
\ntwoheaddownarrow
\ntwoheadleftarrow
\ntwoheadnearrow
\ntwoheadnwarrow
\ntwoheadrightarrow
\ntwoheadsearrow
\ntwoheadswarrow
\ntwoheaduparrow
\nuparrow
\nUparrow
\nuparrowtail
\nupbkarrow
\nupdownarrow
\nUpdownarrow
\nupdownarrows
\nupdownwavearrow
\nupmapsto
\nUpmapsto
\nupuparrows
\nupwavearrow
\nUuparrow
\nvardownwavearrow
\nvarhookdownarrow
\nvarhookleftarrow
\nvarhooknearrow
\nvarhooknwarrow
\nvarhookrightarrow
\nvarhooksearrow
\nvarhookswarrow
\nvarhookuparrow
\nvarleftrightwavearrow
\nvarleftwavearrow
\nvarrightwavearrow
\nvarupdownwavearrow
\nvarupwavearrow
fdsymbol defines synonyms for most of the preceding symbols:
⟲̸
↺̸
↺̸
↻̸
⤺̸
̸
⟳̸
↻̸
\nacwgapcirclearrow
\nacwopencirclearrow
\ncirclearrowleft
\ncirclearrowright
\ncurvearrowleft
\ncurvearrowright
\ncwgapcirclearrow
\ncwopencirclearrow
⤶̸
̸
↜̸
⤺̸
̸
↭̸
↜̸
↜̸
\nleftdowncurvedarrow
\nleftlcurvearrow
\nleftlsquigarrow
\nleftrcurvearrow
\nleftrightcurvearrow
\nleftrightsquigarrow
\nleftrsquigarrow
\nleftsquigarrow
↝̸
⤷̸
̸
̸
↭̸
↝̸
⤻̸
↝̸
\nrightcurvedarrow
\nrightdowncurvedarrow
\nrightlcurvearrow
\nrightleftcurvearrow
\nrightleftsquigarrow
\nrightlsquigarrow
\nrightrcurvearrow
\nrightrsquigarrow
(continued on next page)
80
(continued from previous page)
⇢̸
⇠̸
⇢̸
⤸̸
̸
̸
⤹̸
⤵̸
̸
̸
̸
↚
⤤̸
⤣̸
⤥̸
⤦̸
↝̸
↜̸
\ndasharrow
\ndashleftarrow
\ndashrightarrow
\ndownlcurvearrow
\ndownleftcurvedarrow
\ndownlsquigarrow
\ndownrcurvearrow
\ndownrightcurvedarrow
\ndownrsquigarrow
\ndownupcurvearrow
\ndownupsquigarrow
\ngets
\nhknearrow
\nhknwarrow
\nhksearrow
\nhkswarrow
\nleadsto
\nleftcurvedarrow
̸
⟿̸
⬳̸
⟿̸
↧̸
̸
↤̸
⤆̸
↦̸
⤇̸
↥̸
̸
̸
⤴̸
̸
̸
̸
̸
\nleftupcurvedarrow
\nlongleadsto
\nlongleftsquigarrow
\nlongrightsquigarrow
\nmapsdown
\nMapsdown
\nmapsfrom
\nMapsfrom
\nmapsto
\nMapsto
\nmapsup
\nMapsup
\nnelcurvearrow
\nnercurvearrow
\nneswcurvearrow
\nnwlcurvearrow
\nnwrcurvearrow
\nnwsecurvearrow
↝̸
̸
⤵̸
̸
⤷̸
⤶̸
̸
̸
↛
̸
̸
̸
̸
̸
̸
⤴̸
̸
\nrightsquigarrow
\nrightupcurvedarrow
\nselcurvearrow
\nsenwcurvearrow
\nsercurvearrow
\nswlcurvearrow
\nswnecurvearrow
\nswrcurvearrow
\nto
\nupdowncurvearrow
\nupdownsquigarrow
\nuplcurvearrow
\nupleftcurvedarrow
\nuplsquigarrow
\nuprcurvearrow
\nuprightcurvearrow
\nuprsquigarrow
Table 156: fdsymbol Harpoons
⇃
⇂
⥯
↽
↼
⥊
⇋
⥋
D
L
R
\downharpoonleft
\downharpoonright
\downupharpoons
\leftharpoondown
\leftharpoonup
\leftrightharpoondownup
\leftrightharpoons
\leftrightharpoonupdown
\neharpoonnw
\neharpoonse
\neswharpoonnwse
Z
V
M
E
S
_
W
⇁
⇀
⇌
G
\neswharpoons
\neswharpoonsenw
\nwharpoonne
\nwharpoonsw
\nwseharpoonnesw
\nwseharpoons
\nwseharpoonswne
\rightharpoondown
\rightharpoonup
\rightleftharpoons
\seharpoonne
O
[
N
F
^
⥍
⥌
⥮
↿
↾
\seharpoonsw
\senwharpoons
\swharpoonnw
\swharpoonse
\swneharpoons
\updownharpoonleftright
\updownharpoonrightleft
\updownharpoons
\upharpoonleft
\upharpoonright
fdsymbol defines \restriction as a synonym for \upharpoonright,
\updownharpoonsleftright as a synonym for \updownharpoons, and
\downupharpoonsleftright as a synonym for \downupharpoons.
81
Table 157: fdsymbol Negated Harpoons
⇃̸
⇂̸
⥯̸
↽̸
↼̸
⥊̸
⇋̸
⥋̸
̸
̸
̸
\ndownharpoonleft
\ndownharpoonright
\ndownupharpoons
\nleftharpoondown
\nleftharpoonup
\nleftrightharpoondownup
\nleftrightharpoons
\nleftrightharpoonupdown
\nneharpoonnw
\nneharpoonse
\nneswharpoonnwse
̸
̸
̸
̸
̸
̸
̸
⇁̸
⇀̸
⇌̸
̸
\nneswharpoons
\nneswharpoonsenw
\nnwharpoonne
\nnwharpoonsw
\nnwseharpoonnesw
\nnwseharpoons
\nnwseharpoonswne
\nrightharpoondown
\nrightharpoonup
\nrightleftharpoons
\nseharpoonne
̸
̸
̸
̸
̸
⥍̸
⥌̸
⥮̸
↿̸
↾̸
\nseharpoonsw
\nsenwharpoons
\nswharpoonnw
\nswharpoonse
\nswneharpoons
\nupdownharpoonleftright
\nupdownharpoonrightleft
\nupdownharpoons
\nupharpoonleft
\nupharpoonright
fdsymbol defines \nrestriction as a synonym for \nupharpoonright,
\ndownupharpoonsleftright as a synonym for \ndownupharpoons, and
\nupdownharpoonsleftright as a synonym for \nupdownharpoons.
Table 158: boisik Arrows
£
¢
¯
Ý
Ü
ß
Þ
ó
õ
ô
ð
ò
ñ
ø
0
#
—
ë
%
ù
÷
›
ú
\barleftarrow
\barleftarrowrightarrowbar
\barovernorthwestarrow
\carriagereturn
\circlearrowleft
\circlearrowright
\cupleftarrow
\curlyveedownarrow
\curlyveeuparrow
\curlywedgedownarrow
\curlywedgeuparrow
\curvearrowbotleft
\curvearrowbotleftright
\curvearrowbotright
\curvearrowleft
\curvearrowleftright
\curvearrowright
\dlsh
\downblackarrow
\downdasharrow
\downdownarrows
\downtouparrow
\downwhitearrow
\downzigzagarrow
\drsh
\eqleftrightarrow
\hookleftarrow
\hookrightarrow
\leftarrowtail
\leftarrowTriangle
ž
à
á
ì
î
š
û
þ
.
!
‘
•
æ
ã
å
¯
Ÿ
\Lsh
\mapsdown
\Mapsfrom
\mapsfrom
\Mapsto
\mapsto
\mapsup
\Nearrow
\nearrowcorner
\nnearrow
\nnwarrow
\Nwarrow
\nwarrowcorner
\rightarrowbar
\rightarrowcircle
\rightarrowtail
\rightarrowTriangle
\rightarrowtriangle
\rightblackarrow
\rightdasharrow
\rightleftarrows
\rightrightarrows
\rightsquigarrow
\rightthreearrows
\righttoleftarrow
\rightwhitearrow
\rightwhiteroundarrow
\Rrightarrow
\Rsh
\Searrow
(continued on next page)
82
(continued from previous page)
ý
”
ö

ü
ÿ
1
ç
â
ä
®
è
é
¡
\leftarrowtriangle
\leftblackarrow
\leftdasharrow
\leftleftarrows
\leftrightarroweq
\leftrightarrows
\leftrightarrowTriangle
\leftrightarrowtriangle
\leftrightblackarrow
\leftrightsquigarrow
\leftsquigarrow
\lefttorightarrow
\leftwhitearrow
\leftwhiteroundarrow
\leftzigzagarrow
\linefeed
\Lleftarrow
\looparrowdownleft
\looparrowdownright
\looparrowleft
\looparrowright
í
ï
™
˜
*
+
/
"
2
,
ê
–
$
&
'
(
)
\ssearrow
\sswarrow
\Swarrow
\twoheaddownarrow
\twoheadleftarrow
\twoheadrightarrow
\twoheaduparrow
\twoheadwhiteuparrow
\twoheadwhiteuparrowpedestal
\upblackarrow
\updasharrow
\updownarrowbar
\updownblackarrow
\updownwhitearrow
\uptodownarrow
\upuparrows
\upwhitearrow
\whitearrowupfrombar
\whitearrowuppedestal
\whitearrowuppedestalhbar
\whitearrowuppedestalvbar
Many of these symbols are defined only if the arrows package option is specified.
Table 159: boisik Negated Arrows
«
¨
\nHdownarrow
\nHuparrow
\nLeftarrow
\nleftarrow
°
ª
­
©
\nLeftrightarroW
\nleftrightarrow
\nLeftrightarrow
\nrightarrow
\nRightarrow
\nVleftarrow
\nVrightarrow
¬
Many of these symbols are defined only if the arrows package option is specified.
Table 160: boisik Harpoons


‰
ˆ
\downharpoonleft
\downharpoonright
\leftharpoondown
\leftharpoonup
“
‹
Š
’
\leftrightharpoons
\rightharpoondown
\rightharpoonup
\rightleftharpoons
83
Ž
Œ
\upharpoonleft
\upharpoonright
Table 161: stix Arrows
⥀
⟲
⤹
⤺
⤻
⇤
↹
⤠
⤒
⭁
⭇
↵
⤿
↺
↻
⬰
⇴
↶
⤽
↷
⤼
⥁
⟳
⤸
⤾
⤏
⟱
⤋
⤝
⤟
↓
⇓
⤓
⤈
⇣
⇊
⤵
⇵
⇩
↯
➛
⤐
⭀
⥱
⤯
⤤
⤣
⤥
⤦
↩
↪
↲
\acwcirclearrow
\acwgapcirclearrow
\acwleftarcarrow
\acwoverarcarrow
\acwunderarcarrow
\barleftarrow
\barleftarrowrightarrowbar*
\barrightarrowdiamond
\baruparrow
\bsimilarleftarrow
\bsimilarrightarrow
\carriagereturn*
\ccwundercurvearrow
\circlearrowleft
\circlearrowright
\circleonleftarrow
\circleonrightarrow
\curvearrowleft
\curvearrowleftplus
\curvearrowright
\curvearrowrightminus
\cwcirclearrow
\cwgapcirclearrow
\cwrightarcarrow
\cwundercurvearrow
\dbkarow
\DDownarrow
\Ddownarrow
\diamondleftarrow
\diamondleftarrowbar
\downarrow
\Downarrow
\downarrowbar
\downarrowbarred
\downdasharrow*
\downdownarrows
\downrightcurvedarrow*
\downuparrows
\downwhitearrow*
\downzigzagarrow
\draftingarrow*
\drbkarow
\equalleftarrow
\equalrightarrow
\fdiagovnearrow*
\hknearrow
\hknwarrow
\hksearow
\hkswarow
\hookleftarrow
\hookrightarrow
\Ldsh
⟼
⟾
⟶
⟹
⟿
↫
↬
↰
↧
⤆
↤
↦
⤇
↥
⇗
↗
⤱
⤮
⤢
↖
⇖
⤲
⤡
⤰
↳
⇒
→
⥵
⭈
⇥
⭌
⤞
⟴
⥅
⥂
⥴
↣
⇾
⥇
⤍
⤳
⇢
⤑
⤷
⇄
⇉
⇝
⇶
↝
⇨
⭆
⇛
\longmapsto
\Longmapsto
\longrightarrow
\Longrightarrow
\longrightsquigarrow
\looparrowleft
\looparrowright
\Lsh
\mapsdown
\Mapsfrom
\mapsfrom
\mapsto
\Mapsto
\mapsup
\Nearrow
\nearrow
\neovnwarrow*
\neovsearrow*
\neswarrow
\nwarrow
\Nwarrow
\nwovnearrow*
\nwsearrow
\rdiagovsearrow*
\Rdsh
\Rightarrow
\rightarrow
\rightarrowapprox
\rightarrowbackapprox
\rightarrowbar
\rightarrowbsimilar
\rightarrowdiamond
\rightarrowonoplus
\rightarrowplus
\rightarrowshortleftarrow
\rightarrowsimilar
\rightarrowtail
\rightarrowtriangle
\rightarrowx
\rightbkarrow
\rightcurvedarrow
\rightdasharrow*
\rightdotarrow
\rightdowncurvedarrow
\rightleftarrows
\rightrightarrows
\rightsquigarrow
\rightthreearrows
\rightwavearrow
\rightwhitearrow*
\RRightarrow
\Rrightarrow
(continued on next page)
84
(continued from previous page)
←
⇐
⭊
⭂
⭋
⬲
⥆
⥃
⥳
↢
⇽
⬾
⤌
⬿
⇠
⤎
⬸
⤶
⇇
⇔
↔
⥈
⇆
⇿
↭
⇜
⬱
↜
⇦
↴
⭅
⇚
⟵
⟸
⟺
⟷
⬳
⟽
⟻
*
↱
↘
⇘
⤭
⥄
⭉
⥲
↙
⇙
⤨
⤧
⤩
⤪
↡
↞
⬻
⬷
⬶
⤅
↠
⤖
↟
⥉
↑
⇑
⤉
⇡
⇕
↕
↨
⇅
⤴
⇈
⇧
⟰
⤊
⏎
⇪
\leftarrow
\Leftarrow
\leftarrowapprox
\leftarrowbackapprox
\leftarrowbsimilar
\leftarrowonoplus
\leftarrowplus
\leftarrowshortrightarrow
\leftarrowsimilar
\leftarrowtail
\leftarrowtriangle
\leftarrowx
\leftbkarrow
\leftcurvedarrow
\leftdasharrow*
\leftdbkarrow
\leftdotarrow
\leftdowncurvedarrow
\leftleftarrows
\Leftrightarrow
\leftrightarrow
\leftrightarrowcircle
\leftrightarrows
\leftrightarrowtriangle
\leftrightsquigarrow
\leftsquigarrow
\leftthreearrows
\leftwavearrow
\leftwhitearrow*
\linefeed*
\LLeftarrow
\Lleftarrow
\longleftarrow
\Longleftarrow
\Longleftrightarrow
\longleftrightarrow
\longleftsquigarrow
\Longmapsfrom
\longmapsfrom
\Rsh
\searrow
\Searrow
\seovnearrow*
\shortrightarrowleftarrow
\similarleftarrow
\similarrightarrow
\swarrow
\Swarrow
\toea
\tona
\tosa
\towa
\twoheaddownarrow
\twoheadleftarrow
\twoheadleftarrowtail
\twoheadleftdbkarrow
\twoheadmapsfrom
\twoheadmapsto
\twoheadrightarrow
\twoheadrightarrowtail
\twoheaduparrow
\twoheaduparrowcircle
\uparrow
\Uparrow
\uparrowbarred
\updasharrow*
\Updownarrow
\updownarrow
\updownarrowbar*
\updownarrows
\uprightcurvearrow*
\upuparrows
\upwhitearrow*
\UUparrow
\Uuparrow
\varcarriagereturn*
\whitearrowupfrombar*
Defined as an ordinary character, not as a binary relation.
stix defines \acwopencirclearrow as a synonym for \circlearrowleft,
\cwopencirclearrow as a synonym for \circlearrowright, \leadsto as
a synonym for \rightsquigarrow, \dashleftarrow as a synonym for
\leftdbkarrow, and \dashrightarrow and \dasharrow as synonyms for
\dbkarow.
85
Table 162: stix Negated Arrows
⇟
⇞
↚
⇍
↮
⇎
⇏
↛
⇷
⤂
⇺
⬺
⬹
⇹
⇼
\nHdownarrow*
\nHuparrow*
\nleftarrow†
\nLeftarrow
\nleftrightarrow
\nLeftrightarrow
\nRightarrow
\nrightarrow
\nvleftarrow
\nvLeftarrow
\nVleftarrow
\nVleftarrowtail
\nvleftarrowtail
\nvleftrightarrow
\nVleftrightarrow
⤄
⇻
⤃
⇸
⤕
⤔
⬴
⬵
⬼
⬽
⤁
⤀
⤗
⤘
\nvLeftrightarrow
\nVrightarrow
\nvRightarrow
\nvrightarrow
\nVrightarrowtail
\nvrightarrowtail
\nvtwoheadleftarrow
\nVtwoheadleftarrow
\nvtwoheadleftarrowtail
\nVtwoheadleftarrowtail
\nVtwoheadrightarrow
\nvtwoheadrightarrow
\nvtwoheadrightarrowtail
\nVtwoheadrightarrowtail
*
Defined as an ordinary character, not as a binary relation.
†
stix defines \ngets as a synonym for \nleftarrow.
Table 163: stix Harpoons
⥡
⥝
⥖
⥒
⥟
⥛
⥘
⥔
⥫
⥭
⇃
⥙
⇂
⥕
⥥
⥯
↽
⥞
⥢
↼
⥚
⥪
⥐
⥋
*
\bardownharpoonleft
\bardownharpoonright
\barleftharpoondown
\barleftharpoonup
\barrightharpoondown
\barrightharpoonup
\barupharpoonleft
\barupharpoonright
\dashleftharpoondown
\dashrightharpoondown
\downharpoonleft
\downharpoonleftbar
\downharpoonright
\downharpoonrightbar
\downharpoonsleftright
\downupharpoonsleftright
\leftharpoondown
\leftharpoondownbar
\leftharpoonsupdown
\leftharpoonup
\leftharpoonupbar
\leftharpoonupdash
\leftrightharpoondowndown
\leftrightharpoondownup
⇋
⥧
⥦
⥊
⥎
⇁
⥗
⥤
⇀
⥓
⥬
⇌
⥩
⥨
⥑
⥍
⥌
⥏
⥮
↿
⥠
↾
⥜
⥣
\leftrightharpoons
\leftrightharpoonsdown
\leftrightharpoonsup
\leftrightharpoonupdown
\leftrightharpoonupup
\rightharpoondown
\rightharpoondownbar
\rightharpoonsupdown
\rightharpoonup
\rightharpoonupbar
\rightharpoonupdash
\rightleftharpoons
\rightleftharpoonsdown
\rightleftharpoonsup
\updownharpoonleftleft
\updownharpoonleftright
\updownharpoonrightleft
\updownharpoonrightright
\updownharpoonsleftright
\upharpoonleft
\upharpoonleftbar
\upharpoonright*
\upharpoonrightbar
\upharpoonsleftright
stix defines \restriction as a synonym for \upharpoonright.
86
Table 164: harpoon Extensible Harpoons
↼
𝑎𝑏𝑐
↽
𝑎𝑏𝑐
⇀
𝑎𝑏𝑐
\overleftharp{abc}
⇁
𝑎𝑏𝑐
\overrightharpdown{abc}
\overleftharpdown{abc}
𝑎𝑏𝑐
\underleftharp{abc}
\overrightharp{abc}
↼
𝑎𝑏𝑐
↽
𝑎𝑏𝑐
⇀
𝑎𝑏𝑐
⇁
\underrightharp{abc}
\underrightharpdown{abc}
\underleftharpdown{abc}
All of the harpoon symbols are implemented using the graphics package (specifically, graphics’s \resizebox command). Consequently, only TEX backends
that support graphical transformations (e.g., not Xdvi) can properly display
these symbols.
Table 165: chemarrow Arrows
A
\chemarrow
Table 166: fge Arrows
!
\fgerightarrow
"
\fgeuparrow
Table 167: old-arrows Arrows
↓
←˒
˓→
←
↔
˓−→
←−
\downarrow
\hookleftarrow
\hookrightarrow
\leftarrow
\leftrightarrow
\longhookrightarrow
\longleftarrow
←→
←−[
↦−→
−→
←[
↦→
↗
\longleftrightarrow
\longmapsfrom*
\longmapsto
\longrightarrow
\mapsfrom*
\mapsto
\nearrow
↖
→
↘
↘
↑
↕
\nwarrow
\rightarrow
\searrow
\swarrow
\uparrow
\updownarrow
The arrows provided by old-arrows represent Donald Knuth’s pre-1992 Computer Modern glyphs, which feature smaller arrowheads. Contrast the following:
→
vs.
default
→
old-arrows
In addition to the arrows shown above, old-arrows also reduces the arrowhead
size for 𝒜ℳ𝒮’s \overleftarrow, \overrightarrow, \overleftrightarrow,
\underleftarrow,
\underrightarrow,
\underleftrightarrow,
\xleftarrow, \xrightarrow, \varinjlim, and \varprojlim symbols
(Table 246 on page 107, Table 262 on page 111, and Table 184 on page 91)
and mathtools’s \xleftrightarrow, \xhookleftarrow, \xhookrightarrow,
and \xmapsto symbols (Table 263 on page 111).
With the new package option, old-arrows prefixes all of the above with “var”
(i.e., \vardownarrow, \varhookleftarrow, etc.) so both old and new glyphs
can be used in the same document. See the old-arrows documentation for more
information.
*
Requires stmaryrd.
87
Table 168: old-arrows Harpoons
↽−
↼−
\longleftharpoondown
\longleftharpoonup
−⇁
−⇀
\longrightharpoondown
\longrightharpoonup
Unlike the symbols shown in Table 167 on the previous page, the new package
option does not define a \var. . . version of the symbols in this table. Also
unlike the symbols shown in Table 167, the harpoon arrowheads in this table
are not reduced in size (i.e., relative to the size of those shown in Table 140 on
page 72).
Table 169: esrelation Restrictions
‰
)
\restrictbarb
\restrictbarbup
”
*
\restrictmallet
\restrictmalletup
(
\restrictwand
\restrictwandup
Table 170: MnSymbol Spoons
s
⫰
r
⟜
̸
⫰̸
t
l
̸
⟜̸
̸
*
\downfilledspoon
\downspoon
\leftfilledspoon
\leftspoon
\ndownfilledspoon
\ndownspoon
\nefilledspoon
\nespoon
\nleftfilledspoon
\nleftspoon
\nnefilledspoon
̸
̸
̸
̸
⊸̸
̸
̸
̸
̸
̸
⫯̸
\nnespoon
\nnwfilledspoon
\nnwspoon
\nrightfilledspoon
\nrightspoon*
\nsefilledspoon
\nsespoon
\nswfilledspoon
\nswspoon
\nupfilledspoon
\nupspoon
u
m
p
⊸
w
o
v
n
q
⫯
\nwfilledspoon
\nwspoon
\rightfilledspoon
\rightspoon*
\sefilledspoon
\sespoon
\swfilledspoon
\swspoon
\upfilledspoon
\upspoon
MnSymbol defines \multimap as a synonym for \rightspoon and \nmultimap
as a synonym for \nrightspoon.
Table 171: MnSymbol Pitchforks
⫛
Š
⫛̸
Œ
̸
̸
*
\downpitchfork
\leftpitchfork
\ndownpitchfork
\nepitchfork
\nleftpitchfork
\nnepitchfork
̸
̸
̸
̸
⋔̸

\nnwpitchfork
\nrightpitchfork
\nsepitchfork
\nswpitchfork
\nuppitchfork
\nwpitchfork
ˆ

Ž
⋔
\rightpitchfork
\sepitchfork
\swpitchfork
\uppitchfork
MnSymbol defines \pitchfork as a synonym for \uppitchfork and
\npitchfork as a synonym for \nuppitchfork.
88
Table 172: MnSymbol Smiles and Frowns
%
$
#
"
⌢
!
'
)
̸
̸
̸
̸
̸
̸
⌢̸
̸
̸
̸
̸
⌣̸
*
̸
̸
≭
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
⌣
\doublefrown
\doublefrowneq
\doublesmile
\doublesmileeq
\eqfrown
\eqsmile
\frown
\frowneq
\frowneqsmile
\frownsmile
\frownsmileeq
\ndoublefrown
\ndoublefrowneq
\ndoublesmile
\ndoublesmileeq
\neqfrown
\neqsmile
\nfrown
\nfrowneq
\nfrowneqsmile
\nfrownsmile
\nfrownsmileeq
\nsmile
\nsmileeq
\nsmileeqfrown
\nsmilefrown
\nsmilefrowneq
\nsqdoublefrown
\nsqdoublefrowneq
\nsqdoublesmile
\nsqdoublesmileeq
\nsqeqfrown
\nsqeqsmile
\nsqfrown
\nsqfrowneq
\nsqfrowneqsmile
\nsqfrownsmile
\nsqsmile
\nsqsmileeq
\nsqsmileeqfrown
\nsqsmilefrown
\nsqtriplefrown
\nsqtriplesmile
\ntriplefrown
\ntriplesmile
\smile
\smileeq
\smileeqfrown
\smilefrown
\smilefrowneq
\sqdoublefrown
\sqdoublefrowneq
\sqdoublesmile
\sqdoublesmileeq
\sqeqfrown
\sqeqsmile
\sqfrown
\sqfrowneq
\sqfrowneqsmile
\sqfrownsmile
\sqsmile
\sqsmileeq
\sqsmileeqfrown
\sqsmilefrown
\sqtriplefrown
\sqtriplesmile
\triplefrown
\triplesmile
&
≍
(
7
,
6
5
4
+
3
9
1
*
2
8
0
/
.
MnSymbol defines \smallsmile as a synonym for \smile, \smallfrown as a
synonym for \frown, \asymp as a synonym for \smilefrown, and \nasymp as
a synonym for \nsmilefrown.
Table 173: fdsymbol Spoons
⊷
o
⫰
n
q
⧟
⟜
⊷̸
\blackwhitespoon
\downblackspoon
\downspoon
\leftblackspoon
\leftrightblackspoon
\leftrightspoon
\leftspoon
\nblackwhitespoon
̸
⫰̸
̸
̸
⧟̸
⟜̸
̸
⊸̸
\ndownblackspoon
\ndownspoon
\nleftblackspoon
\nleftrightblackspoon
\nleftrightspoon
\nleftspoon
\nrightblackspoon
\nrightspoon
̸
⫯̸
⊶̸
l
⊸
m
⫯
⊶
\nupblackspoon
\nupspoon
\nwhiteblackspoon
\rightblackspoon
\rightspoon
\upblackspoon
\upspoon
\whiteblackspoon
fdsymbol defines synonyms for many of the preceding symbols:
⫯
⧟
⊷
⫰
⊸
\cirmid
\dualmap
\imageof
\midcir
\multimap
⟜
⫯̸
⧟̸
⊷̸
⫰̸
\multimapinv
\ncirmid
\ndualmap
\nimageof
\nmidcir
89
⊸̸
⟜̸
⊶̸
⊶
\nmultimap
\nmultimapinv
\norigof
\origof
Table 174: fdsymbol Pitchforks
\downpitchfork
\leftpitchfork
\ndownpitchfork
w
v
̸
\nleftpitchfork
\nrightpitchfork
\nuppitchfork
̸
̸
⋔̸
t
⋔
\rightpitchfork
\uppitchfork
fdsymbol defines \npitchfork as a synonym for \nuppitchfork and
\pitchfork as a synonym for \uppitchfork.
Table 175: fdsymbol Smiles and Frowns
\frown
\frowneq
\frownsmile
\nfrown
⌢
≘
⁐
⌢̸
≘̸
⁐̸
⌣̸
̸
\nfrowneq
\nfrownsmile
\nsmile
\nsmileeq
\nsmilefrown
\smile
\smileeq
\smilefrown
≭
⌣
≍
fdsymbol defines \arceq as a synonym for \frowneq, \asymp as a synonym
for \smilefrown, \closure as a synonym for \frownsmile, \narceq as a
synonym for \nfrowneq, \nasymp as a synonym for \nsmilefrown, \nclosure
as a synonym for \nfrownsmile, \smallfrown as a synonym for \frown, and
\smallsmile as a synonym for \smile.
Table 176: halloweenmath Brooms and Pitchforks
−−∈
∋−−
\hmleftpitchfork
\hmrightpitchfork
−−<
−
>−−
−
\leftbroom
\rightbroom
Table 177: ulsy Contradiction Symbols
\blitza
\blitzb
\blitzc
\blitzd
\blitze
Table 178: Extension Characters
−
=
\relbar
\Relbar
Table 179: stmaryrd Extension Characters
X
Y
\Arrownot
\arrownot
[
\Mapsfromchar
\mapsfromchar
\
\Mapstochar
Table 180: txfonts/pxfonts Extension Characters
\Mappedfromchar
\mappedfromchar
\Mmappedfromchar
\mmappedfromchar
90
\Mmapstochar
\mmapstochar
Table 181: mathabx Extension Characters
\mapsfromchar
\Mapsfromchar
ß
û
Þ
ú
\mapstochar
\Mapstochar
Table 182: stix Extension Characters

:

\lhook
\mapsfromchar
\mapstochar
←
⇐

\relbar
\Relbar
\rhook
⭅
⇚
\RRelbar
\Rrelbar
Table 183: Log-like Symbols
\arccos
\arcsin
\arctan
\arg
\cos
\cosh
\cot
\coth
\csc
\deg
\det
\dim
\exp
\gcd
\hom
\inf
\ker
\lg
\lim
\liminf
\limsup
\ln
\log
\max
\min
\Pr
\sec
\sin
\sinh
\sup
\tan
\tanh
Calling the above “symbols” may be a bit misleading.3 Each log-like symbol
merely produces the eponymous textual equivalent, but with proper surrounding spacing. See Section 10.4 for more information about log-like symbols. As
\bmod and \pmod are arguably not symbols we refer the reader to the Short
Math Guide for LATEX [Dow00] for samples.
Table 184: 𝒜ℳ𝒮 Log-like Symbols
inj lim
\injlim
proj lim
\projlim
lim
−→
lim
\varinjlim
lim
\varlimsup
\varliminf
lim
←−
\varprojlim
Load the amsmath package to get these symbols. See Section 10.4 for some additional comments regarding log-like symbols. As \mod and \pod are arguably
not symbols we refer the reader to the Short Math Guide for LATEX [Dow00]
for samples.
3 Michael
J. Downes prefers the more general term, “atomic math objects”.
91
Table 185: mismath Log-like Symbols
*
adj
\adj
Conv
\Conv
id
\id
sech
\sech
arccot
\arccot
Cov
\Cov
Id
\Id
sgn
\sgn
arcosh
\arcosh
cov
\cov
im
\im
span
\spa
arcoth
\arcoth
arcsch
*
\csch
Im
\Im
tr
\tr
\arcsch
csch
# »
curl
\curl
lb
\lb
Var
\Var
arsech
\arsech
div
\divg
lcm
\lcm
Z
\Zu
arsinh
\arsinh
End
\End
rank
\rank
artanh
\artanh
\erf
\Aut
Re
#»
rot
\Re*
Aut
erf
# »
grad
\grad
\rot
mismath renames LATEX’s \Re and \Im (Table 203) to \oldRe and \oldIm.
Table 186: mismath Asymptotic Notation
O
Ã
»
\Complex
\COMPLEX
Ú
¿
\bigo
O
o
\bigO
\lito
Table 187: ChinA2e Number Sets
\Integer
\INTEGER
Î
¼
\Natural
\NATURAL
92
Ñ
½
\Rational
\RATIONAL
Ò
¾
\Real
\REAL
Table 188: Greek Letters
𝛼
𝛽
𝛾
𝛿
𝜖
𝜀
𝜁
𝜂
\alpha
\beta
\gamma
\delta
\epsilon
\varepsilon
\zeta
\eta
𝜃
𝜗
𝜄
𝜅
𝜆
𝜇
𝜈
𝜉
\theta
\vartheta
\iota
\kappa
\lambda
\mu
\nu
\xi
𝑜
𝜋
𝜛
𝜌
𝜚
𝜎
𝜍
o
\pi
\varpi
\rho
\varrho
\sigma
\varsigma
𝜏
𝜐
𝜑
𝜙
𝜒
𝜓
𝜔
\tau
\upsilon
\phi
\varphi
\chi
\psi
\omega
Γ
Δ
Θ
\Gamma
\Delta
\Theta
Λ
Ξ
Π
\Lambda
\Xi
\Pi
Σ
ϒ
Φ
\Sigma
\Upsilon
\Phi
Ψ
Ω
\Psi
\Omega
The remaining Greek majuscules can be produced with ordinary Latin letters.
The symbol “M”, for instance, is used for both an uppercase “m” and an uppercase “𝜇”. To make available commands for all of the Greek majuscules, either
use the mathspec package, which requires XELATEX, or copy mathspec.sty’s
Greek-letter definitions to your document’s preamble:
\DeclareMathSymbol{\Alpha}{\mathalpha}{operators}{"41}
\DeclareMathSymbol{\Beta}{\mathalpha}{operators}{"42}
\DeclareMathSymbol{\Epsilon}{\mathalpha}{operators}{"45}
\DeclareMathSymbol{\Zeta}{\mathalpha}{operators}{"5A}
\DeclareMathSymbol{\Eta}{\mathalpha}{operators}{"48}
\DeclareMathSymbol{\Iota}{\mathalpha}{operators}{"49}
\DeclareMathSymbol{\Kappa}{\mathalpha}{operators}{"4B}
\DeclareMathSymbol{\Mu}{\mathalpha}{operators}{"4D}
\DeclareMathSymbol{\Nu}{\mathalpha}{operators}{"4E}
\DeclareMathSymbol{\Omicron}{\mathalpha}{operators}{"4F}
\DeclareMathSymbol{\Rho}{\mathalpha}{operators}{"50}
\DeclareMathSymbol{\Tau}{\mathalpha}{operators}{"54}
\DeclareMathSymbol{\Chi}{\mathalpha}{operators}{"58}
\DeclareMathSymbol{\omicron}{\mathord}{letters}{"6F}
See Section 10.5 for examples of how to produce bold Greek letters.
The symbols in this table are intended to be used in mathematical typesetting.
Greek body text can be typeset using the babel package’s greek (or polutonikogreek) option—and, of course, a font that provides the glyphs for the Greek
alphabet.
Table 189: 𝒜ℳ𝒮 Greek Letters
z
\digamma
κ
93
\varkappa
Table 190: txfonts/pxfonts Upright Greek Letters
α
β
γ
δ
ε
ζ
η
\alphaup
\betaup
\gammaup
\deltaup
\epsilonup
\varepsilonup
\zetaup
\etaup
θ
ϑ
ι
κ
λ
µ
ν
ξ
π
$
ρ
%
σ
ς
τ
υ
\thetaup
\varthetaup
\iotaup
\kappaup
\lambdaup
\muup
\nuup
\xiup
\piup
\varpiup
\rhoup
\varrhoup
\sigmaup
\varsigmaup
\tauup
\upsilonup
φ
ϕ
χ
ψ
ω
\phiup
\varphiup
\chiup
\psiup
\omegaup
The symbols in this table are intended to be used sporadically throughout
a document (e.g., to represent mathematical units or numerical quantities—
“π ≈ 3.14159”). In contrast, Greek body text can be typeset using the babel
package’s greek (or polutonikogreek) option—and, of course, a font that provides
the glyphs for the Greek alphabet.
Table 191: upgreek Upright Greek Letters
α
β
γ
δ
ε
ζ
η
\upalpha
\upbeta
\upgamma
\updelta
\upepsilon
\upvarepsilon
\upzeta
\upeta
θ
ϑ
ι
κ
λ
µ
ν
ξ
\uptheta
\upvartheta
\upiota
\upkappa
\uplambda
\upmu
\upnu
\upxi
π
$
ρ
ρ
σ
σ
τ
υ
\uppi
\upvarpi
\uprho
\upvarrho
\upsigma
\upvarsigma
\uptau
\upupsilon
φ
ϕ
χ
ψ
ω
\upphi
\upvarphi
\upchi
\uppsi
\upomega
Γ
∆
Θ
\Upgamma
\Updelta
\Uptheta
Λ
Ξ
Π
\Uplambda
\Upxi
\Uppi
Σ
Υ
Φ
\Upsigma
\Upupsilon
\Upphi
Ψ
Ω
\Uppsi
\Upomega
upgreek utilizes upright Greek characters from either Euler Roman (depicted
above) or the PostScript Symbol font. As a result, the glyphs may appear
slightly different from the above. Contrast, for example, “Γ∆Θαβγ” (Euler)
with “Γ∆Θαβγ” (Symbol). Also note that the \var. . . forms do not always
produce a distinct glyph.
Unlike textgreek (Table 6 on page 15), upgreek works in math mode.
The symbols in this table are intended to be used sporadically throughout
a document (e.g., to represent mathematical units or numerical quantities—
“π ≈ 3.14159”). In contrast, Greek body text can be typeset using the babel
package’s greek (or polutonikogreek) option—and, of course, a font that provides
the glyphs for the Greek alphabet.
Table 192: fourier Variant Greek Letters
π
$
È
\pi
\varpi
\varvarpi
ρ
%
Æ
94
\rho
\varrho
\varvarrho
Table 193: txfonts/pxfonts Variant Latin Letters
1
3
\varg
4
\varv
2
\varw
\vary
Pass the varg option to txfonts/pxfonts to replace g, v, w, and y with 1, 3, 4,
and 2 in every mathematical expression in your document.
Table 194: boisik Variant Greek Letters
/
"
.
'
\varbeta
\varepsilon
$
%
\varkappa
\varphi
\varpi
\varrho
&
#
\varsigma
\vartheta
𝜗
\vartheta
Table 195: boisik Variant Latin Letters
ƒ
\varg
Table 196: stix Variant Greek Letters
𝜀
𝜘
𝜑
𝜛
\varepsilon
\varkappa
𝜚
𝜍
\varphi
\varpi
\varrho
\varsigma
Table 197: stix Transformed Greek Letters
϶
℧
℩
϶
\backepsilon
\mho
\turnediota
\upbackepsilon
Table 198: 𝒜ℳ𝒮 Hebrew Letters
\beth
i
‫ג‬
\gimel
k
\daleth
\aleph (ℵ) appears in Table 302 on page 118.
Table 199: MnSymbol Hebrew Letters
ℵ
\aleph
ℶ
\beth
ℷ
ℸ
\gimel
\daleth
Table 200: fdsymbol Hebrew Letters
ℵ
\aleph
ℶ
\beth
ℷ
\gimel
ℸ
\daleth
Table 201: boisik Hebrew Letters
ø
\beth
ù
\gimel
95
ú
\daleth
Table 202: stix Hebrew Letters
ℵ
ℶ
\aleph
\beth
ℷ
ℸ
\gimel
\daleth
Table 203: Letter-like Symbols
⊥
ℓ
∃
\bot
\ell
\exists
∀
~
ℑ
\forall
\hbar
\Im
𝚤
∈
𝚥
∋
𝜕
ℜ
\imath
\in
\jmath
⊤
℘
\ni
\partial
\Re
\top
\wp
Table 204: 𝒜ℳ𝒮 Letter-like Symbols
k
r
s
\Bbbk
\circledR
\circledS
{
`
a
\complement
\Finv
\Game
~
}
@
\hbar
\hslash
\nexists
Table 205: txfonts/pxfonts Letter-like Symbols
¢
*
\mathcent
\mathsterling*
£
<
\notin
=
\notni
It’s generally preferable to use the corresponding symbol from Table 3 on
page 15 because the symbols in that table work properly in both text mode
and math mode.
Table 206: mathabx Letter-like Symbols
V
A
D
F
G
\barin
\complement
\exists
\Finv
\Game
P
E
M
R
S
\in
\nexists
\notbot
\notin
\notowner
L
Q
W
B
C
\nottop
\owns
\ownsbar
\partial
\partialslash
T
U
\varnotin
\varnotowner
Table 207: MnSymbol Letter-like Symbols
–
∃
∀
*
\bot
\exists
\forall
∈
∄
∉
\in
\nexists
\nin*
∌
∋
℘
\nowns*
\owns
\powerset
⊺
℘
\top
\wp
MnSymbol provides synonyms \notin for \nin, \ni for \owns, and \intercal
for \top.
96
Table 208: fdsymbol Letter-like Symbols
⊥
∁
∃
Ⅎ
\bot
\complement
\exists
\Finv
∀
⅁
h̵
h̷
\forall
\Game
\hbar
\hslash
∈
∄
∉
∌
\in
\nexists
\nin
\nowns
∋
⊤
℘
\owns
\top
\wp
fdsymbol provides synonyms \notin for \nin, \ni for \owns, and \nni for
\nowns.
Table 209: boisik Letter-like Symbols
k
ý
û
\Bbbk
\complement
\Finv
\Game
\hbar
\hslash
ü
„
{
þ
|
\imath
\intercal
\jmath
â
€
\nexists
\wp
Table 210: stix Letter-like Symbols
Å
𝕜
⊥
Ⓡ
Ⓢ
∁
ϝ
𝓁
\Angstrom
\Bbbk
\bot
\circledR
\circledS
\complement
\digamma
\ell
ℇ
∃
Ⅎ
∀
⅁
ℏ
ℏ
ℑ
\Eulerconst
\exists
\Finv
\forall
\Game
\hbar
\hslash
\Im
𝚤
⊺
𝚥
$
¶
£
∄
ℜ
\imath
\intercal
\jmath
\mathdollar
\mathparagraph
\mathsterling
\nexists
\Re
⊤
⌶
℘
⅄
Ƶ
\top
\topbot
\wp
\Yup
\Zbar
Table 211: trfsigns Letter-like Symbols
e
j
\e
\im
Table 212: mathdesign Letter-like Symbols
∈
6
∈
\in
\notin
\notsmallin
\notsmallowns
3
\owns
\smallin
\smallowns
The mathdesign package additionally provides versions of each of the letter-like
symbols shown in Table 204 on the previous page.
Table 213: fge Letter-like Symbols
A
c
p
e
*
\fgeA
\fgec
\fged
\fgee
ı
F
f
”
D
C
B
s
\fgeeszett
\fgeF
\fgef
\fgelb*
\fgeleftB
\fgeleftC
\fgerightB
\fges
U
\fgeU
The fge package defines \fgeeta, \fgeN, and \fgeoverU as synonyms for
\fgelb.
97
Table 214: fourier Letter-like Symbols
∂
\partial
Ç
\varpartialdiff
Table 215: cmll Letter-like Symbols
‚
\Bot
‹
\simbot
Table 216: 𝒜ℳ𝒮 Delimiters
p
x
q
y
\ulcorner
\llcorner
\urcorner
\lrcorner
Table 217: stmaryrd Delimiters
P
V
L
\Lbag
\llceil
\llparenthesis
Q
W
M
\Rbag
\rrceil
\rrparenthesis
N
T
\lbag
\llfloor
O
U
\rbag
\rrfloor
Table 218: mathabx Delimiters
v
\lcorners
w
\rcorners
x
z
\ulcorner
\llcorner
y
{
\urcorner
\lrcorner
Ø
à
Table 219: boisik Delimiters
Ù
á
\ulcorner
\llcorner
\urcorner
\lrcorner
Table 220: stix Delimiters
⦑
⟅
⦗
⦏
⦋
⦍
⟬
⧼
\langledot
\lbag
\lblkbrbrak
\lbracklltick
\lbrackubar
\lbrackultick
\Lbrbrak
\lcurvyangle
⦒
⟆
⦘
⦐
⦌
⦎
⟭
⧽
⦉
⌞
⦇
⦕
⦓
⧘
⧚
⌜
\rangledot
\rbag
\rblkbrbrak
\rbrackurtick
\rbrackubar
\rbracklrtick
\Rbrbrak
\rcurvyangle
\llangle
\llcorner
\llparenthesis
\Lparengtr
\lparenless
\lvzigzag
\Lvzigzag
\ulcorner
Table 221: nath Delimiters
\niv
\vin
98
⦊
⌟
⦈
⦖
⦔
⧙
⧛
⌝
\rrangle
\lrcorner
\rrparenthesis
\Rparenless
\rparengtr
\rvzigzag
\Rvzigzag
\urcorner
Table 222: Variable-sized Delimiters
↓
⟨
⎮
⎮
⌄
⟨
⌈
⌈︁
⌊
⌊︁
(
(︁
/
⧸︁
\downarrow
\langle
\lceil
\lfloor
(
/
⇓
⟩
⃦
⃦
⇓
⟩
⌉
⌉︁
⌋
⌋︁
)
)︁
∖
⃥︁
[
[︁
\rangle
|
\rceil
↑
\rfloor
↕
)
{
⃒
⃒
⃒
⌃
⎮
⎮
⌃
⎮
⌄
{︁
\Downarrow
]
]︁
|
‖
\uparrow
⇑
\updownarrow
⇕
\{
}
⃦
⃦
⃦
⇑
⃦
⃦
⇑
⃦
⇓
}︁
[
]
\|
\Uparrow
\Updownarrow
\}
\backslash
When used with \left and \right, these symbols expand to the height of the
enclosed math expression. Note that \vert is a synonym for |, and \Vert is
a synonym for \|.
𝜀-TEX provides a \middle analogue to \left and \right. \middle can be
used, for example, to make an internal “|” expand to the height of the surrounding \left and \right symbols. (This capability is commonly needed
when typesetting adjacent bras and kets in Dirac notation: “⟨𝜑|𝜓⟩”). A similar effect can be achieved in conventional LATEX using the braket package.
⎧
⎭
⎮
⎮
⎧
⎪
⎪
⎪
⎪
⎭
⎮
⎮
⎮
⎮
⎮
\lmoustache
\arrowvert
Table 223: Large, Variable-sized Delimiters
⎧
⎫
⎧ ⎪
⎫ ⎪
⎪
⎪
⎩ ⎪
⎩ ⎪
⎪
⎪
⎩ \lgroup
⎩ \rmoustache
⎪
⃦
⎪
⎪
⎪
⃦ ⃦
⎪
⎪
⃦
⎪
⎪
⃦ ⃦ \Arrowvert
\bracevert
⎪
⎪ ⎪
⎪
⎪
⃦
⎪
⎫
⎭
⎫
⎪
⎪
⎪
⎪
⎭
These symbols must be used with \left and \right. The mathabx package, however, redefines \lgroup and \rgroup so that those symbols can work
without \left and \right.
Table 224: 𝒜ℳ𝒮 Variable-sized Delimiters
|
⃒
⃒
⃒
\lvert
|
⃒
⃒
⃒
\rvert
‖
⃦
⃦
⃦
\lVert
‖
⃦
⃦
⃦
\rVert
According to the amsmath documentation [AMS99], the preceding symbols are
intended to be used as delimiters (e.g., as in “|−𝑧|”) while the \vert and \Vert
symbols (Table 222) are intended to be used as operators (e.g., as in “𝑝|𝑞”).
Table 225: stmaryrd Variable-sized Delimiters
~
\llbracket

\rrbracket
99
\rgroup
Table 226: mathabx Variable-sized Delimiters
1
9
\ldbrack
v
\rdbrack
w
7
7
7
7
7
\lfilet
~
ffl
ffl
ffl
\thickvert
?
?
?
?
?
\rfilet
~
\vvvert
Table 227: MnSymbol Variable-sized Delimiters
X
X
X
X
X
X
X
X
X
\Arrowvert
{
RR
R
RR
RR
RR
\arrowvert
⌈
/
/
\backslash
⌊
⎪
⎪
⎪
⎪
⎪
⎪
\bracevert
⎪
⎪
⎪
⎡⎢
⎢⎢
⎢⎣
⎤⎥
⎥⎥
⎥⎦
[
]
⎧
⎪
⎪
⎨
⎪
⎩
⎡⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎣
⎧
⎪
⎪
⎪
⎪
⎩
⎧
⎪
⎩
\lfloor
⎫
⎪
⎭
⎤⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎦
⎫
⎪
⎪
⎪
⎪
⎭
\lgroup
⎫
⎪
⎩
⎫
⎪
⎪
⎪
⎪
⎩
\lbrace
⌉
\lceil
⌋
[
⟪
⟪
\llangle
⟫
]
⌞
⌞
\llcorner
⟧
⎧
⎪
⎪
⎪
⎪
⎭
⎧
⎪
⎭
(
(
(
)
)
)
⌟
/
/
/
⟦
⟨
⟨
<
^^
^
⟩
⟩
>
_
_
_
∣
RR
RR
RR
|
⟩
⌟
L
P
P
P
P
N
^^
^^
^^
_
_
_
_
_
_
⟩
⟫
\lmoustache
_
_
_
\lrcorner
^^
^
M
Q
Q
Q
Q
O
_
_
_
_
_
_
^^
^^
^^
\rceil
\rfloor
\rgroup
\rmoustache
\rrangle
\rsem
\rWavy
\rwavy
\lsem
⌜
⌜
\ulcorner
\lwavy
3
6
\ullcorner
\lWavy
8
;
\ulrcorner
\rangle
⌝
⌝
\urcorner
(continued on next page)
100
(continued from previous page)
⟨
⟨
\langle
p
k
n
\langlebar
}
s
\ranglebar
⎫
⎪
⎪
⎬
⎪
⎭
X
X
X
X
X
X
∥
\|
\rbrace
\vert is a synonym for |. \Vert is a synonym for \|. \mid and \mvert
produce the same symbol as \vert but designated as math relations instead
of ordinals. \divides produces the same symbol as \vert but designated as
a binary operator instead of an ordinal. \parallel and \mVert produce the
same symbol as \Vert but designated as math relations instead of ordinals.
Table 228: fdsymbol Variable-sized Delimiters
\
\
↓
È
È
È
È
È
↓
⇓
Ë
Ë
Ë
Ë
Ë
⇓
\backslash
\downarrow
⌟
⌟
∣
∣∣
∣∣
∣∣
\Downarrow
∥
\lrcorner
∥
∥
∥
∥
∥
∥
Å
Å
Å
Å
Å
Å
\lvert
)
)
∣
∣∣
∣∣
∣∣
\lVert
∥
\lVvert
⦀
\rparen
∥
∥
∥
∥
∥
∥
Å
Å
Å
Å
Å
Å
\rvert
\rVert
⟪
⟪
\lAngle
⦀
⟨
⟨
\langle
/
/
\mathslash
⌜
⌜
\ulcorner
⦑
⦑
\langledot
⟩
⟩
\rangle
N
S
\ullcorner
{
{
\lbrace
⟫
⟫
\rAngle
T
Y
\ulrcorner
[
[
\lbrack
⦒
⦒
\rangledot
↑
↑
È
È
È
È
È
\uparrow
⇑
⇑
Ë
Ë
Ë
Ë
Ë
\Uparrow
⟦
⟦
\lBrack
}
}
\rbrace
\rVvert
(continued on next page)
101
(continued from previous page)
⌈
⌈
⌊
⌊
⎧
⎪
⎪
⎪
⎪
⎩
⎧
⎪
⎩
⌞
⌞
(
(
⟧
\rBrack
↕
\updownarrow
⇑
Ë
Ë
Ë
Ë
⇓
\Updownarrow
\lfloor
]
]
\rbrack
⇕
\lgroup
⌉
⌉
\rceil
⌝
⌝
∣
∣∣
∣∣
∣∣
\llcorner
⎧
⎪
⎪
⎪
⎪
⎭
⎧
⎪
⎭
⟧
\lceil
↑
È
È
È
È
↓
⌋
⌋
\rfloor
\lmoustache
⎫
⎪
⎭
⎫
⎪
⎪
⎪
⎪
⎭
\rgroup
∥
\lparen
⎫
⎪
⎩
⎫
⎪
⎪
⎪
⎪
⎩
\rmoustache
⦀
\urcorner
∥
∥
∥
∥
∥
∥
Å
Å
Å
Å
Å
Å
\vert
\Vert
\Vvert
fdsymbol defines “(” as a synonym for \lparen, “)” as a synonym for \rparen,
“[” as a synonym for \lbrack, “]” as a synonym for \rbrack, “{” as a synonym for \lbrace, “}” as a synonym for \rbrace, “/” as a synonym for
\mathslash, “|” as a synonym for \vert, “\|” as a synonym for \Vert, \lsem
as a synonym for \lBrack, and \rsem as a synonym for \rBrack.
Table 229: stix Variable-sized Delimiters
⇑
⏐
⇑
⇑
⇑
⇑
⇑
⇑
⇑
⇑
⇑
⇑
⇑
⇑
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
\
∖
⟪
\Arrowvert
⟪
⌉
\lAngle
⌉
{
\arrowvert
{
⌋
\lbrace
⌋
\lBrace
⟯
\lBrack
⎱
\lbrbrak
⦆
⦃
\backslash
⦃
⟦
⤋
⤊
⤊
⤊
⤊
⤊
⤊
⤊
⤊
⤊
⤋
\Ddownarrow
⟱
⟰
⟰
⟰
⟰
⟰
⟰
⟰
⟰
⟰
⟱
\DDownarrow
⟦
❲
❲
\rceil
\rfloor
⎧
⎪
⎩
⎫
⎪
⎩
⦆
\rgroup
\rmoustache
\rParen
(continued on next page)
102
(continued from previous page)
⌈
↓
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
↓
\downarrow
⇓
⇑
⇑
⇑
⇑
⇑
⇑
⇑
⇑
⇑
⇓
\Downarrow
⌊
[
⟮
]
⎰
(
⦅
[
[
⌈
(
(
)
)
⟨
\lfloor
⇑
⇑
⇑
⇑
⇑
⇑
⇑
⇑
⇑
⇑
⇑
\Uparrow
\lgroup
⇕
\lmoustache
↕
\lParen
⤊
\rAngle
⟰
\rangle
‖
\rbrace
|
||
||
||
\vert
\rBrace
⦀
⦀
⦀
⦀
⦀
⦀
⦀
\Vvert
}
}
<
⟩
|
⎧
⎪
⎭
⦅
⟩
⟨
⦄
⦄
>
||
||
||
⟨
\uparrow
⟩
/
⟩
⎫
⎪
⎭
⟫
/
⟨
↑
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⟫
)
∕
↑
⌊
]
]
\lceil
⟧
⟧
|
⇑
⇑
⇑
⇑
⇑
⇑
⇑
⇑
⇑
⇓
↑
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
⏐
↓
⤊
⤊
⤊
⤊
⤊
⤊
⤊
⤊
⤊
⤊
⟰
⟰
⟰
⟰
⟰
⟰
⟰
⟰
⟰
⟰
‖
‖
‖
‖
‖
‖
\Updownarrow
\updownarrow
\Uuparrow
\UUparrow
\Vert
\rBrack
❳
❳
\langle
\rbrbrak
Table 230: mathdesign Variable-sized Delimiters
Ð
Ñ
Ð
Ð
Ð
Ð
Ñ
Ñ
Ñ
Ñ
\leftwave
Ð
\leftevaw
Ñ
Ð
Ð
Ð
Ð
Ñ
Ñ
Ñ
Ñ
\rightwave
\rightevaw
The definitions of these symbols include a preceding \left or \right. It is
therefore an error to specify \left or \right explicitly. The internal, “primitive” versions of these symbols are called \lwave, \rwave, \levaw, and \revaw.
103
Table 231: nath Variable-sized Delimiters (Double)
*
⟨⟨
⟨⟨
[[
[︁[︁
⌈⌈
⌈︁⌈︁
⌊⌊
⌊︁⌊︁
||
⃒⃒
⃒⃒
⃒⃒
\lAngle
⟩⟩
⟩⟩
\lBrack
]]
]︁]︁
\lCeil
⌉⌉
⌉︁⌉︁
\lFloor
⌋⌋
⌋︁⌋︁
\lVert*
||
⃒⃒
⃒⃒
⃒⃒
\rAngle
\rBrack
\rCeil
\rFloor
\rVert*
nath redefines all of the above to include implicit \left and \right commands.
Hence, separate \lVert and \rVert commands are needed to disambiguate
whether “|” is a left or right delimiter.
All of the symbols in Table 231 can also be expressed using the \double macro.
See the nath documentation for examples and additional information.
Table 232: nath Variable-sized Delimiters (Triple)
*
⟨⟨⟨
⟨⟨⟨
[[[
[︁[︁[︁
|||
⃒⃒⃒
⃒⃒⃒
⃒⃒⃒
\triple<
⟩⟩⟩
⟩⟩⟩
\triple[
]]]
]︁]︁]︁
\ltriple|*
|||
⃒⃒⃒
⃒⃒⃒
⃒⃒⃒
\triple>
\triple]
\rtriple|*
Similar to \lVert and \rVert in Table 231, \ltriple and \rtriple must
be used instead of \triple to disambiguate whether “|” is a left or right
delimiter.
Note that \triple—and the corresponding \double—is actually a macro that
takes a delimiter as an argument.
Table 233: fourier Variable-sized Delimiters
‹
Œ
\llbracket
“
“
“
“
“
“
†
\rrbracket
\VERT
Table 234: textcomp Text-mode Delimiters
⟨
〚
⁅
\textlangle
\textlbrackdbl
\textlquill
⟩
〛
⁆
104
\textrangle
\textrbrackdbl
\textrquill
Table 235: metre Text-mode Delimiters
}
{
⟩
⟨
\alad
\alas
\angud
\angus
} \Alad
{ \Alas
⟩
⟨
†
]]
\Angud
\Angus
[[
\crux
\quadrad
\quadras
†
]]
[[
\Crux
\Quadrad
\Quadras
Table 236: Math-mode Accents
𝑎
´
𝑎
¯
𝑎
˘
\acute{a}
\bar{a}*
\breve{a}
𝑎
ˇ
𝑎
¨
𝑎˙
\check{a}
\ddot{a}
\dot{a}
𝑎
`
𝑎
^
˚
𝑎
\grave{a}
\hat{a}
\mathring{a}
𝑎
˜
⃗𝑎
\tilde{a}
\vec{a}
Note also the existence of \imath and \jmath, which produce dotless versions
of “i ” and “j ”. (See Table 302 on page 118.) These are useful when the
accent is supposed to replace the dot. For example, “\hat{\imath}” produces
a correct “ ^𝚤 ”, while “\hat{i}” would yield the rather odd-looking “ ^𝑖 ”.
*
The \overline command (Table 246 on page 107) produces a wider accent
¯ However, unlike adjacent \bars, adjacent \overlines
than \bar: “𝐴” vs. “𝐴”.
¯ If wider bars than
run together, which is often not desired: “𝐴𝐵” vs. “𝐴¯𝐵”.
\bar are needed, the following code from Enrico Gregorio can be used to add
the requisite inter-symbol spacing [Gre09]:
\newcommand{\closure}[2][3]{%
{}\mkern#1mu\overline{\mkern-#1mu#2}}
With that definition, “\closure{A}\closure{B}” produces “𝐴𝐵”, with a visible gap between the two accents. The optional argument can be used to
fine-tune the spacing.
Table 237: 𝒜ℳ𝒮 Math-mode Accents
...
....
𝑎 \dddot{a}
𝑎 \ddddot{a}
These accents are also provided by the mathabx and accents packages and are
redefined by the mathdots package if the amsmath and amssymb packages have
previously been loaded. All of the variations except for the original 𝒜ℳ𝒮 ones
...
tighten the space between the dots (from 𝑎 to ˙˙˙
𝑎). The mathabx and mathdots
𝑎
versions
also
function
properly
within
subscripts
and superscripts (𝑥˙˙˙
instead
...
𝑎
of 𝑥 ) .
Table 238: MnSymbol Math-mode Accents
⃗a
\vec{a}
105
Table 239: fdsymbol Math-mode Accents
a̵
a̷
\middlebar{a}
a
̸
\middleslash{a} a⃗
\strokethrough{a}
\vec{a}
\middlebar and \middleslash are applied here to “𝑎” for consistency with
the rest of the document, but they generally look better when applied to taller
lowercase characters.
Table 240: boisik Math-mode Accents
a
\vec{a}
Table 241: stix Math-mode Accents
á
⃧
a
a⃰
ā
ă
a̐
ǎ
⃜
a
⃛a
ä
ȧ
a̚
à
\acute{a}
\annuity{a}
\asteraccent{a}
\bar{a}
\breve{a}
\candra{a}
\check{a}
\ddddot{a}
\dddot{a}
\ddot{a}
\dot{a}
\droang{a}
\grave{a}
â
a⃖
a⃐
a
⃡
å
a̕
a̒
ả
a⃑
ã
a⃗
⃩
a
\hat{a}
\leftarrowaccent{a}
\leftharpoonaccent{a}
\leftrightarrowaccent{a}
\mathring{a}
\ocommatopright{a}
\oturnedcomma{a}
\ovhook{a}
\rightharpoonaccent{a}
\tilde{a}
\vec{a}
\widebridgeabove{a}
Table 242: fge Math-mode Accents
–
A–
a
*
\spirituslenis{A}\spirituslenis{a}*
When fge is passed the crescent option, \spirituslenis instead uses a crescent
accent as in “ —a ”.
Table 243: yhmath Math-mode Accents
˚
𝑎
\ring{a}
This symbol is largely obsolete, as standard LATEX 2𝜀 has supported \mathring
(Table 236 on the previous page) since June 1998 [LAT98].
Table 244: halloweenmath Halloween-Themed Math-mode Accents
𝑎
\overbat{a}
𝑎
\underbat{a}
𝑎
\overbat*{a}
𝑎
\underbat*{a}
106
Table 245: realhats Math-mode Hat Accents
𝑎
𝑎
𝑎
𝑎
D
𝑎
\hat[ash]{a}
\hat[beret]{a}
\hat[cowboy]{a}
\hat[crown]{a}
𝑎
𝑎
𝑎
𝑎
\hat[fez]{a}
\hat[santa]{a}
\hat[sombrero]{a}
\hat[tophat]{a}
\hat[dunce]{a}
𝑎
\hat[witch]{a}
These hats are drawn by scaling a graphic image and placing it at an appropriate location.
If \hat is used with no argument, it selects a hat at random. Alternatively, a
hat type can be passed as an option to realhats to specify the default hat. See
the realhats documentation for more information.
Table 246: Extensible Accents
̃︁
𝑎𝑏𝑐
←−
𝑎𝑏𝑐
\widetilde{abc}*
\widehat{abc}*
\overleftarrow{abc}†
̂︁
𝑎𝑏𝑐
−→
𝑎𝑏𝑐
𝑎𝑏𝑐
⏞⏟
𝑎𝑏𝑐
√
𝑎𝑏𝑐
\overline{abc}
𝑎𝑏𝑐
\underline{abc}
\overbrace{abc}
⏟𝑎𝑏𝑐
⏞
\underbrace{abc}
\overrightarrow{abc}†
\sqrt{abc}‡
As demonstrated in a 1997 TUGboat article about typesetting long-division
problems [Gib97], an extensible long-division sign (“ )𝑎𝑏𝑐 ”) can be faked by
putting a “\big)” in a tabular environment with an \hline or \cline in
the preceding row. The article also presents a piece of code (uploaded to
CTAN as longdiv.tex) that automatically solves and typesets—by putting an
\overline atop “\big)” and the desired text—long-division problems. More
recently, the STIX fonts include a true long-division sign. See \longdivision
in Table 252 for a sample of this symbol. See also the polynom package, which
automatically solves and typesets polynomial-division problems in a similar
manner.
*
These symbols are made more extensible by the MnSymbol package (Table 250
on the following page). and even more extensible by the yhmath package (Table 248 on the following page).
†
If you’re looking for an extensible diagonal line or arrow to be used for canceling
5
:
or “
−𝑥”
or reducing mathematical subexpressions (e.g., “
𝑥+
3+
2 ”) then
consider using the cancel package.
‡
With an optional argument,
For example,
√ \sqrt typesets nth roots.
√
“\sqrt[3]{abc}” produces “ 3 𝑎𝑏𝑐 ” and “\sqrt[n]{abc}” produces “ 𝑛 𝑎𝑏𝑐 ”.
Table 247: overrightarrow Extensible Accents
=⇒
𝑎𝑏𝑐 \Overrightarrow{abc}
107
Table 248: yhmath Extensible Accents
”
𝑎𝑏𝑐
ˆ
𝑎𝑏𝑐
˚
ˆ
𝑎𝑏𝑐
\widehat{abc}
›
𝑎𝑏𝑐
\widetilde{abc}
\wideparen{abc}
È
𝑎𝑏𝑐
\widetriangle{abc}
\widering{abc}
Table 249: 𝒜ℳ𝒮 Extensible Accents
←
→
𝑎𝑏𝑐
\overleftrightarrow{abc}
𝑎𝑏𝑐
←−
\underleftarrow{abc}
«
abc
³¹¹ ¹ ¹µ
𝑎𝑏𝑐
↼Ð
𝑎𝑏𝑐
zx
𝑎𝑏𝑐
Ð⇀
𝑎𝑏𝑐
abc
°
𝑎𝑏𝑐
←
→
𝑎𝑏𝑐
−→
\underleftrightarrow{abc}
\underrightarrow{abc}
Table 250: MnSymbol Extensible Accents
\overbrace{abc}
𝑎𝑏𝑐
´¹¹ ¹ ¹¶
\undergroup{abc}
\overgroup{abc}
\underlinesegment{abc}
\overleftharpoon{abc}
𝑎𝑏𝑐
zx
̂
abc
\widehat{abc}
\overlinesegment{abc}
Í
abc
\wideparen{abc}
\overrightharpoon{abc}
̃
abc
\widetilde{abc}
\underbrace{abc}
Table 251: fdsymbol Extensible Accents
ÌÒÒ ÐÒ ÒÎ
𝑎𝑏𝑐
ÌÒÒ Ò Ò Ò Ò Ò ÒÎ
𝑎𝑏𝑐
↽−−
𝑎𝑏𝑐
¬­
𝑎𝑏𝑐
−−⇀
𝑎𝑏𝑐
𝑎𝑏𝑐
ÍÒÒ ÑÒ ÒÏ
\overleftharpoon{abc}
𝑎𝑏𝑐
ÍÒÒ Ò Ò Ò Ò Ò ÒÏ
𝑎𝑏𝑐
¬­
̂
abc
\widehat{abc}
\overlinesegment{abc}
̑
abc
\wideparen{abc}
\overrightharpoon{abc}
̃
abc
\widetilde{abc}
\overbrace{abc}
\overgroup{abc}
\underbrace{abc}
108
\undergroup{abc}
\underlinesegment{abc}
Table 252: stix Extensible Accents
⟌
⃖⃖⃖⃖⃖⃖⃖
𝑎𝑏𝑐
⏞⏞⏞
𝑎𝑏𝑐
⎴
𝑎𝑏𝑐
\overbracket{abc}
⃖⃖⃖⃖⃖⃖
𝑎𝑏𝑐
\overleftarrow{abc}
⃐⃖⃖⃖⃖⃖
𝑎𝑏𝑐
\overleftharpoon{abc}
⃖⃖⃖⃖⃖
𝑎𝑏𝑐⃗
⏜⏜
𝑎𝑏𝑐
\overleftrightarrow{abc}
⃖⃖⃖⃖⃖⃗
𝑎𝑏𝑐
\longdivision{abc}
𝑎𝑏𝑐
⎵
\underbracket{abc}
\overbrace{abc}
𝑎𝑏𝑐
⃖⃖⃖⃖⃖⃖
𝑎𝑏𝑐
⃐⃖⃖⃖⃖⃖
𝑎𝑏𝑐
⃖⃖⃖⃖⃖⃗
𝑎𝑏𝑐
⏝⏝
\underleftarrow{abc}
\underrightarrow{abc}
\overrightarrow{abc}
𝑎𝑏𝑐
⃖⃖⃖⃖⃖⃗
𝑎𝑏𝑐
⃖⃖⃖⃖⃖⃑
̌
abc
⃖⃖⃖⃖⃖⃑
𝑎𝑏𝑐
√
⃖⃖⃖⃖⃖⃖⃖
𝑎𝑏𝑐
\overrightharpoon{abc}
̂
abc
\widehat{abc}
\sqrt{abc}
̃
abc
\widetilde{abc}
𝑎𝑏𝑐
⏟⏟⏟
\underbrace{abc}
\overparen{abc}
\underleftharpoon{abc}
\underleftrightarrow{abc}
\underparen{abc}
\underrightharpoon{abc}
\widecheck{abc}
Table 253: mathtools Extensible Accents
⏞⏟
𝑎𝑏𝑐
𝑎𝑏𝑐
*
\overbrace{abc}
*
\overbracket{abc}
⏟𝑎𝑏𝑐
⏞
𝑎𝑏𝑐
\underbrace{abc}
\underbracket{abc}*
\overbracket and \underbracket accept optional arguments that specify the
bracket height and thickness. See the mathtools documentation for more information.
Table 254: mathabx Extensible Accents
hkkikkj
Ď \widebar{abc}
𝑎𝑏𝑐
\overbrace{abc}
𝑎𝑏𝑐
hkkk j
| \widecheck{abc}
𝑎𝑏𝑐
\overgroup{abc}
𝑎𝑏𝑐
loo𝑎𝑏𝑐
moon
\underbrace{abc}
Ň
𝑎𝑏𝑐
\wideparen{abc}
𝑎𝑏𝑐
lo
oo n
\undergroup{abc}
Ň̊
𝑎𝑏𝑐
\widering{abc}
Ĺ
𝑎𝑏𝑐
\widearrow{abc}
The braces shown for \overbrace and \underbrace appear in their minimum
size. They can expand arbitrarily wide, however.
Table 255: fourier Extensible Accents
Ù
𝑎𝑏𝑐
\widearc{abc}
–
𝑎𝑏𝑐
\wideparen{abc}
å
𝑎𝑏𝑐
\wideOarc{abc}
˚
–
𝑎𝑏𝑐
\widering{abc}
109
Table 256: esvect Extensible Accents
#”
𝑎𝑏𝑐 \vv{abc} with package option a
#„
𝑎𝑏𝑐 \vv{abc} with package option b
#«
𝑎𝑏𝑐 \vv{abc} with package option c
#»
𝑎𝑏𝑐 \vv{abc} with package option d
#–
𝑎𝑏𝑐 \vv{abc} with package option e
#—
𝑎𝑏𝑐 \vv{abc} with package option f
#
𝑎𝑏𝑐 \vv{abc} with package option g
#‰
𝑎𝑏𝑐 \vv{abc} with package option h
esvect also defines a \vv* macro which is used to typeset arrows over vector
variables with subscripts. See the esvect documentation for more information.
Table 257: abraces Extensible Accents
⏞ ⏟
𝑎𝑏𝑐
\aoverbrace{abc}
⏟𝑎𝑏𝑐
⏞
\aunderbrace{abc}
\aoverbrace and \aunderbrace accept optional arguments that provide a
great deal of control over the braces’ appearance. For example, these commands can produce braces with asymmetric endpoints, braces that span lines,
dashed braces, and multicolored braces. See the abraces documentation for
more information.
Table 258: undertilde Extensible Accents
𝑎𝑏𝑐
̃︁
\utilde{abc}
Because \utilde is based on \widetilde it is also made more extensible by
the yhmath package (Table 248 on page 108).
Table 259: ushort Extensible Accents
𝑎𝑏𝑐
\ushortdw{abc}
𝑎𝑏𝑐
\ushortw{abc}
\ushortw and \ushortdw are intended to be used with multi-character arguments (“words”) while \ushortand \ushortd are intended to be used with
single-character arguments.
The underlines produced by the ushort commands are shorter than those produced by the \underline command. Consider the output from the expression “\ushort{x}\ushort{y}\underline{x}\underline{y}”, which looks
like “𝑥𝑦𝑥𝑦”.
Table 260: mdwmath Extensible Accents
√
𝑎𝑏𝑐 \sqrt*{abc}
110
Table 261: actuarialangle Extensible Accents
𝑎𝑏𝑐
\actuarialangle{abc}
The actuarialangle package additionally defines \angl as \actuarialangle
with a small amount of extra space to the right of the accented expression
under the , \angln as \angl{n}, and \anglr as \angl{r}.
Table 262: 𝒜ℳ𝒮 Extensible Arrows
𝑎𝑏𝑐
←−−
𝑎𝑏𝑐
−−→
\xleftarrow{abc}
\xrightarrow{abc}
Table 263: mathtools Extensible Arrows
𝑎𝑏𝑐
←−−˒
𝑎𝑏𝑐
˓−−→
𝑎𝑏𝑐
⇐==
𝑎𝑏𝑐
↽−−
𝑎𝑏𝑐
↼−−
𝑎𝑏𝑐
←−→
𝑎𝑏𝑐
⇐=⇒
𝑎𝑏𝑐
\xhookleftarrow{abc}
↼
−
−
−−
⇁
\xhookrightarrow{abc}
↦−−→
𝑎𝑏𝑐
𝑎𝑏𝑐
==⇒
\xLeftarrow{abc}
𝑎𝑏𝑐
\xleftharpoondown{abc}
−−⇁
\xleftharpoonup{abc}
−−⇀
𝑎𝑏𝑐
𝑎𝑏𝑐
−
−
⇀
↽
−
−
\xleftrightarrow{abc}
\xleftrightharpoons{abc}
\xmapsto{abc}
\xRightarrow{abc}
\xrightharpoondown{abc}
\xrightharpoonup{abc}
\xrightleftharpoons{abc}
\xLeftrightarrow{abc}
Table 264: chemarr Extensible Arrows
𝑎𝑏𝑐
−−
⇀
↽
−
−
\xrightleftharpoons{abc}
Table 265: chemarrow Extensible Arrows
abc
DGGGGGGG
def
\autoleftarrow{abc}{def}
abc
GGGGGGGA
def
\autorightarrow{abc}{def}
abc
E
GG
GGGGGGGC
def
\autoleftrightharpoons{abc}{def}
abc
GGGGGGGB
F
GG
def
\autorightleftharpoons{abc}{def}
In addition to the symbols shown above, chemarrow also provides \larrowfill,
\rarrowfill, \leftrightharpoonsfill, and \rightleftharpoonsfill
macros. Each of these takes a length argument and produces an arrow of
the specified length.
111
Table 266: extarrows Extensible Arrows
𝑎𝑏𝑐
⇐=⇒
𝑎𝑏𝑐
←−→
𝑎𝑏𝑐
====
𝑎𝑏𝑐
⇐==
𝑎𝑏𝑐
←−−
\xLeftrightarrow{abc}
\xleftrightarrow{abc}
𝑎𝑏𝑐
⇐=
=⇒
𝑎𝑏𝑐
←−
−→
𝑎𝑏𝑐
==⇒
\xlongequal{abc}
\xLongleftarrow{abc}
𝑎𝑏𝑐
−−→
\xLongleftrightarrow{abc}
\xlongleftrightarrow{abc}
\xLongrightarrow{abc}
\xlongrightarrow{abc}
\xlongleftarrow{abc}
Table 267: extpfeil Extensible Arrows
𝑎𝑏𝑐
====
𝑎𝑏𝑐
↦−−→
𝑎𝑏𝑐
−===−
\xlongequal{abc}
𝑎𝑏𝑐
−−−−
𝑎𝑏𝑐
−−−−
\xmapsto{abc}
\xtwoheadleftarrow{abc}
\xtwoheadrightarrow{abc}
\xtofrom{abc}
The extpfeil package also provides a \newextarrow command to help you define
your own extensible arrow symbols. See the extpfeil documentation for more
information.
Table 268: DotArrow Extensible Arrows
𝑎
≻
\dotarrow{a}
The DotArrow package provides mechanisms for lengthening the arrow, adjusting the distance between the arrow and its symbol, and altering the arrowhead.
See the DotArrow documentation for more information.
Table 269: halloweenmath Extensible Arrows
←−−
𝑎𝑏𝑐
←→
𝑎𝑏𝑐
−−→
𝑎𝑏𝑐
\overscriptleftarrow{abc}
𝑎𝑏𝑐
←−−
\underscriptleftarrow{abc}
\overscriptleftrightarrow{abc}
𝑎𝑏𝑐
←→
\underscriptleftrightarrow{abc}
\overscriptrightarrow{abc}
𝑎𝑏𝑐
−−→
\underscriptrightarrow{abc}
These commands always typeset the arrow in script (small) style, hence the
“script” in their names. Contrast the size of the arrowheads in the following
examples:
−→
𝑎𝑏𝑐
−−→
𝑎𝑏𝑐
vs.
\overrightarrow{abc}
\overscriptrightarrow{abc}
Table 270: trfsigns Extensible Transform Symbols
𝑎𝑏𝑐
\dft{abc}
𝑎𝑏𝑐
112
\DFT{abc}
« ###»&
𝑎𝑏𝑐&
$$𝑎𝑏𝑐
— ### #
Table 271: esrelation Extensible Relations
–$ #####„
\relationleftproject{abc}
$𝑎𝑏𝑐 \relationrightproject{abc}
\relationlifting{abc}
Table 272: halloweenmath Extensible Brooms and Pitchforks
−−−
<
𝑎𝑏𝑐
\overleftbroom{abc}
𝑎𝑏𝑐
>−−
−
\underrightbroom{abc}
−−∈
𝑎𝑏𝑐
\overleftpitchfork{abc}
𝑎𝑏𝑐
∋−−
\underrightpitchfork{abc}
−−−
>
𝑎𝑏𝑐
\overrightbroom{abc}
−−<
−
∋−−
𝑎𝑏𝑐
\overrightpitchfork{abc}
−−−∈
𝑎𝑏𝑐
−−−
<
\underleftbroom{abc}
>−−
−
𝑎𝑏𝑐
−−∈
\underleftpitchfork{abc}
∋−−−
𝑎𝑏𝑐
𝑎𝑏𝑐
\xleftbroom{abc}
\xleftpitchfork{abc}
𝑎𝑏𝑐
𝑎𝑏𝑐
\xrightbroom{abc}
\xrightpitchfork{abc}
Table 273: halloweenmath Extensible Witches
−−−
<
𝑎𝑏𝑐
𝑎𝑏𝑐
\overleftwitchonbroom{abc}
\underrightwitchonbroom{abc}
>−−
−
−−−
<
𝑎𝑏𝑐
𝑎𝑏𝑐
\overleftwitchonbroom*{abc}
\underrightwitchonbroom*{abc}
>−−
−
−−∈
𝑎𝑏𝑐
𝑎𝑏𝑐
\overleftwitchonpitchfork*{abc}
\underrightwitchonpitchfork*{abc}
∋−−
−−∈
𝑎𝑏𝑐
𝑎𝑏𝑐
\overleftwitchonpitchfork{abc}
>−−
−
𝑎𝑏𝑐
−−<
−
\overrightwitchonbroom*{abc}
\overrightwitchonbroom{abc}
−−<
−
\overrightwitchonpitchfork*{abc}
−−−∈
\xleftwitchonpitchfork*{abc}
𝑎𝑏𝑐
∋−−
𝑎𝑏𝑐
\xleftwitchonbroom{abc}
𝑎𝑏𝑐
∋−−
𝑎𝑏𝑐
\xleftwitchonbroom*{abc}
𝑎𝑏𝑐
>−−
−
𝑎𝑏𝑐
\underrightwitchonpitchfork{abc}
∋−−
𝑎𝑏𝑐
−−−∈
\overrightwitchonpitchfork{abc}
\xleftwitchonpitchfork{abc}
𝑎𝑏𝑐
𝑎𝑏𝑐
\underleftwitchonbroom{abc}
>−−
−
\underleftwitchonbroom*{abc}
>−−
−
\xrightwitchonbroom{abc}
−−−
<
𝑎𝑏𝑐
𝑎𝑏𝑐
\xrightwitchonbroom*{abc}
−−−
<
𝑎𝑏𝑐
𝑎𝑏𝑐
\underleftwitchonpitchfork*{abc}
∋−−−
\underleftwitchonpitchfork{abc}
∋−−−
\xrightwitchonpitchfork{abc}
−−∈
𝑎𝑏𝑐
𝑎𝑏𝑐
−−∈
113
\xrightwitchonpitchfork*{abc}
Table 274: halloweenmath Extensible Ghosts
𝑎𝑏𝑐
\overleftswishingghost{abc}
𝑎𝑏𝑐
\overrightswishingghost{abc}
𝑎𝑏𝑐
\underleftswishingghost{abc}
𝑎𝑏𝑐
\underrightswishingghost{abc}
𝑎𝑏𝑐
𝑎𝑏𝑐
\xleftswishingghost{abc}
\xrightswishingghost{abc}
Table 275: halloweenmath Extensible Bats
𝑎𝑏𝑐
\overleftflutteringbat{abc}
𝑎𝑏𝑐
\overrightflutteringbat{abc}
𝑎𝑏𝑐
\underleftflutteringbat{abc}
𝑎𝑏𝑐
\underrightflutteringbat{abc}
𝑎𝑏𝑐
𝑎𝑏𝑐
\xleftflutteringbat{abc}
\xrightflutteringbat{abc}
Table 276: holtpolt Non-commutative Division Symbols
𝑎𝑏𝑐
𝑑𝑒𝑓
𝑎𝑏𝑐
𝑑𝑒𝑓
\holter{abc}{def}
\polter{abc}{def}
Table 277: Dots
·
\cdotp
···
\cdots
:
..
.
\colon*
.
\ldotp
\ddots†
...
\ldots
..
.
\vdots†
*
While “:” is valid in math mode, \colon uses different surrounding spacing. See Section 10.4 and the Short Math Guide for LATEX [Dow00] for more
information on math-mode spacing.
†
The mathdots package redefines \ddots and \vdots (Table 283) to make them
scale properly with font size. (They normally scale horizontally but not vertically.) \fixedddots and \fixedvdots provide the original, fixed-height functionality of LATEX 2𝜀 ’s \ddots and \vdots macros.
Table 278: 𝒜ℳ𝒮 Dots
∵
···
...
*
\because*
\dotsb
\dotsc
···
···
...
\dotsi
\dotsm
\dotso
∴
\therefore*
\because and \therefore are defined as binary relations and therefore also
appear in Table 90 on page 50.
The 𝒜ℳ𝒮 \dots symbols are named according to their intended usage:
\dotsb between pairs of binary operators/relations, \dotsc between pairs of
commas, \dotsi between pairs of integrals, \dotsm between pairs of multiplication signs, and \dotso between other symbol pairs.
114
Table 279: wasysym Dots
∴
\wasytherefore
Table 280: MnSymbol Dots
⋅
⋱
⋯
\cdot
\ddotdot
\ddots
\diamonddots
\downtherefore
\fivedots
∵
∷
⋰
∴
∶
⋮
\hdotdot
\hdots
\lefttherefore
\righttherefore
\squaredots
\udotdot
\udots
\uptherefore
\vdotdot
\vdots
MnSymbol defines \therefore as \uptherefore and \because as
\downtherefore. Furthermore, \cdotp and \colon produce the same glyphs
as \cdot and \vdotdot respectively but serve as TEX math punctuation
(class 6 symbols) instead of TEX binary operators (class 2).
All of the above except \hdots and \vdots are defined as binary operators
and therefore also appear in Table 56 on page 31.
Table 281: fdsymbol Dots
\cdot
\ddotdot
\ddots
\downtherefore
\hdotdot
⋅
⋱
∵
⋯
∷
\hdots
\lefttherefore
\righttherefore
\squaredots
\udotdot
⋰
∴
∶
\udots
\uptherefore
\vdotdot
fdsymbol defines \adots as a synonym for \udots; \because as a synonym
for \downtherefore; \cdotp as a synonym for \cdot; \cdots as a synonym
for \hdots; \Colon as a synonym for \squaredots; \colon, \mathcolon, and
\mathratio as synonyms for \vdotdot; and \therefore as a synonym for
\uptherefore. (Some of these serve different mathematical roles, such as
relations versus binary operators.)
Table 282: stix Dots
⋰
∵
⋅
·
⋯
∷
⋱
‥
\adots
\because
\cdot
\cdotp
\cdots
\Colon
\ddots
\enleadertwodots
⦙
.
…
∴
\fourvdots
\ldotp
\mathellipsis
\therefore
stix defines \centerdot as a synonym for \cdotp and \dotsb and \dotsm as
synonyms for \cdots.
..
.
Table 283: mathdots Dots
.
.
\ddots . .
\iddots .. \vdots
Unlike the default definitions of the above (Table 277), mathdots’s commands
are designed to scale properly with the surrounding font size.
115
Table 284: yhmath Dots
..
..
.
\adots
Table 285: teubner Dots
..
..
.. .. \antilabe
.. \?
. \;
\:
Table 286: begriff Begriffsschrift Symbols
\BGassert
𝑏
𝑎
\BGcontent
\BGconditional{a}{b}
a
\BGnot
\BGquant{a}
The begriff package contains additional commands for typesetting Frege’s Begriffsschrift notation for second-order logic. See the begriff documentation for
more information.
Table 287: frege Begriffsschrift Symbols
\Facontent
\Fancontent
a
a
a
a
a
a
\Fanncontent
\Fcontent
a
a
a
a
a
a
\Fannquant{a}
\Fannquantn{a}
\Fannquantnn{a}
\Fanquant{a}
\Fanquantn{a}
\Fanquantnn{a}
\Fncontent
\Fnncontent
a
a
a
a
a
\Faquant{a}
\Faquantn{a}
\Faquantnn{a}
\Fnnquant{a}
\Fnnquantn{a}
\Fnnquantnn{a}
\Fnquant{a}
\Fnquantn{a}
\Fnquantnn{a}
\Fquantn{a}
\Fquantnn{a}
The frege package contains additional commands for typesetting Frege’s Begriffsschrift notation for second-order logic. See the frege documentation for
more information.
Table 288: mathcomp Math Symbols
℃
µ
Ω
‱
\tccentigrade
\tcmu
‰
\tcohm
\tcpertenthousand
\tcperthousand
Table 289: marvosym Math Symbols
W
;
]
=
[
\
?
\AngleSign
\Conclusion
\Congruent
\Corresponds
\Divides
\DividesNot
\Equivalence
>
<
÷
,
/
(
-
\LargerOrEqual
\LessOrEqual
\MultiplicationDot
\MVComma
\MVDivision
\MVLeftBracket
\MVMinus
116
*
.
+
:
)
^
\MVMultiplication
\MVPeriod
\MVPlus
\MVRightArrow
\MVRightBracket
\NotCongruent
Table 290: marvosym Digits
0
1
\MVZero
\MVOne
2
3
4
5
\MVTwo
\MVThree
6
7
\MVFour
\MVFive
\MVSix
\MVSeven
8
9
\MVEight
\MVNine
Table 291: fge Digits
0
1
\fgestruckzero
\fgestruckone
Table 292: dozenal Base-12 Digits
X
E
\x
\e
Table 293: mathabx Mayan Digits
0
1
\maya{0}
\maya{1}
2
3
\maya{2}
\maya{3}
\maya{4}
\maya{5}
4
5
Table 294: stix Infinities
♾
⧜
∞
⧞
\acidfree
\iinfin
⧝
\infty
\nvinfty
\tieinfty
Table 295: stix Primes
′
″
‴
⁗
\prime
\dprime
\trprime
\qprime
‵
‶
‷
\backprime
\backdprime
\backtrprime
Table 296: stix Empty Sets
∅
⦳
⦴
\emptyset
\emptysetoarr
\emptysetoarrl
⦱
⦲
⦰
∅
\emptysetobar
\emptysetocirc
\revemptyset
\varnothing
Table 297: 𝒜ℳ𝒮 Angles
∠
\angle
]
\measuredangle
^
\sphericalangle
Table 298: MnSymbol Angles
∠
\angle
∡
\measuredangle
117
∢
\sphericalangle
Table 299: fdsymbol Angles
∠
∡
⊾
⦝
\angle
\measuredangle
\measuredrightangle
\measuredrightangledot
⦣
⦛
∟
⦜
\revangle
\revmeasuredangle
\rightangle
\rightanglesquare
∢
§
⦠
⦡
\sphericalangle
\sphericalangledown
\sphericalangleleft
\sphericalangleup
fdsymbol defines \measuredangleleft as a synonym for \revmeasuredangle;
\revsphericalangle and \gtlpar as synonyms for \sphericalangleleft;
\rightanglesqr as a synonym for \rightanglesquare;
and
\rightanglemdot as a synonym for \measuredrightangledot.
Table 300: boisik Angles
Õ
Ö
á
\angle
\measuredangle
\measuredrightangle
à \rightangle
× \sphericalangle
â \rightanglemdot
ã \rightanglesqr
Table 301: stix Angles
⦟
∠
⦞
⦤
⦠
⦯
⦮
⦫
⦩
⦪
\angdnr
\angle
\angles
\angleubar
\gtlpar
\measangledltosw
\measangledrtose
\measangleldtosw
\measanglelutonw
\measanglerdtose
⦨
⦭
⦬
∡
⦛
⊾
⍼
⦣
⦥
∟
\measanglerutone
\measangleultonw
\measangleurtone
\measuredangle
\measuredangleleft
\measuredrightangle
\rangledownzigzagarrow
\revangle
\revangleubar
\rightangle
⦝
⦜
∢
⦡
⟀
⦢
⦦
⦧
\rightanglemdot
\rightanglesqr
\sphericalangle
\sphericalangleup
\threedangle
\turnangle
\wideangledown
\wideangleup
Table 302: Miscellaneous LATEX 2𝜀 Math Symbols
ℵ
∅
̸
∖
\aleph
\emptyset‡
\angle
\backslash
^
∞
f
\Box*,†
\Diamond*
\infty
\mho*
∇
¬
′‘
\nabla
\neg
\prime
\surd
△
\triangle
*
Not predefined in LATEX 2𝜀 . Use one of the packages latexsym, amsfonts,
amssymb, txfonts, pxfonts, or wasysym. Note, however, that amsfonts and
amssymb define \Diamond to produce the same glyph as \lozenge (“♦”); the
other packages produce a squarer \Diamond as depicted above.
†
To use \Box—or any other symbol—as an end-of-proof (Q.E.D.) marker, consider using the ntheorem package, which properly juxtaposes a symbol with the
end of the proof text.
‡
Many people prefer the look of 𝒜ℳ𝒮’s \varnothing (“∅”, Table 303) to that
of LATEX’s \emptyset.
118
Table 303: Miscellaneous 𝒜ℳ𝒮 Math Symbols
8
F
N
\backprime
\bigstar
\blacklozenge
\blacksquare
\blacktriangle
H
ð
♦
\blacktriangledown
\diagdown
\diagup
\eth
\lozenge
f
O
∅
M
\mho
\square
\triangledown
\varnothing
\vartriangle
Table 304: Miscellaneous wasysym Math Symbols
*
2
\Box
3
\Diamond
\mho*
f
\varangle
wasysym also defines an \agemO symbol, which is the same glyph as \mho but
is intended for use in text mode.
Table 305: Miscellaneous txfonts/pxfonts Math Symbols
_

\Diamondblack
\Diamonddot
o
n
\lambdabar
\lambdaslash
Table 306: Miscellaneous mathabx Math Symbols
0
å
ä
I
\degree
\diagdown
\diagup
\diameter
4
#
8
$
\fourth
\hash
\infty
\leftthreetimes
>
&
9
%
\measuredangle
\pitchfork
\propto
\rightthreetimes
2
?
3
#
\second
\sphericalangle
\third
\varhash
Table 307: Miscellaneous MnSymbol Math Symbols
⌐
‵
✓
\backneg
\backprime
\checkmark
∅
∞
⨽
\diameter
\infty
\invbackneg
⨼
✠
∇
\invneg
\maltese
\nabla
¬
′
∫
\neg
\prime
\smallint
MnSymbol defines \emptyset and \varnothing as synonyms for \diameter;
\lnot and \minushookdown as synonyms for \neg; \minushookup as a
synonym for \invneg; \hookdownminus as a synonym for \backneg; and,
\hookupminus as a synonym for \invbackneg.
119
Table 308: Miscellaneous Internal MnSymbol Math Symbols
∫…∫
⨚
⨙
∲
∲
∯
∮
∳
∳
⨏
⨋
\partialvardint
\partialvardlanddownint
\partialvardlandupint
\partialvardlcircleleftint
\partialvardlcirclerightint
\partialvardoiint
\partialvardoint
\partialvardrcircleleftint
\partialvardrcirclerightint
\partialvardstrokedint
\partialvardsumint
∫…∫
⨚
⨙
∲
∲
∯
∮
∳
∳
⨏
⨋
\partialvartint
\partialvartlanddownint
\partialvartlandupint
\partialvartlcircleleftint
\partialvartlcirclerightint
\partialvartoiint
\partialvartoint
\partialvartrcircleleftint
\partialvartrcirclerightint
\partialvartstrokedint
\partialvartsumint
These symbols are intended to be used internally by MnSymbol to construct
the integrals appearing in Table 80 on page 44 but can nevertheless be used in
isolation.
Table 309: Miscellaneous fdsymbol Math Symbols
⌐
‵
✓
∅
\backneg
\backprime
\checkmark
\emptyset
∞
⌐
✠
¬
\infty
\invneg
\maltese
\neg
′
⦰
⌔
∫
\prime
\revemptyset
\sector
\smallint
fdsymbol defines \hookdownminus as a synonym for \backneg; \invneg and
\invnot as synonyms for \backneg; \lnot and \minushookdown as synonyms
for \neg; \turnedbackneg as a synonym for \intprodr; \turnedneg as a
synonym for \intprod; and \diameter and \varnothing as synonyms for
\emptyset.
Table 310: Miscellaneous boisik Math Symbols
~
À
ï
å
Ü
Û
\backepsilon
\backprime
\checkmark
\dalambert
\diagdown
\diagup
ò \hermitmatrix Ý \notbot
÷ \iinfin
Ü \nottop
‡ \invnot
}
\riota
†
\lambdabar
ñ \sinewave
‡
î
\lambdaslash
\maltese
120
Á
\varnothing
Table 311: Miscellaneous stix Math Symbols
⏦
∖
⎶
⟘
⫼
⟙
☻
⎪
‸
✓
⌲
☡
⟍
⟋
⌀
✽
⏧
ð
‼
⤬
⟗
*
\accurrent
\backslash
\bbrktbrk
\bigbot
\biginterleave
\bigtop
\blacksmiley
\bracevert
\caretinsert
\checkmark
\conictaper
\danger
\diagdown
\diagup
\diameter
\dingasterisk
\elinters
\eth
\Exclam
\fdiagovrdiag
\fullouterjoin
⊹
⁃
〰
∆
◘
⌐
⨝
⧠
⟕
◟
◞
✠
§
␣
∇
¬
⏠
⫡
〒
⌒
⌓
\hermitmatrix
\hyphenbullet
\hzigzag
\increment
\inversebullet
\invnot
\Join
\laplac
\leftouterjoin
\llarc
\lrarc
\maltese
\mathsection
\mathvisiblespace
\nabla
\neg*
\obrbrak
\perps
\postalmark
\profline
\profsurf
⅊
∎
⁇
⤫
⟖
⅃
⅂
∿
⏤
⧧
⫱
⌙
⏡
◜
◝
⌗
⦚
¥
⨟
⨠
⨡
\PropertyLine
\QED
\Question
\rdiagovfdiag
\rightouterjoin
\sansLmirrored
\sansLturned
\sinewave
\strns
\thermod
\topcir
\turnednot
\ubrbrak
\ularc
\urarc
\viewdata
\vzigzag
\yen
\zcmp
\zpipe
\zproject
stix defines \lnot as a synonym for \neg.
Table 312: endofproofwd End-of-Proof Symbols
\wasserdicht
\wasserdicht is implemented as an external PDF graphic. The command in
fact typesets the symbol flush right on the page to signify the end of proof.
To use the command in inline text, simply load the underlying graphic file
directly:
\includegraphics[width=10pt]{endofproofwd.pdf}
Table 313: Miscellaneous textcomp Text-mode Math Symbols
\textdegree*
\textdiv
\textfractionsolidus
\textlnot
\textminus
°
÷
⁄
¬
−
½
¼
¹
±
√
\textonehalf†
\textonequarter†
\textonesuperior
\textpm
\textsurd
¾
³
×
²
\textthreequarters†
\textthreesuperior
\texttimes
\texttwosuperior
*
If you prefer a larger degree symbol you might consider defining one as
“\ensuremath{^\circ}” (“∘ ”).
†
nicefrac (part of the units package) or the newer xfrac package can be used to
construct vulgar fractions like “1/2”, “1/4”, “3/4”, and even “c/o”.
121
Table 314: Miscellaneous fge Math Symbols
K
M
O
\fgebackslash
\fgebaracute
\fgebarcap
S
Q
N
\fgecap
\fgecapbar
\fgecup
R
P
i
\fgecupacute
\fgecupbar
\fgeinfty
h
L
Table 315: Miscellaneous mathdesign Math Symbols
∟
\rightangle
122
\fgelangle
\fgeupbracket
Table 316: Math Alphabets
Font sample
Generating command
ABCdef123
ABCdef123
𝐴𝐵𝐶𝑑𝑒𝑓 123
𝒜ℬ𝒞
𝒜ℬ𝒞
or
ABC
or
AB C
or
ABC
or
ABC
‚ƒ
ABCdef123
\mathrm{ABCdef123}
\mathit{ABCdef123}
\mathnormal{ABCdef123}
\mathcal{ABC}
\mathscr{ABC}
\mathcal{ABC}
\mathcal{ABC}
\mathscr{ABC}
\mathcal{ABC}
\mathscr{ABC}
\mathcal{ABC}
\mathscr{ABC}
\mathbb{ABC}
\varmathbb{ABC}
\mathbb{ABCdef123}
\mathbb{ABCdef123}
\mathbbm{ABCdef12}
\mathbbmss{ABCdef12}
\mathbbmtt{ABCdef12}
\mathds{ABC1}
\mathds{ABC1}
\mathbb{ABCdef123}
\mathbbb{ABCdef123}
\symA\symB\symC
\mathfrak{ABCdef123}
\textfrak{ABCdef123}
\textswab{ABCdef123}
\textgoth{ABCdef123}
ABCdef123
ABCdef12
ABCdef12
ABCdef12
ABC1
ABC1
ABCdef123
ABCdef123
ÁÂÃ
ABCdef123
ABCdef123
ABCdef123
ABCˇf123
TEX font
cmr10
cmmi10
cmmi10
cmsy10
rsfs10
rsfs10
eusm10
eusm10
rsfso10
rsfso10
urwchancal
urwchancal
msbm10
txmia
bbold10
mbb10
bbm10
bbmss10
bbmtt10
dsrom10
dsss10
DSSerif
DSSerif-Bold
china10
eufm10
yfrak
yswab
ygoth
Required package
none
none
none
none
mathrsfs
calrsfs
euscript with the mathcal option
euscript with the mathscr option
rsfso
rsfso with the scr option
urwchancal*
urwchancal* with the mathscr option
amsfonts,S amssymb, txfonts, or pxfonts
txfonts or pxfonts
bbold or mathbbol†
mbboard†
bbm
bbm
bbm
dsfont
dsfont with the sans option
dsserif
dsserif
china2e‡
eufrak
yfonts¶
yfonts¶
yfonts¶
The “TEX font” column lists the underlying TEX font (or, more accurately,
the .tfm file) that provides the math alphabet. See the corresponding table in
the associated Raw Font Tables document for the math alphabet’s complete
character set.
*
urwchancal redefines \mathcal or \mathscr to use Zapf Chancery as the caligraphic or script font. However, like all \mathcal and \mathscr commands
shown in Table 316, these support only uppercase letters. An alternative is to
put “\DeclareMathAlphabet{\mathpzc}{OT1}{pzc}{m}{it}” in your document’s preamble to make \mathpzc typeset a wider set of characters in Zapf
Chancery. Unfortunately, with this technique accents, superscripts, and subscripts don’t align as well as they do with urwchancal.
r
As a similar trick, you can typeset the Calligra font’s script “ ” (or other
calligraphic symbols) in math mode by loading the calligra package and
putting “\DeclareMathAlphabet{\mathcalligra}{T1}{calligra}{m}{n}”
in your document’s preamble to make \mathcalligra typeset its
argument in the Calligra font.
You may also want to specify “\DeclareFontShape{T1}{calligra}{m}{n}{<->s*[2.2]callig15}{}”
to set Calligra at 2.2 times its design size for a better blend with typical body
fonts.
123
†
The mathbbol package defines some additional blackboard bold characters: parentheses, square brackets, angle brackets, and—if the bbgreekl option is passed to mathbbol—Greek letters. For instance, “<[(αβγ)]>” is
produced by “\mathbb{\Langle\Lbrack\Lparen\bbalpha\bbbeta\bbgamma
\Rparen\Rbrack\Rangle}”.
mbboard extends the blackboard bold symbol set significantly further. It
supports not only the Greek alphabet—including “Greek-like” symbols such
as \bbnabla (“š”)—but also all punctuation marks, various currency symbols such as \bbdollar (“$”) and \bbeuro (“û”), and the Hebrew alphabet (e.g., “\bbfinalnun\bbyod\bbqof\bbpe” → “ÏÉ×Ô”).
‡
The \sym. . . commands provided by the ChinA2e package are actually textmode commands. They are included in Table 316 because they resemble the
blackboard-bold symbols that appear in the rest of the table. In addition to the
26 letters of the English alphabet, ChinA2e provides three umlauted blackboardbold letters: \symAE (“ ”), \symOE (“ ”), and \symUE (“ ”). Note that ChinA2e
does provide math-mode commands for the most common number-set symbols.
These are presented in Table 187 on page 92.
Û
Ü
Ý
¶
As their \text. . . names imply, the fonts provided by the yfonts package are
actually text fonts. They are included in Table 316 because they are frequently
used in a mathematical context.
S
An older (i.e., prior to 1991) version of the 𝒜ℳ𝒮’s fonts rendered C, N, R, S,
and Z as C, N, R, S, and Z. As some people prefer the older glyphs—much
to the 𝒜ℳ𝒮’s surprise—and because those glyphs fail to build under modern
versions of METAFONT, Berthold Horn uploaded PostScript fonts for the older
blackboard-bold glyphs to CTAN, to the fonts/msym10 directory. As of this
writing, however, there are no LATEX 2𝜀 packages for utilizing the now-obsolete
glyphs.
124
4
Science and technology symbols
This section lists symbols that are employed in various branches of science and engineering.
Table 317: gensymb Symbols Defined to Work in Both Math and Text Mode
℃
°
µ
Ω
\celsius
\degree
‰
\micro
\ohm
\perthousand
Table 318: wasysym Electrical and Physical Symbols
:
!
&
\AC
@
\VHF
::::
:
\photon
QPPPPPPR
\HF
Table 319: ifsym Pulse Diagram Symbols
\FallingEdge
\LongPulseHigh
'
$
\LongPulseLow
\PulseHigh
%
"
#
\PulseLow
\RaisingEdge
\gluon
\ShortPulseHigh
\ShortPulseLow
In addition, within \textifsym{. . .}, the following codes are valid:
l
L
l
L
m
M
h
H
m
M
d
D
h
H
d
D
<
=
<
<<
>
?
>
>>
mm<DDD>mm
This enables one to write “\textifsym{mm<DDD>mm}” to get “
” or
“\textifsym{L|H|L|H|L}” to get “
”. See also the timing package,
which provides a wide variety of pulse-diagram symbols within an environment
designed specifically for typesetting pulse diagrams.
L|H|L|H|L
Finally, \textifsym supports the display of segmented digits, as would
appear on an LCD: “\textifsym{-123.456}” produces “
”.
“\textifsym{b}” outputs a blank with the same width as an “ ”.
-123.456
8
Table 320: ar Aspect Ratio Symbol
A
\AR
Table 321: textcomp Text-mode Science and Engineering Symbols
℃
\textcelsius
℧
\textmho
125
µ
\textmu
Ω
\textohm
Table 322: steinmetz Extensible Phasor Symbol
𝑎𝑏𝑐
\phase{abc}
The \phase command uses the pict2e package to draw a horizontally and
vertically scalable Steinmetz phasor symbol. Consequently, \phase works only
with those TEX backends supported by pict2e. See the pict2e documentation
for more information.
Table 323: emf Electromotive Force Symbols
E
\emf with package option boondox (default)
E
\emf with package option cal*
\emf with package option calligra
E
E \emf with package option chorus
ℰ
\emf with package option cmr
E
\emf with package option fourier
E
\emf with package option frcursive
E
\emf with package option miama
ℰ
*
\emf with package option rsfs
With the cal package option, \emf uses \mathcal. Hence, the depiction of “E”
depends on the currently loaded math font.
Table 324: wasysym Astronomical Symbols
'
♀
\mercury
\venus
\earth
\mars
X
Y
\jupiter
\saturn
⊙
\astrosun
#
\fullmoon
$
\leftmoon
]
^
\aries
\taurus
\gemini
_
`
\cancer
\leo
\virgo
a
b
c
\libra
\scorpio
\sagittarius
e
d
f
\aquarius
\capricornus
\pisces
\ascnode
\descnode
V
\conjunction
W
\opposition
♁
♂
Z
[
\uranus
\neptune
\
\pluto
\newmoon
%
\rightmoon
\vernal
Table 325: marvosym Astronomical Symbols
Â
Ã
\Mercury
\Venus
Ê
Ä
\Earth
\Mars
Á
\Moon
À
\Sun
à
á
â
\Aries
\Taurus
\Gemini
ã
ä
å
\Cancer
\Leo
\Virgo
Å
Æ
\Jupiter
\Saturn
Ç
È
\Uranus
\Neptune
æ
ç
è
\Libra
\Scorpio
\Sagittarius
é
ê
ë
\Capricorn
\Aquarius
\Pisces
É
\Pluto
Note that \Aries . . . \Pisces can also be specified with \Zodiac{1} . . .
\Zodiac{12}.
126
Table 326: fontawesome Astronomical Symbols
{
|
☼
\faMars
\faMercury
♀
\faMoonO
\faSunO
\faVenus
Table 327: mathabx Astronomical Symbols
A
B
\Mercury
\Venus
C
D
\Earth
\Mars
E
F
\Jupiter
\Saturn
G
H
\Uranus
\Neptune
I
J
\Pluto
\varEarth
M
\fullmoon
K
\leftmoon
N
\newmoon
L
\rightmoon
@
\Sun
P
\Aries
Q
\Taurus
R
\Gemini
mathabx also defines \girl as an alias for \Venus, \boy as an alias for \Mars,
and \Moon as an alias for \leftmoon.
Table 328: stix Astronomical Symbols
☉
\astrosun
☾
\leftmoon
127
☽
\rightmoon
☼
\sun
Table 329: starfont Astronomical Symbols
f
g
L
\Mercury
\Venus
\Terra
h
j
S
\Mars
\Jupiter
\Saturn
F
G
J
\Uranus
\Neptune
\Pluto
l
A
H
\varTerra
\varUranus
\varPluto
s
\Sun
d
\Moon
a
\varMoon
ä
Ü
\Cupido
\Hades
ü
Ä
\Zeus
\Kronos
ß
Ö
\Apollon
\Admetos
ö
§
\Vulkanus
\Poseidon
Ø
\Lilith
k
\NorthNode
?
\SouthNode
+
Â
D
\Amor
\Ceres
\Chiron
@
%
½
\Eros
\Hidalgo
\Hygiea
;
:
¿
\Juno
\Pallas
\Psyche
˝
˙
\Sappho
\Vesta
K
\Fortune
x
c
v
b
\Aries
\Taurus
\Gemini
\Cancer
n
m
X
C
\Leo
\Virgo
\Libra
\Scorpio
V
B
N
M
\Sagittarius
\Capricorn
\Aquarius
\Pisces
Z
\varCapricorn
q
p
u
\Conjunction
\Opposition
\Trine
t
r
o
\Square
\Sextile
\Quincunx
w
e
i
\Semisextile
\Semisquare
\Sesquiquadrate
1
2
\ASC
\DSC
’
4
\EastPoint
\IC
3
!
\MC
\Vertex
7
\Direct
5
\Retrograde
6
\Station
Ò
\Air
Ñ
\Earth
Ð
\Fire
Ó
\Water
0
\Natal
å
\Pentagram
)
\Radix
Table 330: wasysym APL Symbols
~

F
o
}
\APLbox
\APLcomment
\APLdown
\APLdownarrowbox
\APLinput
÷
~
p
−
𝑎
∘
\APLcirc{a}
∼
𝑎
q
\APLinv
\APLleftarrowbox
\APLlog
\APLminus
\APLrightarrowbox
E
n
−
∖
−
/
\APLstar
\APLup
\APLuparrowbox
\notbackslash
\notslash
\APLnot{a}
𝑎|
\APLvert{a}
Table 331: stix APL Symbols
⍰
⍓
\APLboxquestion
\APLboxupcaret
⍀
⌿
128
\APLnotbackslash
\APLnotslash
Table 332: apl APL Symbols
|
\
\
/
\AB
\AM
\BL
\BX
\CB
\CE
\CO
\CR
\CS
\DA
%
|
\DD
\DE
\DL
\DM
\DQ
\DU
\EN
\EP
\FL
\FM
\GD
\GE
\GO
\GU
\IB
\IO
\LB
\LD
\LE
\LG
|
{
*
&
\LK
\LO
\LU
\NE
\NG
\NN
\NR
\NT
\OM
\OR
'
}
\PD
\QQ
\RB
\RK
\RO
\RU
\RV
\SO
\SS
\TR
|
SS
\
^
A
B
C
D
E
F
\UA
\US
\UU
\XQ
\ZA
\ZB
\ZC
\ZD
\ZE
\ZF
G
H
I
J
K
L
M
N
O
P
\ZG
\ZH
\ZI
\ZJ
\ZK
\ZL
\ZM
\ZN
\ZO
\ZP
Q
R
S
T
U
V
W
X
Y
Z
\ZQ
\ZR
\ZS
\ZT
\ZU
\ZV
\ZW
\ZX
\ZY
\ZZ
Table 333: marvosym Computer Hardware Symbols
Í
Ï
\ComputerMouse
\Keyboard
Ñ
Ò
\ParallelPort
\Printer
Î
Ð
\SerialInterface
\SerialPort
Table 334: keystroke Computer Keys
Alt
AltGr
Break
\Alt
Enter
\AltGr
Esc
*
\Break
Home
*
\Esc
\Home
*
\PrtSc*
→
\RArrow
←˒
\Return
\Ins
Scroll
\Scroll*
\Ctrl*
←
\LArrow
Shift ⇑
\Shift*
\DArrow
Num
\NumLock
\BSpace
Ctrl
↓
*
PrtSc
Ins
→−↦
†
\Enter*
*
\Spacebar
Del
\Del
*
Page ↓
\PgDown
→
−
−
−−
→
\Tab†
End
\End*
Page ↑
\PgUp*
↑
\UArrow
*
Changes based on the language option passed to the keystroke package. For
example, the german option makes \Del produce “ Entf ” instead of “ Del ”.
†
These symbols utilize the rotating package and therefore display improperly in
most DVI viewers.
The \keystroke command draws a key with an arbitrary label. For example,
“\keystroke{F7}” produces “ F7 ”.
129
Table 335: ascii Control Characters (CP437)
␁
␂
␃
␄
␅
␆
␇
\SOH
\STX
\ETX
\EOT
\ENQ
\ACK
\BEL
␡
\DEL
␈
␉
␊
␋
␌
\BS
\HT
\LF
\VT
\FF
\CR
\SO
␏
␐
␑
␒
␓
␔
␕
\SI
\DLE
\DCa
\DCb
\DCc
\DCd
\NAK
␖
␗
␘
␙
␚
␛
␜
\SYN
\ETB
\CAN
\EM
\SUB
\ESC
\FS
\NBSP
␀
\NUL
¦
\splitvert
␝
␞
\GS
\RS
\US
Code Page 437 (CP437), which was first utilized by the original IBM PC, uses
the symbols \SOH through \US to depict ASCII characters 1–31 and \DEL to
depict ASCII character 127. The \NUL symbol, not part of CP437, represents
ASCII character 0. \NBSP, also not part of CP437, represents a nonbreaking
space. \splitvert is merely the “|” character drawn as it was on the IBM PC.
Table 336: logic Logic Gates
\ANDd
\ANDl
\ANDr
\BUFu
\NANDl
\ORd
\BusWidth
\NANDr
\ORl
\INVd
\NANDu
\ORr
\ANDu
\INVl
\NORd
\ORu
\BUFd
\INVr
\NORl
\BUFl
\INVu
\BUFr
\NANDd
\NORr
\NORu
The logic package implements the digital logic-gate symbols specified by
the U.S. Department of Defense’s MIL-STD-806 standard.
Note that
on CTAN, the package is called logic, but the package is loaded using
\usepackage{milstd}. (There was already a—completely unrelated—milstd
package on CTAN at the time of logic’s release.) Consequently, package details
are listed under milstd in Table 547 and Table 548 on page 239.
Table 337: marvosym Communication Symbols
k
z
\Email
\EmailCT
t
u
\fax
\FAX
v
B
\Faxmachine
\Letter
130
E
H
\Lightning
\Mobilefone
A
T
\Pickup
\Telefon
Table 338: marvosym Engineering Symbols
"
#
›
•
%
–
\Beam
\Bearing
\Circpipe
\Circsteel
\Fixedbearing
\Flatsteel
*
l
’
&
L
$
™
‘
˜
”
'

Ÿ
\Force
\Hexasteel
\Lefttorque
\Lineload
\Loosebearing
\Lsteel
ž
—
“
œ
š
\Octosteel
\Rectpipe
\Rectsteel
\Righttorque
\RoundedLsteel*
\RoundedTsteel*
\RoundedTTsteel
\Squarepipe
\Squaresteel
\Tsteel
\TTsteel
\RoundedLsteel and \RoundedTsteel seem to be swapped, at least in the
2000/05/01 version of marvosym.
Table 339: wasysym Biological Symbols
♀
\female
♂
\male
Table 340: stix Biological Symbols
♀
⚥
♂
⚲
\female
\Hermaphrodite
\male
\neuter
Table 341: marvosym Biological Symbols

~
„
\FEMALE
\Female
\FemaleFemale
}
€
\FemaleMale
\Hermaphrodite
\HERMAPHRODITE
|
‚
ƒ
\Male
\MALE
\MaleMale
{
\Neutral
Table 342: fontawesome Biological Symbols
†
{
€
‚
\faGenderless
\faMars
\faMarsDouble
\faMarsStroke
„
ƒ
}
\faMarsStrokeH
\faMarsStrokeV
\faNeuter
\faTransgender
~
♀


\faTransgenderAlt
\faVenus
\faVenusDouble
\faVenusMars
fontawesome defines \faIntersex as a synonym for \faTransgender
Table 343: marvosym Safety-related Symbols
h
n
\Biohazard
\BSEfree
C
J
\CEsign
\Estatically
`
a
131
\Explosionsafe
\Laserbeam
j
!
\Radioactivity
\Stopsign
Table 344: feyn Feynman Diagram Symbols
∪
¶
\bigbosonloop
⊃
∓
⊣
\bigbosonloopA
\bigbosonloopV
\gvcropped
⌉
\feyn{a}
⌋
{
⌈
⌊
\feyn{c}
}
\feyn{f}
⨿
\feyn{fd}
↕
⊑
\feyn{fl}
≀
\feyn{flS}
→
\feyn{fs}
†
¶
∩
♣
↕
‖
\hfermion
\shfermion
\smallbosonloop
≪
⌈
⇕
\smallbosonloopV
\wfermion
\whfermion
\smallbosonloopA
♣
\feyn{fu}
‡
\feyn{fv}
⊓
\feyn{g}
♢
\feyn{g1}
\feyn{gl}
\feyn{glB}
\feyn{glu}
\feyn{gu}
\feyn{gv}
♢∫
\feyn{gd}
↑
⟩
⇕
↓
√
𝒫
\feyn{glS}
⟨
|
\feyn{gvs}
\feyn{h}
S
\feyn{hd}
\feyn{hs}
\feyn{hu}
\feyn{m}
\feyn{ms}
\feyn{p}
\feyn{P}
\feyn{x}
⊥
All other arguments to the \feyn command produce a “ ” symbol.
The feyn package provides various commands for composing the preceding
symbols into complete Feynman diagrams. See the feyn documentation for
examples and additional information.
Table 345: svrsymbols Physics Ideograms
Ñ
Ð
𝑤
𝑀
𝑦
𝑛
𝐸
𝐹
𝐺
𝐻
𝐼
𝐽
𝐾
Ò
𝑢
𝐶
È
Ê
É
\adsorbate
\adsorbent
\antimuon
\antineutrino
\antineutron
\antiproton
\antiquark
\antiquarkb
\antiquarkc
\antiquarkd
\antiquarks
\antiquarkt
\antiquarku
\anyon
\assumption
\atom
\bigassumption
\Bigassumption
\biggassumption
𝑣
𝛥
𝑐
𝛤
ð
𝑠
÷
Ë
ñ
ℎ
Ó
𝛩
𝑓
Î
ö
î
ï
í
Í
\experimentalsym
\externalsym
\fermiDistrib
\fermion
\Gluon
\graphene
\graviton
\hbond
\Higgsboson
\hole
\interaction
\internalsym
\ion
\ionicbond
\Jpsimeson
\Kaonminus
\Kaonnull
\Kaonplus
\magnon
Õ
𝑑
Ô
𝑂
𝑃
𝑄
𝑅
𝑆
𝑇
𝑈
𝑙
𝛯
æ
ç
å
𝑡
𝜐
𝑍
𝑜
\protein
\proton
\quadrupole
\quark
\quarkb
\quarkc
\quarkd
\quarks
\quarkt
\quarku
\reference
\resistivity
\rhomesonminus
\rhomesonnull
\rhomesonplus
\solid
\spin
\spindown
\spinup
(continued on next page)
132
(continued from previous page)
Ú
Û
Ù
𝜓
𝛱
𝛴
𝜒
⁀
𝑉
Ý
Þ
Ü
Å
𝑎
𝑞
è
é
𝑖
\Bmesonminus
\Bmesonnull
\Bmesonplus
\bond
\boseDistrib
\boson
\conductivity
\covbond
\dipole
\Dmesonminus
\Dmesonnull
\Dmesonplus
\doublecovbond
\electron
\errorsym
\etameson
\etamesonprime
\exciton
𝛬
Ç
𝐴
𝑥
𝑁
𝑔
𝑒
𝐵
ã
ä
𝑗
ë
ì
ê
𝑝
𝜙
𝑘
𝑚
\maxwellDistrib
\metalbond
\method
\muon
\neutrino
\neutron
\nucleus
\orbit
\phimeson
\phimesonnull
\phonon
\pionminus
\pionnull
\pionplus
\plasmon
\polariton
\polaron
\positron
133
𝑧
Ì
𝑏
Ï
×
Ö
à
á
ß
Æ
â
𝐿
𝑟
ô
ó
ò
õ
\surface
\svrexample
\svrphoton
\tachyon
\tauleptonminus
\tauleptonplus
\Tmesonminus
\Tmesonnull
\Tmesonplus
\triplecovbond
\Upsilonmeson
\varphoton
\water
\Wboson
\Wbosonminus
\Wbosonplus
\Zboson
5
Dingbats
Dingbats are symbols such as stars, arrows, and geometric shapes. They are commonly used as bullets
in itemized lists or, more generally, as a means to draw attention to the text that follows.
The pifont dingbat package warrants special mention. Among other capabilities, pifont provides a
LATEX interface to the Zapf Dingbats font (one of the standard 35 PostScript fonts). However, rather than
name each of the dingbats individually, pifont merely provides a single \ding command, which outputs
the character that lies at a given position in the font. The consequence is that the pifont symbols can’t
be listed by name in this document’s index, so be mindful of that fact when searching for a particular
symbol.
Table 346: bbding Arrows
y
{
\ArrowBoldDownRight
\ArrowBoldRightCircled
z
w
\ArrowBoldRightShort
\ArrowBoldRightStrobe
x
\ArrowBoldUpRight
Table 347: pifont Arrows
Ô
Õ
Ö
×
Ø
Ù
Ú
Û
Ü
\ding{212}
\ding{213}
\ding{214}
\ding{215}
\ding{216}
\ding{217}
\ding{218}
\ding{219}
\ding{220}
Ý
Þ
ß
à
á
â
ã
ä
å
\ding{221}
\ding{222}
\ding{223}
\ding{224}
\ding{225}
\ding{226}
\ding{227}
\ding{228}
\ding{229}
æ
ç
è
é
ê
ë
ì
í
î
\ding{230}
\ding{231}
\ding{232}
\ding{233}
\ding{234}
\ding{235}
\ding{236}
\ding{237}
\ding{238}
ï
ñ
ò
ó
ô
õ
ö
÷
ø
\ding{239}
\ding{241}
\ding{242}
\ding{243}
\ding{244}
\ding{245}
\ding{246}
\ding{247}
\ding{248}
ù
ú
û
ü
ý
þ
\ding{249}
\ding{250}
\ding{251}
\ding{252}
\ding{253}
\ding{254}
Table 348: adfsymbols Arrows
C
K
S
c
k
s
I
Q
Y
i
q
y
\adfarrowne1
\adfarrowne2
\adfarrowne3
\adfarrowne4
\adfarrowne5
\adfarrowne6
\adfarrownw1
\adfarrownw2
\adfarrownw3
\adfarrownw4
\adfarrownw5
\adfarrownw6
E
M
U
e
m
u
D
L
T
d
l
t
\adfarrows1
\adfarrows2
\adfarrows3
\adfarrows4
\adfarrows5
\adfarrows6
\adfarrowse1
\adfarrowse2
\adfarrowse3
\adfarrowse4
\adfarrowse5
\adfarrowse6
\adfhalfarrowleft
\adfhalfarrowleftsolid
A
a
\adfhalfarrowright
\adfhalfarrowrightsolid
\adfarrowe1
\adfarrowe2
\adfarrowe3
\adfarrowe4
\adfarrowe5
\adfarrowe6
\adfarrown1
\adfarrown2
\adfarrown3
\adfarrown4
\adfarrown5
\adfarrown6
B
b
J
R
Z
j
r
z
H
P
X
h
p
x
F
N
V
f
n
v
G
O
W
g
o
w
\adfarrowsw1
\adfarrowsw2
\adfarrowsw3
\adfarrowsw4
\adfarrowsw5
\adfarrowsw6
\adfarroww1
\adfarroww2
\adfarroww3
\adfarroww4
\adfarroww5
\adfarroww6
Technically, the digit at the end of each \adfarrow⟨dir ⟩⟨digit⟩ command is a
macro argument, not part of the command name.
The preceding symbols can also be produced by passing a number or
a style/direction pair to the \adfarrow command. For example, both
\adfarrow{19} and \adfarrow[comic]{east} produce “S”. See the adfsymbols documentation for more information.
134
Table 349: adforn Arrows
{
(
}
)
[
]
\adfhalfleftarrow
\adfhalfleftarrowhead
\adfhalfrightarrow
\adfhalfrightarrowhead
\adfleftarrowhead
\adfrightarrowhead
Table 350: arev Arrows
➢
\arrowbullet
Table 351: fontawesome Arrows
○
○
H
○
d
○
○
\faArrowCircleDown
\faArrowCircleLeft
\faArrowCircleODown
\faArrowCircleOLeft
\faArrowCircleORight
\faArrowCircleOUp
\faArrowCircleRight
\faArrowCircleUp
ø
ù
ú
È
ƒ
ò
ô
û
\faArrowDown
\faArrowLeft
\faArrowRight
\faArrows
\faArrowsAlt
\faArrowsH
\faArrowsV
\faArrowUp
¶
·
¸
¹
î
<
\faLongArrowDown
\faLongArrowLeft
\faLongArrowRight
\faLongArrowUp
\faRepeat
\faUndo
fontawesome defines \faRotateLeft as a synonym for \faUndo and
\faRotateRight as a synonym for \faRepeat.
Table 352: fontawesome Chevrons
!
"
#
$
\faChevronCircleDown
\faChevronCircleLeft
\faChevronCircleRight
\faChevronCircleUp
\faChevronDown
\faChevronLeft
%
\faChevronRight
\faChevronUp
Table 353: marvosym Scissors
q
s
\CutLeft
\CutRight
R
Q
\CuttingLine
\LeftScissors
S
\RightScissors
Table 354: bbding Scissors
\ScissorHollowLeft
\ScissorHollowRight
\ScissorLeft
\ScissorLeftBrokenBottom
\ScissorLeftBrokenTop
\ScissorRight
\ScissorRightBrokenBottom
\ScissorRightBrokenTop
Table 355: pifont Scissors
!
\ding{33}
"
\ding{34}
#
135
\ding{35}
$
\ding{36}
Table 356: dingbat Pencils
W
P
\largepencil
\smallpencil
Table 357: arev Pencils
✎
\pencil
Table 358: fontawesome Pencils
Ò
M
\faPencil
\faPencilSquare
L
\faPencilSquareO
Table 359: bbding Pencils and Nibs
\NibLeft
\NibRight
\NibSolidLeft
\NibSolidRight
\PencilLeft
\PencilLeftDown
\PencilLeftUp
\PencilRight
\PencilRightDown
\PencilRightUp
Table 360: pifont Pencils and Nibs
.
\ding{46}
/
\ding{47}
0
\ding{48}
1
Table 361: dingbat Fists
R
D
U
\leftpointright
\leftthumbsdown
\leftthumbsup
L
d
u
\rightpointleft
\ding{49}
N
2
\ding{50}
\rightpointright
\rightthumbsdown
\rightthumbsup
Table 362: bbding Fists
\HandCuffLeft
\HandCuffLeftUp
\HandCuffRight
\HandCuffRightUp
\HandLeft
\HandLeftUp
\HandPencilLeft
\HandRight
\HandRightUp
Table 363: pifont Fists
*
\ding{42}
+
\ding{43}
136
,
\ding{44}
-
\ding{45}
Table 364: fourier Fists
T
U
\lefthand
\righthand
Table 365: arev Fists
☞
\pointright
Table 366: fontawesome Fists
­
‘
’
“
”
\faHandLizardO
\faHandODown
\faHandOLeft
\faHandORight
\faHandOUp
«
°
¯
ª
¬
\faHandPaperO
\faHandPeaceO
\faHandPointerO
\faHandRockO
\faHandScissorsO
®
,
\faHandSpockO
\faThumbsDown
\faThumbsODown
\faThumbsOUp
\faThumbsUp
fontawesome defines \faHandGrabO as a synonym for \faHandRockO and
\faHandStopO as a synonym for \faHandPaperO.
Table 367: bbding Crosses and Plusses
*
4
.
\Cross
\CrossBoldOutline
\CrossClowerTips
\CrossMaltese
+
,
'
(
\CrossOpenShadow
\CrossOutline
\Plus
\PlusCenterOpen
&
)
\PlusOutline
\PlusThinCenterOpen
Table 368: pifont Crosses and Plusses
9
:
\ding{57}
\ding{58}
;
<
=
>
\ding{59}
\ding{60}
\ding{61}
\ding{62}
?
@
\ding{63}
\ding{64}
Table 369: adfsymbols Crosses and Plusses
D
E
\adfbullet{4}
\adfbullet{5}
F
G
H
I
\adfbullet{6}
\adfbullet{7}
\adfbullet{8}
\adfbullet{9}
J
\adfbullet{10}
Table 370: arev Crosses
♱
\eastcross
♰
\westcross
Table 371: bbding Xs and Check Marks
!
"
\Checkmark
\CheckmarkBold
#
$
\XSolid
\XSolidBold
137
%
\XSolidBrush
Table 372: pifont Xs and Check Marks
3
4
\ding{51}
\ding{52}
5
6
7
8
\ding{53}
\ding{54}
\ding{55}
\ding{56}
Table 373: wasysym Xs and Check Marks
2
\CheckedBox
\Square
4
\XBox
Table 374: marvosym Xs and Check Marks
V
*
X
\Checkedbox
\CrossedBox*
O
\HollowBox
marvosym defines \Crossedbox as a synonym for \CrossedBox.
Table 375: arev Xs and Check Marks
✓
✗
\ballotcheck
\ballotx
Table 376: fontawesome Xs and Check Marks
Ë
Í
○
*
\faCheck
\faCheckCircle
\faCheckCircleO
é
\faCheckSquare
\faCheckSquareO
\faTimes*
ë
○
\faTimesCircle
\faTimesCircleO
fontawesome defines both \faClose and \faRemove as synonyms for \faTimes.
Table 377: pifont Circled Numerals
¬
­
®
¯
°
±
²
³
´
µ
\ding{172}
\ding{173}
\ding{174}
\ding{175}
\ding{176}
\ding{177}
\ding{178}
\ding{179}
\ding{180}
\ding{181}
¶
·
¸
¹
º
»
¼
½
¾
¿
\ding{182}
\ding{183}
\ding{184}
\ding{185}
\ding{186}
\ding{187}
\ding{188}
\ding{189}
\ding{190}
\ding{191}
À
Á
Â
Ã
Ä
Å
Æ
Ç
È
É
\ding{192}
\ding{193}
\ding{194}
\ding{195}
\ding{196}
\ding{197}
\ding{198}
\ding{199}
\ding{200}
\ding{201}
Ê
Ë
Ì
Í
Î
Ï
Ð
Ñ
Ò
Ó
\ding{202}
\ding{203}
\ding{204}
\ding{205}
\ding{206}
\ding{207}
\ding{208}
\ding{209}
\ding{210}
\ding{211}
pifont (part of the psnfss package) provides a dingautolist environment which
resembles enumerate but uses circled numbers as bullets.4 See the psnfss
documentation for more information.
4 In
fact, dingautolist can use any set of consecutive Zapf Dingbats symbols.
138
Table 378: wasysym Stars
C
A
\davidsstar
\hexstar
B
\varhexstar
Table 379: bbding Stars, Flowers, and Similar Shapes
N
A
B
X
C
D
0
/
Z
S
Y
H
I
F
E
R
\Asterisk
\AsteriskBold
\AsteriskCenterOpen
\AsteriskRoundedEnds
\AsteriskThin
\AsteriskThinCenterOpen
\DavidStar
\DavidStarSolid
\EightAsterisk
\EightFlowerPetal
\EightFlowerPetalRemoved
\EightStar
\EightStarBold
\EightStarConvex
\EightStarTaper
\FiveFlowerOpen
P
8
;
?
7
9
:
<
=
>
@
1
V
W
5
6
\FiveFlowerPetal
\FiveStar
\FiveStarCenterOpen
\FiveStarConvex
\FiveStarLines
\FiveStarOpen
\FiveStarOpenCircled
\FiveStarOpenDotted
\FiveStarOutline
\FiveStarOutlineHeavy
\FiveStarShadow
\FourAsterisk
\FourClowerOpen
\FourClowerSolid
\FourStar
\FourStarOpen
2
3
O
U
M
Q
L
[
G
K
`
^
_
]
\
J
\JackStar
\JackStarBold
\SixFlowerAlternate
\SixFlowerAltPetal
\SixFlowerOpenCenter
\SixFlowerPetalDotted
\SixFlowerPetalRemoved
\SixFlowerRemovedOpenPetal
\SixStar
\SixteenStarLight
\Snowflake
\SnowflakeChevron
\SnowflakeChevronBold
\Sparkle
\SparkleBold
\TwelweStar
Table 380: pifont Stars, Flowers, and Similar Shapes
A
B
C
D
E
F
G
H
I
\ding{65}
\ding{66}
\ding{67}
\ding{68}
\ding{69}
\ding{70}
\ding{71}
\ding{72}
\ding{73}
J
K
L
M
N
O
P
Q
R
\ding{74}
\ding{75}
\ding{76}
\ding{77}
\ding{78}
\ding{79}
\ding{80}
\ding{81}
\ding{82}
S
T
U
V
W
X
Y
Z
[
\ding{83}
\ding{84}
\ding{85}
\ding{86}
\ding{87}
\ding{88}
\ding{89}
\ding{90}
\ding{91}
\
]
^
_
`
a
b
c
d
\ding{92}
\ding{93}
\ding{94}
\ding{95}
\ding{96}
\ding{97}
\ding{98}
\ding{99}
\ding{100}
e
f
g
h
i
j
k
\ding{101}
\ding{102}
\ding{103}
\ding{104}
\ding{105}
\ding{106}
\ding{107}
Table 381: adfsymbols Stars, Flowers, and Similar Shapes
A
B
C
K
L
\adfbullet{1}
\adfbullet{2}
\adfbullet{3}
\adfbullet{11}
\adfbullet{12}
M
N
O
P
Q
\adfbullet{13}
\adfbullet{14}
\adfbullet{15}
\adfbullet{16}
\adfbullet{17}
R
S
T
U
V
\adfbullet{18}
\adfbullet{19}
\adfbullet{20}
\adfbullet{21}
\adfbullet{22}
W
X
Y
Z
\adfbullet{23}
\adfbullet{24}
\adfbullet{25}
\adfbullet{26}
Table 382: adforn Stars
0
1
\adfast{1}
\adfast{2}
2
3
\adfast{3}
\adfast{4}
4
5
\adfast{5}
\adfast{6}
139
6
7
\adfast{7}
\adfast{8}
8
9
\adfast{9}
\adfast{10}
Table 383: fontawesome Stars
\faStar
\faStarHalf
\faStarHalfO
\faStarO
fontawesome defines both \faStarHalfEmpty and \faStarHalfFull as synonyms for \faStarHalfO.
Table 384: fourier Fleurons and Flowers
O
M
N
L
;
<
\aldine
\aldineleft
\aldineright
\aldinesmall
\decofourleft
\decofourright
8
=
9
:
A
B
\decoone
\decosix
\decothreeleft
\decothreeright
\decotwo
\floweroneleft
C
J
F
K
D
\floweroneright
\leafleft
\leafNE
\leafright
\starredbullet
Table 385: adforn Fleurons and Flowers
r
x
l
m
u
n
v
q
<
s
T
w
o
z
y
p
R
X
L
M
U
N
V
Q
>
S
t
W
O
Z
Y
P
\adfdownhalfleafleft
\adfdownleafleft
\adfflatdownhalfleafleft
\adfflatdownoutlineleafleft
\adfflatleafleft
\adfflatleafoutlineleft
\adfflatleafsolidleft
\adfflowerleft
\adfhalfleafleft
\adfhangingflatleafleft
\adfhangingleafleft
\adfleafleft
\adfoutlineleafleft
\adfsmallhangingleafleft
\adfsmallleafleft
\adfsolidleafleft
\adfdownhalfleafright
\adfdownleafright
\adfflatdownhalfleafright
\adfflatdownoutlineleafright
\adfflatleafright
\adfflatleafoutlineright
\adfflatleafsolidright
\adfflowerright
\adfhalfleafright
\adfhangingflatleafright
\adfhangingleafright
\adfleafright
\adfoutlineleafright
\adfsmallhangingleafright
\adfsmallleafright
\adfsolidleafright
Table 386: wasysym Geometric Shapes
#
7
\Circle
\CIRCLE
\hexagon
#
G
G
I
\LEFTcircle
\LEFTCIRCLE
\Leftcircle
8
D
J
\octagon
\pentagon
\Rightcircle
#
H
H
9
\RIGHTcircle
\RIGHTCIRCLE
\varhexagon
Table 387: MnSymbol Geometric Shapes
☀
⧫
⧫
◯
◇
\filledlargestar
\filledlozenge
\filledmedlozenge
\largecircle
\largediamond
◊
◻
☆
✡
\largelozenge
\largepentagram
\largesquare
\largestar
\largestarofdavid
◊
✡
◊
\medlozenge
\medstarofdavid
\smalllozenge
MnSymbol defines \bigcirc as a synonym for \largecircle; \bigstar as a
synonym for \filledlargestar; \lozenge as a synonym for \medlozenge;
and, \blacklozenge as a synonym for \filledmedlozenge.
140
Table 388: fdsymbol Geometric Shapes
⬤
⬛
★
◯
⬜
\largeblackcircle
\largeblacksquare
\largeblackstar
\largecircle
\largesquare
_
^
☆
⟠
⧫
\largetriangledown
\largetriangleup
\largewhitestar
\lozengeminus
\medblacklozenge
◊
⬪
⬫
✡
\medlozenge
\smallblacklozenge
\smalllozenge
\starofdavid
fdsymbol defines synonyms for almost all of the preceding symbols:
◯
★
_
^
⧫
⬤
\bigcirc
\bigstar
\bigtriangledown
\bigtriangleup
\blacklozenge
\lgblkcircle
⬛
◯
⬜
◊
⧫
⧫
\lgblksquare
\lgwhtcircle
\lgwhtsquare
\lozenge
\mdblklozenge
\mdlgblklozenge
◊
◊
⬪
⬫
\mdlgwhtlozenge
\mdwhtlozenge
\smblklozenge
\smwhtlozenge
Table 389: boisik Geometric Shapes
ã
ã
ï
ë
è
\bigstar
\blacklozenge
\blacksquare
\blacktriangle
\blacktriangledown
}
â
ç
ó
ø
\diamond
\lozenge
\lozengedot
\square
\star
í
ÿ
þ
ä
\triangledown
\triangleleft
\triangleright
\varlrttriangle
Table 390: stix Geometric Shapes
↺
↸
⏣
▼
▲
★
▽
⨞
△
☆
⧭
⚈
⚉
◕
⧪
◈
▣
◖
⧫
◄
►
◗
\acwopencirclearrow
\barovernorthwestarrow
\benzenr
\bigblacktriangledown
\bigblacktriangleup
\bigstar
\bigtriangledown
\bigtriangleleft
\bigtriangleup
\bigwhitestar
\blackcircledownarrow
\blackcircledrightdot
\blackcircledtwodots
\blackcircleulquadwhite
\blackdiamonddownarrow
\blackinwhitediamond
\blackinwhitesquare
\blacklefthalfcircle
\blacklozenge
\blackpointerleft
\blackpointerright
\blackrighthalfcircle
⧨
⧩
⃝
⃟
⃞
⃤
⧳
⧱
⧯
⧲
⧰
⧮
◉
⏥
⎔
⬣
⌂
▭
▬
◙
◛
◚
\downtriangleleftblack
\downtrianglerightblack
\enclosecircle
\enclosediamond
\enclosesquare
\enclosetriangle
\errbarblackcircle
\errbarblackdiamond
\errbarblacksquare
\errbarcircle
\errbardiamond
\errbarsquare
\fisheye
\fltns
\hexagon
\hexagonblack
\house
\hrectangle
\hrectangleblack
\inversewhitecircle
\invwhitelowerhalfcircle
\invwhiteupperhalfcircle
◃
▹
⬩
⬪
▪
⭒
◦
⋄
⬫
▫
⌑
⬓
▩
▤
▦
◧
⬕
◱
◪
◲
▨
▧
\smalltriangleleft
\smalltriangleright
\smblkdiamond
\smblklozenge
\smblksquare
\smwhitestar
\smwhtcircle
\smwhtdiamond
\smwhtlozenge
\smwhtsquare
\sqlozenge
\squarebotblack
\squarecrossfill
\squarehfill
\squarehvfill
\squareleftblack
\squarellblack
\squarellquad
\squarelrblack
\squarelrquad
\squareneswfill
\squarenwsefill
(continued on next page)
141
(continued from previous page)
▴
▾
◀
▶
⬬
⬮
◡
⧉
◎
◦
◒
⦿
⧬
⚆
✪
⚇
⦾
◐
◵
◶
◑
◓
◴
◷
◔
◍
⧃
⧂
↻
⬙
⟐
⬖
⬗
⬘
◌
⬚
\blacktriangle
\blacktriangledown
\blacktriangleleft
\blacktriangleright
\blkhorzoval
\blkvertoval
\botsemicircle
\boxonbox
\bullseye
\circ
\circlebottomhalfblack
\circledbullet
\circledownarrow
\circledrightdot
\circledstar
\circledtwodots
\circledwhitebullet
\circlelefthalfblack
\circlellquad
\circlelrquad
\circlerighthalfblack
\circletophalfblack
\circleulquad
\circleurquad
\circleurquadblack
\circlevertfill
\cirE
\cirscir
\cwopencirclearrow
\diamondbotblack
\diamondcdot
\diamondleftblack
\diamondrightblack
\diamondtopblack
\dottedcircle
\dottedsquare
⬤
⬛
◯
⬜
◣
◺
◢
◿
⚫
⬥
⬧
◼
●
◆
■
◇
◊
□
⦁
◾
⚬
◽
⚪
⬦
⬨
◻
⭑
⭐
▱
▰
⬠
⬟
⭔
⭓
◂
▸
\lgblkcircle
\lgblksquare
\lgwhtcircle
\lgwhtsquare
\llblacktriangle
\lltriangle
\lrblacktriangle
\lrtriangle
\mdblkcircle
\mdblkdiamond
\mdblklozenge
\mdblksquare
\mdlgblkcircle
\mdlgblkdiamond
\mdlgblksquare
\mdlgwhtdiamond
\mdlgwhtlozenge
\mdlgwhtsquare
\mdsmblkcircle
\mdsmblksquare
\mdsmwhtcircle
\mdsmwhtsquare
\mdwhtcircle
\mdwhtdiamond
\mdwhtlozenge
\mdwhtsquare
\medblackstar
\medwhitestar
\parallelogram
\parallelogramblack
\pentagon
\pentagonblack
\rightpentagon
\rightpentagonblack
\smallblacktriangleleft
\smallblacktriangleright
◨
⬒
◩
◰
⬔
◳
▥
▢
◠
⏢
◬
▿
◭
⧊
◮
⧌
⧋
◤
◸
⦽
◥
◹
⬡
⬢
⌬
⊿
✶
▯
▮
⬝
⬞
⟁
◅
▻
⬭
⬯
\squarerightblack
\squaretopblack
\squareulblack
\squareulquad
\squareurblack
\squareurquad
\squarevfill
\squoval
\topsemicircle
\trapezium
\trianglecdot
\triangledown
\triangleleftblack
\triangleodot
\trianglerightblack
\triangles
\triangleubar
\ulblacktriangle
\ultriangle
\uparrowoncircle
\urblacktriangle
\urtriangle
\varhexagon
\varhexagonblack
\varhexagonlrbonds
\varlrtriangle
\varstar
\vrectangle
\vrectangleblack
\vysmblksquare
\vysmwhtsquare
\whiteinwhitetriangle
\whitepointerleft
\whitepointerright
\whthorzoval
\whtvertoval
stix defines \diamond as a synonym for \smwhtdiamond, \blacksquare
as a synonym for \mdlgblksquare, \square and \Box as synonyms
for \mdlgwhtsquare, \triangle and \varbigtriangleup as synonyms
for \bigtriangleup, \rhd as a synonym for \vartriangleright,
\varbigtriangledown as a synonym for \bigtriangledown, \lhd as a synonym for \vartriangleleft, \Diamond and \lozenge as synonyms for
\mglgwhtlozenge, \bigcirc as a synonym for \mglgwhtcircle, \circ as
a synonym for \smwhtcircle. and \mdlgblklozenge as a synonym for
\blacklozenge.
142
Table 391: ifsym Geometric Shapes
%
&
_
/
#
"
$
!
5
6
U
V
P
S
R
\BigCircle
\BigCross
\BigDiamondshape
\BigHBar
\BigLowerDiamond
\BigRightDiamond
\BigSquare
\BigTriangleDown
\BigTriangleLeft
\BigTriangleRight
\BigTriangleUp
\BigVBar
\Circle
\Cross
\DiamondShadowA
\DiamondShadowB
\DiamondShadowC
\Diamondshape
\FilledBigCircle
\FilledBigDiamondshape
\FilledBigSquare
\FilledBigTriangleDown
\FilledBigTriangleLeft
T
Q
e
f
u
v
p
s
r
t
q
`
c
b
d
a
o
?
\FilledBigTriangleRight
\FilledBigTriangleUp
\FilledCircle
\FilledDiamondShadowA
\FilledDiamondShadowC
\FilledDiamondshape
\FilledSmallCircle
\FilledSmallDiamondshape
\FilledSmallSquare
\FilledSmallTriangleDown
\FilledSmallTriangleLeft
\FilledSmallTriangleRight
\FilledSmallTriangleUp
\FilledSquare
\FilledSquareShadowA
\FilledSquareShadowC
\FilledTriangleDown
\FilledTriangleLeft
\FilledTriangleRight
\FilledTriangleUp
\HBar
\LowerDiamond
\RightDiamond
E
F

O
@
C
B
D
A
*
)
0
3
2
4
1
\SmallCircle
\SmallCross
\SmallDiamondshape
\SmallHBar
\SmallLowerDiamond
\SmallRightDiamond
\SmallSquare
\SmallTriangleDown
\SmallTriangleLeft
\SmallTriangleRight
\SmallTriangleUp
\SmallVBar
\SpinDown
\SpinUp
\Square
\SquareShadowA
\SquareShadowB
\SquareShadowC
\TriangleDown
\TriangleLeft
\TriangleRight
\TriangleUp
\VBar
The ifsym documentation points out that one can use \rlap to combine
some of the above into useful, new symbols. For example, \BigCircle and
\FilledSmallCircle combine to give “ ”. Likewise, \Square and \Cross
combine to give “ ”. See Section 10.3 for more information about constructing
new symbols out of existing symbols.
u%
0
Table 392: bbding Geometric Shapes
d
a
p
b
e
c
s
r
\CircleShadow
\CircleSolid
\DiamondSolid
\Ellipse
\EllipseShadow
\EllipseSolid
\HalfCircleLeft
\HalfCircleRight
u
v
t
f
k
m
l
h
\Rectangle
\RectangleBold
\RectangleThin
\Square
\SquareCastShadowBottomRight
\SquareCastShadowTopLeft
\SquareCastShadowTopRight
\SquareShadowBottomRight
143
j
i
g
o
n
\SquareShadowTopLeft
\SquareShadowTopRight
\SquareSolid
\TriangleDown
\TriangleUp
Table 393: pifont Geometric Shapes
l
m
n
o
p
q
\ding{108}
\ding{109}
\ding{110}
Δ
\ding{111}
\ding{112}
\ding{113}
r
s
t
\ding{114}
\ding{115}
\ding{116}
u
w
x
y
z
\ding{117}
\ding{119}
\ding{120}
\ding{121}
\ding{122}
Table 394: universa Geometric Shapes
\baucircle
Γ
\bausquare
Θ
\bautriangle
Table 395: adfsymbols Geometric Shapes
a
b
c
d
e
\adfbullet{27}
\adfbullet{28}
\adfbullet{29}
\adfbullet{30}
\adfbullet{31}
f
g
h
o
p
\adfbullet{32}
\adfbullet{33}
\adfbullet{34}
\adfbullet{41}
\adfbullet{42}
q
r
s
t
u
\adfbullet{43}
\adfbullet{44}
\adfbullet{45}
\adfbullet{46}
\adfbullet{47}
v
w
x
y
z
\adfbullet{48}
\adfbullet{49}
\adfbullet{50}
\adfbullet{51}
\adfbullet{52}
Table 396: fontawesome Geometric Shapes
○
○␣
\faCircle
\faCircleO
;
A
\faCircleONotch
\faCircleThin
○
␣
\faDotCircleO
\faSquare
\faSquareO
Table 397: oplotsymbl Geometric Shapes
\circlet
\circletcross
\circletdot
\circletfill
\circletfillha
\circletfillhb
\circletfillhl
\circletfillhr
\circletlineh
\circletlinev
\circletlinevh
\hexago
\hexagocross
\hexagodot
\hexagofill
\hexagofillha
\hexagofillhb
\hexagofillhl
\hexagofillhr
\rhombusfillha
\rhombusfillhb
\rhombusfillhl
\rhombusfillhr
\rhombuslineh
\rhombuslinev
\rhombuslinevh
\squad
\squadcross
\squaddot
\squadfill
\squadfillha
\squadfillhb
\squadfillhl
\squadfillhr
\squadlineh
\squadlinev
\squadlinevh
\starlet
\trianglepalineh
\trianglepalinev
\trianglepalinevh
\trianglepb
\trianglepbcross
\trianglepbdot
\trianglepbfill
\trianglepbfillha
\trianglepbfillhb
\trianglepbfillhl
\trianglepbfillhr
\trianglepblineh
\trianglepblinev
\trianglepblinevh
\trianglepl
\triangleplcross
\trianglepldot
\triangleplfill
\triangleplfillha
(continued on next page)
144
(continued from previous page)
\hexagolineh
\hexagolinev
\hexagolinevh
\pentago
\pentagocross
\pentagodot
\pentagofill
\pentagofillha
\pentagofillhb
\pentagofillhl
\pentagofillhr
\pentagolineh
\pentagolinev
\pentagolinevh
\rhombus
\rhombuscross
\rhombusdot
\rhombusfill
\starletcross
\starletdot
\starletfill
\starletfillha
\starletfillhb
\starletfillhl
\starletfillhr
\starletlineh
\starletlinev
\starletlinevh
\trianglepa
\trianglepacross
\trianglepadot
\trianglepafill
\trianglepafillha
\trianglepafillhb
\trianglepafillhl
\trianglepafillhr
\triangleplfillhb
\triangleplfillhl
\triangleplfillhr
\trianglepllineh
\trianglepllinev
\trianglepllinevh
\trianglepr
\triangleprcross
\triangleprdot
\triangleprfill
\triangleprfillha
\triangleprfillhb
\triangleprfillhl
\triangleprfillhr
\triangleprlineh
\triangleprlinev
\triangleprlinevh
“fillha”, “fillhb”, “fillhl”, and “fillhr”, imply, respectively, “half-filled
above”, “half-filled below”, “half-filled left”, and “half-filled right”. In the
\triangle. . . symbols, “pa”, “pb”, “pr”, and “pl” refer respectively to “peak
above”, “peak below”, “peak left”, and “peak right”.
All oplotsymbl symbols are implemented with Tik Z graphics, not with a font.
Table 398: LATEX 2𝜀 Playing-Card Suits
♣
♢
\clubsuit
\diamondsuit
♡
♠
\heartsuit
\spadesuit
Table 399: txfonts/pxfonts Playing-Card Suits
p
\varclubsuit
q
\vardiamondsuit
r
\varheartsuit
s
\varspadesuit
Table 400: MnSymbol Playing-Card Suits
♣
\clubsuit
♢
\diamondsuit
♡
\heartsuit
♠
\spadesuit
Table 401: fdsymbol Playing-Card Suits
♣
♢
\clubsuit
\diamondsuit
♡
♠
\heartsuit
\spadesuit
♦
♥
\vardiamondsuit
\varheartsuit
Table 402: boisik Playing-Card Suits
ô
\clubsuit
õ
\diamondsuit
145
ö
\heartsuit
÷
\spadesuit
Table 403: stix Playing-Card Suits
♣
♢
♡
♠
\clubsuit
\diamondsuit
♧
♦
\heartsuit
\spadesuit
♥
♤
\varclubsuit
\vardiamondsuit
\varheartsuit
\varspadesuit
Table 404: arev Playing-Card Suits
♧
\varclub
♦
♥
\vardiamond
\varheart
♤
\varspade
Table 405: adforn Flourishes
C
D
I
E
F
B
H
J
G
K
A
\adfclosedflourishleft
\adfdoubleflourishleft
\adfdoublesharpflourishleft
\adfflourishleft
\adfflourishleftdouble
\adfopenflourishleft
\adfsharpflourishleft
\adfsickleflourishleft
\adfsingleflourishleft
\adftripleflourishleft
\adfwavesleft
c
d
i
e
f
b
h
j
g
k
a
\adfclosedflourishright
\adfdoubleflourishright
\adfdoublesharpflourishright
\adfflourishright
\adfflourishrightdouble
\adfopenflourishright
\adfsharpflourishright
\adfsickleflourishright
\adfsingleflourishright
\adftripleflourishright
\adfwavesright
Table 406: Miscellaneous oplotsymbl Symbols
\lineh
\linev
\linevh
\scross
\scrossvh
All oplotsymbl symbols are implemented with Tik Z graphics, not with a font.
Table 407: Miscellaneous dingbat Dingbats
O
C
D
E
\anchor
C
\carriagereturn
I
\checkmark
S
\eye
B
\filledsquarewithdots
Z
\satellitedish
\Sborder
\squarewithdots
\Zborder
Table 408: Miscellaneous bbding Dingbats
q
\Envelope
\OrnamentDiamondSolid
\Peace
\Phone
\PhoneHandset
\Plane
T
\SunshineOpenCircled
\Tape
Table 409: Miscellaneous pifont Dingbats
%
&
'
\ding{37}
\ding{38}
\ding{39}
(
)
v
\ding{40}
\ding{41}
\ding{118}
¤
¥
¦
\ding{164}
\ding{165}
\ding{166}
146
§
¨
ª
\ding{167}
\ding{168}
\ding{170}
«
©
\ding{171}
\ding{169}
Table 410: Miscellaneous adforn Dingbats
•
\adfbullet
=
\adfdiamond
¶
147
\adfgee
§
\adfS
|
\adfsquare
6
Ancient languages
This section presents letters and ideograms from various ancient scripts. Some of these symbols may
also be useful in other typesetting contexts because of their pictorial nature.
Table 411: phaistos Symbols from the Phaistos Disk
J
\PHarrow
e
\PHeagle
B
\PHplumedHead
h
\PHbee
o
\PHflute
d
\PHram
X
\PHbeehive
H
\PHgaunlet
l
\PHrosette
R
\PHboomerang
p
\PHgrater
P
\PHsaw
K
\PHbow
G
\PHhelmet
L
\PHshield
b
\PHbullLeg
a
\PHhide
Y
\PHship
D
\PHcaptive
Z
\PHhorn
V
\PHsling
S
\PHcarpentryPlane
Q
\PHlid
r
\PHsmallAxe
c
\PHcat
m
\PHlily
q
\PHstrainer
E
\PHchild
N
\PHmanacles
C
\PHtattooedHead
M
\PHclub
O
\PHmattock
I
\PHtiara
W
\PHcolumn
n
\PHoxBack
g
\PHtunny
U
\PHcomb
k
\PHpapyrus
j
\PHvine
T
\PHdolium
A
\PHpedestrian
s
\PHwavyBand
f
\PHdove
i
\PHplaneTree
F
\PHwoman
Table 412: protosem Proto-Semitic Characters
a
A
b
B
g
d
D
e
\Aaleph
\AAaleph
\Abeth
\AAbeth
\Agimel
\Adaleth
\AAdaleth
\Ahe
E
z
w
H
h
T
y
Y
\AAhe
\Azayin
\Avav
\Aheth
\AAheth
\Ateth
\Ayod
\AAyod
k
K
l
L
m
n
o
O
\Akaph
\AAkaph
\Alamed
\AAlamed
\Amem
\Anun
\Aayin
\AAayin
s
p
P
x
X
q
Q
r
\Asamekh
\Ape
\AApe
\Asade
\AAsade
\Aqoph
\AAqoph
\Aresh
R
S
v
V
t
The protosem package defines abbreviated control sequences for each of the
above. In addition, single-letter shortcuts can be used within the argument to the \textproto command (e.g., “\textproto{Pakyn}” produces
“Pakyn”). See the protosem documentation for more information.
148
\AAresh
\Ashin
\Ahelmet
\AAhelmet
\Atav
Table 413: hieroglf Hieroglyphics
A
\HA
I
\HI
n
\Hn
T
\HT
a
\Ha
i
\Hi
O
\HO
t
\Ht
B
\HB
Π
\Hibl
o
\Ho
Φ
\Htongue
b
\Hb
Θ
\Hibp
p
\Hp
U
\HU
c
\Hc
Ξ
\Hibs
P
\HP
u
\Hu
C
\HC
Λ
\Hibw
Ω
\Hplural
V
\HV
D
\HD
J
\HJ
+
\Hplus
v
\Hv
d
\Hd
j
\Hj
Q
\HQ
—
\Hvbar
ff
\Hdual
k
\Hk
q
\Hq
w
\Hw
e
E
\He
\HE
K
L
\HK
\HL
?
R
\Hquery
\HR
W
X
\HW
\HX
f
\Hf
l
\Hl
r
\Hr
x
\Hx
F
\HF
m
\Hm
s
\Hs
Y
\HY
G
\HG
M
\HM
S
\HS
y
\Hy
g
\Hg
ϒ
\Hman
Ψ
\Hscribe
z
\Hz
h
\Hh
Δ
\Hms
/
\Hslash
Z
\HZ
H
\HH
N
\HN
Σ
\Hsv
—
\Hone
3
\Hhundred
5
\HXthousand
7
\Hmillion
2
\Hten
4
\Hthousand
6
\HCthousand
The hieroglf package defines alternate control sequences and single-letter shortcuts for each of the above which can be used within the argument to the
\textpmhg command (e.g., “\textpmhg{Pakin}” produces “Pakin”).
See the hieroglf documentation for more information.
Table 414: linearA Linear A Script
\LinearAI
\LinearAII
\LinearAIII
\LinearAIV
\LinearAV
\LinearAVI
\LinearAVII
\LinearAVIII
\LinearAIX
\LinearAX
\LinearAXI
\LinearAXII
\LinearAXIII
b
c
d
e
f
g
h
i
j
k
l
m
n
\LinearAXCIX
\LinearAC
\LinearACI
\LinearACII
\LinearACIII
\LinearACIV
\LinearACV
\LinearACVI
\LinearACVII
\LinearACVIII
\LinearACIX
\LinearACX
\LinearACXI
\LinearACXCVII
\LinearACXCVIII
\LinearACXCIX
\LinearACC
\LinearACCI
\LinearACCII
\LinearACCIII
\LinearACCIV
\LinearACCV
\LinearACCVI
\LinearACCVII
\LinearACCVIII
\LinearACCIX
t
u
v
w
x
y
z
{
|
}
~

€
\LinearACCXCV
\LinearACCXCVI
\LinearACCXCVII
\LinearACCXCVIII
\LinearACCXCIX
\LinearACCC
\LinearACCCI
\LinearACCCII
\LinearACCCIII
\LinearACCCIV
\LinearACCCV
\LinearACCCVI
\LinearACCCVII
(continued on next page)
149
(continued from previous page)
!
"
#
$
%
&
'
(
)
*
+
,
.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?
@
A
\LinearAXIV
\LinearAXV
\LinearAXVI
\LinearAXVII
\LinearAXVIII
\LinearAXIX
\LinearAXX
\LinearAXXI
\LinearAXXII
\LinearAXXIII
\LinearAXXIV
\LinearAXXV
\LinearAXXVI
\LinearAXXVII
\LinearAXXVIII
\LinearAXXIX
\LinearAXXX
\LinearAXXXI
\LinearAXXXII
\LinearAXXXIII
\LinearAXXXIV
\LinearAXXXV
\LinearAXXXVI
\LinearAXXXVII
\LinearAXXXVIII
\LinearAXXXIX
\LinearAXL
\LinearAXLI
\LinearAXLII
\LinearAXLIII
\LinearAXLIV
\LinearAXLV
\LinearAXLVI
\LinearAXLVII
\LinearAXLVIII
\LinearAXLIX
\LinearAL
\LinearALI
\LinearALII
\LinearALIII
\LinearALIV
\LinearALV
\LinearALVI
\LinearALVII
\LinearALVIII
\LinearALIX
\LinearALX
\LinearALXI
\LinearALXII
\LinearALXIII
\LinearALXIV
\LinearALXV
\LinearALXVI
o
p
q
r
s
t
u
v
w
x
y
z
{
|
}
~

€

‚
ƒ
„
†
‡
ˆ
‰
Š
‹
Œ

Ž


‘
’
“
”
•
–
—
˜
™
š
›
œ

ž
Ÿ
¡
¢
£
\LinearACXII
\LinearACXIII
\LinearACXIV
\LinearACXV
\LinearACXVI
\LinearACXVII
\LinearACXVIII
\LinearACXIX
\LinearACXX
\LinearACXXI
\LinearACXXII
\LinearACXXIII
\LinearACXXIV
\LinearACXXV
\LinearACXXVI
\LinearACXXVII
\LinearACXXVIII
\LinearACXXIX
\LinearACXXX
\LinearACXXXI
\LinearACXXXII
\LinearACXXXIII
\LinearACXXXIV
\LinearACXXXV
\LinearACXXXVI
\LinearACXXXVII
\LinearACXXXVIII
\LinearACXXXIX
\LinearACXL
\LinearACXLI
\LinearACXLII
\LinearACXLIII
\LinearACXLIV
\LinearACXLV
\LinearACXLVI
\LinearACXLVII
\LinearACXLVIII
\LinearACXLIX
\LinearACL
\LinearACLI
\LinearACLII
\LinearACLIII
\LinearACLIV
\LinearACLV
\LinearACLVI
\LinearACLVII
\LinearACLVIII
\LinearACLIX
\LinearACLX
\LinearACLXI
\LinearACLXII
\LinearACLXIII
\LinearACLXIV
!
"
#
$
%
&
'
(
)
*
+
,
.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
\LinearACCX
\LinearACCXI
\LinearACCXII
\LinearACCXIII
\LinearACCXIV
\LinearACCXV
\LinearACCXVI
\LinearACCXVII
\LinearACCXVIII
\LinearACCXIX
\LinearACCXX
\LinearACCXXI
\LinearACCXXII
\LinearACCXXIII
\LinearACCXXIV
\LinearACCXXV
\LinearACCXXVI
\LinearACCXXVII
\LinearACCXXVIII
\LinearACCXXIX
\LinearACCXXX
\LinearACCXXXI
\LinearACCXXXII
\LinearACCXXXIII
\LinearACCXXXIV
\LinearACCXXXV
\LinearACCXXXVI
\LinearACCXXXVII
\LinearACCXXXVIII
\LinearACCXXXIX
\LinearACCXL
\LinearACCXLI
\LinearACCXLII
\LinearACCXLIII
\LinearACCXLIV
\LinearACCXLV
\LinearACCXLVI
\LinearACCXLVII
\LinearACCXLVIII
\LinearACCXLIX
\LinearACCL
\LinearACCLI
\LinearACCLII
\LinearACCLIII
\LinearACCLIV
\LinearACCLV
\LinearACCLVI
\LinearACCLVII
\LinearACCLVIII
\LinearACCLIX
\LinearACCLX
\LinearACCLXI
\LinearACCLXII

‚
ƒ
„
†
‡
ˆ
‰
Š
‹
Œ

Ž


‘
’
“
”
•
–
—
˜
™
š
›
œ

ž
Ÿ
¡
¢
£
¤
¥
¦
§
¨
©
ª
«
¬
­
®
¯
°
±
²
³
´
µ
\LinearACCCVIII
\LinearACCCIX
\LinearACCCX
\LinearACCCXI
\LinearACCCXII
\LinearACCCXIII
\LinearACCCXIV
\LinearACCCXV
\LinearACCCXVI
\LinearACCCXVII
\LinearACCCXVIII
\LinearACCCXIX
\LinearACCCXX
\LinearACCCXXI
\LinearACCCXXII
\LinearACCCXXIII
\LinearACCCXXIV
\LinearACCCXXV
\LinearACCCXXVI
\LinearACCCXXVII
\LinearACCCXXVIII
\LinearACCCXXIX
\LinearACCCXXX
\LinearACCCXXXI
\LinearACCCXXXII
\LinearACCCXXXIII
\LinearACCCXXXIV
\LinearACCCXXXV
\LinearACCCXXXVI
\LinearACCCXXXVII
\LinearACCCXXXVIII
\LinearACCCXXXIX
\LinearACCCXL
\LinearACCCXLI
\LinearACCCXLII
\LinearACCCXLIII
\LinearACCCXLIV
\LinearACCCXLV
\LinearACCCXLVI
\LinearACCCXLVII
\LinearACCCXLVIII
\LinearACCCXLIX
\LinearACCCL
\LinearACCCLI
\LinearACCCLII
\LinearACCCLIII
\LinearACCCLIV
\LinearACCCLV
\LinearACCCLVI
\LinearACCCLVII
\LinearACCCLVIII
\LinearACCCLIX
\LinearACCCLX
(continued on next page)
150
(continued from previous page)
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_
`
a
\LinearALXVII
\LinearALXVIII
\LinearALXIX
\LinearALXX
\LinearALXXI
\LinearALXXII
\LinearALXXIII
\LinearALXXIV
\LinearALXXV
\LinearALXXVI
\LinearALXXVII
\LinearALXXVIII
\LinearALXXIX
\LinearALXXX
\LinearALXXXI
\LinearALXXXII
\LinearALXXXIII
\LinearALXXXIV
\LinearALXXXV
\LinearALXXXVI
\LinearALXXXVII
\LinearALXXXVIII
\LinearALXXXIX
\LinearALXXXX
\LinearAXCI
\LinearAXCII
\LinearAXCIII
\LinearAXCIV
\LinearAXCV
\LinearAXCVI
\LinearAXCVII
\LinearAXCVIII
¤
¥
¦
§
¨
©
ª
«
¬
­
®
¯
°
±
\LinearACLXV
\LinearACLXVI
\LinearACLXVII
\LinearACLXVIII
\LinearACLXIX
\LinearACLXX
\LinearACLXXI
\LinearACLXXII
\LinearACLXXIII
\LinearACLXXIV
\LinearACLXXV
\LinearACLXXVI
\LinearACLXXVII
\LinearACLXXVIII
\LinearACLXXIX
\LinearACLXXX
\LinearACLXXXI
\LinearACLXXXII
\LinearACLXXXIII
\LinearACLXXXIV
\LinearACLXXXV
\LinearACLXXXVI
\LinearACLXXXVII
\LinearACLXXXVIII
\LinearACLXXXIX
\LinearACLXXXX
\LinearACXCI
\LinearACXCII
\LinearACXCIII
\LinearACXCIV
\LinearACXCV
\LinearACXCVI
151
T
U
V
W
X
Y
Z
[
\
]
^
_
`
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
\LinearACCLXIII
\LinearACCLXIV
\LinearACCLXV
\LinearACCLXVI
\LinearACCLXVII
\LinearACCLXVIII
\LinearACCLXIX
\LinearACCLXX
\LinearACCLXXI
\LinearACCLXXII
\LinearACCLXXIII
\LinearACCLXXIV
\LinearACCLXXV
\LinearACCLXXVI
\LinearACCLXXVII
\LinearACCLXXVIII
\LinearACCLXXIX
\LinearACCLXXX
\LinearACCLXXXI
\LinearACCLXXXII
\LinearACCLXXXIII
\LinearACCLXXXIV
\LinearACCLXXXV
\LinearACCLXXXVI
\LinearACCLXXXVII
\LinearACCLXXXVIII
\LinearACCLXXXIX
\LinearACCLXXXX
\LinearACCXCI
\LinearACCXCII
\LinearACCXCIII
\LinearACCXCIV
¶
·
¸
¹
º
»
¼
½
¾
¿
À
Á
Â
Ã
Ä
Å
Æ
Ç
È
É
Ê
Ë
Ì
Í
Î
Ï
Ð
Ñ
Ò
\LinearACCCLXI
\LinearACCCLXII
\LinearACCCLXIII
\LinearACCCLXIV
\LinearACCCLXV
\LinearACCCLXVI
\LinearACCCLXVII
\LinearACCCLXVIII
\LinearACCCLXIX
\LinearACCCLXX
\LinearACCCLXXI
\LinearACCCLXXII
\LinearACCCLXXIII
\LinearACCCLXXIV
\LinearACCCLXXV
\LinearACCCLXXVI
\LinearACCCLXXVII
\LinearACCCLXXVIII
\LinearACCCLXXIX
\LinearACCCLXXX
\LinearACCCLXXXI
\LinearACCCLXXXII
\LinearACCCLXXXIII
\LinearACCCLXXXIV
\LinearACCCLXXXV
\LinearACCCLXXXVI
\LinearACCCLXXXVII
\LinearACCCLXXXVIII
\LinearACCCLXXXIX
Table 415: linearb Linear B Basic and Optional Letters
a
;
<
=
d
D
f
g
x
>
?
e
i
\Ba
\Baii
\Baiii
\Bau
\Bda
\Bde
\Bdi
\Bdo
\Bdu
\Bdwe
\Bdwo
\Be
\Bi
j
J
b
L
k
K
c
h
v
m
M
y
A
\Bja
\Bje
\Bjo
\Bju
\Bka
\Bke
\Bki
\Bko
\Bku
\Bma
\Bme
\Bmi
\Bmo
B
n
N
C
E
F
@
o
p
[
P
G
H
]
I
\
q
Q
X
8
r
^
_
R
O
U
\Bmu
\Bna
\Bne
\Bni
\Bno
\Bnu
\Bnwa
\Bo
\Bpa
\Bpaiii
\Bpe
\Bpi
\Bpo
\Bpte
\Bpu
\Bpuii
\Bqa
\Bqe
\Bqi
\Bqo
\Bra
\Braii
\Braiii
\Bre
\Bri
\Bro
‘
V
s
S
Y
1
2
{
|
t
}
T
3
\Broii
\Bru
\Bsa
\Bse
\Bsi
\Bso
\Bsu
\Bswa
\Bswi
\Bta
\Btaii
\Bte
\Bti
4
5
~
u
w
W
6
7
z
Z
9
\Bto
\Btu
\Btwo
\Bu
\Bwa
\Bwe
\Bwi
\Bwo
\Bza
\Bze
\Bzo
These symbols must appear either within the argument to \textlinb or
following the \linbfamily font-selection command within a scope. Singlecharacter shortcuts are also supported: Both “\textlinb{\Bpa\Bki\Bna}”
and “\textlinb{pcn}” produce “pcn”, for example. See the linearb documentation for more information.
Table 416: linearb Linear B Numerals
´
ˆ
˜
¨
˝
˚
\BNi
\BNii
\BNiii
\BNiv
\BNv
\BNvi
ˇ
˘
¯
˙
¸
˛
\BNvii
\BNviii
\BNix
\BNx
\BNxx
\BNxxx
‚
‹
›
“
”
„
\BNxl
\BNl
\BNlx
\BNlxx
\BNlxxx
\BNxc
«
»
–
—
‌
‰
\BNc
\BNcc
\BNccc
\BNcd
\BNd
\BNdc
ı
ȷ
ff
fi
\BNdcc
\BNdccc
\BNcm
\BNm
These symbols must appear either within the argument to \textlinb or following the \linbfamily font-selection command within a scope.
Table 417: linearb Linear B Weights and Measures
Ď
Ĺ
\BPtalent
\BPvola
Ľ
Ł
\BPvolb
\BPvolcd
Ń
Ă
\BPvolcf
\BPwta
Ą
Ć
\BPwtb
\BPwtc
Č
\BPwtd
These symbols must appear either within the argument to \textlinb or following the \linbfamily font-selection command within a scope.
152
Table 418: linearb Linear B Ideograms
Ž
ij
Ş
ť
ľ
Ű
ň
đ
§
ÿ
ź
Ř
ŋ
Ÿ
š
ě
ş
Ź
Ů
ď
\BPamphora
\BParrow
\BPbarley
\BPbilly
\BPboar
\BPbronze
\BPbull
\BPcauldroni
\BPcauldronii
\BPchariot
ă
ț
Ț
ń
ĺ
ś
ř
ł
¡
ż
\BPchassis
\BPcloth
\BPcow
\BPcup
\BPewe
\BPfoal
\BPgoat
\BPgoblet
\BPgold
\BPhorse
Š
ž
Ť
Ż
IJ
İ
ą
Ś
\BPman
\BPnanny
\BPolive
\BPox
\BPpig
\BPram
\BPsheep
\BPsow
\BPspear
\BPsword
\BPwheat
\BPwheel
\BPwine
\BPwineiih
\BPwineiiih
\BPwineivh
\BPwoman
\BPwool
These symbols must appear either within the argument to \textlinb or following the \linbfamily font-selection command within a scope.
Table 419: linearb Unidentified Linear B Symbols
fl
ffi
ffl
\BUi
\BUii
\BUiii
␣
!
"
\BUiv
\BUv
\BUvi
#
$
%
\BUvii
\BUviii
\BUix
&
’
­
\BUx
\BUxi
\BUxii
­
\Btwe
These symbols must appear either within the argument to \textlinb or following the \linbfamily font-selection command within a scope.
Table 420: cypriot Cypriot Letters
a
e
g
i
j
b
k
K
c
h
\Ca
\Ce
\Cga
\Ci
\Cja
\Cjo
\Cka
\Cke
\Cki
\Cko
v
l
L
d
f
q
m
M
y
A
\Cku
\Cla
\Cle
\Cli
\Clo
\Clu
\Cma
\Cme
\Cmi
\Cmo
B
n
N
C
E
F
o
p
P
G
H
I
r
R
O
U
V
s
S
Y
\Cmu
\Cna
\Cne
\Cni
\Cno
\Cnu
\Co
\Cpa
\Cpe
\Cpi
\Cpo
\Cpu
\Cra
\Cre
\Cri
\Cro
\Cru
\Csa
\Cse
\Csi
1
2
t
T
3
4
5
u
w
W
\Cso
\Csu
\Cta
\Cte
\Cti
\Cto
\Ctu
\Cu
\Cwa
\Cwe
6
7
x
X
j
b
g
9
\Cwi
\Cwo
\Cxa
\Cxe
\Cya
\Cyo
\Cza
\Czo
These symbols must appear either within the argument to \textcypr or
following the \cyprfamily font-selection command within a scope. Singlecharacter shortcuts are also supported: Both “\textcypr{\Cpa\Cki\Cna}”
and “\textcypr{pcn}” produce “pcn”, for example. See the cypriot documentation for more information.
153
Table 421: sarabian South Arabian Letters
a
b
g
d
h
w
\SAa
\SAb
\SAg
\SAd
\SAh
\SAw
z
H
T
y
k
l
m
n
s
f
‘
o
\SAz
\SAhd
\SAtd
\SAy
\SAk
\SAl
\SAm
\SAn
\SAs
\SAf
\SAlq
\SAo
x
q
r
S
t
I
D
J
G
Z
X
B
\SAsd
\SAq
\SAr
\SAsv
\SAt
\SAhu
\SAdb
\SAtb
\SAga
\SAzd
\SAsa
\SAdd
These symbols must appear either within the argument to \textsarab or
following the \sarabfamily font-selection command within a scope. Singlecharacter shortcuts are also supported: Both “\textsarab{\SAb\SAk\SAn}”
and “\textsarab{bkn}” produce “bkn”, for example. See the sarabian documentation for more information.
Table 422: teubner Archaic Greek Letters and Greek Numerals
\Coppa†
\coppa†
\digamma*,‡
Ϙ
ϙ
ϝ
Ϝ
ϟ
Ϡ
\Digamma*
\koppa*
\Sampi
ϡ
Ϛ
ϛ
\sampi*
\Stigma
\stigma*
ϛ
\varstigma
*
Technically, these symbols do not require teubner; it is sufficient to load the
babel package with the greek option (upon which teubner depends)—but use
\qoppa for \koppa and \ddigamma for \digamma.
†
For compatibility with other naming conventions teubner defines \Koppa as a
synonym for \Coppa and \varcoppa as a synonym for \coppa.
‡
If both teubner and amssymb are loaded, teubner’s \digamma replaces amssymb’s
\digamma, regardless of package-loading order.
Table 423: boisik Archaic Greek Letters and Greek Numerals
\
?
(
[
\Digamma
\digamma
\heta
\Heta
*
]
^
+
\qoppa
\Qoppa
\Sampi
\sampi

)
_
\stigma
\Stigma
\vardigamma
\Varsampi
,
\varsampi
Table 424: epiolmec Epi-Olmec Script
§
\EOafter
Ě
\EOMiddle
ź
\EOStarWarrior
Ş
\EOandThen
ő
\EOmonster
ű
\EOstep
Ť
\EOAppear
ě
\EOMountain
M
\EOSu
t
\EOBeardMask
\
\EOmuu
S
\EOsu
ą
\EOBedeck
b
\EOna
ž
\EOsun
(continued on next page)
154
(continued from previous page)
u
\EOBlood
‘
\EOne
Q
\EOsuu
ć
\EObrace
^
\EOni
K
\EOSuu
Æ
\EObuilding
š
\EOnow
:
\EOta
v
\EOBundle
c
\EOnu
8
\EOte
w
\EOChop
a
\EOnuu
ż
\EOthrone
Ř
\EOChronI
{
\EOofficerI
7
\EOti
x
\EOCloth
|
\EOofficerII
IJ
\EOtime
r
\EODealWith
}
\EOofficerIII
ij
\EOTime
Ţ
\EODeer
~
\EOofficerIV
£
\EOTitle
Ű
\EOeat
3
\EOpa
Ŋ
\EOTitleII
đ
\EOflint
n
\EOpak
ş
\EOTitleIV
č
Ä
\EOflower
\EOFold
Ś
Ů
\EOPatron
\EOPatronII
<
;
\EOto
\EOtu
ď
\EOGod
1
\EOpe
Ő
\EOtuki
Â
\EOGoUp
ť
\EOpenis
İ
\EOtukpa
ę
\EOgovernor
0
\EOpi
À
\EOturtle
z
\EOGuise
Ÿ
\EOPierce
9
\EOtuu
¡
\EOHallow
Ę
\EOPlant
@
\EOtza
V
\EOja
Ğ
\EOPlay
>
\EOtze
ĺ
\EOjaguar
6
\EOpo
Ŕ
\EOtzetze
U
\EOje
ţ
\EOpriest
=
\EOtzi
T
\EOji
Ĺ
\EOPrince
B
\EOtzu
-
\EOJI
5
\EOpu
?
\EOtzuu
Y
\EOjo
2
\EOpuu

\EOundef
X
\EOju
o
\EOpuuk
ă
\EOvarBeardMask
m
\EOkak
Ä
\EORain
W
\EOvarja
D
\EOke
L
\EOSa
.
\EOvarji
C
\EOki
R
\EOsa
/
\EOvarki
Ź
\EOkij
Å
\EOsacrifice
F
\EOvarkuu
Ă
\EOKing
y
\EOSaw
_
\EOvarni
ł
\EOknottedCloth
q
\EOScorpius
4
\EOvarpa
(continued on next page)
155
(continued from previous page)
ń
H
G
E
\EOknottedClothStraps
\EOko
\EOku
\EOkuu
Â
O
I
ů
\EOset
\EOsi
\EOSi
\EOsing
J
P
A
g
\EOvarSi
\EOvarsi
\EOvartza
\EOvarwuu
Ã
Ą
\EOLetBlood
\EOloinCloth
ľ
ÿ
\EOSini
\EOskin
Ã
h
\EOvarYear
\EOwa
Ć
\EOlongLipII
Ľ
\EOSky
e
\EOwe
ň
\EOLord
ś
\EOskyAnimal
d
\EOwi
Č
\EOLose
Ł
\EOskyPillar
i
\EOwo
]
\EOma
Ż
\EOsnake
f
\EOwuu
ŋ
\EOmacaw
N
\EOSo
l
\EOya
ŕ
\EOmacawI
,
\EOSpan
p
\EOyaj
[
\EOme
Ń
\EOSprinkle
j
\EOye
Ď
Z
\EOmexNew
\EOmi
Ž
Ň
\EOstar
\EOstarWarrior
s
k
\EOYear
\EOyuu
Table 425: epiolmec Epi-Olmec Numerals
\EOzero
˝
\EOvi
¸
\EOxii
”
\EOxviii
\EOi
\EOii
\EOiii
˚
ˇ
˘
\EOvii
\EOviii
\EOix
˛
‚
‹
\EOxiii
\EOxiv
\EOxv
„
«
\EOxix
\EOxx
\EOiv
¯
\EOx
›
\EOxvi
¨
\EOv
˙
\EOxi
“
\EOxvii
156
Table 426: allrunes Runes
á
ą
a
A
b
B
ď
D
d
e
\a
\A
a
A
b
B
\d
D
d
e
E
F
f
g
è
H
h
Á
i
I
E
F
f
g
\h
H
h
\i
i
I
İ
ţ
¡
ł
j
J
ń
Č
k
l
\ING
\ing
\Ing
\j
j
J
\k
\K
k
l
m
n
Ŋ
ŋ
o
ă
p
P
Ž
r
m
n
\NG
\ng
o
\p
p
P
\R
r
R
z
Ã
s
S
ô
ó
ã
ä
Ô
Ó
T
t
Ä
þ
U
u
w
R
\RR
\s
s
S
\seight
\sfive
\sfour
\sseven
\ssix
\sthree
T
t
\textsection
\th
U
u
w
The symbols in this table should appear within the argument to \textarc
(for common Germanic runes), \textara (for Anglo-Frisian runes), \textarn
(for normal runes), \textart (for short-twig runes), \textarl (for staveless
runes), \textarm (for medieval runes), or within a scope that sets, respectively, \arcfamily, \arafamily, \arnfamily, \artfamily, \arlfamily, or
\armfamily. Each family presents slightly different glyphs and/or slightly different subsets of the available runes. (The table presents the common Germanic
runes.) See the allrunes documentation for more information.
Table 427: allrunes Rune Separators
!
*
.
"
%
:
\bar
\cross
\dot
\doublebar
\doublecross
\doubledot
:
,
%
.
=
@
\doubleeye
\doubleplus
\doublestar
\eye
\pentdot
\penteye
+
<
?
$
#
&
See the usage comment under Table 426.
157
\plus
\quaddot
\quadeye
\star
\triplebar
\triplecross
;
>
-
\tripledot
\tripleeye
\tripleplus
7
Musical symbols
lilyglyphs
The following symbols are used to typeset musical notation. The
package provides a large
lilyglyphs
subset of the symbols in this section. Note, however, that
depends upon the fontspec package,
OpenType (.otf) fonts, and some PDF graphics and therefore works only with LuaLATEX or XELATEX.
A simple way to typeset time signatures, due to Daniel Hirst, is to attach a superscript and a subscript
to an empty math object. For example, ${}^3_4$ renders as “ 34 ”. Because superscripts and subscripts
are left-justified, some extra padding may need to be added if the beats per measure and beat unit
contain different numbers of digits. A 5 mu space (“\;”) vertically centers the “8” relative to the “12” in
4
${}^{12}_{\;8}$ (“12
8 ”). For boldface time signatures (e.g., “ 4 ”), consider the boldface-math options
presented in Section 10.5. See also Table 440.
Table 428: LATEX 2𝜀 Musical Symbols
♭
\flat
♮
\natural
♯
\sharp
Table 429: textcomp Musical Symbols
♪
\textmusicalnote
Table 430: wasysym Musical Symbols
\eighthnote
\halfnote
\twonotes
\fullnote
♩
\quarternote
Table 431: MnSymbol Musical Symbols
♭
\flat
♮
\natural
♯
\sharp
Table 432: fdsymbol Musical Symbols
♭
\flat
♮
\natural
♯
\sharp
Table 433: boisik Musical Symbols
ù
\flat
ú
\natural
û
\sharp
Table 434: stix Musical Symbols
♪
♭
♮
♩
\eighthnote
\flat
\natural
\quarternote
♯
♫
\sharp
\twonotes
Table 435: arev Musical Symbols
♩
\quarternote
♪
\eighthnote
158
♬
\sixteenthnote
Table 436: MusiXTEX Musical Symbols
R
K
\allabreve
ffl
\lsf
W
\shake
\altoclef
–
\lsfz
X
\Shake
C
\backturn
$
\maxima
j
\Shakel
I
\bassclef
9
\meterplus
m
\Shakene
\caesura
Y
\mordent
k
\Shakenw
U
\coda
w
\Mordent
l
\Shakesw
i
\Coda
;
\PAUSe
\smallaltoclef
!
\Dep
\PAuse
y
\doublethumb
:
=
\pause
L
J
H
—
\downbow
#
\Ped
"
\sPed
?
\ds
>
\qp
G
\trebleclef
NQ
\duevolte
B
\qqs
E
\trill
\fermatadown
@
\qs
D
\turn
P
\fermataup
\reverseallabreve
\upbow
x
\flageolett
{
T
\reverseC
ffi
\usf
<
\hpause
h
\sDep
»
\usfz
A
\hs
\Segno
8
\wq
’
\longa
\segno
­
\wqq
O
V
n
\smallbassclef
\smalltrebleclef
All of these symbols are intended to be used in the context of typesetting
musical scores. See the MusiXTEX documentation for more information.
159
Table 437: MusiXTEX Alternative Clefs
M
b
z
g
\drumclef
\gregorianCclef
\gregorianFclef
\oldGclef
In addition to MusiXTEX, \drumclef requires the musixper package;
\oldGclef requires the musixlit package; and both \gregorianCclef and
\gregorianFclef require the musixgre package. Together with MusiXTEX,
these packages provide a complete system for typesetting percussion notation
(musixper), liturgical music (musixlit), and Gregorian chants (musixgre, including the staffs and all of the necessary neumes. See the MusiXTEX documentation for more information.
Table 438: harmony Musical Symbols
==
ˇ “ˇ “
“
=ˇ=( “
ˇ ==
ˇ“
?
\AAcht
D
/D
\Acht
\AchtBL
\AchtBR
\AcPa
\DD
/D
ss
SS
¯
<
\DDohne
\Dohne
\Ds
\DS
\Ganz
\GaPa
˘“
<
‰
“
=ˇ=) “
ˇ==
ˇ=“
==
ˇ“
==
ˇ “=
\Halb
\HaPa
\Pu
\Sech
\SechBL
\SechBl
@
<
ˇ“
>
\SechBR
>
\VM
\SechBr
\SePa
\UB
\Vier
\ViPa
ˇ “*
A
\Zwdr
\ZwPa
The MusiXTEX package must be installed to use harmony.
Table 439: musicography Musical Symbols
[
]
ˇ “(
ˇ “( ‰
Z
˘“
˘ “‰
\musDoubleFlat
^
\musDoubleSharp
\musEighth
\musEighthDotted
\musFlat
\musHalf
\musHalfDotted
ˇ“
ˇ “‰
V
\
ˇ “)
ˇ “) ‰
\musNatural
ˇ “+
\musSixtyFourth
\musQuarter
\musQuarterDotted
\musSegno
\musSharp
\musSixteenth
\musSixteenthDotted
ˇ “+ ‰
ˇ *“
ˇ “* ‰
\musSixtyFourthDotted
\musThirtySecond
\musThirtySecondDotted
\musWhole
\musWholeDotted
¯
¯‰
musicography defines \fl, \sh, and \na as shorthands for \musFlat,
\musSharp, and musNatural, respectively. It also defines \musCorchea as an
alias for \musEighth, \musCorcheaDotted as an alias for \musEighthDotted,
\musFusa as an alias for \musEighth, \musFusaDotted as an alias for
\musEighthDotted, \musMinim as an alias for \musHalf, \musMinimDotted
as an alias for \musHalfDotted, \musSemibreve as an alias for \musWhole,
\musSemibreveDotted as an alias for \musWholeDotted, \musSemiminim
as an alias for \musQuarter, and \musSeminiminimDotted as an alias for
\musQuarterDotted.
The MusiXTEX package must be installed to use musicography.
160
Table 440: musicography Time Signatures
S
S3
S3
2
R
\meterC
\meterCThree
\meterCThreeTwo
SZ
\meterCZ
\meterCutC
○
\meterO
Other time signatures can be specified with \musMeter, as in
\musMeter{2}{4}
→
2
4
The MusiXTEX package must be installed to use musicography.
Table 441: harmony Musical Accents
.a
.
a
Aa
.a
.
a
Aa
\Ferli{A}\Ferli{a}*
/A/a
\Ohne{A}\Ohne{a}*
\Fermi{A}\Fermi{a}
̃︂
A ̃︂
a \Umd{A}\Umd{a}*
Alal \Kr{A}\Kr{a}
*
These symbols take an optional argument which shifts the accent either horizontally or vertically (depending on the command) by the given distance.
In addition to the accents shown above, \HH is a special accent command
that accepts five period-separated characters and typesets them such that
b
c
“\HH.X.a.b.c.d.” produces “Xa d”. All arguments except the first can be omitted: “\HH.X.....” produces “X”. \Takt takes two arguments and composes
them into a musical time signature. For example, “\Takt{12}{8}” produces
S
“ 12
8 ”. As two special cases, “\Takt{c}{0}” produces “ ” and “\Takt{c}{1}”
produces “R ”.
The MusiXTEX package must be installed to use harmony.
lilyglyphs
Single Notes
Table 442:
’
’
’
,
u
uu
uu
u
,
C
\eighthNote
\eighthNoteDotted
\eighthNoteDottedDouble
\eighthNoteDottedDoubleDown
\eighthNoteDottedDown
\eighthNoteDown
\halfNote
\halfNoteDotted
\halfNoteDottedDouble
\halfNoteDottedDoubleDown
\halfNoteDottedDown
\halfNoteDown
\quarterNote
u
C
©
©
©
Z
Z
Z
Z
Z
\quarterNoteDottedDown
\quarterNoteDown
\sixteenthNote
\sixteenthNoteDotted
\sixteenthNoteDottedDouble
\sixteenthNoteDottedDoubleDown
\sixteenthNoteDottedDown
\sixteenthNoteDown
\thirtysecondNote
\thirtysecondNoteDotted
\thirtysecondNoteDottedDouble
\thirtysecondNoteDottedDoubleDown
\thirtysecondNoteDottedDown
(continued on next page)
161
(continued from previous page)
u
uu
uu
Z
\quarterNoteDotted
\quarterNoteDottedDouble
\quarterNoteDottedDoubleDown
\thirtysecondNoteDown
\wholeNote
\wholeNoteDotted
lilyglyphs
defines synonyms for all of the preceding symbols:
C
u
uu
uu
u
C
Z
Z
Z
Z
Z
Z
,
u
uu
uu
\crotchet
\crotchetDotted
\crotchetDottedDouble
\crotchetDottedDoubleDown
\crotchetDottedDown
\crotchetDown
\demisemiquaver
\demisemiquaverDotted
\demisemiquaverDottedDouble
\demisemiquaverDottedDoubleDown
\demisemiquaverDottedDown
\demisemiquaverDown
\minim
\minimDotted
\minimDottedDouble
\minimDottedDoubleDown
\twoBeamedQuavers
ZZZ
ZZ Z
\threeBeamedQuavers
©
©
©
\minimDottedDown
\minimDown
\quaver
\quaverDotted
\quaverDottedDouble
\quaverDottedDoubleDown
\quaverDottedDown
\quaverDown
\semibreve
\semibreveDotted
\semiquaver
\semiquaverDotted
\semiquaverDottedDouble
\semiquaverDottedDoubleDown
\semiquaverDottedDown
\semiquaverDown
lilyglyphs
Beamed Notes
Table 443:
CC
u
,
’
’
’
Z ZZ
ZZ Z
\threeBeamedQuaversII
\threeBeamedQuaversIII
\threeBeamedQuaversI
lilyglyphs
Clefs
Table 444:
\clefC
\clefF
\clefG
Each of these symbols provides a smaller, “inline” form (\clefCInline,
\clefFInline, and \clefGInline, respectively) intended for use within a
lilyglyphs
paragraph. See the
documentation for more information.
162
lilyglyphs
Time Signatures
Table 445:
\lilyTimeC
\lilyTimeCHalf
lilyglyphs
also provides a \lilyTimeSignature command that lets a user typeset single and compound time signatures by specifying a numerator and a
lilyglyphs
denominator. See the
documentation for more information.
lilyglyphs
Accidentals
Table 446:
\doublesharp
\sharpArrowdown
\flat
\sharpArrowup
\flatflat
\sharpSlashslashslashStem
\natural
\sharpSlashslashslashStemstem
\sharp
\sharpSlashslashStem
\sharpArrowboth
\sharpSlashslashStemstemstem
lilyglyphs
Rests
Table 447:
\crotchetRest
\crotchetRestDotted
\halfNoteRest
\halfNoteRestDotted
\quaverRest
\quaverRestDotted
\semiquaverRest
\semiquaverRestDotted
\wholeNoteRest
\wholeNoteRestDotted
Multiply dotted rests can be produced with the \lilyPrintMoreDots comlilyglyphs
mand. See the
documentation for more information.
lilyglyphs
Dynamics Letters
Table 448:
\lilyDynamics{f}
\lilyDynamics{p}
\lilyDynamics{m}
\lilyDynamics{r}
\lilyDynamics{s}
\lilyDynamics{z}
\lilyRF
\lilyRFZ
These letters and the digits 0–9 are the only alphanumerics defined by
lilyglyphs
’s underlying Emmentaler fonts.
Table 449:
lilyglyphs
Dynamics Symbols
\crescHairpin
\decrescHairpin
163
lilyglyphs
Articulations
Table 450:
\lilyAccent
\lilyEspressivo
\lilyStaccato
\lilyThumb
\marcato
\marcatoDown
\portato
\portatoDown
\staccatissimo
\tenuto
lilyglyphs
Scripts
Table 451:
\fermata
lilyglyphs
Accordion Notation
Table 452:
\accordionBayanBass
\accordionDiscant
\accordionFreeBass
\accordionOldEE
\accordionPull
\accordionPush
Table 453:
\accordionStdBass
lilyglyphs
Named Time Signatures
\lilyGlyph{timesig.C22}
\lilyGlyph{timesig.C44}
\lilyGlyph{timesig.mensural22}
\lilyGlyph{timesig.mensural24}
\lilyGlyph{timesig.mensural32}
\lilyGlyph{timesig.mensural34}
\lilyGlyph{timesig.mensural44}
\lilyGlyph{timesig.mensural48}
\lilyGlyph{timesig.mensural64}
\lilyGlyph{timesig.mensural68}
\lilyGlyph{timesig.mensural68alt}
\lilyGlyph{timesig.mensural94}
\lilyGlyph{timesig.mensural98}
\lilyGlyph{timesig.neomensural22}
\lilyGlyph{timesig.neomensural24}
\lilyGlyph{timesig.neomensural32}
\lilyGlyph{timesig.neomensural34}
\lilyGlyph{timesig.neomensural44}
\lilyGlyph{timesig.neomensural48}
\lilyGlyph{timesig.neomensural64}
\lilyGlyph{timesig.neomensural68}
\lilyGlyph{timesig.neomensural68alt}
\lilyGlyph{timesig.neomensural94}
\lilyGlyph{timesig.neomensural98}
lilyglyphs
defines shorter names for a few of these symbols. See Table 445.
164
lilyglyphs
Named Scripts
Table 454:
\lilyGlyph{scripts.arpeggio}
\lilyGlyph{scripts.arpeggio.arrow.1}
\lilyGlyph{scripts.arpeggio.arrow.M1}
\lilyGlyph{scripts.augmentum}
\lilyGlyph{scripts.prallmordent}
\lilyGlyph{scripts.prallprall}
\lilyGlyph{scripts.prallup}
\lilyGlyph{scripts.rcomma}
\lilyGlyph{scripts.barline.kievan}
\lilyGlyph{scripts.caesura.curved}
\lilyGlyph{scripts.caesura.straight}
\lilyGlyph{scripts.circulus}
\lilyGlyph{scripts.coda}
\lilyGlyph{scripts.daccentus}
\lilyGlyph{scripts.dfermata}
\lilyGlyph{scripts.dlongfermata}
\lilyGlyph{scripts.dmarcato}
\lilyGlyph{scripts.downbow}
\lilyGlyph{scripts.downmordent}
\lilyGlyph{scripts.downprall}
\lilyGlyph{scripts.dpedalheel}
\lilyGlyph{scripts.dpedaltoe}
\lilyGlyph{scripts.dportato}
\lilyGlyph{scripts.dsemicirculus}
\lilyGlyph{scripts.dshortfermata}
\lilyGlyph{scripts.dsignumcongruentiae}
\lilyGlyph{scripts.dstaccatissimo}
\lilyGlyph{scripts.dverylongfermata}
\lilyGlyph{scripts.espr}
\lilyGlyph{scripts.flageolet}
\lilyGlyph{scripts.halfopen}
\lilyGlyph{scripts.halfopenvertical}
\lilyGlyph{scripts.ictus}
\lilyGlyph{scripts.lcomma}
\lilyGlyph{scripts.lineprall}
\lilyGlyph{scripts.lvarcomma}
\lilyGlyph{scripts.mordent}
\lilyGlyph{scripts.open}
\lilyGlyph{scripts.reverseturn}
\lilyGlyph{scripts.rvarcomma}
\lilyGlyph{scripts.segno}
\lilyGlyph{scripts.sforzato}
\lilyGlyph{scripts.snappizzicato}
\lilyGlyph{scripts.staccato}
\lilyGlyph{scripts.stopped}
\lilyGlyph{scripts.tenuto}
\lilyGlyph{scripts.thumb}
\lilyGlyph{scripts.tickmark}
\lilyGlyph{scripts.trilelement}
\lilyGlyph{scripts.trill}
\lilyGlyph{scripts.trill_element}
\lilyGlyph{scripts.turn}
\lilyGlyph{scripts.uaccentus}
\lilyGlyph{scripts.ufermata}
\lilyGlyph{scripts.ulongfermata}
\lilyGlyph{scripts.umarcato}
\lilyGlyph{scripts.upbow}
\lilyGlyph{scripts.upedalheel}
\lilyGlyph{scripts.upedaltoe}
\lilyGlyph{scripts.upmordent}
\lilyGlyph{scripts.uportato}
\lilyGlyph{scripts.upprall}
\lilyGlyph{scripts.usemicirculus}
\lilyGlyph{scripts.ushortfermata}
\lilyGlyph{scripts.usignumcongruentiae}
\lilyGlyph{scripts.ustaccatissimo}
\lilyGlyph{scripts.uverylongfermata}
\lilyGlyph{scripts.varcoda}
\lilyGlyph{scripts.prall}
\lilyGlyph{scripts.pralldown}
\lilyGlyph{scripts.varsegno}
lilyglyphs
defines \fermata as a shorter
\lilyGlyph{scripts.ufermata}. See Table 451.
165
name
for
“
”
than
lilyglyphs
Named Rests
Table 455:
\lilyGlyph{rests.0}
\lilyGlyph{rests.0mensural}
\lilyGlyph{rests.4mensural}
\lilyGlyph{rests.4neomensural}
\lilyGlyph{rests.0neomensural}
\lilyGlyph{rests.5}
\lilyGlyph{rests.0o}
\lilyGlyph{rests.6}
\lilyGlyph{rests.1}
\lilyGlyph{rests.1mensural}
\lilyGlyph{rests.1neomensural}
\lilyGlyph{rests.1o}
\lilyGlyph{rests.2}
\lilyGlyph{rests.2classical}
\lilyGlyph{rests.2mensural}
\lilyGlyph{rests.2neomensural}
\lilyGlyph{rests.3}
\lilyGlyph{rests.3mensural}
\lilyGlyph{rests.3neomensural}
\lilyGlyph{rests.4}
\lilyGlyph{rests.7}
\lilyGlyph{rests.M1}
\lilyGlyph{rests.M1mensural}
\lilyGlyph{rests.M1neomensural}
\lilyGlyph{rests.M1o}
\lilyGlyph{rests.M2}
\lilyGlyph{rests.M2mensural}
\lilyGlyph{rests.M2neomensural}
\lilyGlyph{rests.M3}
\lilyGlyph{rests.M3mensural}
\lilyGlyph{rests.M3neomensural}
lilyglyphs
defines shorter names for a few of these symbols. See Table 447.
lilyglyphs
Named Pedals
Table 456:
\lilyGlyph{pedal.*}
\lilyGlyph{pedal..}
\lilyGlyph{pedal.d}
\lilyGlyph{pedal.e}
\lilyGlyph{pedal.M}
\lilyGlyph{pedal.P}
\lilyGlyph{pedal.Ped}
166
lilyglyphs
Named Flags
Table 457:
\lilyGlyph{flags.d3}
\lilyGlyph{flags.d4}
\lilyGlyph{flags.mensuralu03}
\lilyGlyph{flags.mensuralu04}
\lilyGlyph{flags.d5}
\lilyGlyph{flags.mensuralu05}
\lilyGlyph{flags.d6}
\lilyGlyph{flags.mensuralu06}
\lilyGlyph{flags.d7}
\lilyGlyph{flags.dgrace}
\lilyGlyph{flags.mensuralu13}
\lilyGlyph{flags.mensuralu14}
\lilyGlyph{flags.mensurald03}
\lilyGlyph{flags.mensuralu15}
\lilyGlyph{flags.mensurald04}
\lilyGlyph{flags.mensuralu16}
\lilyGlyph{flags.mensurald05}
\lilyGlyph{flags.mensuralu23}
\lilyGlyph{flags.mensurald06}
\lilyGlyph{flags.mensuralu24}
\lilyGlyph{flags.mensurald13}
\lilyGlyph{flags.mensuralu25}
\lilyGlyph{flags.mensurald14}
\lilyGlyph{flags.mensuralu26}
\lilyGlyph{flags.mensurald15}
\lilyGlyph{flags.u3}
\lilyGlyph{flags.mensurald16}
\lilyGlyph{flags.u4}
\lilyGlyph{flags.mensurald23}
\lilyGlyph{flags.u5}
\lilyGlyph{flags.mensurald24}
\lilyGlyph{flags.u6}
\lilyGlyph{flags.mensurald25}
\lilyGlyph{flags.u7}
\lilyGlyph{flags.mensurald26}
\lilyGlyph{flags.ugrace}
lilyglyphs
Named Custodes
Table 458:
\lilyGlyph{custodes.hufnagel.d0}
\lilyGlyph{custodes.hufnagel.d1}
\lilyGlyph{custodes.hufnagel.d2}
\lilyGlyph{custodes.hufnagel.u0}
\lilyGlyph{custodes.hufnagel.u1}
\lilyGlyph{custodes.hufnagel.u2}
\lilyGlyph{custodes.medicaea.d0}
\lilyGlyph{custodes.medicaea.d1}
\lilyGlyph{custodes.medicaea.d2}
\lilyGlyph{custodes.medicaea.u0}
\lilyGlyph{custodes.medicaea.u1}
\lilyGlyph{custodes.medicaea.u2}
\lilyGlyph{custodes.mensural.d0}
\lilyGlyph{custodes.mensural.d1}
\lilyGlyph{custodes.mensural.d2}
\lilyGlyph{custodes.mensural.u0}
\lilyGlyph{custodes.mensural.u1}
\lilyGlyph{custodes.mensural.u2}
\lilyGlyph{custodes.vaticana.d0}
\lilyGlyph{custodes.vaticana.d1}
\lilyGlyph{custodes.vaticana.d2}
\lilyGlyph{custodes.vaticana.u0}
\lilyGlyph{custodes.vaticana.u1}
\lilyGlyph{custodes.vaticana.u2}
167
lilyglyphs
Named Clefs
Table 459:
\lilyGlyph{clefs.blackmensural.c}
\lilyGlyph{clefs.mensural.g_change}
\lilyGlyph{clefs.blackmensural.c_change}
\lilyGlyph{clefs.neomensural.c}
\lilyGlyph{clefs.C}
\lilyGlyph{clefs.C_change}
\lilyGlyph{clefs.F}
\lilyGlyph{clefs.neomensural.c_change}
\lilyGlyph{clefs.percussion}
\lilyGlyph{clefs.percussion_change}
\lilyGlyph{clefs.F_change}
\lilyGlyph{clefs.petrucci.c1}
\lilyGlyph{clefs.G}
\lilyGlyph{clefs.petrucci.c1_change}
\lilyGlyph{clefs.G_change}
\lilyGlyph{clefs.petrucci.c2}
\lilyGlyph{clefs.hufnagel.do}
\lilyGlyph{clefs.petrucci.c2_change}
\lilyGlyph{clefs.hufnagel.do.fa}
\lilyGlyph{clefs.petrucci.c3}
\lilyGlyph{clefs.hufnagel.do.fa_change}
\lilyGlyph{clefs.petrucci.c3_change}
\lilyGlyph{clefs.hufnagel.do_change}
\lilyGlyph{clefs.petrucci.c4}
\lilyGlyph{clefs.hufnagel.fa}
\lilyGlyph{clefs.petrucci.c4_change}
\lilyGlyph{clefs.hufnagel.fa_change}
\lilyGlyph{clefs.petrucci.c5}
\lilyGlyph{clefs.kievan.do}
\lilyGlyph{clefs.petrucci.c5_change}
\lilyGlyph{clefs.kievan.do_change}
\lilyGlyph{clefs.petrucci.f}
\lilyGlyph{clefs.medicaea.do}
\lilyGlyph{clefs.petrucci.f_change}
\lilyGlyph{clefs.medicaea.do_change}
\lilyGlyph{clefs.petrucci.g}
\lilyGlyph{clefs.medicaea.fa}
\lilyGlyph{clefs.petrucci.g_change}
\lilyGlyph{clefs.medicaea.fa_change}
\lilyGlyph{clefs.tab}
\lilyGlyph{clefs.mensural.c}
\lilyGlyph{clefs.tab_change}
\lilyGlyph{clefs.mensural.c_change}
\lilyGlyph{clefs.mensural.f}
\lilyGlyph{clefs.mensural.f_change}
\lilyGlyph{clefs.vaticana.do}
\lilyGlyph{clefs.vaticana.do_change}
\lilyGlyph{clefs.vaticana.fa}
\lilyGlyph{clefs.mensural.g}
\lilyGlyph{clefs.vaticana.fa_change}
lilyglyphs
defines shorter names for a few of these symbols. See Table 444.
168
Table 460:
lilyglyphs
Named Noteheads
\lilyGlyph{noteheads.d0doFunk}
\lilyGlyph{noteheads.d0fa}
\lilyGlyph{noteheads.d0faFunk}
\lilyGlyph{noteheads.d0faThin}
\lilyGlyph{noteheads.d0miFunk}
\lilyGlyph{noteheads.d0reFunk}
\lilyGlyph{noteheads.d0tiFunk}
\lilyGlyph{noteheads.d1do}
\lilyGlyph{noteheads.d1doFunk}
\lilyGlyph{noteheads.d1doThin}
\lilyGlyph{noteheads.d1doWalker}
\lilyGlyph{noteheads.d1fa}
\lilyGlyph{noteheads.d1faFunk}
\lilyGlyph{noteheads.d1faThin}
\lilyGlyph{noteheads.d1faWalker}
\lilyGlyph{noteheads.d1miFunk}
\lilyGlyph{noteheads.d1re}
\lilyGlyph{noteheads.d1reFunk}
\lilyGlyph{noteheads.d1reThin}
\lilyGlyph{noteheads.d1reWalker}
\lilyGlyph{noteheads.d1ti}
\lilyGlyph{noteheads.d1tiFunk}
\lilyGlyph{noteheads.d1tiThin}
\lilyGlyph{noteheads.d1tiWalker}
\lilyGlyph{noteheads.d1triangle}
\lilyGlyph{noteheads.d2do}
\lilyGlyph{noteheads.d2doFunk}
\lilyGlyph{noteheads.d2doThin}
\lilyGlyph{noteheads.d2doWalker}
\lilyGlyph{noteheads.d2fa}
\lilyGlyph{noteheads.d2faFunk}
\lilyGlyph{noteheads.d2faThin}
\lilyGlyph{noteheads.d2faWalker}
\lilyGlyph{noteheads.d2kievan}
\lilyGlyph{noteheads.d2re}
\lilyGlyph{noteheads.d2reFunk}
\lilyGlyph{noteheads.d2reThin}
\lilyGlyph{noteheads.d2reWalker}
\lilyGlyph{noteheads.d2ti}
\lilyGlyph{noteheads.d2tiFunk}
\lilyGlyph{noteheads.d2tiThin}
\lilyGlyph{noteheads.d2tiWalker}
\lilyGlyph{noteheads.d2triangle}
\lilyGlyph{noteheads.d3kievan}
\lilyGlyph{noteheads.dM2}
\lilyGlyph{noteheads.dM2blackmensural}
\lilyGlyph{noteheads.dM2mensural}
\lilyGlyph{noteheads.dM2neomensural}
\lilyGlyph{noteheads.dM2semimensural}
\lilyGlyph{noteheads.dM3blackmensural}
(continued on next page)
169
(continued from previous page)
\lilyGlyph{noteheads.dM3mensural}
\lilyGlyph{noteheads.dM3neomensural}
\lilyGlyph{noteheads.dM3semimensural}
\lilyGlyph{noteheads.drM2mensural}
\lilyGlyph{noteheads.drM2neomensural}
\lilyGlyph{noteheads.drM2semimensural}
\lilyGlyph{noteheads.drM3mensural}
\lilyGlyph{noteheads.drM3neomensural}
\lilyGlyph{noteheads.drM3semimensural}
\lilyGlyph{noteheads.s0}
\lilyGlyph{noteheads.s0blackmensural}
\lilyGlyph{noteheads.s0blackpetrucci}
\lilyGlyph{noteheads.s0cross}
\lilyGlyph{noteheads.s0diamond}
\lilyGlyph{noteheads.s0do}
\lilyGlyph{noteheads.s0doThin}
\lilyGlyph{noteheads.s0doWalker}
\lilyGlyph{noteheads.s0faWalker}
\lilyGlyph{noteheads.s0harmonic}
\lilyGlyph{noteheads.s0kievan}
\lilyGlyph{noteheads.s0la}
\lilyGlyph{noteheads.s0laFunk}
\lilyGlyph{noteheads.s0laThin}
\lilyGlyph{noteheads.s0laWalker}
\lilyGlyph{noteheads.s0mensural}
\lilyGlyph{noteheads.s0mi}
\lilyGlyph{noteheads.s0miMirror}
\lilyGlyph{noteheads.s0miThin}
\lilyGlyph{noteheads.s0miWalker}
\lilyGlyph{noteheads.s0neomensural}
\lilyGlyph{noteheads.s0petrucci}
\lilyGlyph{noteheads.s0re}
\lilyGlyph{noteheads.s0reThin}
\lilyGlyph{noteheads.s0reWalker}
\lilyGlyph{noteheads.s0slash}
\lilyGlyph{noteheads.s0sol}
\lilyGlyph{noteheads.s0solFunk}
\lilyGlyph{noteheads.s0ti}
\lilyGlyph{noteheads.s0tiThin}
\lilyGlyph{noteheads.s0tiWalker}
\lilyGlyph{noteheads.s0triangle}
\lilyGlyph{noteheads.s1}
\lilyGlyph{noteheads.s1blackpetrucci}
\lilyGlyph{noteheads.s1cross}
\lilyGlyph{noteheads.s1diamond}
\lilyGlyph{noteheads.s1kievan}
\lilyGlyph{noteheads.s1la}
\lilyGlyph{noteheads.s1laFunk}
\lilyGlyph{noteheads.s1laThin}
\lilyGlyph{noteheads.s1laWalker}
\lilyGlyph{noteheads.s1mensural}
\lilyGlyph{noteheads.s1mi}
\lilyGlyph{noteheads.s1miMirror}
(continued on next page)
170
(continued from previous page)
\lilyGlyph{noteheads.s1miThin}
\lilyGlyph{noteheads.s1miWalker}
\lilyGlyph{noteheads.s1neomensural}
\lilyGlyph{noteheads.s1petrucci}
\lilyGlyph{noteheads.s1slash}
\lilyGlyph{noteheads.s1sol}
\lilyGlyph{noteheads.s1solFunk}
\lilyGlyph{noteheads.s2}
\lilyGlyph{noteheads.s2blackpetrucci}
\lilyGlyph{noteheads.s2cross}
\lilyGlyph{noteheads.s2diamond}
\lilyGlyph{noteheads.s2harmonic}
\lilyGlyph{noteheads.s2la}
\lilyGlyph{noteheads.s2laFunk}
\lilyGlyph{noteheads.s2laThin}
\lilyGlyph{noteheads.s2laWalker}
\lilyGlyph{noteheads.s2mensural}
\lilyGlyph{noteheads.s2mi}
\lilyGlyph{noteheads.s2miFunk}
\lilyGlyph{noteheads.s2miMirror}
\lilyGlyph{noteheads.s2miThin}
\lilyGlyph{noteheads.s2miWalker}
\lilyGlyph{noteheads.s2neomensural}
\lilyGlyph{noteheads.s2petrucci}
\lilyGlyph{noteheads.s2slash}
\lilyGlyph{noteheads.s2sol}
\lilyGlyph{noteheads.s2solFunk}
\lilyGlyph{noteheads.s2xcircle}
\lilyGlyph{noteheads.shufnagel.lpes}
\lilyGlyph{noteheads.shufnagel.punctum}
\lilyGlyph{noteheads.shufnagel.virga}
\lilyGlyph{noteheads.sM1}
\lilyGlyph{noteheads.sM1blackmensural}
\lilyGlyph{noteheads.sM1double}
\lilyGlyph{noteheads.sM1kievan}
\lilyGlyph{noteheads.sM1mensural}
\lilyGlyph{noteheads.sM1neomensural}
\lilyGlyph{noteheads.sM1semimensural}
\lilyGlyph{noteheads.sM2blackligmensural}
\lilyGlyph{noteheads.sM2kievan}
\lilyGlyph{noteheads.sM2ligmensural}
\lilyGlyph{noteheads.sM2semiligmensural}
\lilyGlyph{noteheads.sM3blackligmensural}
\lilyGlyph{noteheads.sM3ligmensural}
\lilyGlyph{noteheads.sM3semiligmensural}
\lilyGlyph{noteheads.smedicaea.inclinatum}
\lilyGlyph{noteheads.smedicaea.punctum}
\lilyGlyph{noteheads.smedicaea.rvirga}
\lilyGlyph{noteheads.smedicaea.virga}
\lilyGlyph{noteheads.sr1kievan}
\lilyGlyph{noteheads.srM1mensural}
\lilyGlyph{noteheads.srM1neomensural}
\lilyGlyph{noteheads.srM1semimensural}
(continued on next page)
171
(continued from previous page)
\lilyGlyph{noteheads.srM2ligmensural}
\lilyGlyph{noteheads.srM2semiligmensural}
\lilyGlyph{noteheads.srM3ligmensural}
\lilyGlyph{noteheads.srM3semiligmensural}
\lilyGlyph{noteheads.ssolesmes.auct.asc}
\lilyGlyph{noteheads.ssolesmes.auct.desc}
\lilyGlyph{noteheads.ssolesmes.incl.auctum}
\lilyGlyph{noteheads.ssolesmes.incl.parvum}
\lilyGlyph{noteheads.ssolesmes.oriscus}
\lilyGlyph{noteheads.ssolesmes.stropha}
\lilyGlyph{noteheads.ssolesmes.stropha.aucta}
\lilyGlyph{noteheads.svaticana.cephalicus}
\lilyGlyph{noteheads.svaticana.epiphonus}
\lilyGlyph{noteheads.svaticana.inclinatum}
\lilyGlyph{noteheads.svaticana.inner.cephalicus}
\lilyGlyph{noteheads.svaticana.linea.punctum}
\lilyGlyph{noteheads.svaticana.linea.punctum.cavum}
\lilyGlyph{noteheads.svaticana.lpes}
\lilyGlyph{noteheads.svaticana.plica}
\lilyGlyph{noteheads.svaticana.punctum}
\lilyGlyph{noteheads.svaticana.punctum.cavum}
\lilyGlyph{noteheads.svaticana.quilisma}
\lilyGlyph{noteheads.svaticana.reverse.plica}
\lilyGlyph{noteheads.svaticana.reverse.vplica}
\lilyGlyph{noteheads.svaticana.upes}
\lilyGlyph{noteheads.svaticana.vepiphonus}
\lilyGlyph{noteheads.svaticana.vlpes}
\lilyGlyph{noteheads.svaticana.vplica}
\lilyGlyph{noteheads.svaticana.vupes}
\lilyGlyph{noteheads.u0doFunk}
\lilyGlyph{noteheads.u0fa}
\lilyGlyph{noteheads.u0faFunk}
\lilyGlyph{noteheads.u0faThin}
\lilyGlyph{noteheads.u0miFunk}
\lilyGlyph{noteheads.u0reFunk}
\lilyGlyph{noteheads.u0tiFunk}
\lilyGlyph{noteheads.u1do}
\lilyGlyph{noteheads.u1doFunk}
\lilyGlyph{noteheads.u1doThin}
\lilyGlyph{noteheads.u1doWalker}
\lilyGlyph{noteheads.u1fa}
\lilyGlyph{noteheads.u1faFunk}
\lilyGlyph{noteheads.u1faThin}
\lilyGlyph{noteheads.u1faWalker}
\lilyGlyph{noteheads.u1miFunk}
\lilyGlyph{noteheads.u1re}
\lilyGlyph{noteheads.u1reFunk}
\lilyGlyph{noteheads.u1reThin}
\lilyGlyph{noteheads.u1reWalker}
\lilyGlyph{noteheads.u1ti}
\lilyGlyph{noteheads.u1tiFunk}
\lilyGlyph{noteheads.u1tiThin}
\lilyGlyph{noteheads.u1tiWalker}
(continued on next page)
172
(continued from previous page)
\lilyGlyph{noteheads.u1triangle}
\lilyGlyph{noteheads.u2do}
\lilyGlyph{noteheads.u2doFunk}
\lilyGlyph{noteheads.u2doThin}
\lilyGlyph{noteheads.u2doWalker}
\lilyGlyph{noteheads.u2fa}
\lilyGlyph{noteheads.u2faFunk}
\lilyGlyph{noteheads.u2faThin}
\lilyGlyph{noteheads.u2faWalker}
\lilyGlyph{noteheads.u2kievan}
\lilyGlyph{noteheads.u2re}
\lilyGlyph{noteheads.u2reFunk}
\lilyGlyph{noteheads.u2reThin}
\lilyGlyph{noteheads.u2reWalker}
\lilyGlyph{noteheads.u2ti}
\lilyGlyph{noteheads.u2tiFunk}
\lilyGlyph{noteheads.u2tiThin}
\lilyGlyph{noteheads.u2tiWalker}
\lilyGlyph{noteheads.u2triangle}
\lilyGlyph{noteheads.u3kievan}
\lilyGlyph{noteheads.uM2}
\lilyGlyph{noteheads.uM2blackmensural}
\lilyGlyph{noteheads.uM2mensural}
\lilyGlyph{noteheads.uM2neomensural}
\lilyGlyph{noteheads.uM2semimensural}
\lilyGlyph{noteheads.uM3blackmensural}
\lilyGlyph{noteheads.uM3mensural}
\lilyGlyph{noteheads.uM3neomensural}
\lilyGlyph{noteheads.uM3semimensural}
\lilyGlyph{noteheads.urM2mensural}
\lilyGlyph{noteheads.urM2neomensural}
\lilyGlyph{noteheads.urM2semimensural}
\lilyGlyph{noteheads.urM3mensural}
\lilyGlyph{noteheads.urM3neomensural}
\lilyGlyph{noteheads.urM3semimensural}
Table 461:
lilyglyphs
Named Accordion Symbols
\lilyGlyph{accordion.bayanbass}
\lilyGlyph{accordion.discant}
\lilyGlyph{accordion.dot}
\lilyGlyph{accordion.oldEE}
\lilyGlyph{accordion.pull}
\lilyGlyph{accordion.push}
\lilyGlyph{accordion.freebass}
\lilyGlyph{accordion.stdbass}
lilyglyphs
defines shorter names for all
\lilyGlyph{accordion.dot}. See Table 452.
173
of
these
symbols
except
lilyglyphs
Named Accidentals
Table 462:
\lilyGlyph{accidentals.doublesharp}
\lilyGlyph{accidentals.flat}
\lilyGlyph{accidentals.flat.arrowboth}
\lilyGlyph{accidentals.flat.arrowdown}
\lilyGlyph{accidentals.flat.arrowup}
\lilyGlyph{accidentals.flat.slash}
\lilyGlyph{accidentals.flat.slashslash}
\lilyGlyph{accidentals.flatflat}
\lilyGlyph{accidentals.flatflat.slash}
\lilyGlyph{accidentals.hufnagelM1}
\lilyGlyph{accidentals.kievan1}
\lilyGlyph{accidentals.kievanM1}
\lilyGlyph{accidentals.leftparen}
\lilyGlyph{accidentals.medicaeaM1}
\lilyGlyph{accidentals.mensural1}
\lilyGlyph{accidentals.mensuralM1}
\lilyGlyph{accidentals.mirroredflat}
\lilyGlyph{accidentals.mirroredflat.backslash}
\lilyGlyph{accidentals.mirroredflat.flat}
\lilyGlyph{accidentals.natural}
\lilyGlyph{accidentals.natural.arrowboth}
\lilyGlyph{accidentals.natural.arrowdown}
\lilyGlyph{accidentals.natural.arrowup}
\lilyGlyph{accidentals.rightparen}
\lilyGlyph{accidentals.sharp}
\lilyGlyph{accidentals.sharp.arrowboth}
\lilyGlyph{accidentals.sharp.arrowdown}
\lilyGlyph{accidentals.sharp.arrowup}
\lilyGlyph{accidentals.sharp.slashslash.stem}
\lilyGlyph{accidentals.sharp.slashslash.stemstemstem}
\lilyGlyph{accidentals.sharp.slashslashslash.stem}
\lilyGlyph{accidentals.sharp.slashslashslash.stemstem}
\lilyGlyph{accidentals.vaticana0}
\lilyGlyph{accidentals.vaticanaM1}
lilyglyphs
defines shorter names for a few of these symbols. See Table 446.
lilyglyphs
Named Arrowheads
Table 463:
\lilyGlyph{arrowheads.close.01}
\lilyGlyph{arrowheads.close.0M1}
\lilyGlyph{arrowheads.close.11}
\lilyGlyph{arrowheads.close.1M1}
174
\lilyGlyph{arrowheads.open.01}
\lilyGlyph{arrowheads.open.0M1}
\lilyGlyph{arrowheads.open.11}
\lilyGlyph{arrowheads.open.1M1}
Table 464:
lilyglyphs
Named Alphanumerics and Punctuation
\lilyGlyph{zero}
\lilyGlyph{one}
\lilyGlyph{two}
\lilyGlyph{three}
\lilyGlyph{four}
\lilyGlyph{five}
\lilyGlyph{six}
\lilyGlyph{seven}
\lilyGlyph{eight}
\lilyGlyph{nine}
\lilyGlyph{f}
\lilyGlyph{m}
\lilyGlyph{p}
\lilyGlyph{r}
\lilyGlyph{s}
\lilyGlyph{z}
\lilyGlyph{comma}
\lilyGlyph{hyphen}
\lilyGlyph{period}
\lilyGlyph{plus}
lilyglyphs
See Table 448 for an alternative way to typeset dynamics letters.
additionally provides a \lilyText command that can be useful for typesetting
lilyglyphs
groups of the preceding symbols. See the
documentation for more
information.
lilyglyphs
Named Musical Symbols
Table 465: Miscellaneous
\lilyGlyph{brackettips.down}
\lilyGlyph{brackettips.up}
\lilyGlyph{dots.dot}
\lilyGlyph{dots.dotkievan}
\lilyGlyph{dots.dotvaticana}
\lilyGlyph{ties.lyric.default}
\lilyGlyph{ties.lyric.short}
175
8
Other symbols
The following are all the symbols that didn’t fit neatly or unambiguously into any of the previous
sections. (Do weather symbols belong under “Science and technology”? Should dice be considered
“mathematics”?) While some of the tables contain clearly related groups of symbols (e.g., symbols
related to various board games), others represent motley assortments of whatever the font designer felt
like drawing.
Table 466: textcomp Genealogical Symbols
b
d
\textborn
\textdied
c
l
\textdivorced
\textleaf
m
\textmarried
Table 467: wasysym General Symbols
m
1
|
*
\ataribox
\bell
\blacksmiley
\Bowtie
\brokenvert
\checked
\clock
L
/
6
"
\diameter
\DOWNarrow
\frownie
\invdiameter
\kreuz
\LEFTarrow
\leftturn
!
,
\lightning
\phone
\pointer
\recorder
\RIGHTarrow
\rightturn
\smiley
☼
K
S
◊
\sun
\UParrow
\wasycmd*
\wasylozenge
wasysym defines \applecmd as a synonym for \wasycmd.
Table 468: manfnt Dangerous Bend Symbols

\dbend
~
\lhdbend
\reversedvideodbend
Note that these symbols descend far beneath the baseline. manfnt also defines non-descending versions, which it calls, correspondingly, \textdbend,
\textlhdbend, and \textreversedvideodbend.
Table 469: Miscellaneous manfnt Symbols
$
%
#
y
!
\manboldkidney
\manconcentriccircles
\manconcentricdiamond
\mancone
\mancube
\manerrarrow
\manfilledquartercircle
\manhpennib
\manimpossiblecube
\mankidney
\manlhpenkidney
&
'
"
7
x
6
176
\manpenkidney
\manquadrifolium
\manquartercircle
\manrotatedquadrifolium
\manrotatedquartercircle
\manstar
\mantiltpennib
\mantriangledown
\mantriangleright
\mantriangleup
\manvpennib
Table 470: marvosym Media Control Symbols
·
¸
¹
»
º
¶
\Forward
\ForwardToEnd
\ForwardToIndex
´
µ
½
\MoveDown
\MoveUp
\Rewind
\RewindToIndex
\RewindToStart
\ToBottom
¼
\ToTop
Table 471: marvosym Laundry Symbols
Ø
Ó
Õ
Ë
«
¾
¿
¬
î
Ý
Ü
¯
°
±
Ì
¨
²

×
Ù
\AtForty
\AtNinetyFive
\AtSixty
\Bleech
\CleaningA
\CleaningF
\CleaningFF
\CleaningP
\CleaningPP
\Dontwash
\Handwash
\IroningI
\IroningII
\IroningIII
\NoBleech
\NoChemicalCleaning
\NoIroning
\NoTumbler
\ShortFifty
\ShortForty
Ô
Ö
Û
Ú

‰
Š
‹
\ShortNinetyFive
\ShortSixty
\ShortThirty
\SpecialForty
\Tumbler
\WashCotton
\WashSynthetics
\WashWool
Table 472: marvosym Information Symbols
®
U
K
o
\Bicycle
\ClockLogo
\Coffeecup
\Football
x
I
i
y
\Gentsroom
\Industry
\Info
\Ladiesroom
Z
w
b
\PointingHand
\Wheelchair
\WritingHand
Table 473: Other marvosym Symbols
ˆ
ý
F
M
N
¥
‡
ª
†
§
\Ankh
\Bat
\BOLogo
\BOLogoL
\BOLogoP
Œ
ÿ
³
m
@
\Bouquet
\Celtcross
\CircledA
\Cross
\Frowny
\Heart
\ManFace
\MineSign
\Mundus
\MVAt
f
©
þ
Y
\PeaceDove
\Smiley
\WomanFace
\Yinyang
Table 474: Miscellaneous universa Symbols
Ξ
Λ
\bauforms
\bauhead
Table 475: Miscellaneous fourier Symbols
,
*
\bomb
\grimace
!
.
\noway
\textthing*
6
5
\textxswdown*
\textxswup*
"
\warning
fourier defines math-mode synonyms for a few of the preceding symbols:
\thething (“.”), \xswordsup (“5”), and \xswordsdown (“6”).
177
Table 476: ifsym Weather Symbols
!
#
"
\Cloud
\FilledCloud
\FilledRainCloud
\FilledSunCloud
\FilledWeakRainCloud
\Fog
\Hail
\HalfSun
\Lightning
\NoSun
\Rain
\RainCloud
\Sleet
\Snow
\SnowCloud
\Sun
\SunCloud
\ThinFog
$
\WeakRain
\WeakRainCloud
\FilledSnowCloud
In addition, \Thermo{0}. . .\Thermo{6} produce thermometers that are be tween 0/6 and 6/6 full of mercury:
Similarly, \wind{⟨sun⟩}{⟨angle⟩}{⟨strength⟩} will draw wind symbols with a
given amount of sun (0–4), a given angle (in degrees), and a given strength in
km/h (0–100). For example, \wind{0}{0}{0} produces “ 0 ”, \wind{2}{0}{0}
produces “ 0 ”, and \wind{4}{0}{100} produces “ : ”.
™
˜
\SummitSign
\StoneMan
\Hut
\FilledHut
\Village
\Interval
\StopWatchEnd
—
–
Table 477: ifsym Alpine Symbols
\Summit
\Mountain
\IceMountain
\VarMountain
\VarIceMountain
\SurveySign
\Joch
\Flag
\VarFlag
\Tent
Table 478: ifsym Clocks
\StopWatchStart
\Taschenuhr
›
”
\HalfFilledHut
\VarSummit
š
\VarClock
\Wecker
\VarTaschenuhr
ifsym also exports a \showclock macro. \showclock{⟨hours⟩}{⟨minutes⟩}
outputs a clock displaying the corresponding time.
For instance,
“\showclock{5}{40}” produces “ ”. ⟨hours⟩ must be an integer from 0 to 11,
and ⟨minutes⟩ must be an integer multiple of 5 from 0 to 55.
D
:
:
Table 479: Other ifsym Symbols
\FilledSectioningDiamond
\Fire
\Irritant
\Cube{1}
\Cube{2}
\StrokeOne
\StrokeTwo
::
::
\Letter
\PaperLandscape
\PaperPortrait
(
\Cube{3}
\Cube{4}
\StrokeThree
\StrokeFour
178
\Radiation
\SectioningDiamond
\Telephone
\Cube{5}
\Cube{6}
;
\StrokeFive
Table 480: clock Clocks
i
’
1i’
23ii’’
\ClockStyle
\ClockFramefalse
0
1
2
3
0
i
’
01i’
0023ii’’
\ClockFrametrue
The clock package provides a \clock command to typeset an arbitrary time on
an analog clock (and \clocktime to typeset the document’s build time). For
example, the clocks in the above table were produced with \clock{15}{41}.
Clock symbols are composed from a font of clock-face fragments using one of
four values for \ClockStyle and either \ClockFrametrue or \ClockFrametrue
as illustrated above. See the clock documentation for more information.
Table 481: epsdice Dice
\epsdice{1}
\epsdice{2}
\epsdice{3}
\epsdice{4}
\epsdice{5}
\epsdice{6}
Table 482: hhcount Dice
\fcdice{1}
\fcdice{2}
\fcdice{3}
\fcdice{4}
\fcdice{5}
\fcdice{6}
The \fcdice command accepts values larger than 6.
“\fcdice{47}” produces “
”.
Table 483: stix Dice
⚀
⚁
\dicei
\diceii
⚂
⚃
\diceiii
\diceiv
179
⚄
⚅
\dicev
\dicevi
For example,
Table 484: bullcntr Tally Markers
∙
\bullcntr{⟨1 ⟩}
∙
∙ ∙
∙
\bullcntr{⟨4 ⟩}
∙∙
∙∙∙
∙∙
\bullcntr{⟨7 ⟩}
∙ ∙
\bullcntr{⟨2 ⟩}
∙ ∙
∙
∙ ∙
\bullcntr{⟨5 ⟩}
∙∙∙
∙∙
∙∙∙
\bullcntr{⟨8 ⟩}
∙
∙ ∙
\bullcntr{⟨3 ⟩}
∙∙
∙ ∙
∙∙
\bullcntr{⟨6 ⟩}
∙∙∙
∙∙∙
∙∙∙
\bullcntr{⟨9 ⟩}
The notation for \bullcntr used in the above bears explanation. \bullcntr
does not take a number as its argument but rather a LATEX counter, whose value
it uses to typeset a tally marker. “\bullcntr{⟨3 ⟩}”, for example, means to invoke \bullcntr with a counter whose value is 3. (\bullcntr usage is therefore
akin to that of LATEX’s \fnsymbol.) The intention is to use \bullcntr indirectly via the bullenum package’s bullenum environment, which is a variation
on the enumerate environment that uses \bullcntr to typeset the labels.
To typeset individual tally markers, one can define a helper command:
\newcounter{bull}
\newcommand{\showbullcntr}[1]{%
\setcounter{bull}{#1}%
\bullcntr{bull}%
}
bullcntr’s package options smallctrbull, largectrbull, and heartctrbull and corresponding commands \smallctrbull, \largectrbull, and \heartctrbull
control the formatting of each tally marker:
\bullcntr{⟨5 ⟩}
small
large
heart
∙ ∙
∙
∙ ∙
∙ ∙
∙
∙ ∙
♡ ♡
♡
♡ ♡
The default is smartctrbull (\smartctrbull), which maps counter values 1–5
to large pips and 6–9 to small pips. It is also possible to use arbitrary symbols
for \bullcntr’s pips. See the bullcntr documentation for more information.
Table 485: hhcount Tally Markers
\fcscore{1}
\fcscore{2}
\fcscore{3}
\fcscore{4}
\fcscore{5}
The \fcscore command accepts values larger than 5.
”.
“\fcscore{47}” produces “
For example,
Table 486: dozenal Tally Markers
1
2
\tally{1}
\tally{2}
3
4
\tally{3}
\tally{4}
180
5
6
\tally{5}
\tally{6}
Table 487: skull Symbols
A
\skull
Table 488: Non-Mathematical mathabx Symbols
O
\rip
Table 489: skak Chess Informator Symbols
g
i
b
a
e
X
O
I
+
RR
P
l
n
V
t
G
\bbetter
\bdecisive
\betteris
\bishoppair
\bupperhand
\capturesymbol
\castlingchar
\castlinghyphen
\centre
\checksymbol
\chesscomment
\chessetc
\chesssee
\compensation
\counterplay
\devadvantage
\diagonal
d
L
j
H
O
O-O-O
x
y
m
S
U
N
F
o
r
M
s
\doublepawns
\ending
\equal
\file
\kside
\longcastling
\markera
\markerb
\mate
\morepawns
\moreroom
\novelty
\onlymove
\opposbishops
\passedpawn
\qside
\samebishops
181
q
O-O
T
k
u
R
f
h
J
v
A
E
C
w
c
D
\seppawns
\shortcastling
\timelimit
\unclear
\unitedpawns
\various
\wbetter
\wdecisive
\weakpt
\with
\withattack
\withidea
\withinit
\without
\wupperhand
\zugzwang
Table 490: skak Chess Pieces and Chessboard Squares
a
b
Z
j
k
m
n
o
p
l
q
\BlackBishopOnWhite
s
r
\BlackEmptySquare
B
\symbishop
\BlackKingOnBlack
K
\symking
\BlackKingOnWhite
N
\symknight
\BlackKnightOnBlack
p
\sympawn
\BlackKnightOnWhite
Q
\symqueen
\BlackPawnOnBlack
R
\symrook
\BlackBishopOnBlack
\BlackPawnOnWhite
\BlackQueenOnBlack
\BlackQueenOnWhite
A
B
0
\BlackRookOnBlack
\BlackRookOnWhite
\WhiteBishopOnBlack
\WhiteBishopOnWhite
J
K
M
N
O
P
L
Q
S
R
\WhiteKingOnBlack
\WhiteKingOnWhite
\WhiteKnightOnBlack
\WhiteKnightOnWhite
\WhitePawnOnBlack
\WhitePawnOnWhite
\WhiteQueenOnBlack
\WhiteQueenOnWhite
\WhiteRookOnBlack
\WhiteRookOnWhite
\WhiteEmptySquare
The skak package also provides commands for drawing complete chessboards.
See the skak documentation for more information.
}
|
~

Table 491: igo Go Symbols
\blackstone[\igocircle]
\blackstone[\igocross]
\blackstone[\igonone]
\blackstone[\igosquare]
\blackstone[\igotriangle]
}
|
~

\whitestone[\igocircle]
\whitestone[\igocross]
\whitestone[\igonone]
\whitestone[\igosquare]
\whitestone[\igotriangle]
In addition to the symbols shown above, igo’s \blackstone and \whitestone
commands accept numbers from 1 to 99 and display them circled as , ,
, ...,
and , , , . . . , , respectively.
c
c
The igo package is intended to typeset complete Go boards (goban). See the
igo documentation for more information.
182
Table 492: go Go Symbols
\botborder
\empty
\hoshi
\lftborder
\lftbotcorner
\lfttopcorner
\rtborder
\rtbotcorner
~

\rttopcorner
\square
\topborder
\triangle
In addition to the board fragments and stones shown above, go’s \black and
\white commands accept numbers from 1 to 253 and display them circled as
, , , ...,
and , , , . . . , , respectively. \black and \white
additionally accept \square and \triangle as arguments, producing
and
and
for \black and
and and
for \white.

}
}
~

~
The go package is intended to typeset complete Go boards (goban). See the
go documentation for more information.
Table 493: metre Metrical Symbols
×
´˘
˘
´˘˘
˘´˘
˘˘
˘˘´
˘˘
˘˘˘
¯˘´¯˘
×
\a
\B
\b
\Bb
\BB
\bb
\bB
\bba
\bbb
\BBm
¯˘¯˘´
¯˘´¯˘
¯˘˘¯˘˘
¯˘¯
¯˘˘¯¯¯˘
˘
´¯˘¯
\bBm
\bbm
\Bbm
\bbmb
\bbmx
\bm
\Bm
\c
\C
\Cc
¯
´¯
¯
¯´˘
¯˘
¯˘´¯˘
¯˘¯˘´
¯˘¯˘
×
\cc
\Ccc
\m
\M
\ma
\Mb
\mb
\mBb
\mbB
\mbb
¯˘´¯˘
¯˘¯¯˘¯˘
∘∘
\Mbb
\mbbx
\oo
\p
\pm
\pp
\Pp
\ppm
\ppp
\Ppp
˙
¯˙
˙˙
˙˙
¯˙˙˙
˙
˙˙˙
˙
˙˙
˙
˙˙˙
˙˙
˙˙
˙˙
˙˙
∼
∼
⊗
\Pppp
\pppp
\Ppppp
\ppppp
\ps
\pxp
\Pxp
\R
\r
\T
⊗
¯˙
¯˙˙
˙˙˙˙
\t
\tsbm
\tsmb
\tsmm
\vppm
\vpppm
\x
The preceding symbols are valid only within the argument to the metre command.
Table 494: metre Small and Large Metrical Symbols
÷
<
·
<
·
⊃
×
····
∧
>
·
>
·
··
∼
⊗
⊕
\anaclasis
\antidiple
\antidiple*
\antisigma
\asteriscus
\catalexis
\diple
\diple*
\obelus
\obelus*
\respondens
\terminus
\terminus*
÷
<
·
<
·
⊃
×
····
∧
>
>··
··
∼
⊗
⊕
183
\Anaclasis
\Antidiple
\Antidiple*
\Antisigma
\Asteriscus
\Catalexis
\Diple
\Diple*
\Obelus
\Obelus*
\Respondens
\Terminus
\Terminus*
Table 495: teubner Metrical Symbols
Ι
Θ
Κ
Ξ
Ζ
Ψ
θ
\aeolicbii
\aeolicbiii
\aeolicbiv
\anceps
\ancepsdbrevis
\banceps
\barbbrevis
ι
ς
β
γ
̮
Ϙ
\barbrevis
\bbrevis
\brevis
\catal
\corona
\coronainv
\hiatus
H
η
λ
ε
δ
φ
κ
\ipercatal
\longa
\ubarbbrevis
\ubarbrevis
\ubarsbrevis
\ubrevislonga
The teubner package provides a \newmetrics command that helps users combine the preceding symbols as well as other teubner symbols. For example, the
predefined \pentam symbol uses \newmetrics to juxtapose six \longas, two
\barbbrevises, four \brevises, and a \dBar into “λθλθλ||λββλββλ”.
See the teubner documentation for more information.
Table 496: dictsym Dictionary Symbols
a
G
A
B
C
\dsaeronautical
\dsagricultural
\dsarchitectural
\dsbiological
\dschemical
c
H
J
L
M
\dscommercial
\dsheraldical
\dsjuridical
\dsliterary
\dsmathematical
m
X
R
T
\dsmedical
\dsmilitary
\dsrailways
\dstechnical
Table 497: simpsons Characters from The Simpsons
\Bart
\Homer
\Burns
\Lisa
\Maggie
\SNPP
\Marge
The location of the characters’ pupils can be controlled with the \Goofy command. See A METAFONT of ‘Simpsons’ characters [Che98] for more information. Also, each of the above can be prefixed with \Left to make the character
face left instead of right:
\Left\Bart
184
Table 498: pmboxdraw Box-Drawing Symbols
\textblock
\textSFli
\textSFxli
\textSFxxiii
\textdkshade
\textSFlii
\textSFxlii
\textSFxxiv
\textdnblock
\textSFliii
\textSFxliii
\textSFxxv
\textlfblock
\textSFliv
\textSFxliv
\textSFxxvi
\textltshade
\textSFv
\textSFxlix
\textSFxxvii
\textrtblock
\textSFvi
\textSFxlv
\textSFxxviii
\textSFi
\textSFii
\textSFvii
\textSFviii
\textSFxlvi
\textSFxlvii
\textSFxxxix
\textSFxxxvi
\textSFiii
\textSFx
\textSFxlviii
\textSFxxxvii
\textSFiv
\textSFxi
\textSFxx
\textSFxxxviii
\textSFix
\textSFxix
\textSFxxi
\textshade
\textSFl
\textSFxl
\textSFxxii
\textupblock
Code Page 437 (CP437), which was first utilized by the original IBM PC,
contains the set of box-drawing symbols (sides, corners, and intersections of
single- and double-ruled boxes) shown above in character positions 176–223.
These symbols also appear in the Unicode Box Drawing and Block Element
tables.
The pmboxdraw package draws the CP437 box-drawing symbols using TEX
rules (specifically, \vrule) instead of with a font and thereby provides the
ability to alter both rule width and the separation between rules. See the
pmboxdraw documentation for more information.
Table 499: staves Magical Staves
\staveI
\staveXXIV
.
\staveXLVII
\staveII
\staveXXV
/
\staveXLVIII
\staveIII
\staveXXVI
0
\staveXLIX
\staveIV
\staveXXVII
1
\staveL
\staveV
\staveXXVIII
2
\staveLI
\staveVI
\staveXXIX
3
\staveLII
\staveVII
\staveXXX
4
\staveLIII
\staveVIII
\staveXXXI
5
\staveLIV
\staveIX
\staveXXXII
6
\staveLV
\staveXXXIII
7
\staveLVI
\staveXXXIV
8
\staveLVII
\staveX
\staveXI
!
(continued on next page)
185
(continued from previous page)
\staveXII
"
\staveXXXV
9
\staveLVIII
\staveXIII
#
\staveXXXVI
:
\staveLIX
\staveXIV
$
\staveXXXVII
;
\staveLX
\staveXV
%
\staveXXXVIII
<
\staveLXI
\staveXVI
&
\staveXXXIX
=
\staveLXII
\staveXVII
'
\staveXL
>
\staveLXIII
\staveXVIII
(
\staveXLI
?
\staveLXIV
\staveXIX
)
\staveXLII
@
\staveLXV
\staveXX
*
\staveXLIII
A
\staveLXVI
\staveXXI
+
\staveXLIV
B
\staveLXVII
\staveXXII
,
\staveXLV
C
\staveLXVIII
\staveXXIII
-
\staveXLVI
The meanings of these symbols are described on the Web site for the Museum
of Icelandic Sorcery and Witchcraft at http://www.galdrasyning.is/
index.php?option=com content&task=category&sectionid=5&id=
18&Itemid=60 (TinyURL: http://tinyurl.com/25979m).
For example,
\staveL (“1”) is intended to ward off ghosts and evil spirits.
Table 500: pigpen Cipher Symbols
A
B
C
D
E
F
G
H
I
–
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
A}
B}
C}
D}
E}
F}
G}
H}
I}
J
K
L
M
N
O
P
Q
R
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
J}
K}
L}
M}
N}
O}
P}
Q}
R}
S
T
U
V
W
X
Y
Z
Table 501: ChinA2e Phases of the Moon
\MoonPha{1}
—
\MoonPha{2}
˝
\MoonPha{3}
Table 502: ChinA2e Recycling Symbols
¨
\Greenpoint
186
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
{\pigpenfont
˜
S}
T}
U}
V}
W}
X}
Y}
Z}
\MoonPha{4}
Table 503: marvosym Recycling Symbols
ß
\PackingWaste
Þ
\Recycling
A
A
Table 504: recycle Recycling Symbols
A
\recycle
\Recycle
\RECYCLE
The METAFONT code that implements the recycling symbols shown above
is, in the words of its author, “awful code [that] doesn’t even put the logo
in a box (properly)”. Expect to receive “Inconsistent equation (off by
⟨number ⟩)” errors from METAFONT. Fortunately, if you tell METAFONT to
proceed past those errors (e.g., by pressing Enter after each one or by specifying
“-interaction=nonstopmode” on the METAFONT command line) it should
produce a valid font.
The commands listed above should be used within a group
(e.g., “{\recycle}”) because they exhibit the side effect of changing
the font to the recycle font.
Table 505: Other ChinA2e Symbols
¡
#
\Info
\Postbox
¿
@
\Request
\Telephone
Table 506: soyombo Soyombo Symbols
#
*
\Soyombo
–
\sA*
˝
\sO*
These symbols require that the Soyombo font be active (“{\soyombo . . . }”).
187
Table 507: knitting Knitting Symbols
!
"
(
)
*
2
3
4
5
6
7
8
9
:
;
<
=
>
@
\textknit{!}
\textknit{"}
\textknit{(}
\textknit{)}
\textknit{*}
\textknit{-}
\textknit{2}
\textknit{3}
\textknit{4}
\textknit{5}
\textknit{6}
\textknit{7}
\textknit{8}
\textknit{9}
\textknit{:}
\textknit{;}
\textknit{<}
\textknit{=}
\textknit{>}
\textknit{@}
[
]
A
a
B
b
E
F
f
H
h
I
i
J
j
L
l
M
m
O
\textknit{[}
\textknit{]}
\textknit{A}
\textknit{a}
\textknit{B}
\textknit{b}
\textknit{E}
\textknit{F}
\textknit{f}
\textknit{H}
\textknit{h}
\textknit{I}
\textknit{i}
\textknit{J}
\textknit{j}
\textknit{L}
\textknit{l}
\textknit{M}
\textknit{m}
\textknit{O}
Q
q
R
r
S
s
T
t
U
u
V
v
W
w
X
x
Y
y
Z
z
\textknit{Q}
\textknit{q}
\textknit{R}
\textknit{r}
\textknit{S}
\textknit{s}
\textknit{T}
\textknit{t}
\textknit{U}
\textknit{u}
\textknit{V}
\textknit{v}
\textknit{W}
\textknit{w}
\textknit{X}
\textknit{x}
\textknit{Y}
\textknit{y}
\textknit{Z}
\textknit{z}
The knitting package is intended to typeset complete knitting charts. See the
knitting documentation for more information.
Some symbols behave differently when used as part of a sequence. For
example, contrast \textknit{1} (“1
1”), \textknit{11} (“1„
1„”), and
\textknit{111} (“1”„
1”„”). Similarly, contrast \textknit{"} (“"
" ”) and
\textknit{""} (“ «”). Again, see the knitting documentation for more information.
€
‚
ƒ
„
”•
–
—˜
™
Table 508: countriesofeurope Country Maps
\Albania
\Andorra
\Austria
\Belarus
\Belgium
\Bosnia
\Latvia
\Liechtenstein
\Lithuania
\Luxembourg
\Macedonia
\Malta
(continued on next page)
188
†‡
ˆ
‰
Š
‹
Œ

Ž

š›
œ

ž
Ÿ
(continued from previous page)
\Bulgaria
\Croatia
\Czechia
\Denmark
\Estonia
\Finland
\France
\Moldova
\Montenegro
\Netherlands
\Norway
\Poland
\Portugal
\Romania
¡
¢
£
\Germany
\GreatBritain
\Greece
\Serbia
\Slovakia
\Slovenia
(continued on next page)
189
(continued from previous page)

‘’
“
¤
¥
¦
\Hungary
\Iceland
\Ireland
\Spain
\Sweden
\Switzerland
\Italy
The preceding commands work only when the CountriesOfEurope font family
is active. For convenience, the package defines a \countriesofeuropefamily
command that switches to that font family.
By default, countries are drawn in the current font size.
Hence,
“{\countriesofeuropefamily\France}” draws a nearly unrecognizable “Œ”.
For clarity of presentation, Table 508 scales each glyph to 72 pt. via an explicit
\fontsize{72}{72}. An alternative is to specify the scaled package option to
scale all country glyphs by a given factor of the font size.
Table 509: euflag European Union flag
F F F
F
F
F
F
F
F
F F F
\euflag
The \euflag flag is drawn using the LATEX picture environment.
Table 510: Miscellaneous arev Symbols
⚓
☣
❝
❞
\anchor
\biohazard
\heavyqtleft
\heavyqtright
☻
☢
♻
☹
\invsmileface
\radiation
\recycle
\sadface
190
☠
☺
♨
⚔
\skull
\smileface
\steaming
\swords
⚠
☯
\warning
\yinyang
Table 511: cookingsymbols Cooking Symbols
\Bottomheat
\Dish
\Fanoven
\Fork
\Gasstove
\Gloves
\Knife
\Oven
\Spoon
\Topbottomheat
\Topheat
Table 512: tikzsymbols Cooking Symbols
\bakingplate
\blender
\bottle
\bowl
\cooker
\eggbeater
\fryingpan
\garlicpress
\grater
\oven
\pan
\peeler
\pot
\rollingpin
\sieve
\squeezer
\trident
tikzsymbols defines German-language aliases for each of the above:
\Backblech for \bakingplate, \Bratpfanne for \fryingpan, \Dreizack
for \trident, \Flasche for \bottle, \Herd for \cooker, \Kochtopf for
\pot, \Knoblauchpresse for \garlicpress, \Nudelholz for \rollingpin,
\Ofen for \oven, \Pfanne for \pan, \Purierstab for \blender, \Reibe for
\grater, \Saftpresse for \squeezer, \Schaler for \peeler, \Schneebesen
for \eggbeater, \Schussel for \bowl, and \Sieb for \sieve.
All tikzsymbols symbols are implemented with Tik Z graphics, not with a font.
Table 513: tikzsymbols Emoticons
\Annoey
\Cat
\cChangey{1}
\Changey{1}
\Cooley
\Innocey
\Laughey
\Neutrey
\NiceReapey
\Ninja
\Nursey
\oldWinkey
©
\rWalley
\Sadey
\SchrodingersCat{0}
\Sey
\Sleepey
\Smiley
\Tongey
\Vomey
\Walley
\Winkey
\wInnocey
\Xey
All tikzsymbols symbols are implemented with Tik Z graphics, not with a font.
Hence, symbols like \Ninja can include color. In fact, most of the commands
shown above accept one or more color arguments for further customization.
Also note that \cChangey, \Changey, and \SchrodingersCat take a mandatory argument. See the tikzsymbols documentation for more information.
Table 514: tikzsymbols 3D Emoticons
\dAnnoey
\dcChangey{1}
\dChangey{1}
\dCooley
\dInnocey
\dLaughey
\dNeutrey
\dNinja
\dNursey
\drWalley
\dSadey
\dSey
\dSleepey
\dSmiley
\dTongey
\dVomey
\dWalley
\dWinkey
\dXey
\olddWinkey
All tikzsymbols symbols are implemented with Tik Z graphics, not with a font.
Hence, all of the symbols shown above can include color. In fact, each command
in Table 514 accepts one or more color arguments for further customization.
Note that \dcChangey and \dChangey also take a mandatory argument. See
the tikzsymbols documentation for more information.
191
Table 515: tikzsymbols Trees
\Autumntree
\Springtree
\Summertree
\Wintertree
\WorstTree
All tikzsymbols symbols are implemented with Tik Z graphics, not with a font.
Hence, all of the symbols shown above can include color. tikzsymbols additionally defines a \BasicTree command that supports customization of trunk and
leaf colors. See the tikzsymbols documentation for more information.
Table 516: Miscellaneous tikzsymbols Symbols
\Bed
\Candle
K
\Chair
\Coffeecup
\Fire
\Moai
\Snowman
\Strichmaxerl
\Tribar
All tikzsymbols symbols are implemented with Tik Z graphics, not with a font.
\Tribar supports customization of the fill color for each bar. \Strichmaxerl
supports customization of the angles at which the stick figure’s arms and legs
are drawn. See the tikzsymbols documentation for more information.
Table 517: scsnowman Snowmen
\scsnowman
*
\scsnowman is drawn using Tik Z. The command accepts a number of options
for controlling the presence, appearance, and color of the snowman’s body,
eyes, nose, mouth, arms, hat, and more. See the scsnowman documentation
for more information, but the following examples showcase a subset of the
possibilities (drawn large for clarity):
\scsnowman
\scsnowman[eyes, mouth,
nose, arms, hat, muffler,
buttons, snow, broom]
Table 518: Miscellaneous bclogo Symbols
\bcattention
\bcetoile
\bcpanchant
\bcbombe
\bcfemme
\bcpeaceandlove
\bcbook
\bcfeujaune
\bcpluie
(continued on next page)
192
(continued from previous page)
1
JAN
\bccalendrier
\bcfeurouge
\bcplume
\bccle
\bcfeutricolore
\bcpoisson
\bcclefa
\bcfeuvert
\bcquestion
\bcclesol
\bcfleur
\bcrecyclage
\bccoeur
\bchomme
\bcrosevents
\bccrayon
\bchorloge
\bcsmbh
\bccube
\bcicosaedre
\bcsmmh
\bcdallemagne
\bcinfo
\bcsoleil
\bcdanger
\bcinterdit
\bcdautriche
\bclampe
\bcstop
\bcdbelgique
\bcloupe
\bctakecare
\bcdbulgarie
\bcneige
\bctetraedre
\bcdfrance
\bcnote
\bctrefle
\bcditalie
\bcnucleaire
\bctrombone
\bcdluxembourg
\bcoctaedre
\bcvaletcoeur
\bcdodecaedre
\bcoeil
\bcvelo
\bcdpaysbas
\bcorne
\bcyin
\bcdz
\bcours
\bceclaircie
\bcoutil
♠
\bcspadesuit
STOP
All bclogo symbols are implemented with Tik Z (or alternatively, PSTricks)
graphics, not with a font. This is how the symbols shown above can include
color.
193
Table 519: fontawesome Web-Related Icons
¿
è
é
ê
ë
ì
í
À
î
ï
ð
h
∠
∠
∠
∠
∠
∠
∠
∠

ö
^
*
[
ý
¤
○
|
í
š
–
˜
™
—

$
%
W
X
e
I
]
[
f
\fa500px
\faAdjust
\faAdn
\faAlignCenter
\faAlignJustify
\faAlignLeft
\faAlignRight
\faAmazon
\faAmbulance
\faAnchor
\faAndroid
\faAngellist
\faAngleDoubleDown
\faAngleDoubleLeft
\faAngleDoubleRight
\faAngleDoubleUp
\faAngleDown
\faAngleLeft
\faAngleRight
\faAngleUp
\faApple
\faArchive
\faAreaChart
\faAsterisk
\faAt
\faBackward
\faBalanceScale
\faBan
\faBarChart
\faBarcode
\faBars
\faBatteryEmpty
\faBatteryFull
\faBatteryHalf
\faBatteryQuarter
\faBatteryThreeQuarters
\faBed
\faBeer
\faBehance
\faBehanceSquare
\faBell
\faBellO
\faBellSlash
\faBellSlashO
\faBicycle
\faBinoculars
\faBirthdayCake
\faBitbucket
\faBitbucketSquare
\faBlackTie
\faBold
♀
m
n
3
4
6
0
2
o

1
<
p
q
5
/
r
s
t
u
º
v
x
w
y
ú
z
{
|
}
~

n
€

‚
G
„
©
¶
c
d
†
<
‡
ˆ
‰

‹
Œ
\faFemale
\faFighterJet
\faFile
\faFileArchiveO
\faFileAudioO
\faFileCodeO
\faFileExcelO
\faFileImageO
\faFileO
\faFilePdfO
\faFilePowerpointO
\faFilesO
\faFileText
\faFileTextO
\faFileVideoO
\faFileWordO
\faFilm
\faFilter
\faFire
\faFireExtinguisher
\faFirefox
\faFlag
\faFlagCheckered
\faFlagO
\faFlask
\faFlickr
\faFloppyO
\faFolder
\faFolderO
\faFolderOpen
\faFolderOpenO
\faFont
\faFonticons
\faForumbee
\faForward
\faFoursquare
\faFrownO
\faFutbolO
\faGamepad
\faGavel
\faGetPocket
\faGg
\faGgCircle
\faGift
\faGit
\faGithub
\faGithubAlt
\faGithubSquare
\faGitSquare
\faGlass
\faGlobe
Ø
Ù
Û
○
J
+
+
Z
+o
Ê
ß
á

â
?
?
å
æ
ç

(
\
è
ì
ï
ð
õ
ö
÷
ø
¸
@
ü
y
x
o
Š
þ

E
ÿ
ý
v
p
\faPlane
\faPlay
\faPlayCircle
\faPlayCircleO
\faPlug
\faPlus
\faPlusCircle
\faPlusSquare
\faPlusSquareO
\faPowerOff
\faPrint
\faPuzzlePiece
\faQq
\faQrcode
\faQuestion
\faQuestionCircle
\faQuoteLeft
\faQuoteRight
\faRandom
\faRebel
\faRecycle
\faReddit
\faRedditSquare
\faRefresh
\faRenren
\faReply
\faReplyAll
\faRetweet
\faRoad
\faRocket
\faRss
\faRssSquare
\faSafari
\faScissors
\faSearch
\faSearchMinus
\faSearchPlus
\faSellsy
\faServer
\faShare
\faShareAlt
\faShareAltSquare
\faShareSquare
\faShareSquareO
\faShield
\faShip
\faShirtsinbulk
\faShoppingCart
\faSignal
\faSignIn
\faSignOut
(continued on next page)
194
(continued from previous page)
F
◎
f
l
P
Ä
Â
Á
Ã
)
4
5
t
s
i
_
¢
T
¡
S
U
V

a
¹
Ð
/
£
,
.
/
\faBolt
\faBomb
\faBook
\faBookmark
\faBookmarkO
\faBriefcase
\faBug
\faBuilding
\faBuildingO
\faBullhorn
\faBullseye
\faBus
\faBuysellads
\faCalculator
\faCalendar
\faCalendarCheckO
\faCalendarMinusO
\faCalendarO
\faCalendarPlusO
\faCalendarTimesO
\faCamera
\faCameraRetro
\faCar
\faCaretDown
\faCaretLeft
\faCaretRight
\faCaretSquareODown
\faCaretSquareOLeft
\faCaretSquareORight
\faCaretSquareOUp
\faCaretUp
\faCartArrowDown
\faCartPlus
\faCc
\faCcAmex
\faCcDinersClub
\faCcDiscover
\faCcJcb
\faCcMastercard
\faCcPaypal
\faCcStripe
\faCcVisa
\faCertificate
\faChainBroken
\faChild
\faChrome
\faClipboard
\faClockO
\faClone
\faCloud
\faCloudDownload
\faCloudUpload
\faCode

+
+
R
Š
=
•
B
–
♥
z
♥
@
™
š
©
¨
§
¥
¦
Ì
h
›
œ
œ
ž
Å
Ÿ
¡
¼
g
¢
9
¤
¥
^
§
a
b
¨
b
ª
«
¬
:
­
`
®
¯
°
\faGoogle
\faGooglePlus
\faGooglePlusSquare
\faGoogleWallet
\faGraduationCap
\faGratipay
\faHackerNews
\faHddO
\faHeader
\faHeadphones
\faHeart
\faHeartbeat
\faHeartO
\faHistory
\faHome
\faHospitalO
\faHourglass
\faHourglassEnd
\faHourglassHalf
\faHourglassO
\faHourglassStart
\faHouzz
\faHSquare
\faHtml5
\faICursor
\faInbox
\faIndent
\faIndustry
\faInfo
\faInfoCircle
\faInstagram
\faInternetExplorer
\faIoxhost
\faItalic
\faJoomla
\faJsfiddle
\faKey
\faKeyboardO
\faLanguage
\faLaptop
\faLastfm
\faLastfmSquare
\faLeaf
\faLeanpub
\faLemonO
\faLevelDown
\faLevelUp
\faLifeRing
\faLightbulbO
\faLineChart
\faLink
\faLinkedin
\faLinkedinSquare
q
r
D
K
.
!
,
&
'
Ÿ
y
]

!
"
A
#
$
%
*
½

&
'
(
)
\faSimplybuilt
\faSitemap
\faSkyatlas
\faSkype
\faSlack
\faSliders
\faSlideshare
\faSmileO
\faSort
\faSortAlphaAsc
\faSortAlphaDesc
\faSortAmountAsc
\faSortAmountDesc
\faSortAsc
\faSortDesc
\faSortNumericAsc
\faSortNumericDesc
\faSoundcloud
\faSpaceShuttle
\faSpinner
\faSpoon
\faSpotify
\faStackExchange
\faStackOverflow
\faSteam
\faSteamSquare
\faStepBackward
\faStepForward
\faStethoscope
\faStickyNote
\faStickyNoteO
\faStop
\faStreetView
\faStrikethrough
\faStumbleupon
\faStumbleuponCircle
\faSubscript
\faSubway
\faSuitcase
\faSuperscript
\faTable
\faTablet
\faTachometer
\faTag
\faTags
\faTasks
\faTaxi
\faTelevision
\faTencentWeibo
\faTerminal
\faTextHeight
\faTextWidth
\faTh
(continued on next page)
195
(continued from previous page)
0
8
1
2
3
6
7
Ê
Ë
8
9
:
☼
ó
m
¾
=
>
û
?
"
#

a

B
u
I
J
K
N
…
…

R
Q
T
U
V
o
ñ
•
W
Y
\
X
\faCodeFork
\faCodepen
\faCoffee
\faCog
\faCogs
\faColumns
\faComment
\faCommenting
\faCommentingO
\faCommentO
\faComments
\faCommentsO
\faCompass
\faCompress
\faConnectdevelop
\faContao
\faCreditCard
\faCrop
\faCrosshairs
\faCss3
\faCube
\faCubes
\faCutlery
\faDashcube
\faDatabase
\faDelicious
\faDesktop
\faDeviantart
\faDiamond
\faDigg
\faDownload
\faDribbble
\faDropbox
\faDrupal
\faEject
\faEllipsisH
\faEllipsisV
\faEmpire
\faEnvelope
\faEnvelopeO
\faEnvelopeSquare
\faEraser
\faExchange
\faExclamation
\faExclamationCircle
\faExclamationTriangle
\faExpand
\faExpeditedssl
\faExternalLink
\faExternalLinkSquare
\faEye
\faEyedropper
\faEyeSlash
±
²
³
Î
9
´
µ
º
»
♂
É
½
È
Æ
Ç
¾
k
‘
¿
À
Á
Â
−
−
−
−
Æ
Ç
x
›
É
N

ž
e
µ
”
»
“

`
Ï
>
?
C
Ñ

Q
Ó
Ô
Õ
\faLinux
\faList
\faListAlt
\faListOl
\faListUl
\faLocationArrow
\faLock
\faMagic
\faMagnet
\faMale
\faMap
\faMapMarker
\faMapO
\faMapPin
\faMapSigns
\faMaxcdn
\faMeanpath
\faMedium
\faMedkit
\faMehO
\faMicrophone
\faMicrophoneSlash
\faMinus
\faMinusCircle
\faMinusSquare
\faMinusSquareO
\faMobile
\faMoney
\faMotorcycle
\faMousePointer
\faMusic
\faNewspaperO
\faObjectGroup
\faObjectUngroup
\faOdnoklassniki
\faOdnoklassnikiSquare
\faOpencart
\faOpenid
\faOpera
\faOptinMonster
\faOutdent
\faPagelines
\faPaintBrush
\faPaperclip
\faPaperPlane
\faPaperPlaneO
\faParagraph
\faPause
\faPaw
\faPaypal
\faPhone
\faPhoneSquare
\faPictureO
*
+
à
.
0
c
d

Y
1
+
2
´
3
4
H
5
6
L
7
8
:
;
b
c
e
g
h
‹

w
Œ
i
Í
j
7
k
l
m
n
p

‰
O
·
q
r
s
t
\faThLarge
\faThList
\faThumbTack
\faTicket
\faTint
\faToggleOff
\faToggleOn
\faTrain
\faTrash
\faTrashO
\faTree
\faTrello
\faTripadvisor
\faTrophy
\faTruck
\faTty
\faTumblr
\faTumblrSquare
\faTwitch
\faTwitter
\faTwitterSquare
\faUmbrella
\faUnderline
\faUniversity
\faUnlock
\faUnlockAlt
\faUpload
\faUser
\faUserMd
\faUserPlus
\faUsers
\faUserSecret
\faUserTimes
\faVideoCamera
\faVimeo
\faVimeoSquare
\faVine
\faVk
\faVolumeDown
\faVolumeOff
\faVolumeUp
\faWeibo
\faWeixin
\faWhatsapp
\faWheelchair
\faWifi
\faWikipediaW
\faWindows
\faWordpress
\faWrench
\faXing
\faXingSquare
\faYahoo
(continued on next page)
196
(continued from previous page)
g
‡
h
j
k
\faFacebook
\faFacebookOfficial
\faFacebookSquare
\faFastBackward
\faFastForward
\faFax
_

Ö
ˆ
×
\faPieChart
\faPiedPiper
\faPiedPiperAlt
\faPinterest
\faPinterestP
\faPinterestSquare
’
M
u
v
w
\faYCombinator
\faYelp
\faYoutube
\faYoutubePlay
\faYoutubeSquare
fontawesome defines synonyms for many of the preceding symbols:
)
|
š
™
˜
—
–
*
®
<
@
A

L
g
ø
5
2
2
4
\faAutomobile
\faBank
\faBarChartO
\faBattery0
\faBattery1
\faBattery2
\faBattery3
\faBattery4
\faCab
\faChain
\faCopy
\faCut
\faDashboard
\faDedent
\faEdit
\faFacebookF
\faFeed
\faFileMovieO
\faFilePhotoO
\faFilePictureO
\faFileSoundO
3

2
3
Š


Õ
©
:
:
þ
ï
ð
Æ
í
Ð
Õ
\faFileZipO
\faFlash
\faGe
\faGear
\faGears
\faGittip
\faGroup
\faHotel
\faImage
\faInstitution
\faLegal
\faLifeBouy
\faLifeSaver
\faMailForward
\faMailReply
\faMailReplyAll
\faMobilePhone
\faMortarBoard
\faNavicon
\faPaste
\faPhoto
197

í
ú
>
?
G
:
4
5
½
a
o

’
=
=
\faRa
\faReorder
\faSave
\faSend
\faSendO
\faSoccerBallO
\faSortDown
\faSortUp
\faSupport
\faToggleDown
\faToggleLeft
\faToggleRight
\faToggleUp
\faTv
\faUnlink
\faUnsorted
\faWarning
\faWechat
\faYc
\faYCombinatorSquare
\faYcSquare
Table 520: rubikcube Rubik’s Cube Rotations
\rrhD
\rrhF
\rrhLw
\rrhRw
\rrhU
\rrhDa
\rrhFp
\rrhLwp
\rrhRwp
\rrhUa
\rrhDap
\rrhFw
\rrhM
\rrhSd
\rrhUap
\rrhDp
\rrhFwp
\rrhMp
\rrhSdp
\rrhUp
\rrhDs
\rrhL
\rrhR
\rrhSl
\rrhUs
\rrhDsp
\rrhLa
\rrhRa
\rrhSlp
\rrhUsp
\rrhDw
\rrhLap
\rrhRap
\rrhSr
\rrhUw
\rrhDwp
\rrhLp
\rrhRp
\rrhSrp
\rrhUwp
\rrhE
\rrhLs
\rrhRs
\rrhSu
\rrhEp
\rrhLsp
\rrhRsp
\rrhSup
All rubikcube symbols are implemented with Tik Z graphics, not with a font.
In addition to the symbols shown above, the rubikcube package defines commands for combinations of textual and graphical representations of rotations
”) as well as commands that produce
(e.g., \textRubikUa produces “Ua
colored illustrations of Rubik’s Cube configurations and rotations. See the
rubikcube documentation for more information.
198
9
Fonts with minimal LATEX support
The symbol fonts shown in this section are provided without a corresponding LATEX 2𝜀 style file that
assigns a convenient name to each glyph. Consequently, each glyph must be accessed by number. To
help with this, the pifont package defines a \Pisymbol command that typesets a specified character by
number from a specified LATEX font family. Alas, most of the fonts in this section do not even define a
LATEX font family. Hence, except where otherwise specified, a document will need to include code like
the following in its preamble:
\usepackage{pifont}
\DeclareFontFamily{U}{⟨name⟩}{}
\DeclareFontShape{U}{⟨name⟩}{m}{n}{<-> ⟨font⟩}{}
where ⟨font⟩ is the name of the .tfm font file (or .mf font file, from which a .tfm font file can be
generated automatically), and ⟨name⟩ is a name to use to refer to that font. It’s generally good practice
to use the name of the font file for ⟨name⟩, as in the following:
\usepackage{pifont}
\DeclareFontFamily{U}{hands}{}
\DeclareFontShape{U}{hands}{m}{n}{<-> hands}{}
A
B
Table 521: hands Fists
\Pisymbol{hands}{65}
\Pisymbol{hands}{66}
C
D
\Pisymbol{hands}{67}
\Pisymbol{hands}{68}
Table 522: greenpoint Recycling Symbols
G
\Pisymbol{greenpoint}{71}
Table 523: nkarta Map Symbols
!
"
#
$
%
&
'
(
)
*
+
,
.
/
0
1
\Pisymbol{nkarta}{33}
\Pisymbol{nkarta}{34}
\Pisymbol{nkarta}{35}
\Pisymbol{nkarta}{36}
\Pisymbol{nkarta}{37}
\Pisymbol{nkarta}{38}
\Pisymbol{nkarta}{39}
\Pisymbol{nkarta}{40}
\Pisymbol{nkarta}{41}
\Pisymbol{nkarta}{42}
\Pisymbol{nkarta}{43}
\Pisymbol{nkarta}{44}
\Pisymbol{nkarta}{45}
\Pisymbol{nkarta}{46}
\Pisymbol{nkarta}{47}
\Pisymbol{nkarta}{48}
\Pisymbol{nkarta}{49}
`
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
\Pisymbol{nkarta}{96}
\Pisymbol{nkarta}{97}
\Pisymbol{nkarta}{98}
\Pisymbol{nkarta}{99}
\Pisymbol{nkarta}{100}
\Pisymbol{nkarta}{101}
\Pisymbol{nkarta}{102}
\Pisymbol{nkarta}{103}
\Pisymbol{nkarta}{104}
\Pisymbol{nkarta}{105}
\Pisymbol{nkarta}{106}
\Pisymbol{nkarta}{107}
\Pisymbol{nkarta}{108}
\Pisymbol{nkarta}{109}
\Pisymbol{nkarta}{110}
\Pisymbol{nkarta}{111}
\Pisymbol{nkarta}{112}
Á
Â
Ã
Ä
Å
Æ
Ç
È
É
Ê
Ë
Ì
Í
Î
Ï
Ð
Ñ
\Pisymbol{nkarta}{193}
\Pisymbol{nkarta}{194}
\Pisymbol{nkarta}{195}
\Pisymbol{nkarta}{196}
\Pisymbol{nkarta}{197}
\Pisymbol{nkarta}{198}
\Pisymbol{nkarta}{199}
\Pisymbol{nkarta}{200}
\Pisymbol{nkarta}{201}
\Pisymbol{nkarta}{202}
\Pisymbol{nkarta}{203}
\Pisymbol{nkarta}{204}
\Pisymbol{nkarta}{205}
\Pisymbol{nkarta}{206}
\Pisymbol{nkarta}{207}
\Pisymbol{nkarta}{208}
\Pisymbol{nkarta}{209}
(continued on next page)
199
(continued from previous page)
2
3
4
5
6
7
8
9
:
;
<
=
>
?
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\Pisymbol{nkarta}{50}
\Pisymbol{nkarta}{51}
\Pisymbol{nkarta}{52}
\Pisymbol{nkarta}{53}
\Pisymbol{nkarta}{54}
\Pisymbol{nkarta}{55}
\Pisymbol{nkarta}{56}
\Pisymbol{nkarta}{57}
\Pisymbol{nkarta}{58}
\Pisymbol{nkarta}{59}
\Pisymbol{nkarta}{60}
\Pisymbol{nkarta}{61}
\Pisymbol{nkarta}{62}
\Pisymbol{nkarta}{63}
\Pisymbol{nkarta}{64}
\Pisymbol{nkarta}{65}
\Pisymbol{nkarta}{66}
\Pisymbol{nkarta}{67}
\Pisymbol{nkarta}{68}
\Pisymbol{nkarta}{69}
\Pisymbol{nkarta}{70}
\Pisymbol{nkarta}{71}
\Pisymbol{nkarta}{72}
\Pisymbol{nkarta}{73}
\Pisymbol{nkarta}{74}
\Pisymbol{nkarta}{75}
\Pisymbol{nkarta}{76}
\Pisymbol{nkarta}{77}
\Pisymbol{nkarta}{78}
\Pisymbol{nkarta}{79}
\Pisymbol{nkarta}{80}
\Pisymbol{nkarta}{81}
\Pisymbol{nkarta}{82}
\Pisymbol{nkarta}{83}
\Pisymbol{nkarta}{84}
\Pisymbol{nkarta}{85}
\Pisymbol{nkarta}{86}
\Pisymbol{nkarta}{87}
\Pisymbol{nkarta}{88}
\Pisymbol{nkarta}{89}
\Pisymbol{nkarta}{90}
\Pisymbol{nkarta}{91}
q
r
s
t
u
v
w
x
y
z
{
|
}
~
¡
¢
£
¤
¥
¦
§
¨
©
ª
«
¬
­
®
¯
°
±
²
³
´
µ
¶
·
¸
¹
º
»
¼
\Pisymbol{nkarta}{113}
\Pisymbol{nkarta}{114}
\Pisymbol{nkarta}{115}
\Pisymbol{nkarta}{116}
\Pisymbol{nkarta}{117}
\Pisymbol{nkarta}{118}
\Pisymbol{nkarta}{119}
\Pisymbol{nkarta}{120}
\Pisymbol{nkarta}{121}
\Pisymbol{nkarta}{122}
\Pisymbol{nkarta}{123}
\Pisymbol{nkarta}{124}
\Pisymbol{nkarta}{125}
\Pisymbol{nkarta}{126}
\Pisymbol{nkarta}{161}
\Pisymbol{nkarta}{162}
\Pisymbol{nkarta}{163}
\Pisymbol{nkarta}{164}
\Pisymbol{nkarta}{165}
\Pisymbol{nkarta}{166}
\Pisymbol{nkarta}{167}
\Pisymbol{nkarta}{168}
\Pisymbol{nkarta}{169}
\Pisymbol{nkarta}{170}
\Pisymbol{nkarta}{171}
\Pisymbol{nkarta}{172}
\Pisymbol{nkarta}{173}
\Pisymbol{nkarta}{174}
\Pisymbol{nkarta}{175}
\Pisymbol{nkarta}{176}
\Pisymbol{nkarta}{177}
\Pisymbol{nkarta}{178}
\Pisymbol{nkarta}{179}
\Pisymbol{nkarta}{180}
\Pisymbol{nkarta}{181}
\Pisymbol{nkarta}{182}
\Pisymbol{nkarta}{183}
\Pisymbol{nkarta}{184}
\Pisymbol{nkarta}{185}
\Pisymbol{nkarta}{186}
\Pisymbol{nkarta}{187}
\Pisymbol{nkarta}{188}
Ò
Ó
Ô
Õ
Ö
×
Ø
Ù
Ú
Û
Ü
Ý
Þ
ß
à
á
â
ã
ä
å
æ
ç
è
é
ê
ë
ì
í
î
ï
ð
ñ
ò
ó
ô
õ
ö
÷
ø
ù
ú
û
\Pisymbol{nkarta}{210}
\Pisymbol{nkarta}{211}
\Pisymbol{nkarta}{212}
\Pisymbol{nkarta}{213}
\Pisymbol{nkarta}{214}
\Pisymbol{nkarta}{215}
\Pisymbol{nkarta}{216}
\Pisymbol{nkarta}{217}
\Pisymbol{nkarta}{218}
\Pisymbol{nkarta}{219}
\Pisymbol{nkarta}{220}
\Pisymbol{nkarta}{221}
\Pisymbol{nkarta}{222}
\Pisymbol{nkarta}{223}
\Pisymbol{nkarta}{224}
\Pisymbol{nkarta}{225}
\Pisymbol{nkarta}{226}
\Pisymbol{nkarta}{227}
\Pisymbol{nkarta}{228}
\Pisymbol{nkarta}{229}
\Pisymbol{nkarta}{230}
\Pisymbol{nkarta}{231}
\Pisymbol{nkarta}{232}
\Pisymbol{nkarta}{233}
\Pisymbol{nkarta}{234}
\Pisymbol{nkarta}{235}
\Pisymbol{nkarta}{236}
\Pisymbol{nkarta}{237}
\Pisymbol{nkarta}{238}
\Pisymbol{nkarta}{239}
\Pisymbol{nkarta}{240}
\Pisymbol{nkarta}{241}
\Pisymbol{nkarta}{242}
\Pisymbol{nkarta}{243}
\Pisymbol{nkarta}{244}
\Pisymbol{nkarta}{245}
\Pisymbol{nkarta}{246}
\Pisymbol{nkarta}{247}
\Pisymbol{nkarta}{248}
\Pisymbol{nkarta}{249}
\Pisymbol{nkarta}{250}
\Pisymbol{nkarta}{251}
\
\Pisymbol{nkarta}{92}
½
\Pisymbol{nkarta}{189}
ü
\Pisymbol{nkarta}{252}
]
\Pisymbol{nkarta}{93}
¾
\Pisymbol{nkarta}{190}
ý
\Pisymbol{nkarta}{253}
^
_
\Pisymbol{nkarta}{94}
\Pisymbol{nkarta}{95}
¿
À
\Pisymbol{nkarta}{191}
\Pisymbol{nkarta}{192}
þ
\Pisymbol{nkarta}{254}
200
Table 524: moonphase Astronomical Symbols
\Pisymbol{moonphase}{0}
\Pisymbol{moonphase}{1}
\Pisymbol{moonphase}{2}
\Pisymbol{moonphase}{3}
Table 525: astrosym Astronomical Symbols
\Pisymbol{astrosym}{0}
\Pisymbol{astrosym}{1}
\Pisymbol{astrosym}{2}
\Pisymbol{astrosym}{3}
\Pisymbol{astrosym}{4}
\Pisymbol{astrosym}{5}
\Pisymbol{astrosym}{6}
\Pisymbol{astrosym}{7}
\Pisymbol{astrosym}{8}
\Pisymbol{astrosym}{9}
\Pisymbol{astrosym}{10}
\Pisymbol{astrosym}{11}
\Pisymbol{astrosym}{12}
\Pisymbol{astrosym}{13}
\Pisymbol{astrosym}{14}
\Pisymbol{astrosym}{15}
\Pisymbol{astrosym}{16}
\Pisymbol{astrosym}{17}
\Pisymbol{astrosym}{18}
\Pisymbol{astrosym}{19}
\Pisymbol{astrosym}{20}
\Pisymbol{astrosym}{21}
\Pisymbol{astrosym}{22}
\Pisymbol{astrosym}{23}
\Pisymbol{astrosym}{24}
\Pisymbol{astrosym}{25}
\Pisymbol{astrosym}{26}
\Pisymbol{astrosym}{27}
\Pisymbol{astrosym}{28}
\Pisymbol{astrosym}{29}
\Pisymbol{astrosym}{30}
\Pisymbol{astrosym}{31}
\Pisymbol{astrosym}{32}
„
†
‡
ˆ
‰
Š
‹
Œ

Ž


‘
’
“
”
•
–
—
˜
™
š
›
œ

ž
Ÿ
¡
¢
£
¤
\Pisymbol{astrosym}{132}
\Pisymbol{astrosym}{133}
\Pisymbol{astrosym}{134}
\Pisymbol{astrosym}{135}
\Pisymbol{astrosym}{136}
\Pisymbol{astrosym}{137}
\Pisymbol{astrosym}{138}
\Pisymbol{astrosym}{139}
\Pisymbol{astrosym}{140}
\Pisymbol{astrosym}{141}
\Pisymbol{astrosym}{142}
\Pisymbol{astrosym}{143}
\Pisymbol{astrosym}{144}
\Pisymbol{astrosym}{145}
\Pisymbol{astrosym}{146}
\Pisymbol{astrosym}{147}
\Pisymbol{astrosym}{148}
\Pisymbol{astrosym}{149}
\Pisymbol{astrosym}{150}
\Pisymbol{astrosym}{151}
\Pisymbol{astrosym}{152}
\Pisymbol{astrosym}{153}
\Pisymbol{astrosym}{154}
\Pisymbol{astrosym}{155}
\Pisymbol{astrosym}{156}
\Pisymbol{astrosym}{157}
\Pisymbol{astrosym}{158}
\Pisymbol{astrosym}{159}
\Pisymbol{astrosym}{160}
\Pisymbol{astrosym}{161}
\Pisymbol{astrosym}{162}
\Pisymbol{astrosym}{163}
\Pisymbol{astrosym}{164}
(continued on next page)
201
(continued from previous page)
!
"
#
$
%
&
'
(
)
*
+
,
.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?
@
A
B
C
D
E
Z
[
\
]
\Pisymbol{astrosym}{33}
\Pisymbol{astrosym}{34}
\Pisymbol{astrosym}{35}
\Pisymbol{astrosym}{36}
\Pisymbol{astrosym}{37}
\Pisymbol{astrosym}{38}
\Pisymbol{astrosym}{39}
\Pisymbol{astrosym}{40}
\Pisymbol{astrosym}{41}
\Pisymbol{astrosym}{42}
\Pisymbol{astrosym}{43}
\Pisymbol{astrosym}{44}
\Pisymbol{astrosym}{45}
\Pisymbol{astrosym}{46}
\Pisymbol{astrosym}{47}
\Pisymbol{astrosym}{48}
\Pisymbol{astrosym}{49}
\Pisymbol{astrosym}{50}
\Pisymbol{astrosym}{51}
\Pisymbol{astrosym}{52}
\Pisymbol{astrosym}{53}
\Pisymbol{astrosym}{54}
\Pisymbol{astrosym}{55}
\Pisymbol{astrosym}{56}
\Pisymbol{astrosym}{57}
\Pisymbol{astrosym}{58}
\Pisymbol{astrosym}{59}
\Pisymbol{astrosym}{60}
\Pisymbol{astrosym}{61}
\Pisymbol{astrosym}{62}
\Pisymbol{astrosym}{63}
\Pisymbol{astrosym}{64}
\Pisymbol{astrosym}{65}
\Pisymbol{astrosym}{66}
\Pisymbol{astrosym}{67}
\Pisymbol{astrosym}{68}
\Pisymbol{astrosym}{69}
\Pisymbol{astrosym}{90}
\Pisymbol{astrosym}{91}
\Pisymbol{astrosym}{92}
\Pisymbol{astrosym}{93}
¥
¦
§
¨
©
²
³
´
µ
¶
·
¸
¹
º
»
¼
½
¾
¿
È
É
Ê
Ë
Ì
Í
Î
Ï
Ð
Ñ
Ò
Ó
Ô
Õ
Ö
×
Ø
Ù
Ú
Û
Ü
Ý
\Pisymbol{astrosym}{165}
\Pisymbol{astrosym}{166}
\Pisymbol{astrosym}{167}
\Pisymbol{astrosym}{168}
\Pisymbol{astrosym}{169}
\Pisymbol{astrosym}{178}
\Pisymbol{astrosym}{179}
\Pisymbol{astrosym}{180}
\Pisymbol{astrosym}{181}
\Pisymbol{astrosym}{182}
\Pisymbol{astrosym}{183}
\Pisymbol{astrosym}{184}
\Pisymbol{astrosym}{185}
\Pisymbol{astrosym}{186}
\Pisymbol{astrosym}{187}
\Pisymbol{astrosym}{188}
\Pisymbol{astrosym}{189}
\Pisymbol{astrosym}{190}
\Pisymbol{astrosym}{191}
\Pisymbol{astrosym}{200}
\Pisymbol{astrosym}{201}
\Pisymbol{astrosym}{202}
\Pisymbol{astrosym}{203}
\Pisymbol{astrosym}{204}
\Pisymbol{astrosym}{205}
\Pisymbol{astrosym}{206}
\Pisymbol{astrosym}{207}
\Pisymbol{astrosym}{208}
\Pisymbol{astrosym}{209}
\Pisymbol{astrosym}{210}
\Pisymbol{astrosym}{211}
\Pisymbol{astrosym}{212}
\Pisymbol{astrosym}{213}
\Pisymbol{astrosym}{214}
\Pisymbol{astrosym}{215}
\Pisymbol{astrosym}{216}
\Pisymbol{astrosym}{217}
\Pisymbol{astrosym}{218}
\Pisymbol{astrosym}{219}
\Pisymbol{astrosym}{220}
\Pisymbol{astrosym}{221}
(continued on next page)
202
(continued from previous page)
^
_
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
{
|
}
~

€

‚
ƒ
\Pisymbol{astrosym}{94}
\Pisymbol{astrosym}{95}
\Pisymbol{astrosym}{100}
\Pisymbol{astrosym}{101}
\Pisymbol{astrosym}{102}
\Pisymbol{astrosym}{103}
\Pisymbol{astrosym}{104}
\Pisymbol{astrosym}{105}
\Pisymbol{astrosym}{106}
\Pisymbol{astrosym}{107}
\Pisymbol{astrosym}{108}
\Pisymbol{astrosym}{109}
\Pisymbol{astrosym}{110}
\Pisymbol{astrosym}{111}
\Pisymbol{astrosym}{112}
\Pisymbol{astrosym}{113}
\Pisymbol{astrosym}{114}
\Pisymbol{astrosym}{115}
\Pisymbol{astrosym}{116}
\Pisymbol{astrosym}{117}
\Pisymbol{astrosym}{118}
\Pisymbol{astrosym}{119}
\Pisymbol{astrosym}{120}
\Pisymbol{astrosym}{121}
\Pisymbol{astrosym}{122}
\Pisymbol{astrosym}{123}
\Pisymbol{astrosym}{124}
\Pisymbol{astrosym}{125}
\Pisymbol{astrosym}{126}
\Pisymbol{astrosym}{127}
\Pisymbol{astrosym}{128}
\Pisymbol{astrosym}{129}
\Pisymbol{astrosym}{130}
\Pisymbol{astrosym}{131}
Þ
ß
à
á
â
ã
ä
å
æ
ç
è
é
ê
ë
ì
í
î
ï
ð
ñ
ò
ó
ô
õ
ö
÷
ø
ù
ú
û
ü
ý
þ
ÿ
203
\Pisymbol{astrosym}{222}
\Pisymbol{astrosym}{223}
\Pisymbol{astrosym}{224}
\Pisymbol{astrosym}{225}
\Pisymbol{astrosym}{226}
\Pisymbol{astrosym}{227}
\Pisymbol{astrosym}{228}
\Pisymbol{astrosym}{229}
\Pisymbol{astrosym}{230}
\Pisymbol{astrosym}{231}
\Pisymbol{astrosym}{232}
\Pisymbol{astrosym}{233}
\Pisymbol{astrosym}{234}
\Pisymbol{astrosym}{235}
\Pisymbol{astrosym}{236}
\Pisymbol{astrosym}{237}
\Pisymbol{astrosym}{238}
\Pisymbol{astrosym}{239}
\Pisymbol{astrosym}{240}
\Pisymbol{astrosym}{241}
\Pisymbol{astrosym}{242}
\Pisymbol{astrosym}{243}
\Pisymbol{astrosym}{244}
\Pisymbol{astrosym}{245}
\Pisymbol{astrosym}{246}
\Pisymbol{astrosym}{247}
\Pisymbol{astrosym}{248}
\Pisymbol{astrosym}{249}
\Pisymbol{astrosym}{250}
\Pisymbol{astrosym}{251}
\Pisymbol{astrosym}{252}
\Pisymbol{astrosym}{253}
\Pisymbol{astrosym}{254}
\Pisymbol{astrosym}{255}
Table 526: webomints Decorative Borders
/
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
\Pisymbol{WebOMintsGD}{47}
\Pisymbol{WebOMintsGD}{48}
\Pisymbol{WebOMintsGD}{49}
\Pisymbol{WebOMintsGD}{50}
\Pisymbol{WebOMintsGD}{51}
\Pisymbol{WebOMintsGD}{52}
\Pisymbol{WebOMintsGD}{53}
\Pisymbol{WebOMintsGD}{54}
\Pisymbol{WebOMintsGD}{55}
\Pisymbol{WebOMintsGD}{56}
\Pisymbol{WebOMintsGD}{57}
\Pisymbol{WebOMintsGD}{65}
\Pisymbol{WebOMintsGD}{66}
\Pisymbol{WebOMintsGD}{67}
\Pisymbol{WebOMintsGD}{68}
\Pisymbol{WebOMintsGD}{69}
\Pisymbol{WebOMintsGD}{70}
\Pisymbol{WebOMintsGD}{71}
\Pisymbol{WebOMintsGD}{72}
\Pisymbol{WebOMintsGD}{73}
\Pisymbol{WebOMintsGD}{74}
\Pisymbol{WebOMintsGD}{75}
\Pisymbol{WebOMintsGD}{76}
\Pisymbol{WebOMintsGD}{77}
\Pisymbol{WebOMintsGD}{78}
\Pisymbol{WebOMintsGD}{79}
\Pisymbol{WebOMintsGD}{80}
\Pisymbol{WebOMintsGD}{81}
\Pisymbol{WebOMintsGD}{82}
\Pisymbol{WebOMintsGD}{83}
\Pisymbol{WebOMintsGD}{84}
\Pisymbol{WebOMintsGD}{85}
\Pisymbol{WebOMintsGD}{86}
W
X
Y
Z
[
]
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
\Pisymbol{WebOMintsGD}{87}
\Pisymbol{WebOMintsGD}{88}
\Pisymbol{WebOMintsGD}{89}
\Pisymbol{WebOMintsGD}{90}
\Pisymbol{WebOMintsGD}{91}
\Pisymbol{WebOMintsGD}{93}
\Pisymbol{WebOMintsGD}{97}
\Pisymbol{WebOMintsGD}{98}
\Pisymbol{WebOMintsGD}{99}
\Pisymbol{WebOMintsGD}{100}
\Pisymbol{WebOMintsGD}{101}
\Pisymbol{WebOMintsGD}{102}
\Pisymbol{WebOMintsGD}{103}
\Pisymbol{WebOMintsGD}{104}
\Pisymbol{WebOMintsGD}{105}
\Pisymbol{WebOMintsGD}{106}
\Pisymbol{WebOMintsGD}{107}
\Pisymbol{WebOMintsGD}{108}
\Pisymbol{WebOMintsGD}{109}
\Pisymbol{WebOMintsGD}{110}
\Pisymbol{WebOMintsGD}{111}
\Pisymbol{WebOMintsGD}{112}
\Pisymbol{WebOMintsGD}{113}
\Pisymbol{WebOMintsGD}{114}
\Pisymbol{WebOMintsGD}{115}
\Pisymbol{WebOMintsGD}{116}
\Pisymbol{WebOMintsGD}{117}
\Pisymbol{WebOMintsGD}{118}
\Pisymbol{WebOMintsGD}{119}
\Pisymbol{WebOMintsGD}{120}
\Pisymbol{WebOMintsGD}{121}
\Pisymbol{WebOMintsGD}{122}
webomints provides a uwebo.fd font-definition file. Instead of using pifont
and \Pisymbol to typeset a glyph, a document can select the webomints
font directly. For example, {\usefont{U}{webo}{xl}{n}\char73\char74}—
alternatively, {\usefont{U}{webo}{xl}{n}IJ}—will typeset “IJ”.
This can be useful for typesetting a number of webomints glyphs in a row.
The niceframe package can be used to typeset decorative frames using fonts
such as webomints.
204
Table 527: umranda Decorative Borders
\Pisymbol{umranda}{0}
\Pisymbol{umranda}{1}
\Pisymbol{umranda}{2}
"
#
$
\Pisymbol{umranda}{34}
\Pisymbol{umranda}{35}
\Pisymbol{umranda}{36}
D
E
F
\Pisymbol{umranda}{68}
\Pisymbol{umranda}{69}
\Pisymbol{umranda}{70}
\Pisymbol{umranda}{3}
%
\Pisymbol{umranda}{37}
G
\Pisymbol{umranda}{71}
\Pisymbol{umranda}{4}
&
\Pisymbol{umranda}{38}
H
\Pisymbol{umranda}{72}
\Pisymbol{umranda}{5}
'
\Pisymbol{umranda}{39}
I
\Pisymbol{umranda}{73}
\Pisymbol{umranda}{6}
(
\Pisymbol{umranda}{40}
J
\Pisymbol{umranda}{74}
\Pisymbol{umranda}{7}
\Pisymbol{umranda}{8}
)
*
\Pisymbol{umranda}{41}
\Pisymbol{umranda}{42}
K
L
\Pisymbol{umranda}{75}
\Pisymbol{umranda}{76}
\Pisymbol{umranda}{9}
\Pisymbol{umranda}{10}
+
,
\Pisymbol{umranda}{43}
\Pisymbol{umranda}{44}
M
N
\Pisymbol{umranda}{77}
\Pisymbol{umranda}{78}
\Pisymbol{umranda}{11}
\Pisymbol{umranda}{12}
.
\Pisymbol{umranda}{45}
\Pisymbol{umranda}{46}
O
P
\Pisymbol{umranda}{79}
\Pisymbol{umranda}{80}
\Pisymbol{umranda}{13}
\Pisymbol{umranda}{14}
/
0
\Pisymbol{umranda}{47}
\Pisymbol{umranda}{48}
Q
R
\Pisymbol{umranda}{81}
\Pisymbol{umranda}{82}
\Pisymbol{umranda}{15}
\Pisymbol{umranda}{16}
1
2
\Pisymbol{umranda}{49}
\Pisymbol{umranda}{50}
S
T
\Pisymbol{umranda}{83}
\Pisymbol{umranda}{84}
\Pisymbol{umranda}{17}
\Pisymbol{umranda}{18}
\Pisymbol{umranda}{19}
3
4
5
\Pisymbol{umranda}{51}
\Pisymbol{umranda}{52}
\Pisymbol{umranda}{53}
U
V
W
\Pisymbol{umranda}{85}
\Pisymbol{umranda}{86}
\Pisymbol{umranda}{87}
\Pisymbol{umranda}{20}
6
\Pisymbol{umranda}{54}
X
\Pisymbol{umranda}{88}
\Pisymbol{umranda}{21}
7
\Pisymbol{umranda}{55}
Y
\Pisymbol{umranda}{89}
\Pisymbol{umranda}{22}
\Pisymbol{umranda}{23}
8
9
\Pisymbol{umranda}{56}
\Pisymbol{umranda}{57}
Z
[
\Pisymbol{umranda}{90}
\Pisymbol{umranda}{91}
\Pisymbol{umranda}{24}
:
\Pisymbol{umranda}{58}
\
\Pisymbol{umranda}{92}
\Pisymbol{umranda}{25}
\Pisymbol{umranda}{26}
\Pisymbol{umranda}{27}
\Pisymbol{umranda}{28}
\Pisymbol{umranda}{29}
\Pisymbol{umranda}{30}
\Pisymbol{umranda}{31}
\Pisymbol{umranda}{32}
;
<
=
>
?
@
A
B
\Pisymbol{umranda}{59}
\Pisymbol{umranda}{60}
\Pisymbol{umranda}{61}
\Pisymbol{umranda}{62}
\Pisymbol{umranda}{63}
\Pisymbol{umranda}{64}
\Pisymbol{umranda}{65}
\Pisymbol{umranda}{66}
]
^
_
`
a
b
c
d
\Pisymbol{umranda}{93}
\Pisymbol{umranda}{94}
\Pisymbol{umranda}{95}
\Pisymbol{umranda}{96}
\Pisymbol{umranda}{97}
\Pisymbol{umranda}{98}
\Pisymbol{umranda}{99}
\Pisymbol{umranda}{100}
!
\Pisymbol{umranda}{33}
C
\Pisymbol{umranda}{67}
e
\Pisymbol{umranda}{101}
The niceframe package can be used to typeset decorative frames using fonts
such as umranda.
205
Table 528: umrandb Decorative Borders
!
"
#
$
%
&
'
(
)
\Pisymbol{umrandb}{0}
\Pisymbol{umrandb}{1}
\Pisymbol{umrandb}{2}
\Pisymbol{umrandb}{3}
\Pisymbol{umrandb}{4}
\Pisymbol{umrandb}{5}
\Pisymbol{umrandb}{6}
\Pisymbol{umrandb}{7}
\Pisymbol{umrandb}{8}
\Pisymbol{umrandb}{9}
\Pisymbol{umrandb}{10}
\Pisymbol{umrandb}{11}
\Pisymbol{umrandb}{12}
\Pisymbol{umrandb}{13}
\Pisymbol{umrandb}{14}
\Pisymbol{umrandb}{15}
\Pisymbol{umrandb}{16}
\Pisymbol{umrandb}{17}
\Pisymbol{umrandb}{18}
\Pisymbol{umrandb}{19}
\Pisymbol{umrandb}{20}
\Pisymbol{umrandb}{21}
\Pisymbol{umrandb}{22}
\Pisymbol{umrandb}{23}
\Pisymbol{umrandb}{24}
\Pisymbol{umrandb}{25}
\Pisymbol{umrandb}{26}
\Pisymbol{umrandb}{27}
\Pisymbol{umrandb}{28}
\Pisymbol{umrandb}{29}
\Pisymbol{umrandb}{30}
\Pisymbol{umrandb}{31}
\Pisymbol{umrandb}{32}
\Pisymbol{umrandb}{33}
\Pisymbol{umrandb}{34}
\Pisymbol{umrandb}{35}
\Pisymbol{umrandb}{36}
\Pisymbol{umrandb}{37}
\Pisymbol{umrandb}{38}
\Pisymbol{umrandb}{39}
\Pisymbol{umrandb}{40}
\Pisymbol{umrandb}{41}
*
+
,
.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
\Pisymbol{umrandb}{42}
\Pisymbol{umrandb}{43}
\Pisymbol{umrandb}{44}
\Pisymbol{umrandb}{45}
\Pisymbol{umrandb}{46}
\Pisymbol{umrandb}{47}
\Pisymbol{umrandb}{48}
\Pisymbol{umrandb}{49}
\Pisymbol{umrandb}{50}
\Pisymbol{umrandb}{51}
\Pisymbol{umrandb}{52}
\Pisymbol{umrandb}{53}
\Pisymbol{umrandb}{54}
\Pisymbol{umrandb}{55}
\Pisymbol{umrandb}{56}
\Pisymbol{umrandb}{57}
\Pisymbol{umrandb}{58}
\Pisymbol{umrandb}{59}
\Pisymbol{umrandb}{60}
\Pisymbol{umrandb}{61}
\Pisymbol{umrandb}{62}
\Pisymbol{umrandb}{63}
\Pisymbol{umrandb}{64}
\Pisymbol{umrandb}{65}
\Pisymbol{umrandb}{66}
\Pisymbol{umrandb}{67}
\Pisymbol{umrandb}{68}
\Pisymbol{umrandb}{69}
\Pisymbol{umrandb}{70}
\Pisymbol{umrandb}{71}
\Pisymbol{umrandb}{72}
\Pisymbol{umrandb}{73}
\Pisymbol{umrandb}{74}
\Pisymbol{umrandb}{75}
\Pisymbol{umrandb}{76}
\Pisymbol{umrandb}{77}
\Pisymbol{umrandb}{78}
\Pisymbol{umrandb}{79}
\Pisymbol{umrandb}{80}
\Pisymbol{umrandb}{81}
\Pisymbol{umrandb}{82}
\Pisymbol{umrandb}{83}
T
U
V
W
X
Y
Z
[
\
]
^
_
`
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
{
\Pisymbol{umrandb}{84}
\Pisymbol{umrandb}{85}
\Pisymbol{umrandb}{86}
\Pisymbol{umrandb}{87}
\Pisymbol{umrandb}{88}
\Pisymbol{umrandb}{89}
\Pisymbol{umrandb}{90}
\Pisymbol{umrandb}{91}
\Pisymbol{umrandb}{92}
\Pisymbol{umrandb}{93}
\Pisymbol{umrandb}{94}
\Pisymbol{umrandb}{95}
\Pisymbol{umrandb}{96}
\Pisymbol{umrandb}{97}
\Pisymbol{umrandb}{98}
\Pisymbol{umrandb}{99}
\Pisymbol{umrandb}{100}
\Pisymbol{umrandb}{101}
\Pisymbol{umrandb}{102}
\Pisymbol{umrandb}{103}
\Pisymbol{umrandb}{104}
\Pisymbol{umrandb}{105}
\Pisymbol{umrandb}{106}
\Pisymbol{umrandb}{107}
\Pisymbol{umrandb}{108}
\Pisymbol{umrandb}{109}
\Pisymbol{umrandb}{110}
\Pisymbol{umrandb}{111}
\Pisymbol{umrandb}{112}
\Pisymbol{umrandb}{113}
\Pisymbol{umrandb}{114}
\Pisymbol{umrandb}{115}
\Pisymbol{umrandb}{116}
\Pisymbol{umrandb}{117}
\Pisymbol{umrandb}{118}
\Pisymbol{umrandb}{119}
\Pisymbol{umrandb}{120}
\Pisymbol{umrandb}{121}
\Pisymbol{umrandb}{122}
\Pisymbol{umrandb}{123}
The niceframe package can be used to typeset decorative frames using fonts
such as umrandb.
206
Table 529: dingbat Decorative Borders
E
\Pisymbol{dingbat}{69}
a
\Pisymbol{dingbat}{97}
F
\Pisymbol{dingbat}{70}
b
\Pisymbol{dingbat}{98}
G
\Pisymbol{dingbat}{71}
c
\Pisymbol{dingbat}{99}
H
\Pisymbol{dingbat}{72}
d
\Pisymbol{dingbat}{100}
J
\Pisymbol{dingbat}{74}
e
\Pisymbol{dingbat}{101}
K
\Pisymbol{dingbat}{75}
f
\Pisymbol{dingbat}{102}
L
\Pisymbol{dingbat}{76}
g
\Pisymbol{dingbat}{103}
M
\Pisymbol{dingbat}{77}
h
\Pisymbol{dingbat}{104}
The preceding table is incomplete in that it includes only unnamed dingbat
symbols. Named symbols are included in Table 361 and Table 407 (both
intermixed with symbols from the ark10 font).
The dingbat package includes a udingbat.fd file so a document does not need
to specify the \DeclareFontFamily and \DeclareFontShape commands list
at the beginning of Section 9.
The niceframe package can be used to typeset decorative frames using fonts
such as dingbat.
0
1
2
3
4
5
:
;
<
=
Table 530: knot Celtic Knots
\Pisymbol{knot1}{48}
\Pisymbol{knot1}{49}
\Pisymbol{knot1}{50}
\Pisymbol{knot1}{51}
\Pisymbol{knot1}{52}
\Pisymbol{knot1}{53}
\Pisymbol{knot1}{58}
\Pisymbol{knot1}{59}
\Pisymbol{knot1}{60}
\Pisymbol{knot1}{61}
D
E
F
G
H
I
J
K
L
M
\Pisymbol{knot1}{68}
\Pisymbol{knot1}{69}
\Pisymbol{knot1}{70}
\Pisymbol{knot1}{71}
\Pisymbol{knot1}{72}
\Pisymbol{knot1}{73}
\Pisymbol{knot1}{74}
\Pisymbol{knot1}{75}
\Pisymbol{knot1}{76}
\Pisymbol{knot1}{77}
T
U
V
W
X
`
a
b
c
d
\Pisymbol{knot1}{84}
\Pisymbol{knot1}{85}
\Pisymbol{knot1}{86}
\Pisymbol{knot1}{87}
\Pisymbol{knot1}{88}
\Pisymbol{knot1}{96}
\Pisymbol{knot1}{97}
\Pisymbol{knot1}{98}
\Pisymbol{knot1}{99}
\Pisymbol{knot1}{100}
(continued on next page)
207
(continued from previous page)
>
?
@
A
B
C
0
1
2
3
4
5
:
;
<
=
>
?
@
A
B
C
0
1
2
3
4
5
:
;
<
=
>
?
@
A
B
\Pisymbol{knot1}{62}
\Pisymbol{knot1}{63}
\Pisymbol{knot1}{64}
\Pisymbol{knot1}{65}
\Pisymbol{knot1}{66}
\Pisymbol{knot1}{67}
\Pisymbol{knot2}{48}
\Pisymbol{knot2}{49}
\Pisymbol{knot2}{50}
\Pisymbol{knot2}{51}
\Pisymbol{knot2}{52}
\Pisymbol{knot2}{53}
\Pisymbol{knot2}{58}
\Pisymbol{knot2}{59}
\Pisymbol{knot2}{60}
\Pisymbol{knot2}{61}
\Pisymbol{knot2}{62}
\Pisymbol{knot2}{63}
\Pisymbol{knot2}{64}
\Pisymbol{knot2}{65}
\Pisymbol{knot2}{66}
\Pisymbol{knot2}{67}
\Pisymbol{knot3}{48}
\Pisymbol{knot3}{49}
\Pisymbol{knot3}{50}
\Pisymbol{knot3}{51}
\Pisymbol{knot3}{52}
\Pisymbol{knot3}{53}
\Pisymbol{knot3}{58}
\Pisymbol{knot3}{59}
\Pisymbol{knot3}{60}
\Pisymbol{knot3}{61}
\Pisymbol{knot3}{62}
\Pisymbol{knot3}{63}
\Pisymbol{knot3}{64}
\Pisymbol{knot3}{65}
\Pisymbol{knot3}{66}
N
O
P
Q
R
S
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
\Pisymbol{knot1}{78}
\Pisymbol{knot1}{79}
\Pisymbol{knot1}{80}
\Pisymbol{knot1}{81}
\Pisymbol{knot1}{82}
e
f
g
h
i
\Pisymbol{knot1}{101}
\Pisymbol{knot1}{102}
\Pisymbol{knot1}{103}
\Pisymbol{knot1}{104}
\Pisymbol{knot1}{105}
\Pisymbol{knot1}{83}
\Pisymbol{knot2}{68}
\Pisymbol{knot2}{69}
\Pisymbol{knot2}{70}
\Pisymbol{knot2}{71}
\Pisymbol{knot2}{72}
\Pisymbol{knot2}{73}
\Pisymbol{knot2}{74}
\Pisymbol{knot2}{75}
\Pisymbol{knot2}{76}
\Pisymbol{knot2}{77}
\Pisymbol{knot2}{78}
\Pisymbol{knot2}{79}
\Pisymbol{knot2}{80}
\Pisymbol{knot2}{81}
\Pisymbol{knot2}{82}
T
U
V
W
X
`
a
b
c
d
e
f
g
h
i
\Pisymbol{knot2}{84}
\Pisymbol{knot2}{85}
\Pisymbol{knot2}{86}
\Pisymbol{knot2}{87}
\Pisymbol{knot2}{88}
\Pisymbol{knot2}{96}
\Pisymbol{knot2}{97}
\Pisymbol{knot2}{98}
\Pisymbol{knot2}{99}
\Pisymbol{knot2}{100}
\Pisymbol{knot2}{101}
\Pisymbol{knot2}{102}
\Pisymbol{knot2}{103}
\Pisymbol{knot2}{104}
\Pisymbol{knot2}{105}
\Pisymbol{knot2}{83}
\Pisymbol{knot3}{68}
\Pisymbol{knot3}{69}
\Pisymbol{knot3}{70}
\Pisymbol{knot3}{71}
\Pisymbol{knot3}{72}
\Pisymbol{knot3}{73}
\Pisymbol{knot3}{74}
\Pisymbol{knot3}{75}
\Pisymbol{knot3}{76}
\Pisymbol{knot3}{77}
\Pisymbol{knot3}{78}
\Pisymbol{knot3}{79}
\Pisymbol{knot3}{80}
\Pisymbol{knot3}{81}
\Pisymbol{knot3}{82}
T
U
V
W
X
`
a
b
c
d
e
f
g
h
i
\Pisymbol{knot3}{84}
\Pisymbol{knot3}{85}
\Pisymbol{knot3}{86}
\Pisymbol{knot3}{87}
\Pisymbol{knot3}{88}
\Pisymbol{knot3}{96}
\Pisymbol{knot3}{97}
\Pisymbol{knot3}{98}
\Pisymbol{knot3}{99}
\Pisymbol{knot3}{100}
\Pisymbol{knot3}{101}
\Pisymbol{knot3}{102}
\Pisymbol{knot3}{103}
\Pisymbol{knot3}{104}
\Pisymbol{knot3}{105}
(continued on next page)
208
(continued from previous page)
C
0
1
2
3
4
5
:
;
<
=
>
?
@
A
B
C
0
1
2
3
4
5
:
;
<
=
>
?
@
A
B
C
0
1
2
3
\Pisymbol{knot3}{67}
\Pisymbol{knot4}{48}
\Pisymbol{knot4}{49}
\Pisymbol{knot4}{50}
\Pisymbol{knot4}{51}
\Pisymbol{knot4}{52}
\Pisymbol{knot4}{53}
\Pisymbol{knot4}{58}
\Pisymbol{knot4}{59}
\Pisymbol{knot4}{60}
\Pisymbol{knot4}{61}
\Pisymbol{knot4}{62}
\Pisymbol{knot4}{63}
\Pisymbol{knot4}{64}
\Pisymbol{knot4}{65}
\Pisymbol{knot4}{66}
\Pisymbol{knot4}{67}
\Pisymbol{knot5}{48}
\Pisymbol{knot5}{49}
\Pisymbol{knot5}{50}
\Pisymbol{knot5}{51}
\Pisymbol{knot5}{52}
\Pisymbol{knot5}{53}
\Pisymbol{knot5}{58}
\Pisymbol{knot5}{59}
\Pisymbol{knot5}{60}
\Pisymbol{knot5}{61}
\Pisymbol{knot5}{62}
\Pisymbol{knot5}{63}
\Pisymbol{knot5}{64}
\Pisymbol{knot5}{65}
\Pisymbol{knot5}{66}
\Pisymbol{knot5}{67}
\Pisymbol{knot6}{48}
\Pisymbol{knot6}{49}
\Pisymbol{knot6}{50}
\Pisymbol{knot6}{51}
S
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
D
E
F
G
\Pisymbol{knot3}{83}
\Pisymbol{knot4}{68}
\Pisymbol{knot4}{69}
\Pisymbol{knot4}{70}
\Pisymbol{knot4}{71}
\Pisymbol{knot4}{72}
\Pisymbol{knot4}{73}
\Pisymbol{knot4}{74}
\Pisymbol{knot4}{75}
\Pisymbol{knot4}{76}
\Pisymbol{knot4}{77}
\Pisymbol{knot4}{78}
\Pisymbol{knot4}{79}
\Pisymbol{knot4}{80}
\Pisymbol{knot4}{81}
\Pisymbol{knot4}{82}
T
U
V
W
X
`
a
b
c
d
e
f
g
h
i
\Pisymbol{knot4}{84}
\Pisymbol{knot4}{85}
\Pisymbol{knot4}{86}
\Pisymbol{knot4}{87}
\Pisymbol{knot4}{88}
\Pisymbol{knot4}{96}
\Pisymbol{knot4}{97}
\Pisymbol{knot4}{98}
\Pisymbol{knot4}{99}
\Pisymbol{knot4}{100}
\Pisymbol{knot4}{101}
\Pisymbol{knot4}{102}
\Pisymbol{knot4}{103}
\Pisymbol{knot4}{104}
\Pisymbol{knot4}{105}
\Pisymbol{knot4}{83}
\Pisymbol{knot5}{68}
\Pisymbol{knot5}{69}
\Pisymbol{knot5}{70}
\Pisymbol{knot5}{71}
\Pisymbol{knot5}{72}
\Pisymbol{knot5}{73}
\Pisymbol{knot5}{74}
\Pisymbol{knot5}{75}
\Pisymbol{knot5}{76}
\Pisymbol{knot5}{77}
\Pisymbol{knot5}{78}
\Pisymbol{knot5}{79}
\Pisymbol{knot5}{80}
\Pisymbol{knot5}{81}
\Pisymbol{knot5}{82}
T
U
V
W
X
`
a
b
c
d
e
f
g
h
i
\Pisymbol{knot5}{84}
\Pisymbol{knot5}{85}
\Pisymbol{knot5}{86}
\Pisymbol{knot5}{87}
\Pisymbol{knot5}{88}
\Pisymbol{knot5}{96}
\Pisymbol{knot5}{97}
\Pisymbol{knot5}{98}
\Pisymbol{knot5}{99}
\Pisymbol{knot5}{100}
\Pisymbol{knot5}{101}
\Pisymbol{knot5}{102}
\Pisymbol{knot5}{103}
\Pisymbol{knot5}{104}
\Pisymbol{knot5}{105}
\Pisymbol{knot5}{83}
\Pisymbol{knot6}{68}
\Pisymbol{knot6}{69}
\Pisymbol{knot6}{70}
\Pisymbol{knot6}{71}
T
U
V
W
\Pisymbol{knot6}{84}
\Pisymbol{knot6}{85}
\Pisymbol{knot6}{86}
\Pisymbol{knot6}{87}
(continued on next page)
209
(continued from previous page)
4
5
:
;
<
=
>
?
@
A
B
C
0
1
2
3
4
5
:
;
<
=
>
?
@
A
B
C
\Pisymbol{knot6}{52}
\Pisymbol{knot6}{53}
\Pisymbol{knot6}{58}
\Pisymbol{knot6}{59}
\Pisymbol{knot6}{60}
\Pisymbol{knot6}{61}
\Pisymbol{knot6}{62}
\Pisymbol{knot6}{63}
\Pisymbol{knot6}{64}
\Pisymbol{knot6}{65}
\Pisymbol{knot6}{66}
\Pisymbol{knot6}{67}
\Pisymbol{knot7}{48}
\Pisymbol{knot7}{49}
\Pisymbol{knot7}{50}
\Pisymbol{knot7}{51}
\Pisymbol{knot7}{52}
\Pisymbol{knot7}{53}
\Pisymbol{knot7}{58}
\Pisymbol{knot7}{59}
\Pisymbol{knot7}{60}
\Pisymbol{knot7}{61}
\Pisymbol{knot7}{62}
\Pisymbol{knot7}{63}
\Pisymbol{knot7}{64}
\Pisymbol{knot7}{65}
\Pisymbol{knot7}{66}
\Pisymbol{knot7}{67}
H
I
J
K
L
M
N
O
P
Q
R
S
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
\Pisymbol{knot6}{72}
\Pisymbol{knot6}{73}
\Pisymbol{knot6}{74}
\Pisymbol{knot6}{75}
\Pisymbol{knot6}{76}
\Pisymbol{knot6}{77}
\Pisymbol{knot6}{78}
\Pisymbol{knot6}{79}
\Pisymbol{knot6}{80}
\Pisymbol{knot6}{81}
\Pisymbol{knot6}{82}
X
`
a
b
c
d
e
f
g
h
i
\Pisymbol{knot6}{88}
\Pisymbol{knot6}{96}
\Pisymbol{knot6}{97}
\Pisymbol{knot6}{98}
\Pisymbol{knot6}{99}
\Pisymbol{knot6}{100}
\Pisymbol{knot6}{101}
\Pisymbol{knot6}{102}
\Pisymbol{knot6}{103}
\Pisymbol{knot6}{104}
\Pisymbol{knot6}{105}
\Pisymbol{knot6}{83}
\Pisymbol{knot7}{68}
\Pisymbol{knot7}{69}
\Pisymbol{knot7}{70}
\Pisymbol{knot7}{71}
\Pisymbol{knot7}{72}
\Pisymbol{knot7}{73}
\Pisymbol{knot7}{74}
\Pisymbol{knot7}{75}
\Pisymbol{knot7}{76}
\Pisymbol{knot7}{77}
\Pisymbol{knot7}{78}
\Pisymbol{knot7}{79}
\Pisymbol{knot7}{80}
\Pisymbol{knot7}{81}
\Pisymbol{knot7}{82}
T
U
V
W
X
`
a
b
c
d
e
f
g
h
i
\Pisymbol{knot7}{84}
\Pisymbol{knot7}{85}
\Pisymbol{knot7}{86}
\Pisymbol{knot7}{87}
\Pisymbol{knot7}{88}
\Pisymbol{knot7}{96}
\Pisymbol{knot7}{97}
\Pisymbol{knot7}{98}
\Pisymbol{knot7}{99}
\Pisymbol{knot7}{100}
\Pisymbol{knot7}{101}
\Pisymbol{knot7}{102}
\Pisymbol{knot7}{103}
\Pisymbol{knot7}{104}
\Pisymbol{knot7}{105}
\Pisymbol{knot7}{83}
The
following
is
an
example
of
a
basic
knot,
using
\usefont{U}{knot⟨number ⟩}{m}{n} to change fonts for multiple characters instead of \Pisymbol to typeset one character at a time. Note that
all of the characters in the knot fonts lie conveniently within the range of
printable ASCII characters.
Input
CDB
FHG
@EA
CDB CDB CDB CDB CDB CDB CDB
FHG
@EA FHG
@EA FHG
@EA FHG
@EA FHG
@EA FHG
@EA FHG
@EA
knot1
knot2
knot3
knot4
knot5
knot6
knot7
The niceframe package can be used to typeset decorative frames using fonts
such as knot, especially using characters 48–63 of each font variant.
210
Table 531: dancers Dancing Men
\Pisymbol{dancers}{0}
V
\Pisymbol{dancers}{86}
¬
\Pisymbol{dancers}{172}
\Pisymbol{dancers}{1}
W
\Pisymbol{dancers}{87}
­
\Pisymbol{dancers}{173}
\Pisymbol{dancers}{2}
X
\Pisymbol{dancers}{88}
®
\Pisymbol{dancers}{174}
\Pisymbol{dancers}{3}
Y
\Pisymbol{dancers}{89}
¯
\Pisymbol{dancers}{175}
\Pisymbol{dancers}{4}
Z
\Pisymbol{dancers}{90}
°
\Pisymbol{dancers}{176}
\Pisymbol{dancers}{5}
[
\Pisymbol{dancers}{91}
±
\Pisymbol{dancers}{177}
\Pisymbol{dancers}{6}
\
\Pisymbol{dancers}{92}
²
\Pisymbol{dancers}{178}
\Pisymbol{dancers}{7}
]
\Pisymbol{dancers}{93}
³
\Pisymbol{dancers}{179}
\Pisymbol{dancers}{8}
^
\Pisymbol{dancers}{94}
´
\Pisymbol{dancers}{180}
\Pisymbol{dancers}{9}
_
\Pisymbol{dancers}{95}
µ
\Pisymbol{dancers}{181}
\Pisymbol{dancers}{10}
`
\Pisymbol{dancers}{96}
¶
\Pisymbol{dancers}{182}
\Pisymbol{dancers}{11}
a
\Pisymbol{dancers}{97}
·
\Pisymbol{dancers}{183}
\Pisymbol{dancers}{12}
b
\Pisymbol{dancers}{98}
¸
\Pisymbol{dancers}{184}
\Pisymbol{dancers}{13}
c
\Pisymbol{dancers}{99}
¹
\Pisymbol{dancers}{185}
\Pisymbol{dancers}{14}
d
\Pisymbol{dancers}{100}
º
\Pisymbol{dancers}{186}
\Pisymbol{dancers}{15}
e
\Pisymbol{dancers}{101}
»
\Pisymbol{dancers}{187}
\Pisymbol{dancers}{16}
f
\Pisymbol{dancers}{102}
¼
\Pisymbol{dancers}{188}
\Pisymbol{dancers}{17}
g
\Pisymbol{dancers}{103}
½
\Pisymbol{dancers}{189}
\Pisymbol{dancers}{18}
h
\Pisymbol{dancers}{104}
¾
\Pisymbol{dancers}{190}
\Pisymbol{dancers}{19}
i
\Pisymbol{dancers}{105}
¿
\Pisymbol{dancers}{191}
\Pisymbol{dancers}{20}
j
\Pisymbol{dancers}{106}
À
\Pisymbol{dancers}{192}
\Pisymbol{dancers}{21}
k
\Pisymbol{dancers}{107}
Á
\Pisymbol{dancers}{193}
\Pisymbol{dancers}{22}
l
\Pisymbol{dancers}{108}
Â
\Pisymbol{dancers}{194}
\Pisymbol{dancers}{23}
m
\Pisymbol{dancers}{109}
Ã
\Pisymbol{dancers}{195}
\Pisymbol{dancers}{24}
n
\Pisymbol{dancers}{110}
Ä
\Pisymbol{dancers}{196}
\Pisymbol{dancers}{25}
o
\Pisymbol{dancers}{111}
Å
\Pisymbol{dancers}{197}
\Pisymbol{dancers}{26}
p
\Pisymbol{dancers}{112}
Æ
\Pisymbol{dancers}{198}
\Pisymbol{dancers}{27}
q
\Pisymbol{dancers}{113}
Ç
\Pisymbol{dancers}{199}
\Pisymbol{dancers}{28}
r
\Pisymbol{dancers}{114}
È
\Pisymbol{dancers}{200}
\Pisymbol{dancers}{29}
s
\Pisymbol{dancers}{115}
É
\Pisymbol{dancers}{201}
\Pisymbol{dancers}{30}
t
\Pisymbol{dancers}{116}
Ê
\Pisymbol{dancers}{202}
\Pisymbol{dancers}{31}
u
\Pisymbol{dancers}{117}
Ë
\Pisymbol{dancers}{203}
\Pisymbol{dancers}{32}
v
\Pisymbol{dancers}{118}
Ì
\Pisymbol{dancers}{204}
\Pisymbol{dancers}{33}
w
\Pisymbol{dancers}{119}
Í
\Pisymbol{dancers}{205}
!
(continued on next page)
211
(continued from previous page)
"
\Pisymbol{dancers}{34}
x
\Pisymbol{dancers}{120}
Î
\Pisymbol{dancers}{206}
#
\Pisymbol{dancers}{35}
y
\Pisymbol{dancers}{121}
Ï
\Pisymbol{dancers}{207}
$
\Pisymbol{dancers}{36}
z
\Pisymbol{dancers}{122}
Ð
\Pisymbol{dancers}{208}
%
\Pisymbol{dancers}{37}
{
\Pisymbol{dancers}{123}
Ñ
\Pisymbol{dancers}{209}
&
\Pisymbol{dancers}{38}
|
\Pisymbol{dancers}{124}
Ò
\Pisymbol{dancers}{210}
'
\Pisymbol{dancers}{39}
}
\Pisymbol{dancers}{125}
Ó
\Pisymbol{dancers}{211}
(
\Pisymbol{dancers}{40}
~
\Pisymbol{dancers}{126}
Ô
\Pisymbol{dancers}{212}
)
\Pisymbol{dancers}{41}

\Pisymbol{dancers}{127}
Õ
\Pisymbol{dancers}{213}
*
\Pisymbol{dancers}{42}
€
\Pisymbol{dancers}{128}
Ö
\Pisymbol{dancers}{214}
+
\Pisymbol{dancers}{43}

\Pisymbol{dancers}{129}
×
\Pisymbol{dancers}{215}
,
\Pisymbol{dancers}{44}
‚
\Pisymbol{dancers}{130}
Ø
\Pisymbol{dancers}{216}
-
\Pisymbol{dancers}{45}
ƒ
\Pisymbol{dancers}{131}
Ù
\Pisymbol{dancers}{217}
.
\Pisymbol{dancers}{46}
„
\Pisymbol{dancers}{132}
Ú
\Pisymbol{dancers}{218}
/
\Pisymbol{dancers}{47}
\Pisymbol{dancers}{133}
Û
\Pisymbol{dancers}{219}
0
\Pisymbol{dancers}{48}
†
\Pisymbol{dancers}{134}
Ü
\Pisymbol{dancers}{220}
1
\Pisymbol{dancers}{49}
‡
\Pisymbol{dancers}{135}
Ý
\Pisymbol{dancers}{221}
2
\Pisymbol{dancers}{50}
ˆ
\Pisymbol{dancers}{136}
Þ
\Pisymbol{dancers}{222}
3
\Pisymbol{dancers}{51}
‰
\Pisymbol{dancers}{137}
ß
\Pisymbol{dancers}{223}
4
\Pisymbol{dancers}{52}
Š
\Pisymbol{dancers}{138}
à
\Pisymbol{dancers}{224}
5
\Pisymbol{dancers}{53}
‹
\Pisymbol{dancers}{139}
á
\Pisymbol{dancers}{225}
6
\Pisymbol{dancers}{54}
Œ
\Pisymbol{dancers}{140}
â
\Pisymbol{dancers}{226}
7
\Pisymbol{dancers}{55}

\Pisymbol{dancers}{141}
ã
\Pisymbol{dancers}{227}
8
\Pisymbol{dancers}{56}
Ž
\Pisymbol{dancers}{142}
ä
\Pisymbol{dancers}{228}
9
\Pisymbol{dancers}{57}

\Pisymbol{dancers}{143}
å
\Pisymbol{dancers}{229}
:
\Pisymbol{dancers}{58}

\Pisymbol{dancers}{144}
æ
\Pisymbol{dancers}{230}
;
\Pisymbol{dancers}{59}
‘
\Pisymbol{dancers}{145}
ç
\Pisymbol{dancers}{231}
<
\Pisymbol{dancers}{60}
’
\Pisymbol{dancers}{146}
è
\Pisymbol{dancers}{232}
=
\Pisymbol{dancers}{61}
“
\Pisymbol{dancers}{147}
é
\Pisymbol{dancers}{233}
>
\Pisymbol{dancers}{62}
”
\Pisymbol{dancers}{148}
ê
\Pisymbol{dancers}{234}
?
\Pisymbol{dancers}{63}
•
\Pisymbol{dancers}{149}
ë
\Pisymbol{dancers}{235}
@
\Pisymbol{dancers}{64}
–
\Pisymbol{dancers}{150}
ì
\Pisymbol{dancers}{236}
A
\Pisymbol{dancers}{65}
—
\Pisymbol{dancers}{151}
í
\Pisymbol{dancers}{237}
B
\Pisymbol{dancers}{66}
˜
\Pisymbol{dancers}{152}
î
\Pisymbol{dancers}{238}
C
\Pisymbol{dancers}{67}
™
\Pisymbol{dancers}{153}
ï
\Pisymbol{dancers}{239}
D
\Pisymbol{dancers}{68}
š
\Pisymbol{dancers}{154}
ð
\Pisymbol{dancers}{240}
(continued on next page)
212
(continued from previous page)
E
\Pisymbol{dancers}{69}
›
\Pisymbol{dancers}{155}
ñ
\Pisymbol{dancers}{241}
F
\Pisymbol{dancers}{70}
œ
\Pisymbol{dancers}{156}
ò
\Pisymbol{dancers}{242}
G
\Pisymbol{dancers}{71}

\Pisymbol{dancers}{157}
ó
\Pisymbol{dancers}{243}
H
\Pisymbol{dancers}{72}
ž
\Pisymbol{dancers}{158}
ô
\Pisymbol{dancers}{244}
I
\Pisymbol{dancers}{73}
Ÿ
\Pisymbol{dancers}{159}
õ
\Pisymbol{dancers}{245}
J
\Pisymbol{dancers}{74}
\Pisymbol{dancers}{160}
ö
\Pisymbol{dancers}{246}
K
\Pisymbol{dancers}{75}
¡
\Pisymbol{dancers}{161}
÷
\Pisymbol{dancers}{247}
L
\Pisymbol{dancers}{76}
¢
\Pisymbol{dancers}{162}
ø
\Pisymbol{dancers}{248}
M
\Pisymbol{dancers}{77}
£
\Pisymbol{dancers}{163}
ù
\Pisymbol{dancers}{249}
N
\Pisymbol{dancers}{78}
¤
\Pisymbol{dancers}{164}
ú
\Pisymbol{dancers}{250}
O
\Pisymbol{dancers}{79}
¥
\Pisymbol{dancers}{165}
û
\Pisymbol{dancers}{251}
P
\Pisymbol{dancers}{80}
¦
\Pisymbol{dancers}{166}
ü
\Pisymbol{dancers}{252}
Q
\Pisymbol{dancers}{81}
§
\Pisymbol{dancers}{167}
ý
\Pisymbol{dancers}{253}
R
\Pisymbol{dancers}{82}
¨
\Pisymbol{dancers}{168}
þ
\Pisymbol{dancers}{254}
S
\Pisymbol{dancers}{83}
©
\Pisymbol{dancers}{169}
ÿ
\Pisymbol{dancers}{255}
T
\Pisymbol{dancers}{84}
ª
\Pisymbol{dancers}{170}
U
\Pisymbol{dancers}{85}
«
\Pisymbol{dancers}{171}
Fans of Sherlock Holmes mysteries will recognize these glyphs as forming the
substitution cipher featured in Sir Arthur Conan Doyle’s The Adventure of the
Dancing Men (1903).
Table 532: semaphor Semaphore Alphabet
#
$
*
.
$0#
$1#
$2#
$3#
$4#
$5#
$6#
$7#
$8#
$9#
\Pisymbol{smfpr10}{34}
\Pisymbol{smfpr10}{35}
\Pisymbol{smfpr10}{36}
\Pisymbol{smfpr10}{42}
\Pisymbol{smfpr10}{46}
\Pisymbol{smfpr10}{48}
\Pisymbol{smfpr10}{49}
\Pisymbol{smfpr10}{50}
\Pisymbol{smfpr10}{51}
\Pisymbol{smfpr10}{52}
\Pisymbol{smfpr10}{53}
\Pisymbol{smfpr10}{54}
\Pisymbol{smfpr10}{55}
\Pisymbol{smfpr10}{56}
\Pisymbol{smfpr10}{57}
t
u
v
w
x
y
z
˜
Ă
Ą
Ć
Č
Ď
Ě
Ę
\Pisymbol{smfpr10}{116}
\Pisymbol{smfpr10}{117}
\Pisymbol{smfpr10}{118}
\Pisymbol{smfpr10}{119}
\Pisymbol{smfpr10}{120}
\Pisymbol{smfpr10}{121}
\Pisymbol{smfpr10}{122}
\Pisymbol{smfpr10}{126}
\Pisymbol{smfpr10}{128}
\Pisymbol{smfpr10}{129}
\Pisymbol{smfpr10}{130}
\Pisymbol{smfpr10}{131}
\Pisymbol{smfpr10}{132}
\Pisymbol{smfpr10}{133}
\Pisymbol{smfpr10}{134}
ÿ
ź
ž
ż
À
Á
Â
Ã
Ä
Å
Ç
È
É
Ê
Ë
\Pisymbol{smfpr10}{184}
\Pisymbol{smfpr10}{185}
\Pisymbol{smfpr10}{186}
\Pisymbol{smfpr10}{187}
\Pisymbol{smfpr10}{192}
\Pisymbol{smfpr10}{193}
\Pisymbol{smfpr10}{194}
\Pisymbol{smfpr10}{195}
\Pisymbol{smfpr10}{196}
\Pisymbol{smfpr10}{197}
\Pisymbol{smfpr10}{199}
\Pisymbol{smfpr10}{200}
\Pisymbol{smfpr10}{201}
\Pisymbol{smfpr10}{202}
\Pisymbol{smfpr10}{203}
(continued on next page)
213
(continued from previous page)
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
\Pisymbol{smfpr10}{65}
\Pisymbol{smfpr10}{66}
\Pisymbol{smfpr10}{67}
\Pisymbol{smfpr10}{68}
\Pisymbol{smfpr10}{69}
\Pisymbol{smfpr10}{70}
\Pisymbol{smfpr10}{71}
\Pisymbol{smfpr10}{72}
\Pisymbol{smfpr10}{73}
\Pisymbol{smfpr10}{74}
\Pisymbol{smfpr10}{75}
\Pisymbol{smfpr10}{76}
\Pisymbol{smfpr10}{77}
\Pisymbol{smfpr10}{78}
\Pisymbol{smfpr10}{79}
\Pisymbol{smfpr10}{80}
\Pisymbol{smfpr10}{81}
\Pisymbol{smfpr10}{82}
\Pisymbol{smfpr10}{83}
\Pisymbol{smfpr10}{84}
\Pisymbol{smfpr10}{85}
\Pisymbol{smfpr10}{86}
\Pisymbol{smfpr10}{87}
\Pisymbol{smfpr10}{88}
\Pisymbol{smfpr10}{89}
\Pisymbol{smfpr10}{90}
\Pisymbol{smfpr10}{97}
\Pisymbol{smfpr10}{98}
\Pisymbol{smfpr10}{99}
\Pisymbol{smfpr10}{100}
\Pisymbol{smfpr10}{101}
\Pisymbol{smfpr10}{102}
\Pisymbol{smfpr10}{103}
\Pisymbol{smfpr10}{104}
\Pisymbol{smfpr10}{105}
\Pisymbol{smfpr10}{106}
\Pisymbol{smfpr10}{107}
\Pisymbol{smfpr10}{108}
\Pisymbol{smfpr10}{109}
\Pisymbol{smfpr10}{110}
\Pisymbol{smfpr10}{111}
\Pisymbol{smfpr10}{112}
\Pisymbol{smfpr10}{113}
\Pisymbol{smfpr10}{114}
\Pisymbol{smfpr10}{115}
Ğ
Ĺ
Ľ
Ł
Ń
Ň
Ő
Ŕ
Ř
Ś
Š
Ş
Ť
Ţ
Ű
Ů
Ÿ
Ź
Ž
Ż
İ
đ
ă
ą
ć
č
ď
ě
ę
ğ
ĺ
ľ
ł
ń
ň
ő
ŕ
ř
ś
š
ş
ť
ţ
ű
ů
\Pisymbol{smfpr10}{135}
\Pisymbol{smfpr10}{136}
\Pisymbol{smfpr10}{137}
\Pisymbol{smfpr10}{138}
\Pisymbol{smfpr10}{139}
\Pisymbol{smfpr10}{140}
\Pisymbol{smfpr10}{142}
\Pisymbol{smfpr10}{143}
\Pisymbol{smfpr10}{144}
\Pisymbol{smfpr10}{145}
\Pisymbol{smfpr10}{146}
\Pisymbol{smfpr10}{147}
\Pisymbol{smfpr10}{148}
\Pisymbol{smfpr10}{149}
\Pisymbol{smfpr10}{150}
\Pisymbol{smfpr10}{151}
\Pisymbol{smfpr10}{152}
\Pisymbol{smfpr10}{153}
\Pisymbol{smfpr10}{154}
\Pisymbol{smfpr10}{155}
\Pisymbol{smfpr10}{157}
\Pisymbol{smfpr10}{158}
\Pisymbol{smfpr10}{160}
\Pisymbol{smfpr10}{161}
\Pisymbol{smfpr10}{162}
\Pisymbol{smfpr10}{163}
\Pisymbol{smfpr10}{164}
\Pisymbol{smfpr10}{165}
\Pisymbol{smfpr10}{166}
\Pisymbol{smfpr10}{167}
\Pisymbol{smfpr10}{168}
\Pisymbol{smfpr10}{169}
\Pisymbol{smfpr10}{170}
\Pisymbol{smfpr10}{171}
\Pisymbol{smfpr10}{172}
\Pisymbol{smfpr10}{174}
\Pisymbol{smfpr10}{175}
\Pisymbol{smfpr10}{176}
\Pisymbol{smfpr10}{177}
\Pisymbol{smfpr10}{178}
\Pisymbol{smfpr10}{179}
\Pisymbol{smfpr10}{180}
\Pisymbol{smfpr10}{181}
\Pisymbol{smfpr10}{182}
\Pisymbol{smfpr10}{183}
214
Ì
Í
Î
Ï
Ñ
Ò
Ó
Ô
Õ
Ö
Ø
Ù
Ú
Û
Ü
Ý
à
á
â
ã
ä
å
ç
è
é
ê
ë
ì
í
î
ï
ñ
ò
ó
ô
õ
ö
ø
ù
ú
û
ü
ý
\Pisymbol{smfpr10}{204}
\Pisymbol{smfpr10}{205}
\Pisymbol{smfpr10}{206}
\Pisymbol{smfpr10}{207}
\Pisymbol{smfpr10}{209}
\Pisymbol{smfpr10}{210}
\Pisymbol{smfpr10}{211}
\Pisymbol{smfpr10}{212}
\Pisymbol{smfpr10}{213}
\Pisymbol{smfpr10}{214}
\Pisymbol{smfpr10}{216}
\Pisymbol{smfpr10}{217}
\Pisymbol{smfpr10}{218}
\Pisymbol{smfpr10}{219}
\Pisymbol{smfpr10}{220}
\Pisymbol{smfpr10}{221}
\Pisymbol{smfpr10}{224}
\Pisymbol{smfpr10}{225}
\Pisymbol{smfpr10}{226}
\Pisymbol{smfpr10}{227}
\Pisymbol{smfpr10}{228}
\Pisymbol{smfpr10}{229}
\Pisymbol{smfpr10}{231}
\Pisymbol{smfpr10}{232}
\Pisymbol{smfpr10}{233}
\Pisymbol{smfpr10}{234}
\Pisymbol{smfpr10}{235}
\Pisymbol{smfpr10}{236}
\Pisymbol{smfpr10}{237}
\Pisymbol{smfpr10}{238}
\Pisymbol{smfpr10}{239}
\Pisymbol{smfpr10}{241}
\Pisymbol{smfpr10}{242}
\Pisymbol{smfpr10}{243}
\Pisymbol{smfpr10}{244}
\Pisymbol{smfpr10}{245}
\Pisymbol{smfpr10}{246}
\Pisymbol{smfpr10}{248}
\Pisymbol{smfpr10}{249}
\Pisymbol{smfpr10}{250}
\Pisymbol{smfpr10}{251}
\Pisymbol{smfpr10}{252}
\Pisymbol{smfpr10}{253}
semaphor provides a semaf.fd font-definition file. Instead of using pifont and
\Pisymbol to typeset a glyph, a document can select the semaphor fonts directly, although this does require putting \input{semaf.fd} in the document’s
preamble. For example, {\usefont{OT1}{smfp}{m}{n}Hello} will typeset
“Hello”. This can be useful for typesetting complete messages. Roman,
bold, monospace, slanted, and bold+slanted styles are all supported.
In addition, semaphor provides three variations of each font: a “person” version
(smfpr10), which is what is illustrated in the preceding table, a “pillar” version
(smfr10), which shows the flags on a pillar rather than being held by a person,
and an “empty” version (smfer10), which shows only the flags and no pillar
or person. Contrast these variations of the letter “H”:
H
(person)
vs.
H
(pillar)
vs.
H
(empty)
Table 533: cryst Crystallography Symbols
#
$
%
&
'
(
)
*
+
\Pisymbol{cryst}{0}
\Pisymbol{cryst}{2}
\Pisymbol{cryst}{3}
\Pisymbol{cryst}{4}
\Pisymbol{cryst}{5}
\Pisymbol{cryst}{6}
\Pisymbol{cryst}{7}
\Pisymbol{cryst}{8}
\Pisymbol{cryst}{9}
\Pisymbol{cryst}{10}
\Pisymbol{cryst}{12}
\Pisymbol{cryst}{15}
\Pisymbol{cryst}{20}
\Pisymbol{cryst}{21}
\Pisymbol{cryst}{22}
\Pisymbol{cryst}{24}
\Pisymbol{cryst}{25}
\Pisymbol{cryst}{27}
\Pisymbol{cryst}{28}
\Pisymbol{cryst}{29}
\Pisymbol{cryst}{30}
\Pisymbol{cryst}{31}
\Pisymbol{cryst}{32}
\Pisymbol{cryst}{35}
\Pisymbol{cryst}{36}
\Pisymbol{cryst}{37}
\Pisymbol{cryst}{38}
\Pisymbol{cryst}{39}
\Pisymbol{cryst}{40}
\Pisymbol{cryst}{41}
\Pisymbol{cryst}{42}
\Pisymbol{cryst}{43}
?
@
A
B
K
M
N
O
P
Q
R
S
T
U
W
X
Y
_
a
b
c
f
g
h
i
k
l
m
p
q
x
y
\Pisymbol{cryst}{63}
\Pisymbol{cryst}{64}
\Pisymbol{cryst}{65}
\Pisymbol{cryst}{66}
\Pisymbol{cryst}{75}
\Pisymbol{cryst}{77}
\Pisymbol{cryst}{78}
\Pisymbol{cryst}{79}
\Pisymbol{cryst}{80}
\Pisymbol{cryst}{81}
\Pisymbol{cryst}{82}
\Pisymbol{cryst}{83}
\Pisymbol{cryst}{84}
\Pisymbol{cryst}{85}
\Pisymbol{cryst}{87}
\Pisymbol{cryst}{88}
\Pisymbol{cryst}{89}
\Pisymbol{cryst}{95}
\Pisymbol{cryst}{97}
\Pisymbol{cryst}{98}
\Pisymbol{cryst}{99}
\Pisymbol{cryst}{102}
\Pisymbol{cryst}{103}
\Pisymbol{cryst}{104}
\Pisymbol{cryst}{105}
\Pisymbol{cryst}{107}
\Pisymbol{cryst}{108}
\Pisymbol{cryst}{109}
\Pisymbol{cryst}{112}
\Pisymbol{cryst}{113}
\Pisymbol{cryst}{120}
\Pisymbol{cryst}{121}
Š
‹
Œ

Ž

‘
“
”
•
›

ž
Ÿ
¯
±
²
³
¹
»
¼
½
Ã
Å
Æ
Ç
Ê
Ë
Ì
Ò
Ô
Õ
\Pisymbol{cryst}{138}
\Pisymbol{cryst}{139}
\Pisymbol{cryst}{140}
\Pisymbol{cryst}{141}
\Pisymbol{cryst}{142}
\Pisymbol{cryst}{143}
\Pisymbol{cryst}{145}
\Pisymbol{cryst}{147}
\Pisymbol{cryst}{148}
\Pisymbol{cryst}{149}
\Pisymbol{cryst}{155}
\Pisymbol{cryst}{157}
\Pisymbol{cryst}{158}
\Pisymbol{cryst}{159}
\Pisymbol{cryst}{175}
\Pisymbol{cryst}{177}
\Pisymbol{cryst}{178}
\Pisymbol{cryst}{179}
\Pisymbol{cryst}{185}
\Pisymbol{cryst}{187}
\Pisymbol{cryst}{188}
\Pisymbol{cryst}{189}
\Pisymbol{cryst}{195}
\Pisymbol{cryst}{197}
\Pisymbol{cryst}{198}
\Pisymbol{cryst}{199}
\Pisymbol{cryst}{202}
\Pisymbol{cryst}{203}
\Pisymbol{cryst}{204}
\Pisymbol{cryst}{210}
\Pisymbol{cryst}{212}
\Pisymbol{cryst}{213}
(continued on next page)
215
(continued from previous page)
,
/
0
1
2
7
9
:
;
<
=
>
\Pisymbol{cryst}{44}
\Pisymbol{cryst}{45}
\Pisymbol{cryst}{47}
\Pisymbol{cryst}{48}
\Pisymbol{cryst}{49}
\Pisymbol{cryst}{50}
\Pisymbol{cryst}{55}
\Pisymbol{cryst}{57}
\Pisymbol{cryst}{58}
\Pisymbol{cryst}{59}
\Pisymbol{cryst}{60}
\Pisymbol{cryst}{61}
\Pisymbol{cryst}{62}
{
|
}

€

‚
ƒ
„
‡
ˆ
‰
\Pisymbol{cryst}{123}
\Pisymbol{cryst}{124}
\Pisymbol{cryst}{125}
\Pisymbol{cryst}{127}
\Pisymbol{cryst}{128}
\Pisymbol{cryst}{129}
\Pisymbol{cryst}{130}
\Pisymbol{cryst}{131}
\Pisymbol{cryst}{132}
\Pisymbol{cryst}{133}
\Pisymbol{cryst}{135}
\Pisymbol{cryst}{136}
\Pisymbol{cryst}{137}
Ü
Ý
ß
à
æ
ç
è
é
ì
ð
ñ
ò
ó
\Pisymbol{cryst}{220}
\Pisymbol{cryst}{221}
\Pisymbol{cryst}{223}
\Pisymbol{cryst}{224}
\Pisymbol{cryst}{230}
\Pisymbol{cryst}{231}
\Pisymbol{cryst}{232}
\Pisymbol{cryst}{233}
\Pisymbol{cryst}{236}
\Pisymbol{cryst}{240}
\Pisymbol{cryst}{241}
\Pisymbol{cryst}{242}
\Pisymbol{cryst}{243}
Table 534: dice Dice
1
2
3
4
5
6
a
b
c
d
\Pisymbol{dice3d}{49}
\Pisymbol{dice3d}{50}
\Pisymbol{dice3d}{51}
\Pisymbol{dice3d}{52}
\Pisymbol{dice3d}{53}
\Pisymbol{dice3d}{54}
\Pisymbol{dice3d}{97}
\Pisymbol{dice3d}{98}
\Pisymbol{dice3d}{99}
\Pisymbol{dice3d}{100}
e
f
g
h
i
j
k
l
m
n
\Pisymbol{dice3d}{101}
\Pisymbol{dice3d}{102}
\Pisymbol{dice3d}{103}
\Pisymbol{dice3d}{104}
\Pisymbol{dice3d}{105}
\Pisymbol{dice3d}{106}
\Pisymbol{dice3d}{107}
\Pisymbol{dice3d}{108}
\Pisymbol{dice3d}{109}
\Pisymbol{dice3d}{110}
o
p
q
r
s
t
u
v
w
x
\Pisymbol{dice3d}{111}
\Pisymbol{dice3d}{112}
\Pisymbol{dice3d}{113}
\Pisymbol{dice3d}{114}
\Pisymbol{dice3d}{115}
\Pisymbol{dice3d}{116}
\Pisymbol{dice3d}{117}
\Pisymbol{dice3d}{118}
\Pisymbol{dice3d}{119}
\Pisymbol{dice3d}{120}
dice defines its symbols at a very small design size.
glyphs shown above were scaled up by a factor of four
\DeclareFontShape{U}{dice3d}{m}{n}{<-> s*[4] dice3d}{}.
The
using
An alternative to using \Pisymbol to select a die rotation is to rely on
some cleverness in the kerning tables provided by the dice font. The individual digits “1” through “6” each produce the corresponding (2D) die
face: {\usefont{U}{dice3d}{m}{n}2 2 1} produces “
”, for example.
When followed by a letter “a” through “d”, those pairs are kerned to produce a 3D die rotation with the digit specifying by the top face and the letter
specifying one of the four possible front faces, sorted by increasing value. For
example, {\usefont{U}{dice3d}{m}{n}2a 2b 1d} produces “
”.
221
efd
216
0
1
2
3
4
5
Table 535: magic Trading Card Symbols
6
7
8
9
B
G
\Pisymbol{magic}{48}
\Pisymbol{magic}{49}
\Pisymbol{magic}{50}
\Pisymbol{magic}{51}
\Pisymbol{magic}{52}
\Pisymbol{magic}{53}
\Pisymbol{magic}{54}
\Pisymbol{magic}{55}
\Pisymbol{magic}{56}
\Pisymbol{magic}{57}
\Pisymbol{magic}{66}
\Pisymbol{magic}{71}
R
T
U
W
X
Z
\Pisymbol{magic}{82}
\Pisymbol{magic}{84}
\Pisymbol{magic}{85}
\Pisymbol{magic}{87}
\Pisymbol{magic}{88}
\Pisymbol{magic}{90}
The preceding symbols resemble those from Wizards of the Coast’s Magic:
The Gathering trading-card game.
An alternative to entering symbols numerically using \Pisymbol is to switch to the magic font with
\usefont{U}{magic}{m}{n} and employ the following mnemonic characters:
0–9
B
G
R
T
U
W
X
Z
0–9
B
G
R
T
U
W
X
Z
Circled numerals 0–9
Black magic symbol
Green magic symbol
Red magic symbol
Tap symbol (tilted “T” in a circle)
Blue magic symbol
White magic symbol
Circled “X” (for mana cost, e.g., Fireball)
Circled “10” (for mana cost, e.g., Aladdin’s Lamp)
Table 536: bartel-chess-fonts Chess Pieces and Chessboard Squares
\Pisymbol{fselch}{0}
\Pisymbol{fselch}{1}
\Pisymbol{fselch}{2}
\Pisymbol{fselch}{3}
\Pisymbol{fselch}{4}
\Pisymbol{fselch}{5}
\Pisymbol{fselch}{6}
\Pisymbol{fselch}{7}
\Pisymbol{fselch}{8}
\Pisymbol{fselch}{9}
\Pisymbol{fselch}{10}
\Pisymbol{fselch}{11}
\Pisymbol{fselch}{12}
\Pisymbol{fselch}{13}
\Pisymbol{fselch}{14}
\Pisymbol{fselch}{15}
\Pisymbol{fselch}{16}
\Pisymbol{fselch}{17}
\Pisymbol{fselch}{18}
\Pisymbol{fselch}{19}
7
8
9
:
;
<
=
>
?
@
A
B
C
D
E
F
G
H
I
J
\Pisymbol{fselch}{55}
\Pisymbol{fselch}{56}
\Pisymbol{fselch}{57}
\Pisymbol{fselch}{58}
\Pisymbol{fselch}{59}
\Pisymbol{fselch}{60}
\Pisymbol{fselch}{61}
\Pisymbol{fselch}{62}
\Pisymbol{fselch}{63}
\Pisymbol{fselch}{64}
\Pisymbol{fselch}{65}
\Pisymbol{fselch}{66}
\Pisymbol{fselch}{67}
\Pisymbol{fselch}{68}
\Pisymbol{fselch}{69}
\Pisymbol{fselch}{70}
\Pisymbol{fselch}{71}
\Pisymbol{fselch}{72}
\Pisymbol{fselch}{73}
\Pisymbol{fselch}{74}
n
o
p
q
r
s
t
u
v
w
x
y
z
{
|
}
~

€

\Pisymbol{fselch}{110}
\Pisymbol{fselch}{111}
\Pisymbol{fselch}{112}
\Pisymbol{fselch}{113}
\Pisymbol{fselch}{114}
\Pisymbol{fselch}{115}
\Pisymbol{fselch}{116}
\Pisymbol{fselch}{117}
\Pisymbol{fselch}{118}
\Pisymbol{fselch}{119}
\Pisymbol{fselch}{120}
\Pisymbol{fselch}{121}
\Pisymbol{fselch}{122}
\Pisymbol{fselch}{123}
\Pisymbol{fselch}{124}
\Pisymbol{fselch}{125}
\Pisymbol{fselch}{126}
\Pisymbol{fselch}{127}
\Pisymbol{fselch}{128}
\Pisymbol{fselch}{129}
(continued on next page)
217
(continued from previous page)
!
"
#
$
%
&
'
(
)
*
+
,
.
/
0
1
2
3
4
5
6
\Pisymbol{fselch}{20}
\Pisymbol{fselch}{21}
\Pisymbol{fselch}{22}
\Pisymbol{fselch}{23}
\Pisymbol{fselch}{24}
\Pisymbol{fselch}{25}
\Pisymbol{fselch}{26}
\Pisymbol{fselch}{27}
\Pisymbol{fselch}{28}
\Pisymbol{fselch}{29}
\Pisymbol{fselch}{30}
\Pisymbol{fselch}{31}
\Pisymbol{fselch}{32}
\Pisymbol{fselch}{33}
\Pisymbol{fselch}{34}
\Pisymbol{fselch}{35}
\Pisymbol{fselch}{36}
\Pisymbol{fselch}{37}
\Pisymbol{fselch}{38}
\Pisymbol{fselch}{39}
\Pisymbol{fselch}{40}
\Pisymbol{fselch}{41}
\Pisymbol{fselch}{42}
\Pisymbol{fselch}{43}
\Pisymbol{fselch}{44}
\Pisymbol{fselch}{45}
\Pisymbol{fselch}{46}
\Pisymbol{fselch}{47}
\Pisymbol{fselch}{48}
\Pisymbol{fselch}{49}
\Pisymbol{fselch}{50}
\Pisymbol{fselch}{51}
\Pisymbol{fselch}{52}
\Pisymbol{fselch}{53}
\Pisymbol{fselch}{54}
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_
`
a
b
c
d
e
f
g
h
i
j
k
l
m
\Pisymbol{fselch}{75}
\Pisymbol{fselch}{76}
\Pisymbol{fselch}{77}
\Pisymbol{fselch}{78}
\Pisymbol{fselch}{79}
\Pisymbol{fselch}{80}
\Pisymbol{fselch}{81}
\Pisymbol{fselch}{82}
\Pisymbol{fselch}{83}
\Pisymbol{fselch}{84}
\Pisymbol{fselch}{85}
\Pisymbol{fselch}{86}
\Pisymbol{fselch}{87}
\Pisymbol{fselch}{88}
\Pisymbol{fselch}{89}
\Pisymbol{fselch}{90}
\Pisymbol{fselch}{91}
\Pisymbol{fselch}{92}
\Pisymbol{fselch}{93}
\Pisymbol{fselch}{94}
\Pisymbol{fselch}{95}
\Pisymbol{fselch}{96}
\Pisymbol{fselch}{97}
\Pisymbol{fselch}{98}
\Pisymbol{fselch}{99}
\Pisymbol{fselch}{100}
\Pisymbol{fselch}{101}
\Pisymbol{fselch}{102}
\Pisymbol{fselch}{103}
\Pisymbol{fselch}{104}
\Pisymbol{fselch}{105}
\Pisymbol{fselch}{106}
\Pisymbol{fselch}{107}
\Pisymbol{fselch}{108}
\Pisymbol{fselch}{109}
‚
ƒ
„
†
‡
ˆ
‰
Š
‹
Œ

Ž


‘
—

£
©
¯
´
º
À
Æ
Ì
Ò
Ø
Þ
ä
ê
ð
ö
\Pisymbol{fselch}{130}
\Pisymbol{fselch}{131}
\Pisymbol{fselch}{132}
\Pisymbol{fselch}{133}
\Pisymbol{fselch}{134}
\Pisymbol{fselch}{135}
\Pisymbol{fselch}{136}
\Pisymbol{fselch}{137}
\Pisymbol{fselch}{138}
\Pisymbol{fselch}{139}
\Pisymbol{fselch}{140}
\Pisymbol{fselch}{141}
\Pisymbol{fselch}{142}
\Pisymbol{fselch}{143}
\Pisymbol{fselch}{144}
\Pisymbol{fselch}{145}
\Pisymbol{fselch}{151}
\Pisymbol{fselch}{157}
\Pisymbol{fselch}{163}
\Pisymbol{fselch}{169}
\Pisymbol{fselch}{175}
\Pisymbol{fselch}{180}
\Pisymbol{fselch}{186}
\Pisymbol{fselch}{192}
\Pisymbol{fselch}{198}
\Pisymbol{fselch}{204}
\Pisymbol{fselch}{210}
\Pisymbol{fselch}{216}
\Pisymbol{fselch}{222}
\Pisymbol{fselch}{228}
\Pisymbol{fselch}{234}
\Pisymbol{fselch}{240}
\Pisymbol{fselch}{246}
In addition to the fselch font showcased above, bartel-chess-fonts also provides
a pkelch font which includes the same symbol set (minus some of the highernumbered characters) but drawn in a slightly different style.
bartel-chess-fonts provides the fselch and pkelch fonts in various sizes (optically scaled). See “LATEX 2𝜀 Font Selection” [LAT19] for advice on how
to expose these sorts of fonts to LATEX using \DeclareFontFamily and
\DeclareFontShape.
218
10
Additional Information
Unlike the previous sections of this document, Section 10 does not contain new symbol tables. Rather,
it provides additional help in using the Comprehensive LATEX Symbol List. First, it draws attention to
symbol names used by multiple packages. Next, it provides some guidelines for finding symbols and gives
some examples regarding how to construct missing symbols out of existing ones. Then, it comments on
the spacing surrounding symbols in math mode. After that, it presents an ASCII and Latin 1 quickreference guide, showing how to enter all of the standard ASCII/Latin 1 symbols in LATEX. And finally,
it lists some statistics about this document itself.
10.1
Symbol Name Clashes
Unfortunately, a number of symbol names are not unique; they appear in more than one package.
Depending on how the symbols are defined in each package, LATEX will either output an error message or
replace an earlier-defined symbol with a later-defined symbol. Table 537 on the following page presents
a selection of name clashes that appear in this document.
Using multiple symbols with the same name in the same document—or even merely loading conflicting
symbol packages—can be tricky but, as evidenced by the existence of Table 537, not impossible. The
general procedure is to load the first package, rename the conflicting symbols, and then load the second
package. Examine the LATEX source for this document (symbols.tex) for examples of this and other
techniques for handling symbol conflicts. Note that symbols.tex’s \savesymbol and \restoresymbol
macros have been extracted into the savesym package, which can be downloaded from CTAN.
txfonts and pxfonts redefine a huge number of symbols—essentially, all of the symbols defined by
latexsym, textcomp, the various 𝒜ℳ𝒮 symbol sets, and LATEX 2𝜀 itself. Similarly, mathabx redefines a
vast number of math symbols in an attempt to improve their look. The txfonts, pxfonts, and mathabx
conflicts are not listed in Table 537 because they are designed to be compatible with the symbols they
replace. Table 538 on page 221 illustrates what “compatible” means in this context.
To use the new txfonts/pxfonts symbols without altering the document’s main font, merely reset the
default font families back to their original values after loading one of those packages:
\renewcommand\rmdefault{cmr}
\renewcommand\sfdefault{cmss}
\renewcommand\ttdefault{cmtt}
10.2
Resizing symbols
Mathematical symbols listed in this document as “variable-sized” are designed to stretch vertically.
Each variable-sized symbol comes in one or more basic sizes plus a variation comprising both stretchable
and nonstretchable segments. Table 539 on page 221 presents the symbols \} and \uparrow in their
default size, in their \big, \Big, \bigg, and \Bigg sizes, in an even larger size achieved using \left/
\right, and—for contrast—in a large size achieved by changing the font size using LATEX 2𝜀 ’s \fontsize
command. Because the symbols shown belong to the Computer Modern family, the type1cm package
needs to be loaded to support font sizes larger than 24.88 pt.
Note how \fontsize makes the symbol wider and thicker. (The graphicx package’s \scalebox
or \resizebox commands would produce a similar effect.) Also, the \fontsize-enlarged symbol is
vertically centered relative to correspondingly large text, unlike the symbols enlarged using \big et al.
or \left/\right, which all use the same math axis regardless of symbol size. However, \fontsize is
not limited to mathematical delimiters. Also, \scalebox and \resizebox are more robust to poorly
composed symbols (e.g., two symbols made to overlap by backspacing a fixed distance) but do not work
with every TEX backend and will produce jagged symbols when scaling a bitmapped font.
All variable-sized delimiters are defined (by the corresponding .tfm file) in terms of up to five segments, as illustrated by Figure 1 on page 221. The top, middle, and bottom segments are of a fixed
size. The top-middle and middle-bottom segments (which are constrained to be the same character) are
repeated as many times as necessary to achieve the desired height.
10.3
Where can I find the symbol for . . . ?
If you can’t find some symbol you’re looking for in this document, there are a few possible explanations:
219
220
\baro
\bigtriangledown
\bigtriangleup
\checkmark
\Circle
\Cross
\ggg
\Letter
\lightning
\Lightning
\lll
\Square
\Sun
\TriangleDown
\TriangleUp
Symbol
▽
△
LATEX 2𝜀
≪
≫
X
𝒜ℳ𝒮
`
a
stmaryrd
#
wasysym
@
Î
Ï
mathabx
À
E
B
†
marvosym
Table 537: Symbol Name Clashes
o
n
f
*
bbding
0
3
1
5
ifsym
D
dingbat
<
wsuipa
Table 538: Example of a Benign Name Clash
txfonts
(Times Roman)
Default
(Computer Modern)
Symbol
R
“
R
\textrecipe
R
“
Table 539: Sample resized delimiters
Symbol
\}
Default size
\big
\Big
}︂
}︁
}︀
}
\bigg
\Bigg
\left / \right
}︃
⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭
\uparrow
↑
⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭
−→
⌃
⎮
⎮
⎮
⌃
⎮
⎮
⌃
⎮
⌃
⎮
⎮
⎮
⎮
⎫
top
⎪
top-middle (extensible)
⎬
middle
⎪
middle-bottom (extensible)
⎭
bottom
⌃
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
Figure 1: Implementation of variable-sized delimiters
221
\fontsize
}
↑
• The symbol isn’t intuitively named. As a few examples, the ifsym command to draw dice is “\Cube”;
a plus sign with a circle around it (“exclusive or” to computer engineers) is “\oplus”; and lightning
bolts in fonts designed by German speakers may have “blitz” in their names as in the ulsy package.
The moral of the story is to be creative with synonyms when searching the index.
• The symbol is defined by some package that I overlooked (or deemed unimportant). If there’s some
symbol package that you think should be included in the Comprehensive LATEX Symbol List, please
send me e-mail at the address listed on the title page.
• The symbol isn’t defined in any package whatsoever.
Even in the last case, all is not lost. Sometimes, a symbol exists in a font, but there is no LATEX
binding for it. For example, the PostScript Symbol font contains a “↵” symbol, which may be useful
for representing a carriage return, but there is no package (as far as I know) for accessing that symbol.
To produce an unnamed symbol, you need to switch to the font explicitly with LATEX 2𝜀 ’s low-level
font commands [LAT19] and use TEX’s primitive \char command [Knu86a] to request a specific character
number in the font. For example, one can define a command to typeset a long s (“ ſ ”) using character 115
from the Latin Modern fonts in the TS1 font encoding:5
\newcommand{\textlongs}{{%
\fontencoding{TS1}\fontfamily{lmr}\selectfont\char115%
}}
Then, “\textlongs ucce\textlongs sful” will produce “ſucceſsful”—in the current font style (roman,
italic, bold, etc.)
In fact, \char is not strictly necesssary in all cases; the character can often be entered symbolically.
For example, the symbol for an impulse train or Tate-Shafarevich group (“ ”) is actually an uppercase
sha in the Cyrillic alphabet. (Cyrillic is supported by the OT2 font encoding, for instance). While a sha
can be defined numerically as “{\fontencoding{OT2}\selectfont\char88}” it may be more intuitive
to use the OT2 font encoding’s “SH” ligature: “{\fontencoding{OT2}\selectfont SH}”. Another
possibility is to use the T2A font encoding’s \CYRSH command: “{\fontencoding{T2A}\selectfont
\CYRSH}”.
For the specific case of the U font encoding, which is used for symbol or “pi” fonts, the pifont package
defines a convenient \Pisymbol command. \Pisymbol typesets a specified character (by number) in a
specified font family. For example, “\Pisymbol{psy}{191}” produces the aforementioned “↵” symbol
by typesetting character number 191 in the psy (PostScript Symbol) font family.
X
Reflecting and rotating existing symbols
A common request on comp.text.tex is for a reversed or rotated version of an existing symbol. As
a last resort, these effects can be achieved with the graphicx (or graphics) package’s \reflectbox
and \rotatebox macros.
For example, \textsuperscript{\reflectbox{?}} produces an irony
mark (“ ? ”), and \rotatebox[origin=c]{180}{$\iota$} produces the definite-description operator (“ ”). As noted by Marc Olschok in a July 2011 post on comp.text.tex, Project Gutenberg uses
\reflectbox to typeset the part (“3”) and whole (“3”) relations used in Dedekind’s set notation:
𝜄
\newcommand\partof{\mathrel{\raisebox{0.45ex}{$\mathfrak{3}$}}}
\newcommand\wholeof{\mathrel{\reflectbox{$\partof$}}}
The disadvantage of the graphicx/graphics approach is that not every TEX backend handles graphical
transformations.6 Far better is to find a suitable font that contains the desired symbol in the correct
orientation. For instance, if the phonetic package is available, then \textit{\riota} will yield a backendindependent “ ”. Similarly, tipa’s \textrevepsilon (“3”) or wsuipa’s \revepsilon (“”) may be used
to express the mathematical notion of “such that” in a cleaner manner than with \reflectbox or
\rotatebox.7
5
Since January 2020, the wasysym package provides a \longs symbol. See Table 47.
As an example, Xdvi ignores both \reflectbox and \rotatebox.
7
More common symbols for representing “such that” include “|”, “:”, and “s.t.”.
6
222
Joining and overlapping existing symbols
Symbols that do not exist in any font can sometimes be fabricated out of existing symbols. The LATEX 2𝜀
source file fontdef.dtx contains a number of such definitions. For example, \models (see Table 89 on
page 50) is defined in that file with:
\def\models{\mathrel|\joinrel=}
where \mathrel and \joinrel are used to control the horizontal spacing. \def is the TEX primitive
upon which LATEX’s \newcommand is based. See The TEXbook [Knu86a] for more information on all three
of those commands.
With some simple pattern-matching, one can easily define a backward \models sign (“=|”):
\def\ismodeledby{=\joinrel\mathrel|}
In general, arrows/harpoons, horizontal lines (“=”, “-”, “\relbar”, and “\Relbar”), and the various
math-extension characters can be combined creatively with miscellaneous other characters to produce a
variety of new symbols. Of course, new symbols can be composed from any set of existing characters.
For instance, LATEX defines \hbar (“~”) as a “¯” character (\mathchar’26) followed by a backspace of
9 math units (\mkern-9mu), followed by the letter “ℎ”:
\def\hbar{{\mathchar’26\mkern-9muh}}
We can just as easily define other barred letters:
\def\bbar{{\mathchar’26\mkern-9mu b}}
\def\dbar{{\mathchar’26\mkern-12mu d}}
(The space after the “mu” is optional but is added for clarity.) \bbar and \dbar define “¯
𝑏” and “¯
𝑑”,
respectively. Note that \dbar requires a greater backward math kern than \bbar; a −9 mu kern would
have produced the less-attractive “¯
𝑑” glyph.
The amsmath package provides \overset and \underset commands for placing one symbol respec𝐺
tively above or below another. For example, \overset{G}{\sim}8 produces “∼” (sometimes used for
“equidecomposable with respect to 𝐺”).
Sometimes an ordinary tabular environment can be co-opted into juxtaposing existing symbols
into a new symbol. Consider the following definition of \asterism (“**
* ”) from a June 2007 post to
comp.text.tex by Peter Flynn:
\newcommand{\asterism}{\smash{%
\raisebox{-.5ex}{%
\setlength{\tabcolsep}{-.5pt}%
\begin{tabular}{@{}cc@{}}%
\multicolumn2c*\\[-2ex]*&*%
\end{tabular}}}}
Note how the space between columns (\tabcolsep) and rows (\\[. . . ]) is made negative to squeeze the
asterisks closer together.
There is a TEX primitive called \mathaccent that centers one mathematical symbol atop another.
·
For example, one can define \dotcup (“∪”)—the
composition of a \cup and a \cdot—as follows:
\newcommand{\dotcup}{\ensuremath{\mathaccent\cdot\cup}}
The catch is that \mathaccent requires the accent to be a “math character”. That is, it must be a character in a math font as opposed to a symbol defined in terms of other symbols. See The TEXbook [Knu86a]
for more information.
Another TEX primitive that is useful for composing symbols is \vcenter. \vcenter is conceptually
similar to “\begin{tabular}{l}” in LATEX but takes a list of vertical material instead of \\-separated
rows. Also, it vertically centers the result on the math axis. (Many operators, such as “+” and “−”
are also vertically centered on the math axis.) Enrico Gregorio posted the following symbol definition to
comp.text.tex in March 2004 in response to a query about an alternate way to denote equivalence:
8 A
LT
EX’s \stackrel command is similar but is limited to placing a symbol above a binary relation.
223
\newcommand*{\threesim}{%
\mathrel{\vcenter{\offinterlineskip
\hbox{$\sim$}\vskip-.35ex\hbox{$\sim$}\vskip-.35ex\hbox{$\sim$}}}}
The \threesim symbol, which vertically centers three \sim (“∼”) symbols with 0.35 𝑥-heights of space
∼
between them, is rendered as “∼
∼”. \offinterlineskip is a macro that disables implicit interline
spacing. Without it, \threesim would have a full line of vertical spacing between each \sim. Because
∼
of \vcenter, \threesim aligns properly with other math operators: 𝑎 ÷ 𝑏 ∼
∼ 𝑐 × 𝑑.
A related LATEX command, borrowed from Plain TEX, is \ooalign. \ooalign vertically overlaps
symbols and works both within and outside of math mode. Essentially, it creates a single-column
tabular environment with zero vertical distance between rows. However, because it is based directly on
TEX’s \ialign primitive, \ooalign uses TEX’s tabular syntax instead of LATEX’s (i.e., with \cr as the
row terminator instead of \\). The following example of \ooalign, a macro that defines a standard∘
state symbol (\stst, “−
”) as a superscripted Plimsoll line (\barcirc, “−
∘ ”),9 is due to an October 2007
comp.text.tex post by Donald Arseneau:
\makeatletter
\providecommand\barcirc{\mathpalette\@barred\circ}
\def\@barred#1#2{\ooalign{\hfil$#1-$\hfil\cr\hfil$#1#2$\hfil\cr}}
\newcommand\stst{^{\protect\barcirc}}
\makeatother
In the preceding code, note the \ooalign call’s use of \hfil to horizontally center a minus sign (“−”)
and a \circ (“∘”).
As another example of \ooalign, consider the following code (due to Enrico Gregorio in a June 2007
post to comp.text.tex) that overlaps a \ni (“∋”) and two minus signs (“−
−”) to produce “∋
−
−”, an
obscure variation on the infrequently used “3” symbol for “such that”discussed on page 222:
\newcommand{\suchthat}{%
\mathrel{\ooalign{$\ni$\cr\kern-1pt$-$\kern-6.5pt$-$}}}
The slashed package, although originally designed for producing Feynman slashed-character notation,
in fact facilitates the production of arbitrary overlapped symbols. The default behavior is to overwrite
/ However, the \declareslashed
a given character with “/”. For example, \slashed{D} produces “𝐷”.
command provides the flexibility to specify the mathematical context of the composite character (operator, relation, punctuation, etc., as will be discussed in Section 10.4), the overlapping symbol, horizontal
and vertical adjustments in symbol-relative units, and the character to be overlapped. Consider, for
example, the symbol for reduced quadrupole moment (“𝐼”).
This can be declared as follows:
\newcommand{\rqm}{{%
\declareslashed{}{\text{-}}{0.04}{0}{I}\slashed{I}}}
\declareslashed{·}{·}{·}{·}{I} affects the meaning of all subsequent \slashed{I} commands in the
same scope. The preceding definition of \rqm therefore uses an extra set of curly braces to limit that
scope to a single \slashed{I}. In addition, \rqm uses amstext’s \text macro (described on page 226) to
make \declareslashed use a text-mode hyphen (“-”) instead of a math-mode minus sign (“−”) and to
ensure that the hyphen scales properly in size in subscripts and superscripts. See slashed’s documentation
(located in slashed.sty itself) for a detailed usage description of the \slashed and \declareslashed
commands.
Somewhat simpler than slashed is the centernot package. centernot provides a single command,
\centernot, which, like \not, puts a slash over the subsequent mathematical symbol. However, instead
of putting the slash at a fixed location, \centernot centers the slash over its argument. \centernot
might be used, for example, to create a “does not imply” symbol:
̸=⇒
\not\Longrightarrow
vs.
=⇒
̸
\centernot\Longrightarrow
See the centernot documentation for more information.
9
While \barcirc illustrates how to combine symbols using \ooalign, the stmaryrd package’s \minuso command (Table 52
on page 30) provides a similar glyph (“ ”) as a single, indivisible symbol.
224
Making new symbols work in superscripts and subscripts
To make composite symbols work properly within subscripts and superscripts, you may need to use
TEX’s \mathchoice primitive. \mathchoice evaluates one of four expressions, based on whether the
current math style is display, text, script, or scriptscript. (See The TEXbook [Knu86a] for a more
complete description.) For example, the following LATEX code—posted to comp.text.tex by Torsten
Bronger—composes a sub/superscriptable “⊥
⊤” symbol out of \top and \bot (“⊤” and “⊥”):
\def\topbotatom#1{\hbox{\hbox to 0pt{$#1\bot$\hss}$#1\top$}}
\newcommand*{\topbot}{\mathrel{\mathchoice{\topbotatom\displaystyle}
{\topbotatom\textstyle}
{\topbotatom\scriptstyle}
{\topbotatom\scriptscriptstyle}}}
The following is another example that uses \mathchoice to construct symbols in different math
modes. The code defines a principal value integral symbol, which is an integral sign with a line through
it.
\def\Xint#1{\mathchoice
{\XXint\displaystyle\textstyle{#1}}%
{\XXint\textstyle\scriptstyle{#1}}%
{\XXint\scriptstyle\scriptscriptstyle{#1}}%
{\XXint\scriptscriptstyle\scriptscriptstyle{#1}}%
\!\int}
\def\XXint#1#2#3{{\setbox0=\hbox{$#1{#2#3}{\int}$}
\vcenter{\hbox{$#2#3$}}\kern-.5\wd0}}
\def\ddashint{\Xint=}
\def\dashint{\Xint-}
(The preceding code was taken verbatim from the UK T
∫︀EX Users Group FAQ at http://www.tex.ac.uk/.)
−”), while \ddashint produces a double-dashed
\dashint
produces
a
single-dashed
integral
sign
(“
∫︀
one (“=”).
The \Xint macro defined above
can also be used to generate
∫︀
∫︀
∫︀ a wealth of new inte∫︀
grals: “” (\Xint\circlearrowright), “ ” (\Xint\circlearrowleft), “⊂” (\Xint\subset), “∞”
(\Xint\infty), and so forth.
LATEX 2𝜀 provides a simple wrapper for \mathchoice that sometimes helps produce terser symbol definitions. The macro is called \mathpalette and it takes two arguments. \mathpalette invokes the first argument, passing it one of “\displaystyle”, “\textstyle”, “\scriptstyle”, or
“\scriptscriptstyle”, followed by the second argument. \mathpalette is useful when a symbol macro
must know which math style is currently in use (e.g., to set it explicitly within an \mbox). Donald Arseneau posted the following \mathpalette-based definition of a probabilistic-independence symbol (“⊥
⊥”)
to comp.text.tex in June 2000:
\newcommand\independent{\protect\mathpalette{\protect\independenT}{\perp}}
\def\independenT#1#2{\mathrel{\rlap{$#1#2$}\mkern2mu{#1#2}}}
The \independent macro uses \mathpalette to pass the \independenT helper macro both the current
math style and the \perp symbol. \independenT typesets \perp in the current math style, moves two
math units to the right, and finally typesets a second—overlapping—copy of \perp, again in the current
math style. \rlap, which enables text overlap, is described on the following page.
Some people like their square-root signs with a trailing “hook” (i.e., “√ ”) as this helps visually
√
√
distinguish expressions like “ 3𝑥 ” from those like “ 3𝑥”. In March 2002, Dan Luecking posted a
\mathpalette-based definition of a hooked square-root symbol to comp.text.tex. This code was subsequently refined by Max Dohse and Scott Pakin into the version shown below, which accepts a root as
an optional argument, for consistency with \sqrt.
\newcommand{\hksqrt}[2][]{\mathpalette\DHLhksqrt{[#1]{#2\,}}}
\def\DHLhksqrt#1#2{\setbox0=\hbox{$#1\sqrt#2$}\dimen0=\ht0
\advance\dimen0-0.2\ht0
\setbox2=\hbox{\vrule height\ht0 depth -\dimen0}%
{\box0\lower0.4pt\box2}}
225
Notice how \hksqrt uses \mathpalette to pass the current math style (\displaystyle, \textstyle,
etc.) to \DHLhksqrt as argument #1. \DHLhksqrt subsequently uses that style within an \hbox. The rest
of the code is simply using TEX primitives to position a hook of height 0.2 times the \sqrt height at the
right of the \sqrt. See The TEXbook [Knu86a] for more understanding of TEX “boxes” and “dimens”.
Sometimes, however, amstext’s \text macro is all that is necessary to make composite symbols
appear correctly in subscripts and superscripts, as in the following definitions of \neswarrow (“↗
↘”) and
\nwsearrow (“↖
↘”):10
\newcommand{\neswarrow}{\mathrel{\text{$\nearrow$\llap{$\swarrow$}}}}
\newcommand{\nwsearrow}{\mathrel{\text{$\nwarrow$\llap{$\searrow$}}}}
\text resembles LATEX’s \mbox command but shrinks its argument appropriately when used within a
subscript or superscript. \llap (“left overlap”) and its counterpart, \rlap (“right overlap”), appear
frequently when creating composite characters. \llap outputs its argument to the left of the current
position, overlapping whatever text is already there. Similarly, \rlap overlaps whatever text would
normally appear to the right of its argument. For example, “A\llap{B}” and “\rlap{A}B” each produce
“A
B”. However, the result of the former is the width of “A”, and the result of the latter is the width of
“B”—\llap{. . . } and \rlap{. . . } take up zero space.
In a June 2002 post to comp.text.tex, Donald Arseneau presented a general macro for aligning an
arbitrary number of symbols on their horizontal centers and vertical baselines:
\makeatletter
\def\moverlay{\mathpalette\mov@rlay}
\def\mov@rlay#1#2{\leavevmode\vtop{%
\baselineskip\z@skip \lineskiplimit-\maxdimen
\ialign{\hfil$#1##$\hfil\cr#2\crcr}}}
\makeatother
The \makeatletter and \makeatother commands are needed to coerce LATEX into accepting “@” as
part of a macro name. \moverlay takes a list of symbols separated by \cr (TEX’s equivalent of LATEX’s
\\). For example, the \topbot command defined on the previous page could have been expressed as
“\moverlay{\top\cr\bot}” and the \neswarrow command defined above could have been expressed as
“\moverlay{\nearrow\cr\swarrow}”.
The basic concept behind \moverlay’s implementation is that \moverlay typesets the given symbols
in a table that utilizes a zero \baselineskip. This causes every row to be typeset at the same vertical
position. See The TEXbook [Knu86a] for explanations of the TEX primitives used by \moverlay.
Steven B. Segletes answered a question on TEX Stack Exchange, “AMS inequalities: a variant of
\gtrsim and \lesssim” on typesetting \gtrsim (“&”) and \lesssim (“.”) with the \sim symbol slanted
to match the angle of the greater-than/less-than sign. His solution incorporates the graphicx package’s
\rotatebox for rotating the “∼”, the stackengine package’s \stackengine command for stacking two
symbols on top of each other, and the scalerel package’s \ThisStyle, \SavedStyle, and \LMex commands
for scaling the symbol based on the surrounding context. The following code due to Segletes defines the
11
\gtrsimslant (“>”) and \lesssimslant (“<
∼ ”) symbols:
∼
\newcommand\lesssimslant{\mathrel{\ensurestackMath{\ThisStyle{%
\stackengine{-.4\LMex}{\SavedStyle<}{%
\rotatebox{-25}{$\SavedStyle\sim$}}{U}{r}{F}{T}{S}}}}}
\newcommand\gtrsimslant{\mathrel{\ensurestackMath{\ThisStyle{%
\stackengine{-.4\LMex}{\SavedStyle>}{%
\rotatebox{25}{$\SavedStyle\sim$}}{U}{l}{F}{T}{S}}}}}
Modifying LATEX-generated symbols
Oftentimes, symbols composed in the LATEX 2𝜀 source code can be modified with minimal effort to
produce useful variations. For example, fontdef.dtx composes the \ddots symbol (see Table 277 on
page 114) out of three periods, raised 7 pt., 4 pt., and 1 pt., respectively:
10
Note that if your goal is to typeset commutative diagrams or pushout/pullback diagrams, then you should probably
be using XY-pic.
11
The code as posted on TEX Stack Exchange named these \vargtrsim and \varlesssim. They are renamed here for
naming consistency with symbols such as \geqslant (“>”).
226
\def\ddots{\mathinner{\mkern1mu\raise7\p@
\vbox{\kern7\p@\hbox{.}}\mkern2mu
\raise4\p@\hbox{.}\mkern2mu\raise\p@\hbox{.}\mkern1mu}}
\p@ is a LATEX 2𝜀 shortcut for “pt” or “1.0pt”. The remaining commands are defined in The
TEXbook [Knu86a]. To draw a version of \ddots with the dots going along the opposite diagonal,
we merely have to reorder the \raise7\p@, \raise4\p@, and \raise\p@:
\makeatletter
\def\revddots{\mathinner{\mkern1mu\raise\p@
\vbox{\kern7\p@\hbox{.}}\mkern2mu
\raise4\p@\hbox{.}\mkern2mu\raise7\p@\hbox{.}\mkern1mu}}
\makeatother
\revddots is essentially identical to the mathdots package’s \iddots command or the yhmath package’s
\adots command.
Producing complex accents
Accents are a special case of combining existing symbols to make new symbols. While various tables in
this document show how to add an accent to an existing symbol, some applications, such as transliterations from non-Latin alphabets, require multiple accents per character. For instance, the creator of
pdfTEX writes his name as “Hàn Th´
^e Thành”. The dblaccnt package enables LATEX to stack accents, as
in “H\‘an Th\’{\^e} Th\‘anh” (albeit not in the OT1 font encoding). In addition, the wsuipa package
defines \diatop and \diaunder macros for putting one or more diacritics or accents above or below a
given character. For example, \diaunder[{\diatop[\’|\=]}|\textsubdot{r}] produces “´r̄”. See the
˙
wsuipa documentation for more information.
The accents package facilitates the fabrication of accents in math mode. Its \accentset command
⋆
enables any character to be used as an accent. For instance, \accentset{\star}{f} produces “𝑓 ” and
𝑒
\accentset{e}{X} produces “𝑋”. \underaccent does the same thing, but places the accent beneath
the character. This enables constructs like \underaccent{\tilde}{V}, which produces “𝑉 ”. accents
provides other accent-related features as well; see the documentation for more information.˜
Creating extensible symbols
A relatively simple example of creating extensible symbols stems from a comp.text.tex post by Donald
Arseneau (June 2003). The following code defines an equals sign that extends as far to the right as
possible, just like LATEX’s \hrulefill command:
\makeatletter
\def\equalsfill{$\m@th\mathord=\mkern-7mu
\cleaders\hbox{$\!\mathord=\!$}\hfill
\mkern-7mu\mathord=$}
\makeatother
TEX’s \cleaders and \hfill primitives are the key to understanding \equalsfill’s extensibility.
Essentially, \equalsfill repeats a box containing “=” plus some negative space until it fills the maximum available horizontal space.
\equalsfill is intended to be used
with LATEX’s \stackrel command, which stacks one mathematical expression (slightly re𝑎
duced in size) atop another.
Hence, “\stackrel{a}{\rightarrow}” produces “→” and “X
definition
\stackrel{\text{definition}}{\hbox{\equalsfill}} Y” produces “𝑋 ====== 𝑌 ”.
If all that needs to extend are horizontal and vertical lines—as opposed to repeated symbols such
as the “=” in the previous example—LATEX’s array or tabular environments may suffice. Consider
the following code (due to a February 1999 comp.text.tex post by Donald Arseneau and subsequent
modifications by Billy Yu and Scott Pakin) for typesetting annuity and life-insurance symbols:
\DeclareRobustCommand{\actuarial}[2][]{%
\def\arraystretch{0}%
\setlength\arraycolsep{0.5pt}%
227
}
\setlength\arrayrulewidth{0.5pt}%
\setbox0=\hbox{$\scriptstyle#1#2$}%
\begin{array}[b]{*2{@{}>{\scriptstyle}c}|}
\cline{2-2}%
\rule[1.25pt]{0pt}{\ht0}%
#1 & #2%
\end{array}%
Using the preceding definition, one can type, e.g., “$a_{\actuarial{n}}$” to produce “𝑎𝑛 ” and
“$a_{\actuarial[x:]{n}}$” to produce “𝑎𝑥:𝑛 ”. This is similar in concept to how the actuarialangle
package defines its \actuarialangle command (Table 261). For a more complete solution for typesetting
actuarial symbols see the actuarialsymbol package.
A more complex example of composing accents is the following definition of extensible \overbracket,
\underbracket, \overparenthesis, and \underparenthesis symbols, taken from a May 2002
comp.text.tex post by Donald Arseneau:
\makeatletter
\def\overbracket#1{\mathop{\vbox{\ialign{##\crcr\noalign{\kern3\p@}
\downbracketfill\crcr\noalign{\kern3\p@\nointerlineskip}
$\hfil\displaystyle{#1}\hfil$\crcr}}}\limits}
\def\underbracket#1{\mathop{\vtop{\ialign{##\crcr
$\hfil\displaystyle{#1}\hfil$\crcr\noalign{\kern3\p@\nointerlineskip}
\upbracketfill\crcr\noalign{\kern3\p@}}}}\limits}
\def\overparenthesis#1{\mathop{\vbox{\ialign{##\crcr\noalign{\kern3\p@}
\downparenthfill\crcr\noalign{\kern3\p@\nointerlineskip}
$\hfil\displaystyle{#1}\hfil$\crcr}}}\limits}
\def\underparenthesis#1{\mathop{\vtop{\ialign{##\crcr
$\hfil\displaystyle{#1}\hfil$\crcr\noalign{\kern3\p@\nointerlineskip}
\upparenthfill\crcr\noalign{\kern3\p@}}}}\limits}
\def\downparenthfill{$\m@th\braceld\leaders\vrule\hfill\bracerd$}
\def\upparenthfill{$\m@th\bracelu\leaders\vrule\hfill\braceru$}
\def\upbracketfill{$\m@th\makesm@sh{\llap{\vrule\@height3\p@\@width.7\p@}}%
\leaders\vrule\@height.7\p@\hfill
\makesm@sh{\rlap{\vrule\@height3\p@\@width.7\p@}}$}
\def\downbracketfill{$\m@th
\makesm@sh{\llap{\vrule\@height.7\p@\@depth2.3\p@\@width.7\p@}}%
\leaders\vrule\@height.7\p@\hfill
\makesm@sh{\rlap{\vrule\@height.7\p@\@depth2.3\p@\@width.7\p@}}$}
\makeatother
Table 540 showcases these accents. The TEXbook [Knu86a] or another book on TEX primitives is indispensible for understanding how the preceding code works. The basic idea is that \downparenthfill,
\upparenthfill, \downbracketfill, and \upbracketfill do all of the work; they output a left symbol (e.g., \braceld [“⏞”] for \downparenthfill), a horizontal rule that stretches as wide as possible, and a right symbol (e.g., \bracerd [“ ”] for \downparenthfill). \overbracket, \underbracket,
\overparenthesis, and \underparenthesis merely create a table whose width is determined by the
given text, thereby constraining the width of the horizontal rules.
Table 540: Manually Composed Extensible Accents
⏞
𝑎𝑏𝑐 \overbracket{abc}
𝑎𝑏𝑐 \overparenthesis{abc}
𝑎𝑏𝑐
\underbracket{abc}
𝑎𝑏𝑐
⏟
\underparenthesis{abc}
Note that the simplewick package provides mechanisms for typesetting Wick contractions, which
utilize \overbracket- and \underbracket-like brackets of variable width and height (or depth). For example, “\acontraction{}{A}{B}{C}\acontraction[2ex]{A}{B}{C}{D}\bcontraction{}{A}{BC}{D}
228
ABCD” produces
𝐴𝐵𝐶𝐷
.
See the simplewick documentation for more information.
Developing new symbols from scratch
Sometimes is it simply not possible to define a new symbol in terms of existing symbols. Fortunately,
most, if not all, TEX distributions are shipped with a tool called METAFONT which is designed specifically for creating fonts to be used with TEX. The METAFONTbook [Knu86b] is the authoritative
text on METAFONT. If you plan to design your own symbols with METAFONT, The METAFONTbook
is essential reading. You may also want to read the freely available METAFONT primer located at
http://metafont.tutorial.free.fr/. The following is an extremely brief tutorial on how to create a
new LATEX symbol using METAFONT. Its primary purpose is to cover the LATEX-specific operations not
mentioned in The METAFONTbook and to demonstrate that symbol-font creation is not necessarily a
difficult task.
Suppose we need a symbol to represent a light bulb (“A”).12 The first step is to draw this in METAFONT. It is common to separate the font into two files: a size-dependent file, which specifies the design
size and various font-specific parameters that are a function of the design size; and a size-independent
file, which draws characters in the given size. Figure 2 shows the METAFONT code for lightbulb10.mf.
lightbulb10.mf specifies various parameters that produce a 10 pt. light bulb then loads lightbulb.mf.
Ideally, one should produce lightbulb⟨size⟩.mf files for a variety of ⟨size⟩s. This is called “optical
scaling”. It enables, for example, the lines that make up the light bulb to retain the same thickness
at different font sizes, which looks much nicer than the alternative—and default—“mechanical scaling”. When a lightbulb⟨size⟩.mf file does not exist for a given size ⟨size⟩, the computer mechanically
produces a wider, taller, thicker symbol:
A
A
vs.
10 pt.
20 pt.
vs.
A
vs.
30 pt.
A
vs.
40 pt.
A
50 pt.
vs.
A A
font_identifier := "LightBulb10";
font_size 10pt#;
vs.
60 pt.
70 pt.
% Name the font.
% Specify the design size.
em# := 10pt#;
cap# := 7pt#;
sb# := 1/4pt#;
𝑜# := 1/16pt#;
% “M” width is 10 points.
% Capital letter height is 7 points above the baseline.
% Leave this much space on the side of each character.
% Amount that curves overshoot borders.
input lightbulb
% Load the file that draws the actual glyph.
Figure 2: Sample METAFONT size-specific file (lightbulb10.mf)
lightbulb.mf, shown in Figure 3, draws a light bulb using the parameters defined in
lightbulb10.mf. Note that the the filenames “lightbulb10.mf” and “lightbulb.mf” do not follow
the Berry font-naming scheme [Ber01]; the Berry font-naming scheme is largely irrelevant for symbol
fonts, which generally lack bold, italic, small-caps, slanted, and other such variants.
The code in Figures Figure 2 and Figure 3 is heavily commented and should demonstrate some of the
basic concepts behind METAFONT usage: declaring variables, defining points, drawing lines and curves,
and preparing to debug or fine-tune the output. Again, The METAFONTbook [Knu86b] is the definitive
reference on METAFONT programming.
METAFONT can produce “proofs” of fonts—large, labeled versions that showcase the logical structure of each character. In fact, proof mode is METAFONT’s default mode. To produce a proof of
lightbulb10.mf, issue the following commands at the operating-system prompt:
12
I’m not a very good artist; you’ll have to pretend that “ A” looks like a light bulb.
229
% Target a given printer.
mode_setup;
define_pixels(em, cap, sb);
define_corrected_pixels(𝑜);
% Convert to device-specific units.
% Same, but add a device-specific fudge factor.
%% Define a light bulb at the character position for “A”
%% with width 1/2em#, height cap#, and depth 1pt#.
beginchar("A", 1/2em#, cap#, 1pt#); "A light bulb";
pickup pencircle scaled 1/2pt;
% Use a pen with a small, circular tip.
%% Define the points we need.
top 𝑧1 = (𝑤/2, ℎ + 𝑜);
% 𝑧1 is at the top of a circle.
rt 𝑧2 = (𝑤 + sb + 𝑜 − 𝑥4 , 𝑦4 ); % 𝑧2 is at the same height as 𝑧4 but the opposite side.
bot 𝑧3 = (𝑧1 − (0, 𝑤 − sb − 𝑜));
% 𝑧3 is at the bottom of the circle.
lft 𝑧4 = (sb − 𝑜, 1/2[𝑦1 , 𝑦3 ]);
% 𝑧4 is on the left of the circle.
path bulb;
% Define a path for the bulb itself.
bulb = 𝑧1 . . 𝑧2 . . 𝑧3 . . 𝑧4 . . cycle;
% The bulb is a closed path.
𝑧5 = point 2 − 1/3 of bulb;
% 𝑧5 lies on the bulb, a little to the right of 𝑧3 .
𝑧6 = (𝑥5 , 0);
% 𝑧6 is at the bottom, directly under 𝑧5 .
𝑧7 = (𝑥8 , 0);
% 𝑧7 is at the bottom, directly under 𝑧8 .
𝑧8 = point 2 + 1/3 of bulb;
% 𝑧8 lies on the bulb, a little to the left of 𝑧3 .
bot 𝑧67 = ( 1/2[𝑥6 , 𝑥7 ], pen_bot − 𝑜 − 1/8pt); % 𝑧67 lies halfway between 𝑧6 and 𝑧7 but
a jot lower.
%% Draw the bulb and the base.
draw bulb;
draw 𝑧5 - - 𝑧6 . . 𝑧67 . . 𝑧7 - - 𝑧8 ;
% Draw the bulb proper.
% Draw the base of the bulb.
%% Display key positions and points to help us debug.
makegrid(0, sb, 𝑤/2, 𝑤 − sb)(0, −1pt, 𝑦2 , ℎ);
% Label “interesting” 𝑥 and 𝑦
coordinates.
penlabels(1, 2, 3, 4, 5, 6, 67, 7, 8);
% Label control points for debugging.
endchar;
end
Figure 3: Sample METAFONT size-independent file (lightbulb.mf)
⇐ Produces lightbulb10.2602gf
⇐ Produces lightbulb10.dvi
prompt > mf lightbulb10.mf
prompt > gftodvi lightbulb10.2602gf
You can then view lightbulb10.dvi with any DVI viewer. The result is shown in Figure 4. Observe
how the grid defined with makegrid at the bottom of Figure 3 draws vertical lines at positions 0, sb, 𝑤/2,
and 𝑤 − sb and horizontal lines at positions 0, −1pt, 𝑦2 , and ℎ. Similarly, observe how the penlabels
command labels all of the important coordinates: 𝑧1 , 𝑧2 , . . . , 𝑧8 and 𝑧67 , which lightbulb.mf defines
to lie between 𝑧6 and 𝑧7 .
Most, if not all, TEX distributions include a Plain TEX file called testfont.tex that is useful for
testing new fonts in a variety of ways. One useful routine produces a table of all of the characters in the
font:
prompt > tex testfont
This is TeX, Version 3.14159 (Web2C 7.3.1)
(/usr/share/texmf/tex/plain/base/testfont.tex
Name of the font to test = lightbulb10
Now type a test command (\help for help):)
*∖table
*∖bye
[1]
Output written on testfont.dvi (1 page, 1516 bytes).
Transcript written on testfont.log.
230
1
4
2
8
7
3
67
5
6
Figure 4: Proof diagram of lightbulb10.mf
The resulting table, stored in testfont.dvi and illustrated in Figure 5, shows every character in the
font. To understand how to read the table, note that the character code for “A”—the only character
defined by lightbulb10.mf—is 41 in hexadecimal (base 16) and 101 in octal (base 8).
Test of lightbulb10 on March 11, 2003 at 1127
´0
´10x
´11x
˝8
´1
A
´2
˝9
˝A
´3
´4
´5
´6
´7
˝4x
˝B
˝C
˝D
˝E
˝F
Figure 5: Font table produced by testfont.tex
The LightBulb10 font is now usable by TEX. LATEX 2𝜀 , however, needs more information before
documents can use the font. First, we create a font-description file that tells LATEX 2𝜀 how to map fonts
in a given font family and encoding to a particular font in a particular font size. For symbol fonts,
this mapping is fairly simple. Symbol fonts almost always use the “U” (“Unknown”) font encoding
and frequently occur in only one variant: normal weight and non-italicized. The filename for a fontdescription file important; it must be of the form “⟨encoding⟩⟨family⟩.fd”, where ⟨encoding⟩ is the
lowercase version of the encoding name (typically “u” for symbol fonts) and ⟨family⟩ is the name of
the font family. For LightBulb10, let’s call this “bulb”. Figure 6 lists the contents of ubulb.fd. The
document “LATEX 2𝜀 Font Selection” [LAT19] describes \DeclareFontFamily and \DeclareFontShape in
detail, but the gist of ubulb.fd is first to declare a U-encoded version of the bulb font family and then to
specify that a LATEX 2𝜀 request for a U-encoded version of bulb with a (m)edium font series (as opposed
to, e.g., bold) and a (n)ormal font shape (as opposed to, e.g., italic) should translate into a TEX request
for lightbulb10.tfm mechanically scaled to the current font size.
\DeclareFontFamily{U}{bulb}{}
\DeclareFontShape{U}{bulb}{m}{n}{<-> lightbulb10}{}
Figure 6: LATEX 2𝜀 font-description file (ubulb.fd)
The final step is to write a LATEX 2𝜀 style file that defines a name for each symbol in the font. Because
we have only one symbol our style file, lightbulb.sty (Figure 7), is rather trivial. Note that instead of
typesetting “A” we could have had \lightbulb typeset “\char65”, “\char"41”, or “\char’101” (respectively, decimal, hexadecimal, and octal character offsets into the font). For a simple, one-character symbol
font such as LightBulb10 it would be reasonable to merge ubulb.fd into lightbulb.sty instead of maintaining two separate files. In either case, a document need only include “\usepackage{lightbulb}” to
231
make the \lightbulb symbol available.
\newcommand{\lightbulb}{{\usefont{U}{bulb}{m}{n}A}}
Figure 7: LATEX 2𝜀 style file (lightbulb.sty)
METAFONT normally produces bitmapped fonts. However, it is also possible, with the help of some
external tools, to produce PostScript Type 1 fonts. These have the advantages of rendering better in
Adobe® Acrobat® (at least in versions prior to 6.0) and of being more memory-efficient when handled
by a PostScript interpreter. See http://www.tex.ac.uk/FAQ-textrace.html for pointers to tools that
can produce Type 1 fonts from METAFONT.
10.4
Math-mode spacing
Terms such as “binary operators”, “relations”, and “punctuation” in Section 3 primarily regard the
surrounding spacing. (See the Short Math Guide for LATEX [Dow00] for a nice exposition on the
subject.) To use a symbol for a different purpose, you can use the TEX commands \mathord,
\mathop, \mathbin, \mathrel, \mathopen, \mathclose, and \mathpunct. For example, if you
want to use \downarrow as a variable (an “ordinary” symbol) instead of a delimiter, you can write
“$3 x + \mathord{\downarrow}$” to get the properly spaced “3𝑥 + ↓” rather than the awkward˙ that spaces like the ordinary setlooking “3𝑥+ ↓”. Similarly, to create a dotted-union symbol (“∪”)
union symbol (\cup) it must be defined with \mathbin, just as \cup is. Contrast “$A \dot{\cup} B$”
˙
˙ 𝐵”). See The TEXbook [Knu86a] for the defini(“𝐴∪𝐵”)
with “$A \mathbin{\dot{\cup}} B$” (“𝐴 ∪
tive description of math-mode spacing.
The purpose of the “log-like symbols” in Table 183 and Table 184 is to provide the correct amount
of spacing around and within multiletter function names. Table 541 contrasts the output of the loglike symbols with various, naı̈ve alternatives. In addition to spacing, the log-like symbols also handle
subscripts properly. For example, “\max_{p \in P}” produces “max𝑝∈𝑃 ” in text, but “max” as part
𝑝∈𝑃
of a displayed formula.
Table 541: Spacing Around/Within Log-like Symbols
LATEX expression
Output
$r
$r
$r
$r
𝑟 sin 𝜃
𝑟𝑠𝑖𝑛𝜃
𝑟sin𝜃
𝑟sin𝜃
\sin \theta$
sin \theta$
\mbox{sin} \theta$
\mathrm{sin} \theta$
(best)
The amsmath package makes it straightforward to define new log-like symbols:
\DeclareMathOperator{\atan}{atan}
\DeclareMathOperator*{\lcm}{lcm}
The difference between \DeclareMathOperator and \DeclareMathOperator* involves the handling of
subscripts. With \DeclareMathOperator*, subscripts are written beneath log-like symbols in display
style and to the right in text style. This is useful for limit operators (e.g., \lim) and functions that
tend to map over a set (e.g., \min). In contrast, \DeclareMathOperator tells TEX that subscripts
should always be displayed to the right of the operator, as is common for functions that take a single
parameter (e.g., \log and \cos). Table 542 contrasts symbols declared with \DeclareMathOperator
and \DeclareMathOperator* in both text style ($. . .$) and display style (\[. . .\]).13
It is common to use a thin space (\,) between the words of a multiword operators, as in
“\DeclareMathOperator*{\argmax}{arg\,max}”. \liminf, \limsup, and all of the log-like symbols
shown in Table 184 utilize this spacing convention.
13
Note that \displaystyle can be used to force display style within $. . .$ and \textstyle can be used to force text
style within \[. . .\].
232
Table 542: Defining new log-like symbols
10.5
Declaration function
$\newlogsym_{p \in P}$
\[ \newlogsym_{p \in P} \]
\DeclareMathOperator
newlogsym𝑝∈𝑃
newlogsym𝑝∈𝑃
\DeclareMathOperator*
newlogsym𝑝∈𝑃
newlogsym
𝑝∈𝑃
Bold mathematical symbols
LATEX does not normally use bold symbols when typesetting mathematics. However, bold symbols
are occasionally needed, for example when naming vectors. Any of the approaches described at http://
www.tex.ac.uk/FAQ-boldgreek.html can be used to produce bold mathematical symbols. Table 543
contrasts the output produced by these various techniques. As the table illustrates, these techniques
exhibit variation in their formatting of Latin letters (upright vs. italic), formatting of Greek letters (bold
vs. normal), formatting of operators and relations (bold vs. normal), and spacing. xfakebold’s \setBold
command is unique in that it takes a thickness argument and supports arbitrary symbol thickness,
although it works only with vector fonts, not bitmapped fonts.
Table 543: Producing bold mathematical symbols
10.6
Package
Code
Output
none
none
none
amsbsy
amsbsy
bm
fixmath
xfakebold
$\alpha + b = \Gamma \div D$
$\mathbf{\alpha + b = \Gamma \div D}$
\boldmath$\alpha + b = \Gamma \div D$
$\pmb{\alpha + b = \Gamma \div D}$
$\boldsymbol{\alpha + b = \Gamma \div D}$
$\bm{\alpha + b = \Gamma \div D}$
$\mathbold{\alpha + b = \Gamma \div D}$
\setBold[0.3]
$\alpha + b = \Gamma \div D$
\unsetBold
𝛼+𝑏=Γ÷𝐷
𝛼+b=Γ÷D
𝛼+𝑏=Γ÷𝐷
𝛼+𝑏=Γ÷𝐷
𝛼+𝑏=Γ÷𝐷
𝛼+𝑏=Γ÷𝐷
𝛼+𝑏=𝛤 ÷𝐷
𝛼+𝑏=Γ÷𝐷
(no bold)
(faked bold)
(faked bold)
ASCII and Latin 1 quick reference
Table 544 on the next page amalgamates data from various other tables in this document into a convenient
reference for LATEX 2𝜀 typesetting of ASCII characters, i.e., the characters available on a typical U.S.
computer keyboard. The first two columns list the character’s ASCII code in decimal and hexadecimal.
The third column shows what the character looks like. The fourth column lists the LATEX 2𝜀 command to
typeset the character as a text character. And the fourth column lists the LATEX 2𝜀 command to typeset
the character within a \texttt{. . .} command (or, more generally, when \ttfamily is in effect).
The following are some additional notes about the contents of Table 544:
• “"” is not available in the OT1 font encoding.
• Table 544 shows a close quote for character 39 for consistency with the open quote shown for
character 96. A straight quote can be typeset using \textquotesingle (cf. Table 46).
• The characters “<”, “>”, and “|” do work as expected in math mode, although they produce,
respectively, “¡”, “¿”, and “—” in text mode when using the OT1 font encoding.14 The following
are some alternatives for typesetting “<”, “>”, and “|”:
– Specify a document font encoding other than OT1 (as described on page 12).
14
Donald Knuth didn’t think such symbols were important outside of mathematics so he omitted them from his text
fonts.
233
Table 544: LATEX 2𝜀 ASCII Table
Dec
Hex
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
..
.
57
58
59
60
61
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
..
.
39
3A
3B
3C
3D
Char
Body text
!
"
#
$
%
&
’
(
)
*
+
,
.
/
0
1
2
..
.
9
:
;
<
=
!
\textquotedbl
\#
\$
\%
\&
’
(
)
*
+
,
.
/
0
1
2
..
.
9
:
;
\textless
=
\texttt Dec
!
"
\#
\$
\%
\&
’
(
)
*
+
,
.
/
0
1
2
..
.
9
:
;
<
=
62
63
64
65
66
67
..
.
90
91
92
93
94
95
96
97
98
99
..
.
122
123
124
125
126
Hex
3E
3F
40
41
42
43
..
.
5A
5B
5C
5D
5E
5F
60
61
62
63
..
.
7A
7B
7C
7D
7E
Char
Body text
>
?
@
A
B
C
..
.
Z
[
\
]
ˆ
_
‘
a
b
c
..
.
z
{
|
}
˜
\textgreater
?
@
A
B
C
..
.
Z
[
\textbackslash
]
\^{}
\_
‘
a
b
c
..
.
z
\{
\textbar
\}
\~{}
\texttt
>
?
@
A
B
C
..
.
Z
[
\char‘\\
]
\^{}
\char‘\_
‘
a
b
c
..
.
z
\char‘\{
|
\char‘\}
\~{}
– Use the appropriate symbol commands from Table 2 on page 14, viz. \textless,
\textgreater, and \textbar.
– Enter the symbols in math mode instead of text mode, i.e., $<$, $>$, and $|$.
Note that for typesetting metavariables many people prefer \textlangle and \textrangle to
\textless and \textgreater; i.e., “⟨filename⟩” instead of “<filename>”.
• Although “/” does not require any special treatment, LATEX additionally defines a \slash command
which outputs the same glyph but permits a line break afterwards. That is, “increase/decrease”
is always typeset as a single entity while “increase\slash{}decrease” may be typeset with
“increase/” on one line and “decrease” on the next.
• \textasciicircum can be used instead of \^{}, and \textasciitilde can be used instead of
\~{}. Note that \textasciitilde and \~{} produce raised, diacritic tildes. “Text” (i.e., vertically
centered) tildes can be generated with either the math-mode \sim command (shown in Table 89
on page 50), which produces a somewhat wide “∼”, or the textcomp package’s \texttildelow
(shown in Table 46 on page 27), which produces a vertically centered “~” in most fonts but a
baseline-oriented “~” in Computer Modern, txfonts, pxfonts, and various other fonts originating
from the TEX world. If your goal is to typeset tildes in URLs or Unix filenames, your best bet is
to use the url package, which has a number of nice features such as proper line-breaking of such
names.
• The various \char commands within \texttt are necessary only in the OT1 font encoding. In
other encodings (e.g., T1), commands such as \{, \}, \_, and \textbackslash all work properly.
• The code page 437 (IBM PC) version of ASCII characters 1 to 31 can be typeset using the ascii
package. See Table 335 on page 130.
234
• To replace “‘” and “’” with the more computer-like (and more visibly distinct) “`” and “'” within
a verbatim environment, use the upquote package. Outside of verbatim, you can use \char18
and \char13 to get the modified quote characters. (The former is actually a grave accent.)
Similar to Table 544, Table 545 on the next page is an amalgamation of data from other tables in
this document. While Table 544 shows how to typeset the 7-bit ASCII character set, Table 545 shows
the Latin 1 (Western European) character set, also known as ISO-8859-1.
The following are some additional notes about the contents of Table 545:
• A “(tc)” after a symbol name means that the textcomp package must be loaded to access that
symbol. A “(T1)” means that the symbol requires the T1 font encoding. The fontenc package can
change the font encoding document-wide.
• Many of the \text. . . accents can also be produced using the accent commands shown in Table 18 on page 20 plus an empty argument. For instance, \={} is essentially the same as
\textasciimacron.
• The commands in the “LATEX 2𝜀 ” columns work both in body text and within a \texttt{. . .}
command (or, more generally, when \ttfamily is in effect).
• The “£” and “$” glyphs occupy the same slot (36) of the OT1 font encoding, with “£” appearing
in italic fonts and “$” appearing in roman fonts. A problem with LATEX’s default handling of
this double-mapping is that “{\sffamily\slshape\pounds}” produces “$”, not “£”. Other font
encodings use separate slots for the two characters and are therefore robust to the problem of
“£”/”$” conflicts. Authors who use \pounds should select a font encoding other than OT1 (as
explained on page 12) or use the textcomp package, which redefines \pounds to use the TS1 font
encoding.
• Character 173, \-, is shown as “-” but is actually a discretionary hyphen; it appears only at the
end of a line.
Microsoft® Windows® normally uses a superset of Latin 1 called “Code Page 1252” or “CP1252”
for short. CP1252 introduces symbols in the Latin 1 “invalid” range (characters 128–159). Table 546
presents the characters with which CP1252 augments the standard Latin 1 table.
The following are some additional notes about the contents of Table 546:
• As in Table 545, a “(tc)” after a symbol name means that the textcomp package must be loaded to
access that symbol. A “(T1)” means that the symbol requires the T1 font encoding. The fontenc
package can change the font encoding document-wide.
• Not all characters in the 128–159 range are defined.
• Look up “euro signs” in the index for alternatives to \texteuro.
While too large to incorporate into this document, a listing of ISO 8879:1986 SGML/XML character
entities and their LATEX equivalents is available from http://www.bitjungle.com/isoent/. Some of the
characters presented there make use of isoent, a LATEX 2𝜀 package (available from the same URL) that
fakes some of the missing ISO glyphs using the LATEX picture environment.15
10.7
Unicode characters
Unicode is a “universal character set”—a standard for encoding (i.e., assigning unique numbers to) the
symbols appearing in many of the world’s languages. While ASCII can represent 128 symbols and Latin 1
can represent 256 symbols, Unicode can represent an astonishing 1,114,112 symbols.
Because TEX and LATEX predate the Unicode standard and Unicode fonts by almost a decade, support
for Unicode has had to be added to the base TEX and LATEX systems. Note first that LATEX distinguishes
between input encoding—the characters used in the .tex file—and output encoding—the characters that
appear in the generated .dvi, .pdf, etc. file.
15
isoent is not featured in this document, because it is not available from CTAN and because the faked symbols are not
“true” characters; they exist in only one size, regardless of the body text’s font size.
235
Table 545: LATEX 2𝜀 Latin 1 Table
Dec
Hex
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
A1
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
B0
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
C0
C1
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CF
D0
Char
¡
¢
£
¤
¥
¦
§
¨
©
ª
«
¬
®
¯
°
±
²
³
´
µ
¶
·
¸
¹
º
»
¼
½
¾
¿
À
Á
Â
Ã
Ä
Å
Æ
Ç
È
É
Ê
Ë
Ì
Í
Î
Ï
Ð
LATEX 2𝜀
!‘
\textcent
\pounds
\textcurrency
\textyen
\textbrokenbar
\S
\textasciidieresis
\textcopyright
\textordfeminine
\guillemetleft
\textlnot
\\textregistered
\textasciimacron
\textdegree
\textpm
\texttwosuperior
\textthreesuperior
\textasciiacute
\textmu
\P
\textperiodcentered
\c{}
\textonesuperior
\textordmasculine
\guillemetright
\textonequarter
\textonehalf
\textthreequarters
?‘
\‘{A}
\’{A}
\^{A}
\~{A}
\"{A}
\AA
\AE
\c{C}
\‘{E}
\’{E}
\^{E}
\"{E}
\‘{I}
\’{I}
\^{I}
\"{I}
\DH
(tc)
(tc)
(tc)
(tc)
(tc)
(T1)
(tc)
(tc)
(tc)
(tc)
(tc)
(tc)
(tc)
(tc)
(tc)
(T1)
(tc)
(tc)
(tc)
(T1)
236
Dec
Hex
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF
E0
E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF
Char
Ñ
Ò
Ó
Ô
Õ
Ö
×
Ø
Ù
Ú
Û
Ü
Ý
Þ
ß
à
á
â
ã
ä
å
æ
ç
è
é
ê
ë
ì
í
î
ï
ð
ñ
ò
ó
ô
õ
ö
÷
ø
ù
ú
û
ü
ý
þ
ÿ
LATEX 2𝜀
\~{N}
\‘{O}
\’{O}
\^{O}
\~{O}
\"{O}
\texttimes
\O
\‘{U}
\’{U}
\^{U}
\"{U}
\’{Y}
\TH
\ss
\‘{a}
\’{a}
\^{a}
\~{a}
\"{a}
\aa
\ae
\c{c}
\‘{e}
\’{e}
\^{e}
\"{e}
\‘{ı}
\’{ı}
\^{ı}
\"{ı}
\dh
\~{n}
\‘{o}
\’{o}
\^{o}
\~{o}
\"{o}
\textdiv
\o
\‘{u}
\’{u}
\^{u}
\"{u}
\’{y}
\th
\"{y}
(tc)
(T1)
(T1)
(tc)
(T1)
Table 546: LATEX 2𝜀 Code Page 1252 Table
Dec
Hex
128
130
131
132
133
134
135
136
137
138
139
140
142
80
82
83
84
85
86
87
88
89
8A
8B
8C
8E
LATEX 2𝜀
Char
€
‚
f
„
...
†
‡
^
‰
Š
‹
Œ
Ž
\texteuro
\quotesinglbase
\textit{f}
\quotedblbase
\dots
\dag
\ddag
\textasciicircum
\textperthousand
\v{S}
\guilsinglleft
\OE
\v{Z}
(tc)
(T1)
(T1)
(tc)
(T1)
Dec
Hex
145
146
147
148
149
150
151
152
153
154
155
156
158
159
91
92
93
94
95
96
97
98
99
9A
9B
9C
9E
9F
Char
‘
’
“
”
•
–
—
~
™
š
›
œ
ž
Ÿ
LATEX 2𝜀
‘
’
“
”
\textbullet
–
–\textasciitilde
\texttrademark
\v{s}
\guilsinglright
\oe
\v{z}
\"{Y}
(T1)
Inputting Unicode characters
To include Unicode characters in a .tex file, load the ucs package and load the inputenc package with the
utf8x (“UTF-8 extended”) option.16 These packages enable LATEX to translate UTF-8 sequences to LATEX
commands, which are subsequently processed as normal. For example, the UTF-8 text “Copyright ©
2020”—“©” is not an ASCII character and therefore cannot be input directly without packages such as
ucs/inputenc—is converted internally by inputenc to “Copyright \textcopyright{} 2020” and therefore
typeset as “Copyright © 2020”.
The ucs/inputenc combination supports only a tiny subset of Unicode’s million-plus symbols. Additional symbols can be added manually using the \DeclareUnicodeCharacter command.
\DeclareUnicodeCharacter takes two arguments: a Unicode number and a LATEX command to execute when the corresponding Unicode character is encountered in the input. For example, the Unicode character “degree celsius” (“ ℃ ”) appears at character position U+2103.17 However, “ ℃ ” is
not one of the characters that ucs and inputenc recognize. The following document shows how to use
\DeclareUnicodeCharacter to tell LATEX that the “ ℃ ” character should be treated as a synonym for
\textcelsius:
\documentclass{article}
\usepackage{ucs}
\usepackage[utf8x]{inputenc}
\usepackage{textcomp}
\DeclareUnicodeCharacter{"2103}{\textcelsius}
% Enable direct input of U+2103.
\begin{document}
It was a balmy 21℃.
\end{document}
which produces
It was a balmy 21℃.
See the ucs documentation for more information and for descriptions of the various options that
control ucs’s behavior.
16
UTF-8 is the 8-bit Unicode Transformation Format, a popular mechanism for representing Unicode symbol numbers
as sequences of one to four bytes.
17
The Unicode convention is to express character positions as “U+⟨hexadecimal number ⟩”.
237
Outputting Unicode characters
Orthogonal to the ability to include Unicode characters in a LATEX input file is the ability to include a
given Unicode character in the corresponding output file. By far the easiest approach is to use XELATEX
instead of pdfLATEX or ordinary LATEX. XELATEX handles Unicode input and output natively and can
utilize system fonts directly without having to expose them via .tfm, .fd, and other such files. To
output a Unicode character, a XELATEX document can either include that character directly as UTF-8
text or use TEX’s \char primitive, which XELATEX extends to accept numbers larger than 255.
Suppose we want to output the symbols for versicle (“ ”) and response (“ ”) in a document. The
Unicode charts list “versicle” at position U+2123 and “response” at position U+211F. We therefore
need to install a font that contains those characters at their proper positions. One such font that
is freely available from CTAN is Junicode (Junicode.ttf) from the junicode package. The fontspec
package makes it easy for a XELATEX document to utilize a system font. The following example defines
a \textjuni command that uses fontspec to typeset its argument in Junicode:
\documentclass{article}
\usepackage{fontspec}
\newcommand{\textjuni}[1]{{\fontspec{Junicode}#1}}
\begin{document}
We use ‘‘\textjuni{\char"2123}’’ for a versicle
and ‘‘\textjuni{\char"211F}’’ for a response.
\end{document}
which produces
We use “ ” for a versicle and “ ” for a response.
(Typesetting the entire document in Junicode would be even easier. See the fontspec documentation
for more information regarding font selection.) Note how the preceding example uses \char to specify
a Unicode character by number. The double quotes before the number indicate that the number is
represented in hexadecimal instead of decimal.
10.8
About this document
History David Carlisle wrote the first version of this document in October, 1994. It originally contained
all of the native LATEX symbols (Table 50, Table 72, Table 89, Table 139, Table 183, Table 188, Table 222,
Table 223, Table 236, Table 246, Table 302, and a few tables that have since been reorganized) and was
designed to be nearly identical to the tables in Chapter 3 of Leslie Lamport’s book [Lam86]. Even the
table captions and the order of the symbols within each table matched! The 𝒜ℳ𝒮 symbols (Table 51,
Table 90, Table 91, Table 142, Table 143, Table 189, Table 198, Table 216, and Table 303) and an initial
Math Alphabets table (Table 316) were added thereafter. Later, Alexander Holt provided the stmaryrd
tables (Table 52, Table 74, Table 92, Table 145, Table 179, and Table 217).
In January, 2001, Scott Pakin took responsibility for maintaining the symbol list and has since
implemented a complete overhaul of the document. The result, now called, “The Comprehensive LATEX
Symbol List”, includes the following new features:
• the addition of a handful of new math alphabets, dozens of new font tables, and thousands of new
symbols
• the categorization of the symbol tables into body-text symbols, mathematical symbols, science and
technology symbols, dingbats, ancient languages, and other symbols, to provide a more user-friendly
document structure
• an index, table of contents, hyperlinks, and a frequently-requested symbol list, to help users quickly
locate symbols
• symbol tables rewritten to list the symbols in alphabetical order
• appendices providing additional information relevant to using symbols in LATEX
238
• tables showing how to typeset all of the characters in the ASCII and Latin 1 font encodings
Furthermore, the internal structure of the document has been completely altered from David Carlisle’s
original version. Most of the changes are geared towards making the document easier to extend, modify,
and reformat.
Build characteristics Table 547 lists some of this document’s build characteristics. Most important
is the list of packages that LATEX couldn’t find, but that symbols.tex otherwise would have been able to
take advantage of. Complete, prebuilt versions of this document are available from CTAN via https://
www.ctan.org/pkg/comprehensive/. Table 548 shows the package date (specified in the .sty file with
\ProvidesPackage) for each package that was used to build this document and that specifies a package
date. Packages are not listed in any particular order in either Table 547 or Table 548.
Table 547: Document Characteristics
Characteristic
Value
Source file:
Build date:
Symbols documented:
Packages included:
symbols.tex
June 25, 2020
14599
textcomp latexsym amssymb stmaryrd euscript
wasysym pifont manfnt bbding undertilde ifsym tipa
tipx extraipa wsuipa phonetic ulsy ar metre txfonts
mathabx fclfont skak ascii dingbat skull eurosym esvect
yfonts yhmath esint mathdots trsym universa upgreek
overrightarrow chemarr chemarrow nath trfsigns
mathtools phaistos arcs vietnam t4phonet holtpolt
semtrans dictsym extarrows protosem harmony hieroglf
cclicenses mathdesign arev MnSymbol fdsymbol boisik
cmll extpfeil keystroke fge turnstile simpsons epsdice
feyn staves igo colonequals shuffle fourier dozenal
pmboxdraw pigpen clock teubner linearA linearb
cypriot sarabian china2e harpoon steinmetz milstd
recycle DotArrow ushort hhcount ogonek combelow
musixtex ccicons adfsymbols adforn bigints soyombo
tfrupee knitting textgreek begriff frege abraces
countriesofeurope cookingsymbols prodint epiolmec
mdwmath rsfso fontawesome stix hands greenpoint
nkarta astrosym webomints moonphase dancers
semaphor umranda umrandb cryst starfont tikzsymbols
dice apl go magic bartel-chess-fonts actuarialangle
lilyglyphs knot bclogo bullcntr rubikcube svrsymbols
halloweenmath old-arrows allrunes emf esrelation
oplotsymbl cmupint realhats euflag scsnowman
endofproofwd mismath musicography accents nicefrac
bm xfakebold junicode mathrsfs chancery urwchancal
calligra bbold mbboard dsfont bbm dsserif
none
Packages omitted:
Table 548: Package versions used in the preparation of this document
Name
Date
Name
Date
Name
Date
textcomp
stmaryrd
pifont
2020/02/02
1994/03/03
2020/03/25
latexsym
euscript
manfnt
1998/08/17
2009/06/22
1999/07/01
amssymb
wasysym
bbding
2013/01/14
2020/01/19
1999/04/15
(continued on next page)
239
(continued from previous page)
Name
Date
Name
Date
Name
Date
undertilde
tipx
metre
skak
skull
mathdots
upgreek
phaistos
semtrans
protosem
cclicenses
boisik
fge
feyn
dozenal
clock
linearb
china2e
milstd
hhcount
musixtex
bigints
knitting
abraces
epiolmec
stix
actuarialangle
rubikcube
emf
realhats
musicography
bm
2000/08/08
2003/01/01
2001/12/05
2018/01/08
2002/01/23
2014/06/11
2003/02/12
2004/04/23
1998/02/10
2005/03/18
2005/05/20
2009/08/21
2015/05/19
2017/11/03
2018/05/11
2001/04/10
2005/06/22
1997/06/01
2009/06/25
1995/03/31
2001/07/08
2010/02/15
2019/04/03
2012/08/24
2003/11/05
2018/04/17
2019/06/13
2018/02/25
2016/09/09
2019/04/14
2020/01/29
2019/07/24
ifsym
wsuipa
txfonts
ascii
eurosym
trsym
chemarr
arcs
dictsym
harmony
MnSymbol
extpfeil
turnstile
colonequals
pmboxdraw
teubner
cypriot
harpoon
DotArrow
ogonek
ccicons
soyombo
textgreek
countriesofeurope
mdwmath
starfont
bclogo
svrsymbols
oplotsymbl
euflag
accents
xfakebold
2000/04/18
1994/07/16
2008/01/22
2006/05/30
1998/08/06
2000/06/25
2016/05/16
2004/05/09
2004/07/26
2007/05/04
2007/01/21
2009/10/31
2007/06/23
2016/05/16
2019/12/05
2016/03/31
2009/05/22
1994/11/02
2007/02/12
95/07/17
2017/10/30
1996/09/01
2011/10/09
2018/12/29
1996/04/11
2010/09/29
2016/01/10
2019/02/12
2017/08/04
2020/05/22
2006/05/12
2020/06/22
tipa
ar
mathabx
dingbat
yfonts
universa
mathtools
t4phonet
extarrows
hieroglf
fdsymbol
keystroke
epsdice
shuffle
pigpen
linearA
sarabian
steinmetz
ushort
combelow
adforn
tfrupee
frege
cookingsymbols
fontawesome
tikzsymbols
bullcntr
halloweenmath
cmupint
scsnowman
nicefrac
calligra
2002/08/08
2012/01/23
2003/07/29
2001/04/27
2019/04/04
2019/08/26
2020/03/24
2004/06/01
2020/03/12
2015/06/02
2011/11/01
2010/04/23
2007/02/15
2008/10/27
2008/12/07
2006/03/13
2005/11/12
2009/06/14
2001/06/13
2010/05/02
2019/10/13
2010/12/15
2012/08/04
2014/12/28
2016/05/15
2019/02/08
2007/04/02
2019/11/01
2020/04/13
2018/06/07
1998/08/04
2012/04/10
10.9
Copyright and license
The Comprehensive LATEX Symbol List
Copyright © 2007–2020, Scott Pakin
This work may be distributed and/or modified under the conditions of the LATEX Project Public License,
either version 1.3c of this license or (at your option) any later version. The latest version of this license
is in
http://www.latex-project.org/lppl.txt
and version 1.3c or later is part of all distributions of LATEX version 2006/05/20 or later.
This work has the LPPL maintenance status “maintained”.
The current maintainer of this work is Scott Pakin.
240
References
[AMS99] American Mathematical Society. User’s Guide for the amsmath Package (Version 2.0), December 13, 1999. Available from ftp://ftp.ams.org/pub/tex/doc/amsmath/amsldoc.pdf.
[Ber01]
Karl Berry. Fontname: Filenames for TEX fonts, June 2001. Available from https://
www.ctan.org/pkg/fontname.
[Che98]
Raymond Chen. A METAFONT of ‘Simpsons’ characters. Baskerville, 4(4):19, February 1998.
ISSN 1354-5930. Available from http://uk.tug.org/wp-installed-content/uploads/2008/
12/44.pdf.
[Dow00] Michael Downes. Short math guide for LATEX, July 19, 2000. Version 1.07. Available from
http://www.ams.org/tex/short-math-guide.html.
[Gib97]
Jeremy Gibbons. Hey—it works! TUGboat, 18(2):75–78, June 1997. Available from http://
www.tug.org/TUGboat/Articles/tb18-2/tb55works.pdf.
[Gre09]
Enrico Gregorio. Appunti di programmazione in LATEX e TEX, second edition, June 2009.
Available from http://profs.sci.univr.it/~gregorio/introtex.pdf.
[Knu86a] Donald E. Knuth. The TEXbook, volume A of Computers and Typesetting. Addison-Wesley,
Reading, MA, USA, 1986.
[Knu86b] Donald E. Knuth. The METAFONTbook, volume C of Computers and Typesetting. AddisonWesley, Reading, MA, USA, 1986.
[Lam86] Leslie Lamport. LATEX: A document preparation system. Addison-Wesley, Reading, MA, USA,
1986.
[LAT98]
LATEX3 Project Team. A new math accent. LATEX News. Issue 9, June 1998. Available from
https://www.latex-project.org/news/latex2e-news/ltnews09.pdf and also included in
many TEX distributions.
[LAT19]
LATEX3 Project Team. LATEX 2𝜀 font selection, October 2019. Available from http://
mirrors.ctan.org/macros/latex/base/fntguide.pdf and also included in many TEX distributions.
241
Index
If you’re having trouble locating a symbol, try looking under “T” for “\text. . .”. Many text-mode commands
begin with that prefix. Also, accents are shown over/under a gray box (e.g., “ á ” for “\’”).
Some symbol entries appear to be listed repeatedly. This happens when multiple packages define identical
(or nearly identical) glyphs with the same symbol name.18
\" (ä)
\# (#)
\$ ($)
\$ ($)
\% (%)
\& (&)
\’ (á)
( (() .
Symbols
.........
........
.........
.........
........
........
.........
.........
......
. . . 14,
14, 15,
......
. . . 14,
14, 35,
......
......
20
234
234
15
234
234
20
99
( (() . . . . . . . . . . . . . . . . 100
(
( ( ) . . . . . . . . . . . . . . . 103
) ()) . . . . . . . . . . . . . . . .
99
) ()) . . . . . . . . . . . . . . . . 100
)
) ( ) . . . . . . . . . . . . . . . 103
* (*) .
\, . . .
\- (-)
\. (ȧ)
/ (/)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
....
235,
....
....
31
232
236
20
99
/ (/) . . . . . . . . . . . . . . . 100
/
/(
)
. . . . . . . . . . . . . . 103
\: ( ..) . . . . . . . . . . . . . . . 116
.
\; ( ..) . . . . . . . . . . . . . . . 116
< (⟨) . . . . . . . . . . . . . . . . 100
⟨
< ( ) . . . . . . . . . . . . . . . 103
..
\? ( ..) . . . . . . . . . . . . . . . 116
[ ([) . . . . . . . . . . . . . . . . 99
⎡⎢
[ ( ⎢⎢⎢) . . . . . . . . . . . . . . . 100
[⎣
[( )
. . . . . . . . . . . . . . . 103
\\ . . . . . . . . . . . . . . . . . . 224
] (]) . . . . . . . . . . . . . . . . 99
⎤⎥
] ( ⎥⎥⎥) . . . . . . . . . . . . . . . 100
]⎦
]( )
. . . . . . . . . . . . . . . 103
\^ (^
a) . .
\^{} (^)
\| (‖) . .
\| (‖) . .
\| (a
¿) . .
18
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
14,
...
99,
...
20
234
99
101
20
\= (ā) . .
\={} (¯)
| (∣) . . .
RR
RR
| ( RR) . .
||
| ( ||) . . .
|
| (|)| . . .
( (() . . .
) ()) . . .
/ (/) . . .
[ ([) . . .
\_ . . . . .
\_ ( ) . .
\{ ({) . .
\{ ({) . .
\} (}) . .
\} (}) . .
] (]) . . .
\‘ (à) . .
\~ (ã) . .
\~{} (˜)
. . . . . . . . . . . . . 20
. . . . . . . . . . . . . 235
. . . . . . . . . . . . . 102
. . . . . . . . . . . . . 100
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . . . . . . . 103
50, 99, 101, 104
. . . . . . . . . 102
. . . . . . . . . 102
. . . . . . . . . 102
. . . . . . . . . 102
. . . . . . . . . 15
. . . . . . 14, 234
. . . . 14, 15, 99
. . . . . . . . . 234
. . . . 14, 15, 99
. . . . . . . . . 234
. . . . . . . . . 102
. . . . . . . . . 20
. . . . . . . . . 20
. . . . . . 14, 234
A
A (A) . . . . . . . . . . . . . . .
\A (ą) . . . . . . . . . . . . . .
a (esvect package option)
\a (á) . . . . . . . . . . . . . .
\a (×) . . . . . . . . . . . . . .
a (a) . . . . . . . . . . . . . . .
\AA (Å) . . . . . . . . . . . . .
\aa (å) . . . . . . . . . . . . .
\AAaleph (A) . . . . . . . .
\AAayin (O) . . . . . . . . .
\AAbeth (B)
== . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
157
157
110
157
183
157
15
15
148
148
148
\AAcht (ˇ “ ˇ “ ) . . . . . . . . . . . 160
\AAdaleth (D) . . . . . . . . . 148
\AAhe (E) . . . . . . . . . . . . 148
\AAhelmet (V) . . . . . . . . 148
\AAheth (h) . . . . . . . . . . 148
\AAkaph (K) . . . . . . . . . . 148
\AAlamed (L) . . . . . . . . . 148
\Aaleph (a) . . . . . . . . . . 148
\AApe (P) . . . . . . . . . . . . 148
\AAqoph (Q) . . . . . . . . . . 148
\AAresh (R) . . . . . . . . . . 148
\AAsade (X) . . . . . . . . . . 148
\Aayin (o) . . . . . . . . . . . 148
\AAyod (Y) . . . . . . . . . . . 148
\AB (|) . . . . . . . . . . . . . . 129
\Abeth (b) . . . . . . . . . . . 148
abraces (package) 110, 239, 240
absolute value see \lvert and
\rvert
abzüglich
see \textdiscount
This occurs frequently between amssymb and mathabx, for example.
242
\AC (:) . . . . . . . . . . . . . . 125
\ac (ð) . . . . . . . . . . . . . . 57
\acarc . . . . . . . . . . . . . . 23
\acbar . . . . . . . . . . . . . . 23
accents . 20–25, 105–111, 114,
161, 227–229
acute (á) . . . 20–24, 105
any character as . . . . 227
a) . . 20–23, 108, 109
arc (
breve (ă) . . . 20–24, 105
caron (ǎ) 20, 24, 105, 109
cedilla (¸) . . . . . . . . 20
circumflex (^
a) 20–22, 105,
107–109
comma-below (a, ) . . . 24
Cyrillic breve (
a) . . . 20
Cyrillic flex (
a) . . . . . 20
Cyrillic umlaut (
a) . . 20
diæresis (ä) . . 20, 23, 24,
105, 124
dot (ȧ or . ) . 20–22, 105
double acute (a̋) . . 20, 24
double grave (
a) . . . . 20
extensible
107–111, 114,
228–229
grave (à) . . . 20–24, 105
háček . see accents, caron
hook (ả) . . . . . . . . . 20
Hungarian umlaut . . see
accents, double acute
inverted breve (
a) . . . 20
kroužek see accents, ring
macron (ā) . . . 20, 23–25,
105, 107, 109
multiple per character 21–
22, 227
ogonek ( ˛) . . . . . . 20–24
ring (å) . 20–22, 24, 105,
106
Romanian comma-belo accent . . . . . see accents,
comma-below
trema . . . . . see accents,
diæresis
umlaut . . . . see accents,
diæresis
accents (package) . . . 105, 227,
239, 240
\accentset . . . . . . . . . . . 227
accidentals see musical symbols
accordion notation . . . . . . 164
\accordionBayanBass ( ) 164
\accordionDiscant ( ) . 164
\accordionFreeBass ( ) 164
\accordionOldEE ( ) . . . 164
\accordionPull ( ) . . . . . 164
\accordionPush ( ) . . . . . 164
\accordionStdBass (
) 164
\accurrent (⏦) . . . . . . . 121
\Acht (ˇ “( )== . . . . . . . . . . . . 160
\AchtBL ( ˇ “ )== . . . . . . . . . . 160
\AchtBR ( ˇ “ ) . . . . . . . . . . 160
\acidfree (♾) . . . . . . . . 117
\ACK (␆) . . . . . . . . . . . . . 130
\acontraction . . . . . . . . 228
\AcPa (? ) . . . . . . . . . . . . 160
\actuarial ( ) . . . . . . . . 228
actuarial symbols 111, 227–228
actuarialangle (package) . 111,
228, 239, 240
\actuarialangle . . . . . . 228
\actuarialangle ( ) . . . 111
actuarialsymbol (package) . 228
\acute ( ́ ) . . . . . . . . . . . 106
\acute (´) . . . . . . . . . . . 105
acute (á) . . . . . . . see accents
\acutus (á) . . . . . . . . . . . 23
\acwcirclearrow (⥀) . . . 84
\acwcirclearrowdown (⟲) 78
\acwcirclearrowleft (↺) 78
\acwcirclearrowright (±) 78
\acwcirclearrowup (®) . 78
\acwgapcirclearrow (⟲)
79
\acwgapcirclearrow (⟲)
84
\acwleftarcarrow (⤹) . . . 78
\acwleftarcarrow (⤹) . . . 84
\acwnearcarrow (¡) . . . . 78
\acwnwarcarrow (¢) . . . . 78
\acwopencirclearrow (↺) 79
\acwopencirclearrow (↺) 85,
141
\acwoverarcarrow (⤺) . . 78
\acwoverarcarrow (⤺) . . 84
\acwrightarcarrow () . . 78
\acwsearcarrow (⤴) . . . . 78
\acwswarcarrow (⤷) . . . . 78
\acwunderarcarrow (⤻) . 78
\acwunderarcarrow (⤻) . 84
\Adaleth (d) . . . . . . . . . 148
adeles (A) see alphabets, math
\adfarrow . . . . . . . . . . . . 134
\adfarrowe1 (C) . . . . . . . 134
\adfarrowe2 (K) . . . . . . . 134
\adfarrowe3 (S) . . . . . . 134
\adfarrowe4 (c) . . . . . . . 134
\adfarrowe5 (k) . . . . . . . 134
\adfarrowe6 (s) . . . . . . . 134
\adfarrown1 (I) . . . . . . . 134
\adfarrown2 (Q) . . . . . . . 134
\adfarrown3 (Y) . . . . . . . 134
\adfarrown4 (i) . . . . . . . 134
\adfarrown5 (q) . . . . . . . 134
\adfarrown6 (y) . . . . . . . 134
\adfarrowne1 (J) . . . . . . 134
\adfarrowne2 (R) . . . . . . 134
\adfarrowne3 (Z) .
\adfarrowne4 (j) .
\adfarrowne5 (r) .
\adfarrowne6 (z) .
\adfarrownw1 (H) .
\adfarrownw2 (P) .
\adfarrownw3 (X) .
\adfarrownw4 (h) .
\adfarrownw5 (p) .
\adfarrownw6 (x) .
\adfarrows1 (E) . .
\adfarrows2 (M) . .
\adfarrows3 (U) . .
\adfarrows4 (e) . .
\adfarrows5 (m) . .
\adfarrows6 (u) . .
\adfarrowse1 (D) .
\adfarrowse2 (L) .
\adfarrowse3 (T) .
\adfarrowse4 (d) .
\adfarrowse5 (l) .
\adfarrowse6 (t) .
\adfarrowsw1 (F) .
\adfarrowsw2 (N) .
\adfarrowsw3 (V) .
\adfarrowsw4 (f) .
\adfarrowsw5 (n) .
\adfarrowsw6 (v) .
\adfarroww1 (G) . .
\adfarroww2 (O) . .
\adfarroww3 (W) .
\adfarroww4 (g) . .
\adfarroww5 (o) . .
\adfarroww6 (w) . .
\adfast{1} (0) . . .
\adfast{2} (1) . . .
\adfast{3} (2) . . .
\adfast{4} (3) . . .
\adfast{5} (4) . . .
\adfast{6} (5) . . .
\adfast{7} (6) . . .
\adfast{8} (7) . . .
\adfast{9} (8) . . .
\adfast{10} (9) . .
\adfbullet (•) . . .
\adfbullet{1} (A) .
\adfbullet{2} (B)
\adfbullet{3} (C)
\adfbullet{4} (D) .
\adfbullet{5} (E) .
\adfbullet{6} (F) .
\adfbullet{7} (G) .
\adfbullet{8} (H)
\adfbullet{9} (I) .
\adfbullet{10} (J)
\adfbullet{11} (K)
\adfbullet{12} (L)
\adfbullet{13} (M)
\adfbullet{14} (N)
\adfbullet{15} (O)
\adfbullet{16} (P)
\adfbullet{17} (Q)
\adfbullet{18} (R)
243
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
134
134
134
134
134
134
134
134
134
134
134
134
134
134
134
134
134
134
134
134
134
134
134
134
134
134
134
134
134
134
134
134
134
134
139
139
139
139
139
139
139
139
139
139
147
139
139
139
137
137
137
137
137
137
137
139
139
139
139
139
139
139
139
\adfbullet{19} (S) . . . . 139
\adfbullet{20} (T) . . . . . 139
\adfbullet{21} (U) . . . . . 139
\adfbullet{22} (V) . . . . 139
\adfbullet{23} (W) . . . . 139
\adfbullet{24} (X) . . . . . 139
\adfbullet{25} (Y) . . . . . 139
\adfbullet{26} (Z) . . . . 139
\adfbullet{27} (a) . . . . . 144
\adfbullet{28} (b) . . . . . 144
\adfbullet{29} (c) . . . . . 144
\adfbullet{30} (d) . . . . . 144
\adfbullet{31} (e) . . . . . 144
\adfbullet{32} (f) . . . . . 144
\adfbullet{33} (g) . . . . . 144
\adfbullet{34} (h) . . . . . 144
\adfbullet{41} (o) . . . . . 144
\adfbullet{42} (p) . . . . . 144
\adfbullet{43} (q) . . . . . 144
\adfbullet{44} (r) . . . . . 144
\adfbullet{45} (s) . . . . . 144
\adfbullet{46} (t) . . . . . 144
\adfbullet{47} (u) . . . . . 144
\adfbullet{48} (v) . . . . . 144
\adfbullet{49} (w) . . . . . 144
\adfbullet{50} (x) . . . . . 144
\adfbullet{51} (y) . . . . . 144
\adfbullet{52} (z) . . . . . 144
\adfclosedflourishleft (C)
. . . . . . . 146
\adfclosedflourishright
(c) . . . . . . . . . . 146
\adfdiamond (=) . . . . . . . 147
\adfdoubleflourishleft (D)
. . . . . . . 146
\adfdoubleflourishright
(d) . . . . . . . . . . 146
\adfdoublesharpflourishleft
(I) . . . . . . . . . . . 146
\adfdoublesharpflourishright
(i) . . . . . . . . . . . 146
\adfdownhalfleafleft (r) 140
\adfdownhalfleafright (R) . .
. . . . . . . 140
\adfdownleafleft (x) . . 140
\adfdownleafright (X) . 140
\adfflatdownhalfleafleft
(l) . . . . . . . . . . . 140
\adfflatdownhalfleafright
(L) . . . . . . . . . . . 140
\adfflatdownoutlineleafleft
(m) . . . . . . . . . . . . 140
\adfflatdownoutlineleafright
(M) . . . . . . . . . . . . 140
\adfflatleafleft (u) . . 140
\adfflatleafoutlineleft
(n) . . . . . . . . . . . 140
\adfflatleafoutlineright
(N) . . . . . . . . . . . 140
\adfflatleafright (U) . 140
\adfflatleafsolidleft (v)
. . . . . . . 140
\adfflatleafsolidright (V)
. . . . . . . 140
\adfflourishleft (E) . . 146
\adfflourishleftdouble
(F) . . . . . . . . . . 146
\adfflourishright (e) . 146
\adfflourishrightdouble
(f) . . . . . . . . . . 146
\adfflowerleft (q) . . . 140
\adfflowerright (Q) . . 140
\adfgee (¶) . . . . . . . . . . . 147
\adfhalfarrowleft (B) . . 134
\adfhalfarrowleftsolid (b)
. . . . . . . 134
\adfhalfarrowright (A) . 134
\adfhalfarrowrightsolid (a)
. . . . . . . 134
\adfhalfleafleft (<) . . 140
\adfhalfleafright (>) . . 140
\adfhalfleftarrow ({) . . 135
\adfhalfleftarrowhead (() . .
. . . . . . . 135
\adfhalfrightarrow (}) . 135
\adfhalfrightarrowhead ()) .
. . . . . . . 135
\adfhangingflatleafleft (s)
. . . . . . . 140
\adfhangingflatleafright
(S) . . . . . . . . . . . 140
\adfhangingleafleft (T) 140
\adfhangingleafright (t) 140
\adfleafleft (w) . . . . . . 140
\adfleafright (W) . . . . . 140
\adfleftarrowhead ([) . . 135
\adfopenflourishleft (B) .
. . . . . . . 146
\adfopenflourishright (b)
. . . . . . . 146
adforn (package) 135, 139, 140,
146, 147, 239, 240
\adfoutlineleafleft (o) 140
\adfoutlineleafright (O) . .
. . . . . . . 140
\adfrightarrowhead (]) . 135
\adfS (§) . . . . . . . . . . . . 147
\adfsharpflourishleft (H) .
. . . . . . . 146
\adfsharpflourishright (h)
. . . . . . . 146
\adfsickleflourishleft (J)
. . . . . . . 146
\adfsickleflourishright
(j) . . . . . . . . . . 146
\adfsingleflourishleft (G)
. . . . . . . 146
\adfsingleflourishright
(g) . . . . . . . . . . 146
\adfsmallhangingleafleft
(z) . . . . . . . . . . . . 140
\adfsmallhangingleafright
(Z) . . . . . . . . . . . . 140
\adfsmallleafleft (y) . 140
\adfsmallleafright (Y) . 140
\adfsolidleafleft (p) . . 140
\adfsolidleafright (P) . 140
\adfsquare (|) . . . . . . . . 147
adfsymbols (package) 134, 137,
139, 144, 239
\adftripleflourishleft
(K) . . . . . . . . . . 146
\adftripleflourishright
(k) . . . . . . . . . 146
\adfwavesleft (A) . . . . 146
\adfwavesright (a) . . . 146
\adj (adj) . . . . . . . . . . . 92
adjoint (†) . . . . . . . . see \dag
\Admetos (Ö) . . . . . . . . . . 128
Adobe Acrobat . . . . . . . . 232
.
\adots ( . . ) . . . . . . 116, 227
\adots (⋰) . . . . . . . . . . . 115
\adots (⋰) . . . . . . . . . . . 115
\adsorbate (Ñ) . . . . . . . . 132
\adsorbent (Ð) . . . . . . . . 132
advancing see \textadvancing
\AE (Æ) . . . . . . . . . . . . . 15
\ae (æ) . . . . . . . . . . . . . . 15
\aeolicbii (Ι) . . . . . . . . 184
\aeolicbiii (Θ) . . . . . . 184
\aeolicbiv (Κ) . . . . . . 184
\agemO (0) . . . . . . . . . . . 119
\Agimel (g) . . . . . . . . . . 148
\Ahe (e) . . . . . . . . . . . . . 148
\Ahelmet (v) . . . . . . . . . 148
\Aheth (H) . . . . . . . . . . . 148
\ain (s) . . . . . . . . . . . . . . 24
\Air (Ò) . . . . . . . . . . . . 128
\Akaph (k) . . . . . . . . . . . 148
\Alad (}) . . . . . . . . . . . . 105
\alad (}) . . . . . . . . . . . . 105
\Alamed (l) . . . . . . . . . . 148
\Alas ({) . . . . . . . . . . . . 105
\alas ({) . . . . . . . . . . . . 105
\Albania (€) . . . . . . . . . . 188
\aldine (O) . . . . . . . . . . 140
\aldineleft (M) . . . . . . . 140
\aldineright (N) . . . . . . 140
\aldinesmall (L) . . . . . . 140
\aleph (ℵ) . . . . . . . . 95, 118
\aleph (ℵ) . . . . . . . . . . . 95
\aleph (ℵ) . . . . . . . . . . . 95
\aleph (ℵ) . . . . . . . . . . . 96
\Alif (˒) . . . . . . . . . . . . 20
alla breve . 159, 161, 163, 164
R
\allabreve ( ) . . . . . . .
allrunes (package) . . 157,
\Alpha (A) . . . . . . . . . . .
\alpha (𝛼) . . . . . . . . . . .
alphabets . . . . . . . . . . . .
African . . . . . . . . . .
Cypriot . . . . . . . . . .
Cyrillic . . . . . . . . . .
Greek 15, 93, 94, 124,
Hebrew . . . . 95, 96,
hieroglyphic . . . . . . .
244
159
239
93
93
123
16
153
222
154
124
149
Linear A . . . . .
Linear B . . . . .
math . . . . . . . .
phonetic . . . . .
proto-Semitic . .
South Arabian .
Vietnamese . . .
\alphaup (α) . . . . . .
alpine symbols . . . . .
\Alt ( Alt ) . . . . . .
alternative denial see
and |
\AltGr ( AltGr ) . . .
. . . . 149
. . . . 152
. . . . 123
. . 17–20
. . . . 148
. . . . 154
. . . . 16
. . . . 94
. . . . 178
. . . . 129
\uparrow
. . . . 129
K
\altoclef (
) . . . . . . . 159
\AM () . . . . . . . . . . . . . . 129
\amalg (⨿) . . . . . . . . . . . 30
\amalg (⨿) . . . . . . . . . . . 32
\amalg (∐) . . . . . . . . . . . 31
\amalg (⨿) . . . . . . . . . . . 34
\Amem (m) . . . . . . . . . . . . 148
\Amor (+) . . . . . . . . . . . . 128
ampersand . . . . . . . . . see \&
𝒜ℳ𝒮 (package) . . . 12, 15, 30,
40, 50, 51, 62, 64, 69, 72,
87, 91, 93, 95, 96, 98, 99,
105, 108, 111, 114, 117–
119, 124, 219, 220, 238
amsbsy (package) . . . . . . . 233
amsfonts (package) . . 118, 123
amsmath (package) 12, 49, 91,
105, 223, 232
amssymb (package) . 12, 105,
118, 123, 154, 239
amstext (package) . . 224, 226
\Anaclasis (÷) . . . . . . . . 183
\anaclasis (÷) . . . . . . . . 183
\anceps (Ξ) . . . . . . . . . . . 184
\ancepsdbrevis (Ζ) . . . . . 184
\anchor (⚓) . . . . . . . . . . 190
\anchor (O) . . . . . . . . . 146
ancient-language symbols 148–
157
and . . . . . . . . . . . see \wedge
AND gates . . . . . . . . . . . 130
\ANDd () . . . . . . . . . 130
\ANDl () . . . . . . . . 130
\Andorra () . . . . . . . . . . 188
\ANDr () . . . . . . . . 130
\ANDu ()
\angdnr (⦟) .
\angl ( ) . . .
\angle (∠) . .
\angle (̸ ) . .
\angle (Õ) . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
130
118
111
117
118
118
\angle (∠) . . . . . . . . . . . 118
\angle (∠) . . . . . . . . . . . 117
\angle (∠) . . . . . . . . . . . 118
angle notation . . . . . . . . . 126
angles . . . . 116–119, 122, 128
\angles (⦞) . . . . . . . . . . 118
\AngleSign (W) . . . . . . . . 116
\angleubar (⦤) . . . . . . . . 118
\angln (𝑛 ) . . . . . . . . . . . 111
Anglo-Frisian runes . . . . . 157
\anglr (𝑟 ) . . . . . . . . . . . 111
\Angstrom (Å) . . . . . . . . . 97
Ångström unit
math mode see \mathring
text mode . . . . . see \AA
\Angud (⟩) . . . . . . . . . . . 105
\angud (⟩) . . . . . . . . . . . . 105
angular minutes . . see \prime
angular seconds . see \second
\Angus (⟨) . . . . . . . . . . . 105
\angus (⟨) . . . . . . . . . . . . 105
animals . . . . . . . 148, 149, 153
\Ankh (ˆ) . . . . . . . . . . . . 177
\Annoey ( ) . . . . . . . . . . 191
\annuity (⃧) . . . . . . . . . . 106
annuity symbols 111, 227–228
\Antidiple (<) . . . . . . . 183
\antidiple (<) . . . . . . . . 183
· )
\Antidiple* (<
. . . . . . 183
·
· ) . . . . . . . 183
\antidiple* (<
·
\antilabe (.. .. ) . . . . . . . . 116
\antimuon (𝑤) . . . . . . . . 132
\antineutrino (𝑀) . . . . . . 132
\antineutron (𝑦) . . . . . . 132
\antiproton (𝑛) . . . . . . . 132
\antiquark (𝐸) . . . . . . . . 132
\antiquarkb (𝐹) . . . . . . . 132
\antiquarkc (𝐺) . . . . . . . 132
\antiquarkd (𝐻) . . . . . . . 132
\antiquarks (𝐼) . . . . . . . 132
\antiquarkt (𝐽) . . . . . . . 132
\antiquarku (𝐾) . . . . . . . 132
\Antisigma (⊃) . . . . . . . . 183
\antisigma (⊃) . . . . . . . . 183
\Anun (n) . . . . . . . . . . . . 148
\anyon (Ò) . . . . . . . . . . . 132
⏞ ⏟
) . . . . . 110
\aoverbrace (
\Ape (p) . . . . . . . . . . . . . 148
APL
symbols . . . . . . . . 58–59
apl (package) . . . . . . 129, 239
APL symbols . . . . . 128, 129
\APLbox (~) . . . . . . . . . . 128
\APLboxquestion (⍰) . . . 128
\APLboxupcaret (⍓) . . . . 128
\APLcirc (∘) . . . . . . . . . . 128
\APLcomment () . . . . . . . 128
\APLdown (F) . . . . . . . . . 128
\APLdownarrowbox (o) . . 128
\APLinput (}) . . . . . . . . 128
\APLinv (÷
~) . . . . . . . . . . 128
\APLleftarrowbox (p) . . 128
\APLlog () . . . . . . . . . . 128
\APLminus (−) . . . . . . . . 128
\APLnot (∼) . . . . . . . . . . . 128
\APLnotbackslash (⍀) . . . 128
\APLnotslash (⌿) . . . . . . 128
\APLrightarrowbox (q) . . 128
\APLstar (E) . . . . . . . . . 128
\APLup ( ) . . . . . . . . . . . 128
\APLuparrowbox (n) . . . . 128
\APLvert (|) . . . . . . . . . . 128
\Apollon (ß) . . . . . . . . . 128
apostropha . . . . see musixgre
\applecmd (S) . . . . . . . . . 176
\apprge (?) . . . . . . . . . . 65
\apprle (>) . . . . . . . . . . 65
\approx (≈) . . . . . . . . . . 50
\approx (≈) . . . . . . . . . . 55
\approx (≈) . . . . . . . . . . . 52
\approx (≈) . . . . . . . . . . 58
\approxcolon (≈:) . . . . . 61
\approxcoloncolon (≈::)
61
\approxeq (u) . . . . . . . . 50
\approxeq (Ý) . . . . . . . . 57
\approxeq (≊) . . . . . . . . . 55
\approxeq (≊) . . . . . . . . . 52
\approxeq (≊) . . . . . . . . . 58
\approxeqq (⩰) . . . . . . . . 58
\approxident (≋) . . . . . . 55
\approxident (≋) . . . . . . 58
\Aqoph (q) . . . . . . . . . . . 148
\Aquarius (ê) . . . . . . . . 126
\Aquarius (N) . . . . . . . . 128
\aquarius (e) . . . . . . . . 126
\AR (A) . . . . . . . . . . . . . 125
ar (package) . . . 125, 239, 240
\arafamily . . . . . . . . . . . 157
arc (
a) . . . . . . . . see accents
\arccos (arccos) . . . . . . 91
\arccot (arccot) . . . . . . 92
\arceq (‚) . . . . . . . . . . . 57
\arceq (≘) . . . . . . . . . 55, 90
\arceq (≘) . . . . . . . . . . . 58
\arcfamily . . . . . . . . . . . 157
arcminutes . . . . . see \prime
\arcosh (arcosh) . . . . . . 92
\arcoth (arcoth) . . . . . . 92
arcs (package) . . 23, 239, 240
\arcsch (arcsch) . . . . . . 92
arcseconds . . . . . see \second
\arcsin (arcsin) . . . . . . 91
\arctan (arctan) . . . . . . 91
\Aresh (r) . . . . . . . . . . . 148
arev (package) . 135–138, 146,
158, 190, 239
\arg (arg) . . . . . . . . . . . 91
\Aries (P) . . . . . . . . . . . 127
\Aries (à) . . . . . . . . . . . 126
\Aries (x) . . . . . . . . . . . 128
\Aries (à) . . . . . . . . . . . 126
\aries () . . . . . . . . . . . 126
\arlfamily . . . . . . . . . . . 157
\armfamily . . . . . . . . . . . 157
\arnfamily . . . . . . . . . . . 157
\ArrowBoldDownRight (y) 134
245
\ArrowBoldRightCircled ({)
. . . . . . . 134
\ArrowBoldRightShort (z) 134
\ArrowBoldRightStrobe (w) .
. . . . . . . 134
\ArrowBoldUpRight (x) . 134
\arrowbullet (➢) . . . . . . 135
\Arrownot (Y) . . . . . . . . . . 90
\arrownot (X) . . . . . . . . . . 90
\ArrowOver (P) . . . . . . . . . 25
\arrowOver (p) . . . . . . . . . 25
arrows . . . . . . . . . . . 72–74,
78, 82–87, 107–112, 128,
129, 134, 135, 148, 153,
177, 188, 194–197, 199–
200, 215–216, 222
diagonal,
for reducing
subexpressions . . . 107
dotted . . . . . . . . . . . 112
double-headed, diagonal .
. . . . . . . 226
extensible . . . . 107–112
fletched . . . . . . . 87, 134
negated . . 72, 73, 75, 79
arrows (boisik package option) .
.....⃦
. . . 83
\Arrowvert (⃦) . . . . . . . . 99
X
X
X
X
\Arrowvert ( X
X) . . . . . . . 100
⇑
⇑
⇑
⇑) . . . . . . . 102
\Arrowvert ( ⇑
⎮⇑
⇑
⇑
⎮
\arrowvert ( ) . . . . . . . . 99
RR
RR
\arrowvert ( RR) . . . . . . . . 100
⏐
⏐
⏐
⏐
\arrowvert ( ⏐
) . . . . . . . 102
⏐
⏐
⏐
\arsech (arsech) . . . . . . 92
Arseneau, Donald . . 224–228
\arsinh (arsinh) . . . . . . 92
\artanh (artanh) . . . . . . 92
\artfamily . . . . . . . . . . . 157
articulations . . . . see musical
symbols
\Asade (x) . . . . . . . . . . . 148
\Asamekh (s) . . . . . . . . . 148
\ASC (1) . . . . . . . . . . . . 128
ASCII . . 12, 15, 130, 210, 219,
233–235, 237, 239
table . . . . . . . . . . . . 234
ascii (package) . 130, 234, 239,
240
\ascnode () . . . . . . . . . 126
\Ashin (S) . . . . . . . . . . . 148
aspect ratio . . . . . . . . . . . 125
\Assert (⊩) . . . . . . . . . . 55
\assert (⊦) . . . . . . . . . . 55
\assert (⊦) . . . . . . . . . . . 58
\assumption (𝑢) . . . . . . 132
\ast (˚) . . . . . . . . . . . . . 31
\ast (*) . . . . . . . . . . . . . 30
\ast ({) . . . . . . . . . . . . . 33
\ast (∗) . . . . . . . . . . . . . 32
\ast (∗) . . . . . . . . . . . . . 31
\ast (∗) . . . . . . . . . . . . . 34
\asteq (⩮) . . . .
\asteraccent ( ⃰ )
\Asteriscus (×
····)
\asteriscus (×
····)
\Asterisk (˚) .
..
.
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 58
. 106
. 183
. 183
. 31
\Asterisk (N) . . . . . . . . 139
\asterisk (˚) . . . . . . . . . 31
\AsteriskBold (A) . . . . . 139
\AsteriskCenterOpen (B) 139
\AsteriskRoundedEnds (X) . .
. . . . . . . 139
asterisks . . . . . . . . . . 31, 139
\AsteriskThin (C) . . . . . 139
\AsteriskThinCenterOpen (D)
. . . . . . . 139
\asterism (**
* ) . . . . . . . . 223
asteroids . . . . . . . . . . . . . 128
astrological symbols . 126–128,
201–203
astronomical symbols 126–128,
186, 201–203
\astrosun (☉) . . . . . . . . 127
\astrosun (⊙) . . . . . . . . 126
astrosym (package) . . 201, 239
asymmetric braces . . . . . . 110
\asymp (≍) . . . . . . . . . . . 50
\asymp (≍) . . . . . . . . . 55, 90
\asymp (≍) . . . . . . . . . . . 89
\asymp (≍) . . . . . . . . . . . 58
asymptotic notation . . . . . 92
\atan (atan) . . . . . . . . . 232
\ataribox (m) . . . . . . . . . 176
\Atav (t) . . . . . . . . . . . . 148
\Ateth (T) . . . . . . . . . . . 148
\AtForty (Ø) . . . . . . . . 177
\AtNinetyFive (Ó) . . . . 177
\atom (𝐶) . . . . . . . . . . . . 132
atomic math objects . 91, 92,
232
\AtSixty (Õ) . . . . . . . . 177
\aunderbrace (⏟ ⏞ ) . . . . 110
\Austria (‚) . . . . . . . . . . 188
\Aut (Aut) . . . . . . . . . . . 92
\autoleftarrow (D
GGGGGG) . 111
\autoleftrightharpoons
GG )
(E
GGGGGGC
\Ayn (˓) . . . . . . . . . . . . . 20
\Ayod (y) . . . . . . . . . . . . 148
\Azayin (z) . . . . . . . . . . 148
B
B (B) . . . . . . . . . . . . . . . . 157
\B . . . . . . . . . . . . . . . . . . 16
\B (´) . . . . . . . . . . . . . . . 183
˘
b (esvect package option) . 110
\b (a) . . . . . . . . . . . . . . . 20
¯
\b ( ) . . . . . . . . . . . . . . . 183
˘
b (b) . . . . . . . . . . . . . . . . 157
\Ba (a) . . . . . . . . . . . . . 152
babel (package) 15, 93, 94, 154
\babygamma (!) . . . . . . . . 19
Bachmann–Landau notation 92
\backapprox () . . . . . . . 52
\backapproxeq () . . . . . 52
\Backblech ( ) . . . . . . . 191
\backcong (≌) . . . . . . . . . 55
\backcong (≌) . . . . . . . . . 52
\backcong (≌) . . . . . . . . . 58
\backdprime (‶) . . . . . . . 117
\backepsilon () . . . . . . 50
\backepsilon (~) . . . . . . . 120
\backepsilon (϶) . . . . . . 95
\backeqsim ( ) . . . . . . . . 52
\backneg (⌐) . . . . . . . . . 120
\backneg (⌐) . . . . . . . . . . 119
\backprime (8) . . . . . . . . 119
\backprime (À) . . . . . . . . 120
\backprime (‵) . . . . . . . . 120
\backprime (‵) . . . . . . . . 119
\backprime (‵) . . . . . . . . 117
\backpropto (›) . . . . . . 55
\backsim (v) . . . . . . . . . 50
\backsim (Ñ) . . . . . . . . . 57
\backsim (∽) . . . . . . . . . . 55
\backsim (∽) . . . . . . . . . . 52
\backsim (∽) . . . . . . . . . 58
\backsimeq (w) . . . . . . . 50
\backsimeq (Ó) . . . . . . . . 57
\backsimeq (⋍) . . . . . . . . 55
\backsimeq (⋍) . . . . . . . . 52
\backsimeq (⋍) . . . . . . . . 58
\backsimneqq (Ó) . . . . . . 56
\backslash (∖) . . . . . 99, 118
........
111
\backslash (\) . . . . . . . 101
\autorightarrow (G
GGGGGG
A)
111
\backslash (/)
\autorightleftharpoons
GGGGGGB
(F
GG )
\Autumntree (
\Avav (w) . . .
average . . . . .
⨑
\awint ( ) . . .
\awint (⨑) . .
\awint (⨑) . .
\awintsl (⨑) .
\awintup (⨑) .
........
)
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
111
. 192
. 148
. 29
. 48
. 45
. 46
. 47
. 47
. . . . . . . 100
\backslash (∖) . . . . . . . . 121
\
\backslash (
) . . . . . . . 102
\backslashdiv ()
\backtriplesim ()
\backtrprime (‷) .
\backturn () . . . . .
\bagmember (`) . . .
\bagmember (⋿) . .
\Baii (;) . . . . . .
C
246
\Baiii (<) . . . . . . . . . . 152
\bakingplate ( ) . . . . . . 191
\ballotcheck (✓) . . . . . . 138
\ballotx (✗) . . . . . . . . . 138
banana brackets . . . . . . . . . .
see \llparenthesis and
\rrparenthesis
\banceps (Ψ) . . . . . . . . . . 184
\bar ( ̄ ) . . . . . . . . . . . . . 106
\bar (¯) . . . . . . . . . . . . . 105
\bar (!) . . . . . . . . . . . . . . 157
\barb () . . . . . . . . . . . . 19
\barbbrevis (θ) . . . . . . 184
\barbrevis (ι) . . . . . . . . 184
\barcap (⩃) . . . . . . . . . . 34
\barcirc (−
∘ ) . . . . . . . . . 224
\barcup (⩂) . . . . . . . . . . 34
\bard () . . . . . . . . . . . . 19
\bardownharpoonleft (⥡)
86
\bardownharpoonright (⥝) 86
\bari (') . . . . . . . . . . . . . 19
\barin (V)⨍ . . . . . . . . . . . 96
\barint ( ) . . . . . . . . . . . 48
\barj (j) . . . . . . . . . . . . . 19
\barl (.) . . . . . . . . . . . . . 19
\barlambda () . . . . . . . . 19
\barleftarrow () . . . . . 82
\barleftarrow (⇤) . . . . . 84
\barleftarrowrightarrowbar
() . . . . . . . . . . . . 82
\barleftarrowrightarrowbar
(↹) . . . . . . . . . . . . 84
\barleftharpoon (Þ) . . . 74
\barleftharpoondown (⥖) 86
\barleftharpoonup (⥒) . 86
\baro ( ) . . . . . . . . . . . . 30
\baro ( vs. <) . . . . . . . . 220
\baro (ç) . . . . . . . . . . . . 33
\baro (<) . . . . . . . . . . . . 19
\BarOver (G) . . . . . . . . . . . 25
\barOver (g) . . . . . . . . . . . 25
\barovernorthwestarrow ( )
. . . . . . . . 82
\barovernorthwestarrow (↸)
. . . . . . . 141
\barp (A) . . . . . . . . . . . . 19
barred letters . . . . . . . . . 223
\barrightarrowdiamond (⤠) .
. . . . . . . . 84
\barrightharpoon (ß) . . 74
\barrightharpoondown (⥟) 86
\barrightharpoonup (⥛) . 86
\barsci (+) . . . . . . . . . . . 19
\barscu (X) . . . . . . . . . . 19
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 31
. 52
. 117
. 159
. 57
. 58
. 152
) . . . . . . . 184
\Bart (
bartel-chess-fonts (package) 217,
218, 239
\baru (T) . . . . . . . . . . . . 19
\baruparrow (⤒) . . . . . . . 84
\barupharpoonleft (⥘) . . 86
\barupharpoonright (⥔) . 86
\Barv (⫧) . . . . . .
\Barv (⫧) . . . . . .
\barV (⫪) . . . . . .
\barV (⫪) . . . . . .
\barvee (⊽) . . . .
\barwedge (X) . .
\barwedge (Z) . . .
\barwedge (Ñ) . . .
\barwedge (⊼) . . .
\barwedge (⊼) . . .
base twelve
numerals . . .
tally markers
\BasicTree . . . . .
I)
\bassclef (
\Bat (ý) . .
bats . . . . . .
\Bau (=) . .
\baucircle (
.
....
....
....
) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
55
58
55
58
34
31
30
33
32
34
. . . . . . 117
. . . . . . 180
. . . . . . 192
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
...
38,
...
...
159
177
114
152
144
Δ
\bauforms (Ξ) . . . . . . . 177
\bauhead (Λ) . . . . . . . . 177
\bausquare (Γ) . . . . . . . 144
\bautriangle (Θ) . . . . . . 144
\BB ( ´) . . . . . . . . . . . . . . 183
˘˘
\Bb (´ ) . . . . . . . . . . . . . . 183
˘
˘
\bB ( ´) . . . . . . . . . . . . . . 183
˘
˘
\bb ( ) . . . . . . . . . . . . . . 183
˘
˘
\bba (˘×˘) . . . . . . . . . . . . . 183
\bbalpha (α) . . . . . . . . . . 124
\bbar (¯
𝑏) . . . . . . . . . . . . 223
\bbb (˘˘) . . . . . . . . . . . . . 183
˘
\bbbeta (β) . . . . . . . . . . . 124
\Bbbk (k) . . . . . . . . . . . . 96
\Bbbk (k) . . . . . . . . . . . . 97
\Bbbk (𝕜) . . . . . . . . . . . . 97
⅀
\Bbbsum ( ) . . . . . . . . . . 46
bbding (package) 134–137, 139,
143, 146, 220, 239
\bbdollar ($) . . . . . . . . . 124
\bbetter (g) . . . . . . . . . 181
\bbeuro (û) . . . . . . . . . . 124
\bbfinalnun (Ï) . . . . . . . 124
\bbgamma (γ) . . . . . . . . . . 124
bbgreekl (mathbbol package option) . . . . . . . . . . 124
\BBm ( ´ ) . . . . . . . . . . . . 183
˘˘¯) . . . . . . . . . . . . 183
\Bbm (¯
˘´˘) . . . . . . . . . . . . 183
\bBm (¯¯
¯˘¯˘´
bbm (package)
. . . . . 123, 239
\bbm ( ) . . . . . . . . . . . . 183
˘˘ ) . . . . . . . . . . . . 183
\bbmb ¯(¯
¯˘˘¯˘
\bbmx ( ¯¯) . . . . . . . . . . . 183
¯˘˘¯˘(š) . . . . . . . . . 124
\bbnabla
bbold (package) . . . . 123, 239
\bbpe (Ô) . . . . . . . . . . . . 124
\bbqof (×) . . . . . . . . . . . 124
\bbrevis (ς) . . . . . . . . . 184
\bbrktbrk (⎶) . . . . . . . . 121
\bbslash ( ) . . . . . . . . . 30
\bbslash (=) . . . . . . . . . 33
\bbyod (É) . . . . . . . . . . . . 124
) . . . . 192
\bcattention (
) . . . . . . . . 192
\bcbombe (
\bchomme (
. . . . . . . . 192
1
\bccalendrier ( JAN ) . . . 193
) . . . . . . 193
\bchorloge (
\bcicosaedre (
\bcinfo (
\bcbook (
) . . . . . . . . 193
) . . . . 193
)
. . . . . . . . 193
\bcinterdit (
) . . . . . 193
)
\bccle (
) . . . . . . . . . 193
\bcclefa (
) . . . . . . . . 193
\bcclesol (
) . . . . . . . 193
\bccoeur (
) . . . . . . . . 193
\bccrayon (
) . . . . . . . 193
\bclampe (
) . . . . . . . . 193
bclogo (package) 192, 193, 239,
240
\bcloupe (
) . . . . . . . . 193
\bcneige (
) . . . . . . . . 193
)
\bcnote (
\bccube (
)
. . . . . . . . 193
\bcnucleaire (
) . . . . 193
\bcoctaedre (
) . . . . . 193
. . . . . . . . 193
\bcdallemagne (
\bcdanger (
) . . . 193
) . . . . . . . 193
\bcoeil (
) . . . . . . . . 193
\bcontraction . . . . . . . . 228
\bcdautriche (
) . . . . 193
\bcorne (
)
. . . . . . . . 193
\bcdbelgique (
) . . . . 193
\bcours (
)
. . . . . . . . 193
\bcdbulgarie (
) . . . . 193
\bcdfrance (
) . . . . . . 193
\bcditalie (
) . . . . . . 193
\bcdluxembourg (
)
\bcdodecaedre (
\bcdpaysbas (
\bcdz (
) . . . . . 193
) . . . . . . . . . . 193
\bcetoile (
\bcpanchant (
) . . . . . 192
\bcpeaceandlove (
) . . 192
\bcpluie (
) . . . . . . . . 192
\bcplume (
) . . . . . . . . 193
\bcpoisson (
) . . . . . . 193
\bcquestion (
) . . . . . 193
\bcrecyclage (
) . . . . 193
\bcrosevents (
) . . . . 193
) . . . . 193
) . . . . . . . 192
\bcfemme (
) . . . . . . . . 192
\bcfeujaune (
) . . . . . 192
\bcfeurouge (
) . . . . . 193
\bcfeutricolore (
\bcfeuvert (
\bcfleur (
) . . . . . . . . 193
. . 193
) . . . 193
\bceclaircie (
\bcoutil (
) . . 193
) . . . . . . 193
) . . . . . . . . 193
247
\bcsmbh (
)
. . . . . . . . 193
\bcsmmh (
)
. . . . . . . . 193
\bcsoleil (
) . . . . . . . 193
\bcspadesuit (
\bcstop (
STOP
♠)
. . . . 193
)
. . . . . . . . 193
\bctakecare (
) . . . . . 193
\bctetraedre (
) . . . . 193
\BGconditional (
\bctrefle (
\bcvaletcoeur (
\bcyin (
)
) . . . . . 193
) . . . 193
. . . . . . . . 193
) . . . . . . . . . 193
\Bda (d) . . . . . . . . . . . . . 152
\Bde (D) . . . . . . . . . . . . 152
\bdecisive (i) . . . . . . . 181
\Bdi (f) . . . . . . . . .
\bdleftarcarrow (¥)
\bdnearcarrow («) .
\bdnwarcarrow (¨) .
.
.
.
.
.
.
.
.
.
.
.
.
. 152
. 78
. 78
. 78
\Bdo (g) . . . . . . . . . .
\bdoverarcarrow (¤)
\bdrightarcarrow (§)
\bdsearcarrow (ª) . .
\bdswarcarrow (©) . .
.
.
.
.
.
.
.
.
.
.
. 152
. 78
. 78
. 78
. 78
\Bdu (x) . . . . . . . . . . . . . 152
\bdunderarcarrow (¦) . . 78
\Bdwe (>)
. . . 116
) . . . . . . . 193
\bctrombone (
\bcvelo (
)
. . . . . . . . . . . 152
\Bdwo (?) . . . . . . . . . . . 152
\Be (e) . . . . . . . . . . . . . 152
\Beam (") . . . . . . . . . . . . 131
\Bearing (#) . . . . . . . . . 131
\because (∵) . . . . . . 50, 114
\because (¶) . . . . . . . . . 57
\because (∵) . . . . . . . . . 115
\because (∵) . . . . . . . . . . 115
\because (∵) . . . . . . . . . . 115
\Bed ( ) . . . . . . . . . . . . 192
begriff (package) . . . 116, 239
Begriffsschrift symbols . . . 116
\BEL (␇) . . . . . . . . . . . . . 130
\Belarus (ƒ) . . . . . . . . . . 188
\Belgium („) . . . . . . . . . . 188
\bell ( ) . . . . . . . . . . . . 176
\benzenr (⏣) . . . . . . . . . 141
beret . . . . . . . . . . . . . . . 107
Berry, Karl . . . . . . . . . . . 241
\Beta (B) . . . . . . . . . . . . 93
\beta (𝛽) . . . . . . . . . . . . 93
\betaup (β) . . . . . . . . . . . 94
\beth (i) . . . . . . . . . . . . 95
\beth (ø) . . . . . . . . . . . . 95
\beth (ℶ) . . . . . . . . . . . . 95
\beth (ℶ) . . . . . . . . . . . . 95
\beth (ℶ) . . . . . . . . . . . . 96
better . . . see \triangleleft
\betteris (b) . . . . . . . . 181
\between ( ) . . . . . . . . . . 52
\between (G) . . . . . . . . . . 50
\between (·) . . . . . . . . . . 57
\between (≬) . . . . . . . . . . 55
\between (”) . . . . . . . . . 52
\between (≬) . . . . . . . . . . 58
\BGassert ( ) . . . . . . . . . 116
\BGcontent ( ) . . . . . . . . 116
\BGnot ( ) . . . . . . . . . . . 116
\BGquant (
) . . . . . . . . 116
\Bi (i) . .”. . . . . . . . . . . 152
\bibridge (a
”) . . . . . . . . . 22
biconditional . . . . . . . . . . . . .
. . see \leftrightarrow
and \equiv
\Bicycle (®) . . . . . . . . 177
\Big . . . . . . . . . . . . 219, 221
\big . . . . . . . . . . . . 219, 221
big O (𝒪) see alphabets, math
big O notation . . . . . . . . . 92
\Bigassumption (Ê) . . . 132
\bigassumption (È) . . . . 132
\bigast (˚) . . . . . . . . . . 31
\bigblacktriangledown (▼) .
. . . . . . . 141
\bigblacktriangleup (▲) 141
¶
\bigbosonloop ()
∪
. . . . . . 132
\bigbosonloopA ()
⊃
. . . . . 132
\bigbosonloopV () . . . .
\bigbot (⟘)
e .........
\bigbox ( ) . . . .Ö
.....
\bigboxasterisk ( Þ
) ..
\bigboxbackslash
(
) .
Û
\bigboxbot ( Õ
) ......
\bigboxcirc ( ) . .Œ
...
\bigboxcoasterisk
(
)
Ó
\bigboxdiv (Ô) . . . . . .
\bigboxdot ( Ø
) ......
\bigboxleft ( Ñ
) .....
\bigboxminus Ð
( ) ....
\bigboxplus ( Ù
) .....
\bigboxright (Ý) . . . .
\bigboxslash (Ò) . . . .
\bigboxtimesÚ( ) . . . .
\bigboxtop ( ) . . .ß
...
\bigboxtriangleup
(
)
Ü
\bigboxvoid
(
)
.
.
.
..
⋂︀
\bigcap ( ) . . . . . . . . .
\bigcap (⋂) . . . . . . . . .
\bigcap (⋂) . . . . . . . . .
⋂
\bigcap ( ) . . . . . . . . .
\bigcapdot () . . . . . .
\bigcapdot (⩀) . . . . . . .
\bigcapplus () . . . . . .
\bigcapplus ($) . . . . . .
\bigcirc (○) . . . . . . .
\bigcirc (◯) . . . . . . . .
\bigcirc (◯) . . . . . . . .
\bigcirc (○) . . . . . . . .
\BigCircle ( ) . . . . . .
\BigCircle ( ) . . . . . .
\bigcircle (◯) . . . . . .
\bigcoast (ˇ) . . .Š. . . .
\bigcomplementop ( ) . .
\BigCross ( ) . . . . . . .
%
%
248
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
132
121
40
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
41
40
44
44
46
44
44
45
44
30
141
140
142
143
143
44
31
41
143
⋃︀
\bigcup ( ) . . . . . . . .
\bigcup (⋃) . . . . . . . .
\bigcup (⋃) . . . . . . . .
⋃
\bigcup ( ) . . . . . . . .
\bigcupdot (⨃) . . . . .
\bigcupdot (⊍) . . . . . .
⨃
\bigcupdot ( ) . . . . .
\bigcupplus (⨄) . . . . .
\bigcupplus (⊎)
IJ.....
\bigcurlyvee (b ) . . . .
\bigcurlyvee ( ) . . . .
\bigcurlyvee () . . . .
\bigcurlyvee (⋎) . . . .
\bigcurlyveedot Ż
() .
\bigcurlywedge (c ) . .
\bigcurlywedge ( ) . .
\bigcurlywedge () . .
\bigcurlywedge (⋏) . .
\bigcurlywedgedot ()
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
40
45
44
46
45
44
46
45
44
41
40
45
44
44
41
40
45
44
44
\BigDiamondshape ( ) . .
\bigdoublecurlyvee () .
\bigdoublecurlywedge ()
\bigdoublevee (⨈) . . . .
\bigdoublevee (⩔) . . . . .
\bigdoublewedge (⨇) . . .
\bigdoublewedge (⩕) . . .
\Bigg . . . . . . . . . . . 219,
\bigg . . . . . . . . . . . 219,
\biggassumption (É) . .
143
44
44
45
44
45
44
221
221
132
&
∫︀
\BigHBar (
\bigint (
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
) . . . . . . . . . 143
........
g
\biginterleave ( ) . . . .
\biginterleave (⫼) . . . .
bigints (package)
43, 239,
\bigints (
)
∫︀
∫︀ )
43
40
121
240
........
43
........
43
.......
43
\bigintssss ( ) . . . . . . .
˙
\biginvamp ( ) . . . . . . .
43
50
\bigintss (
\bigintsss (
∫︀)
∫︀)
_
\BigLowerDiamond ( )
\bignplus ( ) . . . . . .
\bigO (O) . . . . . . . . . .
\bigo (O) . . . . . . . . . .
\bigoast (2) . . . . . . .
\bigoast (⊛) . Æ
......
\bigoasterisk ( Î
) ...
\bigobackslash ( ) . .
\bigobackslash
(⦸) . .
Ë
\bigobot ( Å
) .......
\bigocirc ( ) . . . . . .
\bigocirc (⊚) . .Ç
....
\bigocoasterisk
(
) .
Ã
\bigodiv (⨀︀) . . . . . . .
\bigodot ( ) . . . . . . .
\bigodot (⨀) . . . . . . .
\bigodot (⊙) . . . . . . .
⨀
\bigodot ( ) . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 143
. 40
. 92
. 92
. 45
. 44
. 41
. 41
. 44
. 41
. 41
. 44
. 41
. 41
. 40
. 45
. 44
. 46
\bigoint (
∮︀
) ........
43
) .......
43
∮︀
\bigoints (
\bigointss (
∮︀
\bigointsss (
∮︀)
)
.......
43
......
43
∮︀
\bigointssss ( ) . . . .
È
\bigoleft ( Á
) ......
\bigominus ( ) . . . . .
\bigominus ⨁︀
(⊖) . . . . .
\bigoplus ( ) . . . . . .
\bigoplus (⨁) . . . . . .
\bigoplus (⊕) . . . . . .
⨁
\bigoplus ( É
) ......
\bigoright (Í) . . . . .
\bigoslash ( ) . . . . .
\bigoslash (⊘) . . . . .
\bigostar (⍟)
⨂︀ . . . . . .
\bigotimes ( ) . . . . .
\bigotimes (⨂) . . . . .
\bigotimes (⊗) . . . . .
⨂
\bigotimesÊ( ) . . . . .
\bigotop ( ) . . . . . . .
\bigotriangle (F)Ï. . .
\bigotriangleup ( ) .
\bigovert (⦶)
Ì ......
\bigovoid ( ) f . . . . . .
\bigparallel
˙ ( ) ....
\bigparr (Ř) . . . . . . .
\bigplus ( ) . . . . . . .
\bigplus ( ) . . . . . . .
\bigplus (+) . . . . . . .
\bigpumpkin ( ) . . . .
\BigRightDiamond ( )
\bigskull ( ) . . . . . .
\bigslopedvee (⩗) . . .
\bigslopedwedge
(⩘) .
Ű
\bigsqcap ( ) . . . . . .
\bigsqcap ( ) . . . . . .
\bigsqcap (⨅) . . . . . .
\bigsqcap (⊓) . . . . . . .
⨅
\bigsqcap ( ) . . . . . .
\bigsqcapdot ($) . . . .
\bigsqcapdot (,) . . . .
\bigsqcapplus ( ) . . .
\bigsqcapplus (() . . .
\bigsqcapplus
⨆︀ (0) . . .
\bigsqcup ( ) . . . . . .
\bigsqcup (⨆) . . . . . .
\bigsqcup (⊔) . . . . . . .
⨆
\bigsqcup ( ) . . . . . .
\bigsqcupdot (&) . . . .
\bigsqcupdot (.) . . . .
\bigsqcupplus ( ) . . .
\bigsqcupplus (*) . . .
\bigsqcupplus (2) . . .
\BigSquare ( Ÿ) . . . . .
\bigsquplus ( ) . . . . .
\bigstar (‹) . . . . . . .
\bigstar (F) . . . . . . .
/
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 43
. 41
. 41
. 44
. 40
. 45
. 44
. 46
. 41
. 41
. 44
. 44
. 40
. 45
. 44
. 46
. 41
. 44
. 41
. 44
. 41
. 40
. 50
. 41
. 45
. 44
. 38
. 143
. 38
. 34
. 34
. 41
. 40
. 45
. 44
. 46
. 45
. 44
. 42
. 45
. 44
. 40
. 44
. 44
. 46
. 44
. 44
. 42
. 45
. 44
. 143
. 41
. 31
. 119
\bigstar (ã) . . . . . . . . . 141
\bigstar (★) . . . . . . . . . 141
\bigstar (☀) . . . . . . . . . 140
\bigstar (★) . . . . . . . . . 141
⫿
\bigtalloblong
Ś ( ) . . . . . 46
\bigtimes ( ) . . . . . . . . 41
\bigtimes (⨉) . . . . . . . . 45
\bigtimes (⨉) . . . . . . . . . 44
⨉
\bigtimes ( ) . . . . . . . . 46
\bigtop (⟙) . . . . . . . . . . 121
\BigTriangleDown (` ) . . 143
\bigtriangledown ( ) . .` 40
\bigtriangledown (▽ vs. )
. . . . . . . 220
\bigtriangledown (▽) . . 30
\bigtriangledown (_) . . 71,
141
\bigtriangledown (▽) . . 70
\bigtriangledown (▽) . 141,
142
\BigTriangleLeft ( ) . . 143
\bigtriangleleft (⨞) . . 141
\BigTriangleRight ( ) . 143
\BigTriangleUp (a ) . . . . 143
\bigtriangleup ( ) . .a. . 40
\bigtriangleup (△ vs. ) 220
\bigtriangleup (△) . . 12, 30
\bigtriangleup (^)
71, 141
\bigtriangleup (△) . . . . 70
\bigtriangleup
⨄︀ (△) 141, 142
\biguplus ( ) . . . . . . . . 40
\biguplus (⨄) . . . . . . . . 45
\biguplus (⊎) . . . . . . . . . 44
⨄
\biguplus ( ) . . . . . . . . 46
\bigvarstar (›) . . . . . . . 31
\BigVBar ⋁︀
( ) . . . . . . . . . 143
\bigvee ( ) . . . . . . . . . . 40
\bigvee (⋁) . . . . . . . . . . 45
\bigvee (⋁) . . . . . . . . . . 44
⋁
\bigvee ( ) . . . . . . . . . . 46
\bigveedot ( ) . . . . . . . 45
\bigveedot ⋀︀
( ) . . . . . . . . 44
\bigwedge ( ) . . . . . . . . 40
\bigwedge (⋀) . . . . . . . . 45
\bigwedge (⋀) . . . . . . . . . 44
⋀
\bigwedge ( ) . . . . . . . . 46
\bigwedgedot () . . . . . . 45
\bigwedgedot () . . . . . . 44
\bigwhitestar
˘ (☆) . . . . . 141
\bigwith ( ) . . . . . . . . . 50
\binampersand (N) . . . . . 30
\binampersand (î) . . . . . 33
binary operators . . . . . 30–38
binary relations . . . 50–53, 55,
57–69, 88–90
negated 51, 52, 54–57, 59
\bindnasrepma (O) . . . . . 30
\bindnasrepma (ï) . . . . . 33
\Biohazard (h) . . . . . . . 131
\biohazard (☣) . . . . . . . . 190
biological symbols . . . . . . 131
birds . . . . . . . . . . . . . . . . 149
#
!
249
"
$
bishop . . . . . . . . 182, 217–218
\bishoppair (a) . . . . . . . 181
\Bja (j) . . . . . . . . . . . . . 152
\Bje (J) . . . . . . . . . . . . . 152
\Bjo (b) . . . . . . . . . . . . . 152
\Bju (L) . . . . . . . . . . . . 152
\Bka (k) . . . . . . . . . . . . 152
\Bke (K) . . . . . . . . . . . . 152
\Bki (c) . . . . . . . . . . . . 152
\Bko (h) . . . . . . . . . . . . . 152
\Bku (v) . . . . . . . . . . . . . 152
\BL (\) . . . . . . . . . . . . . . 129
\black . . . . . . . . . . . . . . 183
\BlackBishopOnBlack (
. . . . . . . 182
a) .
b
\BlackBishopOnWhite (
) .
. . . . . . . 182
blackboard bold see alphabets,
math
\blackbowtie (ë) . . . . . . 33
\blackcircledownarrow (⧭) .
. . . . . . . 141
\blackcircledrightdot (⚈) .
. . . . . . . 141
\blackcircledtwodots (⚉) . .
. . . . . . . 141
\blackcircleulquadwhite (◕)
. . . . . . . 141
\blackdiamond (˛) . . . . . 31
\blackdiamond (⬩) . . . . . 37
\blackdiamonddownarrow (⧪)
. . . . . . . 141
Z
\BlackEmptySquare (
) 182
\blackhourglass (⧗) . . . 38
\blackinwhitediamond (◈) . .
. . . . . . . 141
\blackinwhitesquare (▣) 141
j) 182
\BlackKingOnWhite (k) 182
\BlackKnightOnBlack (m) .
\BlackKingOnBlack (
.......
182
n) .
\BlackKnightOnWhite (
. . . . . . . 182
\blacklefthalfcircle (◖)
\blacklozenge () . . . . .
\blacklozenge (ã) . . 37,
\blacklozenge (⧫) . . . . .
\blacklozenge (⧫) . . . . .
\blacklozenge (⧫) . 141,
141
119
141
141
140
142
o) 182
\BlackPawnOnWhite (p) 182
\BlackPawnOnBlack (
\blackpointerleft (◄) . 141
\blackpointerright (►) . 141
\BlackQueenOnBlack (
. . . . . . . 182
l)
.
q
\BlackQueenOnWhite (
) .
. . . . . . . 182
\blackrighthalfcircle (◗) . .
. . . . . . . 141
s) 182
\BlackRookOnWhite (r) 182
\BlackRookOnBlack (
\blacksmiley (☻) . . . . . 121
\blacksmiley (-) . . . . . . 176
\blacksquare () . . . . . . 119
\blacksquare (ï) . . . 37, 141
\blacksquare (∎) . . . . . . 36
\blacksquare (■) . . . . . . 142
\blackstone . . . . . . . . . . 182
\blacktriangle (N) . . . . 119
\blacktriangle (ë) . 37, 141
\blacktriangle (▲) . . 37, 71
\blacktriangle (▲) . . . . 70
\blacktriangle (▴) . . . . 142
\blacktriangledown (İ) . 35
\blacktriangledown (H) . 119
\blacktriangledown (è) . 37,
141
\blacktriangledown (▼) . 37,
71
\blacktriangledown (▼) . 70
\blacktriangledown (▾) . 142
\blacktriangleleft (đ) . 35
\blacktriangleleft (J) . 69
\blacktriangleleft (ê) . 37
\blacktriangleleft (◀) . 37,
71
\blacktriangleleft (◀) . 70
\blacktriangleleft (◀) 142
\blacktriangleright (§)
35
\blacktriangleright (I) 69
\blacktriangleright (é)
37
\blacktriangleright (▶) 37,
71
\blacktriangleright (▶) 70
\blacktriangleright (▶) 142
\blacktriangleup (IJ) . . . 35
\blackwhitespoon (⊷) . . 89
blank . . . . . . see \textblank
\Bleech (Ë) . . . . . . . . . . 177
\blender ( ) . . . . . . . . . . 191
\blitza ( ) . . . . . . . . . . 90
\blitza ( ) . . . . . . . . . . 29
\blitzb ( ) . . . . . . . . . . 90
\blitzc ( ) . . . . . . . . . . 90
\blitzd ( ) . . . . . . . . . . 90
\blitze ( ) . . . . . . . . . . 90
\blkhorzoval (⬬) . . . . . . 142
\blkvertoval (⬮) . . . . . . 142
block-element symbols . . . 185
\Bm (´) . . . . . . . . . . . . . . 183
˘¯
bm (package) . . . 233, 239, 240
\bm . . . . . . . . . . . . . . . . . 233
\bm ( ) . . . . . . . . . . . . . . 183
¯˘
\Bma (m) . . . . . . . . . . . . 152
\Bme (M) . . . . . . . . . . . . 152
\Bmesonminus (Ú) . . . . . 133
\Bmesonnull (Û) . . . . . . 133
\Bmesonplus (Ù) . . . . . . 133
\Bmi (y) . . . . . . . . . . . . 152
\Bmo (A) . . . . . . . . . . . . . 152
\bmod . . . . . . . . . . . . . . . 91
\Bmu (B) . . . . . . . . . . . . 152
\Bna (n) . . . . . . . . . . . . . 152
\BNc («) . . . . . . . . . . . . . 152
\BNcc (») . . . . . . . . . . . . 152
\BNccc (–) . . . . . . . . . . 152
\BNcd (—) . . . . . . . . . . . 152
\BNcm (ff) . . . . . . . . . 152
\BNd (‌) . . . . . . . . . . . 152
\BNdc (‰) . . . . . . . . . . 152
\BNdcc (ı) . . . . . . . . . 152
\BNdccc (ȷ) . . . . . . . . 152
\Bne (N) . . . . . . . . . . . . 152
\BNi (´) . . . . . . . . . . . . . 152
\Bni (C) . . . . . . . . . . . . . 152
\BNii (ˆ) . . . . . . . . . . . . 152
\BNiii (˜) . . . . . . . . . . . 152
\BNiv (¨) . . . . . . . . . . . . 152
\BNix (¯) . . . . . . . . . . . 152
\BNl (‹) . . . . . . . . . . . . 152
\BNlx (›) . . . . . . . . . . . 152
\BNlxx (“) . . . . . . . . . . 152
\BNlxxx (”) . . . . . . . . . 152
\BNm (fi) . . . . . . . . . . . . 152
\Bno (E) . . . . . . . . . . . . 152
\bNot (⫭) . . . . . . . . . . . . 58
\Bnu (F) . . . . . . . . . . . . . 152
\BNv (˝) . . . . . . . . . . . . . 152
\BNvi (˚) . . . . . . . . . . . . 152
\BNvii (ˇ) . . . . . . . . . . . 152
\BNviii (˘) . . . . . . . . . . 152
\Bnwa (@) . . . . . . . . . . . 152
\BNx (˙) . . . . . . . . . . . . . 152
\BNxc („) . . . . . . . . . . . 152
\BNxl (‚) . . . . . . . . . . . 152
\BNxx (¸) . . . . . . . . . . . . 152
\BNxxx (˛) . . . . . . . . . . . 152
\Bo (o) . . . . . . . . . . . . . 152
body-text symbols . . . . 14–28
boisik (package) . . . 33, 37, 45,
57, 63, 68, 71, 82, 83, 95,
97, 98, 106, 118, 120, 141,
145, 154, 158, 239, 240
bold symbols . . . . . . . . . . 233
\boldmath . . . . . . . . . . . . 233
250
\boldsymbol . . . . . . . . . . 233
\BOLogo (F) . . . . . . . . . . 177
\BOLogoL (M) . . . . . . 177
\BOLogoP (N) . . . . . . . . . . 177
bomb . . . . . . . . . . . 192–193
\bomb (,) . . . . . . . . . . . . 177
\bond (𝜓) . . . . . . . . . . . 133
Boolean domain (B) . . . . see
alphabets, math
Boolean logic gates . . . . . 130
boondox (emf package option)
. . . . . . . 126
borders . . . . . . . . . . 204–210
born . . . . . . . . see \textborn
\boseDistrib (𝛱) . . . . . . 133
\Bosnia ( ) . . . . . . . . . . . 188
\boson (𝛴) . . . . . . . . . . . 133
bosons . . . . . . . . . . . . . . 132
\Bot (‚) . . . . . . . . . . . . 98
\bot (⊥) . . . . . . 29, 96, 225
\bot (⊥) . . . . . . . . . . . . . 97
\bot (–) . . . . . . . . . . . . . 96
\bot (⊥) . . . . . . . . . . . . . 97
\botborder ( ) . . .
\botdoteq (”) . . . .
\botsemicircle (◡)
\bottle ( ) . . . . . . .
\Bottomheat () . . .
\Bouquet (¥) . . . . .
\bowl ( ) . . . . . . . .
\Bowtie (1) . . . . . .
\bowtie (◁▷) . . . . . .
\bowtie (è) . . . . . .
\bowtie (⋈) . . . . . .
\bowtie (&) . . . . . .
\bowtie (⋈) . . . . . .
\Box () . . . . . . . . .
\Box (2) . . . . . . . . .
\Box (□) . . . . . . . . .
\Box (◻) . . . . . . . . .
\Box (□) . . . . . . . . .
box-drawing symbols
\boxast (i) . . . . . .
\boxast (¤) . . . . . .
\boxast (⧆) . . . . . .
\boxasterisk (f) . .
\boxbackslash (n) .
\boxbackslash (⧅) .
\boxbackslash (⧅) .
\boxbar (k) . . . . . .
\boxbar (¡) . . . . . .
\boxbar (◫) . . . . . .
\boxbar (◫) . . . . . .
\boxbot (k) . . . . . .
\boxbot (ž) . . . . . .
\boxbox () . . . . . .
\boxbox (§) . . . . . .
\boxbox (⧈) . . . . . .
\boxbox (⧈) . . . . . .
\boxbox (⧈) . . . . . .
\boxbslash (j) . . . .
\boxbslash (œ) . . . .
\boxbslash (⧅) . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 183
. 52
. 142
. 191
. 191
. 177
. 191
. 176
. 50
. 33
33, 55
31, 32
. . 58
. . 118
. . 119
. . 37
. . 36
. . 142
. . 185
. . 30
. . 37
. . 38
. . 35
. . 35
. . 36
. . 36
. . 30
. . 37
. . 37
. . 38
. . 35
. . 37
. . 30
. . 37
. . 36
. . 36
. . 38
. . 30
. . 37
. . 37
\boxbslash (⧅) . .
\boxcirc (e) . . . .
\boxcircle () . . .
\boxcircle (¥) . . .
\boxcircle (⧇) . .
\boxcoasterisk (g)
\boxdiag (⧄) . . . .
\boxdiag (⧄) . . . .
\boxdiv (c) . . . . .
\boxdivision (¦) .
\boxdot (d) . . . . .
\boxdot ( ) . . . . .
\boxdot (ô) . . . . .
\boxdot (⊡) . . . . .
\boxdot (⊡) . . . . .
\boxdot (⊡) . . . . .
\boxdotLeft (‹) .
\boxdotleft (ƒ) .
\boxdotRight (Š)
\boxdotright (‚)
\boxempty () . . .
\boxLeft (‰) . . .
\boxleft (h) . . . .
\boxleft () . . .
\boxleft (Ÿ) . . . .
\boxminus (a) . . .
\boxminus ( ) . . .
\boxminus (ñ) . . . .
\boxminus (⊟) . . . .
\boxminus (⊟) . . . .
\boxminus (⊟) . . .
\boxonbox (⧉) . . .
\boxplus (‘) . . . .
\boxplus () . . . .
\boxplus (ð) . . . .
\boxplus (⊞) . . . .
\boxplus (⊞) . . . . .
\boxplus (⊞) . . . .
\boxRight (ˆ) . .
\boxright (i) . . .
\boxright (€) . .
\boxright ( ) . . . .
\boxslash (m) . . .
\boxslash (l) . . . .
\boxslash (¢) . . . .
\boxslash (⧄) . . . .
\boxslash (⧄) . . . .
\boxtimes (b) . . .
\boxtimes () . . .
\boxtimes (ò) . . . .
\boxtimes (⊠) . . . .
\boxtimes (⊠) . . . .
\boxtimes (⊠) . . .
\boxtop (j) . . . . .
\boxtop () . . . . .
\boxtriangle (£) .
\boxtriangleup (o)
\boxvert (◫) . . . .
\boxvert (q) . . . . .
\boxvoid (l) . . . .
\boy (D) . . . . . . . .
\Bpa (p) . . . . . . . .
\Bpaiii ([) . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
38
35
30
37
38
35
37
38
35
37
35
30
37
36
36
38
73
73
73
73
30
73
35
73
37
35
30
37
36
36
38
142
35
30
37
36
36
38
73
35
73
37
35
30
37
36
36
35
30
37
36
36
38
35
37
37
35
36
36
35
127
152
152
\BPamphora (Ž) . . . . . . . . 153
\BParrow (ij) . . . . . . . . . 153
\BPbarley (Ş) . . . . . . . . . 153
\BPbilly (ť) . . . . . . . . . 153
\BPboar (ľ) . . . . . . . . . . 153
\BPbronze (Ű) . . . . . . . . 153
\BPbull (ň) . . . . . . . . . . 153
\BPcauldroni (đ) . . . . . 153
\BPcauldronii (§) . . . . 153
\BPchariot (ÿ)
. . . . . . 153
\BPchassis (ź)
. . . . . . 153
\BPcloth (Ř) . . . . . . . . . 153
\BPcow (ŋ)
. . . . . . . . . . 153
\BPcup (Ÿ) . . . . . . . . . . 153
\Bpe (P) . . . . . . . . . . . . . 152
\BPewe (š)
. . . . . . . . . . 153
\BPfoal (ě)
. . . . . . . . . 153
\BPgoat (ş) . . . . . . . . . . 153
\BPgoblet (Ź) . . . . . . . . 153
\BPgold (Ů) . . . . . . . . . . 153
\BPhorse (ď)
. . . . . . . . 153
\Bpi (G) . . . . . . . . . . . . . 152
\BPman (ă) . . . . . . . . . . . 153
\BPnanny (ț) . . . . . . . . . 153
\Bpo (H) . . . . . . . . . . . . . 152
\BPolive (Ț)
\BPox (ń)
. . . . . . . . . 153
. . . . . . . . . . . 153
\BPpig (ĺ)
. . . . . . . . . . 153
\BPram (ś)
. . . . . . . . . . 153
\BPsheep (ř) . . . . . . . . . 153
\BPsow (ł)
. . . . . . . . . . 153
\BPspear (¡) . . . . . . . . . 153
\BPsword (ż) . . . . . . . . . . 153
\BPtalent (Ď)
\Bpte (])
. . . . . . . 152
. . . . . . . . . . . 152
\Bpu (I) . . . . . . . . . . . . . 152
\Bpuii (\)
. . . . . . . . . . 152
\BPvola (Ĺ)
. . . . . . . . . 152
\BPvolb (Ľ) . . . . . . . . . . 152
\BPvolcd (Ł) . . . . . . . . . 152
\BPvolcf (Ń) . . . . . . . . . 152
\BPwheat (Š) . . . . . . . . . 153
\BPwheel (ž) . . . . . . . . . 153
\BPwine (Ť) . . . . . . . . . . 153
\BPwineiih (Ż)
. . . . . . . 153
\BPwineiiih (IJ) . . . . . . 153
\BPwineivh (İ) . . . . . . . 153
\BPwoman (ą) . . . . . . . . . 153
\BPwool (Ś) . . . . . . . . . . 153
\BPwta (Ă) . . . . . . . . . . . 152
\BPwtb (Ą) . . . . . . . . . . . 152
\BPwtc (Ć) . . . . . . . . . . 152
251
\BPwtd (Č) . . . . . . . . . . . 152
\Bqa (q) . . . . . . . . . . . . 152
\Bqe (Q) . . . . . . . . . . . . 152
\Bqi (X) . . . . . . . . . . . . 152
\Bqo (8) . . . . . . . . . . . . . 152
\Bra (r) . . . . . . . . . . . . . 152
bra . . . . . . . . . . . . . . . . . 99
\braceld (⏞) . . . . . . . . . . 228
\bracerd ( ) . . . . . . . . . . 228
braces . . . 14, 99–102, 107–110
asymmetric . . . . . . . 110
extensible . . . . 107–110
multiline⎪ . . . . . . . . . 110
⎪
\bracevert (⎪
⎪) . . . . . . . 99
⎪
⎪
⎪
⎪
\bracevert ( ⎪
⎪) . . . . . . . 100
\bracevert (⎪) . . . . . . . . 121
brackets . . . . . see delimiters
\Braii (^) . . . . . . . . . . . 152
\Braiii (_) . . . . . . . . . . 152
braket (package) . . . . . . . 99
) . . . . . . 191
\Bratpfanne (
\Bre (R) . . . . . . . . . . . . . 152
\Break ( Break ) . . . . . . . 129
\breve ( ̆ ) . . . . . . . . . . . 106
\breve (˘) . . . . . . . . . . . 105
\breve (ă) . . . . . . . . . . . 23
breve (ă) . . . . . . . see accents
\brevis (β) . . . . . . . . . . 184
\Bri (O) . . . . . . . . . . . . . 152
\Bro (U) . . . . . . . . . . . . . 152
\Broii (‘) . . . . . . . . . . . 152
\brokenvert (|) . . . . . . . . 176
Bronger, Torsten . . . . . . . 225
brooms . . . . . . . . . . . 90, 113
\Bru (V) . . . . . . . . . . . . . 152
\BS (␈) . . . . . . . . . . . . . . 130
\Bsa (s) . . . . . . . . . . . . . 152
\Bse (S) . . . . . . . . . . . . . 152
\BSEfree (n) . . . . . . . . . 131
\Bsi (Y) . . . . . . . . . . . . . 152
\bsimilarleftarrow (⭁) . 84
\bsimilarrightarrow (⭇) 84
\Bso (1) . . . . . . . . . . . . . 152
\bsolhsub (⟈) . . . . . . . . 64
\BSpace ( →−↦ ) . . . . . . 129
\Bsu (2) . .
\Bswa ({) .
\Bswi (|)
\Bta (t) . .
\Btaii (})
\Bte (T) . .
\Bti (3) . .
\btimes (⨲)
\btimes (⨲)
\Bto (4) . .
\Btu (5) . .
\Btwe (­) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
152
152
152
152
152
152
152
33
34
152
152
153
\BUFl ()
. . . . . . . . . . 130
\BUFr ()
. . . . . . . . . . 130
\BUFu () . . . . . . . . . . 130
\BUi (fl) . . . . . . . . . . . . . 153
\BUii (ffi) . . . . . . . . . . . . 153
\BUiii (ffl) . . . . . . . . . . 153
\BUiv (␣) . . . . . . . . . . . . 153
\BUix (%) . . . . . . . . . . . 153
\Bulgaria (†) . . . . . . . . . 189
bullcntr (package) 180, 239, 240
\bullcntr{⟨1 ⟩} ( ∙ ) . . . 180
\bullcntr{⟨2 ⟩} (∙ ∙) . . . 180
\bullcntr{⟨3 ⟩} (∙∙∙) . . . 180
∙
\bullcntr{⟨4 ⟩} (∙∙∙) . . . 180
∙ ∙
\bullcntr{⟨5 ⟩} (∙∙∙) . . . 180
∙
\bullcntr{⟨6 ⟩} (∙∙∙
. . . 180
∙∙ )
∙∙
\bullcntr{⟨7 ⟩} (∙∙∙
. . . 180
∙∙ )
∙∙ )
\bullcntr{⟨8 ⟩} (∙∙∙
. . . 180
∙∙∙
∙∙∙
\bullcntr{⟨9 ⟩} (∙∙∙
)
. . . 180
∙∙∙
bullenum (package) . . . . . 180
bullenum . . . . . . . . . . . . 180
\bullet (∙) . . . . . . . . . . 30
\bullet (•) . . . . . . . . . . . 37
\bullet (●) . . . . . . . . . . . 31
\bullet (∙) . . . . . . . . . . . 38
bullseye . see \textbullseye
\bullseye (◎) . . . . . . . . 142
\Bumpedeq (ı) . . . . . . . . 52
\bumpedeq () . . . . . . . . 52
\Bumpeq (m) . . . . . . . . . . 50
\Bumpeq (Ç) . . . . . . . . . . 57
\Bumpeq (≎) . . . . . . . . . . 55
\Bumpeq (≎) . . . . . . . . . . . 53
\Bumpeq (≎) . . . . . . . . . . 58
\bumpeq (l) . . . . . . . . . . 50
\bumpeq (Æ) . . . . . . . . . . 57
\bumpeq (≏) . . . . . . . . . . 55
\bumpeq (≏) . . . . . . . . . . . 52
\bumpeq (≏) . . . . . . . . . . 58
\bumpeqq (⪮) . . . . . . . . . . 55
\bumpeqq (⪮) . . . . . . . . . 58
\bupperhand (e) . . . . . . . 181
\Burns (
\BusWidth ( )
\BUv (!) . . . .
\BUvi (") . . .
\BUvii (#) .
\BUviii ($)
\BUx (&) . . .
\BUxi (’) . .
\BUxii (­) . .
)
.
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
184
130
153
153
153
153
153
153
153
.
.
.
.
.
.
.
.
.
.
.
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
152
152
152
152
129
152
152
152
C
\C (
a) . . . . . . . . . . . . . . .
\C ( ) . . . . . . . . . . . . . . .
c (esvect package option) .
\c (a̧) . . . . . . . . . . . . 20,
\c ( ) . . . . . . . . . . . . . .
\Ca (a) . . . . . . . . . . . . .
\caesura () . . . . . . . . . . .
20
183
110
236
183
153
159
O
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
cal (emf package option) . 126
calligra (package) 123, 239, 240
calligra (emf package option) .
. . . . . . . 126
Calligra (font) . . . . . . . . . 123
calrsfs (package) . . . . . . . 123
\CAN (␘) . . . . . . . . . . . . . 130
cancel (package) . . . . . . . 107
\Cancer (ã) . . . . . . . . . . 126
\Cancer (b) . . . . . . . . . . 128
\cancer (_) . . . . . . . . . . 126
\Candle ( ) . . . . . . . . . . . 192
\candra ( ̐ ) . . . . . . . . . . . 106
\Cap (e) . . . . . . . . . . . . . 30
\Cap (Ë) . . . . . . . . . . . . . 33
\Cap (⋒) . . . . . . . . . . . . . 33
\Cap (⋒) . . . . . . . . . . . . . 32
\Cap (⋒) . . . . . . . . . . . . . 34
\cap (X) . . . . . . . . . . . . . 31
\cap (∩) . . . . . . . . . . . . . 30
\cap („) . . . . . . . . . . . . . 33
\cap (∩) . . . . . . . . . . . . . 32
\cap (∩) . . . . . . . . . . . . . 31
\cap (∩) . . . . . . . . . . . . . 34
\capbarcup (⩉) . . . . . . . . 34
\capdot (⩀) . . . . . . . . . . 32
\capdot (⩀) . . . . . . . . . . 31
\capdot (⩀) . . . . . . . . . . 34
\capovercup (⩇) . . . . . . . 34
\capplus (C) . . . . . . . . . 32
\capplus (?) . . . . . . . . . . 31
\Capricorn (é) . . . . . . . . 126
\Capricorn (B) . . . . . . . 128
\capricornus (d) . . . . . . 126
\capturesymbol (X) . . . . . 181
\capwedge (⩄) . . . . . . . . . 34
card suits . 145, 146, 192–193
cardinality . . . . . see \aleph
care of (c/o) . . . . . . . . . . . 121
caret . . . . . . . . . . . . . . see \^
\caretinsert (‸) . . . . . . 121
Carlisle, David . . 1, 238, 239
caron (ǎ) . . . . . . . see accents
252
carriage return . . . . . . . . 82,
84–85, 129, 130, 146, 222,
see also \hookleftarrow
\carriagereturn () . . . . 82
\carriagereturn (↵) . . . 84
\carriagereturn ( ) . . . 146
Cartesian product see \times
castle . . . . . . . . 182, 217–218
\castlingchar (O) . . . . . 181
\castlinghyphen (-) . . . . 181
\Cat ( ) . . . . . . . . . . . . . 191
\catal (γ) . . . . . . . . . . . 184
\Catalexis (∧) . . . . . . . . 183
\catalexis (∧) . . . . . . . . 183
catamorphism . . . . . . . . . . . .
see \llparenthesis and
\rrparenthesis
\CB (\
-) . . . . . . . . . . . . . . 129
\cb (a, ) . . . . . . . . . . . . . . 24
\Cc ( ) . . . . . . . . . . . . . . 183
CC
\cc ( ○
) . . . . . . . . . . . 27
\cc ( ) . . . . . . . . . . . . . 183
\ccAttribution (b) . . . . 27
BY:
\ccby ( ○
) . . . . . . . . . 27
\ccbyncnd (cbnd) . . . 27
\Ccc ( ) . . . . . . . . . . . . . 183
\ccCopy (©) . . . . . . . . . . 27
\cChangey ( ) . . . . . . . . . 191
ccicons (package) 27, 239, 240
cclicenses (package) . 27, 239,
240
\ccLogo (c) . . . . . . . . . . 27
$
\ccnc ( ○
) . . . . . . . . . 27
=
\ccnd ( ○
) . . . . . . . . . 27
\ccNoDerivatives (d) . . 27
\ccNonCommercial (n) . . 27
\ccNonCommercialEU (e) . 27
\ccNonCommercialJP (y) . 27
\ccPublicDomain (p) . . . 27
\ccRemix (r) . . . . . . . . . 27
\ccsa (○ ) . . . . . . . . . . . 27
\ccSampling (m) . . . . . . . 27
\ccShare (s) . . . . . . . . . 27
\ccShareAlike (a) . . . . . 27
\ccwundercurvearrow (⤿) 84
\ccZero (z) . . . . . . . . . . 27
\cdot (·) . . . . . . . . . . 30, 223
\cdot (y) . . . . . . . . . . . . . 33
\cdot (⋅) . . . . . . . . . . 32, 115
\cdot (⋯) . . . . . . . . . . . 115
\cdot (⋅) . . . . . . . . . . 31, 115
\cdot (⋅) . . . . . . . . . . . . . 115
\cdotp (·) . . . . . . . . . . . . 114
\cdotp (⋯) . . . . . . . . . . . 115
\cdotp (⋅) . . . . . . . . . . . . 115
\cdotp (·) . . . . . . . . . . . . 115
\cdots (· · · ) . . . . . . . . . 114
\cdots (⋯) . . . . . . . . . . . 115
\cdots (⋯) . . . . . . . . . . . 115
\CE () . . . . . . . . . . . . . . 129
\Ce (e) . . . . . . . . . . . . . 153
Cedi see \textcolonmonetary
cedilla (¸) . . . . . . see accents
C
∖
\BUFd () . . . . . . . . . . 130
buffers . . . . . . . . . . . . . . 130
\Bwa (w)
\Bwe (W)
\Bwi (6)
\Bwo (7)
\BX () .
\Bza (z)
\Bze (Z)
\Bzo (9)
C
\Btwo (~) . . . . . . . . . . . 152
\Bu (u) . . . . . . . . . . . . . 152
celestial bodies
126–128, 186,
201–203
\celsius (℃) . . . . . . . . . 125
\Celtcross (‡) . . . . . . . . 177
Celtic knots . . . . . . 207–210
\cent (¢) . . . . . . . . . . . . 25
\centerdot (‚) . . . . . . . . 31
\centerdot ( ) . . . . . . . . . 32
\centerdot () . . . . . . . . 30
\centerdot (î) . . . . . . . . 33
\centerdot (·) . . . . . . . . 115
centernot (package) . . . . . 224
\centernot . . . . . . . . . . . 224
centigrade . see \textcelsius
\centre (I) . . . . . . . . . . 181
cents . . . . . . . . see \textcent
\Ceres (Â) . . . . . . . . . . . 128
\CEsign (C) . . . . . . . . . . 131
\Cga (g) . . . . . . . . . . . . 153
\Chair ( ) . . . . . . . . . . . . 192
chancery (package) . . . . . . 239
\changenotsign . . . . . . . 52
\Changey ( ) . . . . . . . . . 191
\char . 12, 222, 231, 234, 235,
238
Charter (font) . . . . . . . 25, 49
\check ( ̌ ) . . . . . . . . . . . 106
\check (ˇ) . . . . . . . . . . . 105
check marks 15, 119–121, 137,
138, 146, 176, 177, 194–
197, 220
\checked () . . . . . . . . . 176
\CheckedBox (2
) . . . . . . . 138
\Checkedbox (V) . . . . . . . 138
\Checkmark (!) . . . . . . . 137
\checkmark (X) . . . . . . . 15
\checkmark (D) . . . . . . . 146
\checkmark (ï) . . . . . . . . 120
\checkmark (✓) . . . . . . . 120
\checkmark (✓) . . . . . . . 119
\checkmark (✓) . . . . . . . . 121
\checkmark (X vs. D) . . . 220
\CheckmarkBold (") . . . . 137
\checksymbol (+) . . . . . . 181
chemarr (package) . . 111, 239,
240
chemarrow (package)
87, 111,
239
\chemarrow (A) . . . . . . . 87
Chen, Raymond . . . . . . . 241
chess symbols . . . . . 181, 182,
217–218
\chesscomment (RR) . . . . 181
\chessetc (P) . . . . . . . . . 181
\chesssee (l) . . . . . . . . 181
chevrons . . . . . . . . . . . . . 135
\Chi (X) . . . . . . . . . . . . . 93
\chi (𝜒) . . . . . . . . . . . . . 93
ChinA2e (package) . 26, 92, 124,
186, 187
china2e (package) 123, 239, 240
\Chiron (D) . . . . . . . . . . 128
\chiup (χ) . . . . . . . . . . . 94
chorus (emf package option) 126
\Ci (i) . . . . . . . . . . . . . 153
cipher symbols . . . . . . . . 186
\cirbot (⟟) . . . . . . . . . . . 58
\circ (∘) . . . . . 30, 121, 224
\circ (◦) . . . . . . . . . . . . 37
\circ (○) . . . . . . . . . . . . 31
\circ (◦) . . . . . . . . . . . . 142
\circeq () . . . . . . . . . . 52
\circeq ($) . . . . . . . . . . 50
\circeq (Ù) . . . . . . . . . . 57
\circeq (≗) . . . . . . . . . . 55
\circeq (≗) . . . . . . . . . . . 53
\circeq (≗) . . . . . . . . . . 58
\CIRCLE ( ) . . . . . . . . . . 140
\Circle (#) . . . . . . . . . . 140
\Circle ( ) . . . . . . . . . . 143
\Circle (# vs. ) . . . . . 220
\circlearrowleft (ö) . . 73
\circlearrowleft ( ) . . 72
\circlearrowleft (£) . . 82
\circlearrowleft (↺) . . 79
\circlearrowleft (↺) . . 75
\circlearrowleft (↺) 84, 85
\circlearrowright (œ) . . 73
\circlearrowright () . 72
\circlearrowright (¢) . 82
\circlearrowright (↻) . 79
\circlearrowright (↻) . 75
\circlearrowright (↻) 84, 85
\circlebottomhalfblack (◒)
. . . . . . . 142
circled numerals 138, 182, 183,
217
\CircledA (ª) . . . . . . . . 177
\circledast (~) . . . . . . . 30
\circledast (ö) . . . . . . . 37
\circledast (⊛) . . . . . . . 37
\circledast (⊛) . . . . . . . 36
\circledast (⊛) . . . . . . . 38
\circledbar (V) . . . . . . . 31
\circledbslash (W) . . . . 31
\circledbullet (⦿) . . . . 142
\circledcirc (}) . . . . . . 30
\circledcirc (õ) . . . . . . 37
\circledcirc (⊚) . . . . . . 37
\circledcirc (⊚) . . . . . . 36
\circledcirc (⊚) . . . . . . 38
\circleddash () . . . . . . 30
\circleddash (÷) . . . . . . 37
\circleddash (⊝) . . . . . . 37
\circleddash (⊖) . . . . . . 36
\circleddash (⊝) . . . . . . 38
\circleddot . . . . . see \odot
\circleddotleft (”) . . 73
\circleddotright (“) . 73
\CircledEq („) . . . . . . . 57
\circledequal (⊜) . . . . . 37
\circledequal (⊜) . . . . . 38
\circledgtr (S) . . . . . . . 51
\circledless (R) . . . . . . 51
\circledminus . see \ominus
5
5
253
\circledotleft . . . . . . . see
\circleddotleft
\circledotright . . . . . . see
\circleddotright
\circledownarrow (⧬) . . . 142
\circledparallel (⦷) . . 38
\circledplus . . . see \oplus
\circledR (r) . . . . . . 15, 96
\circledR (Ⓡ) . . . . . . . . . 97
\circledrightdot (⚆) . . 142
\circledS (s) . . . . . . . . 96
\circledS (Ⓢ) . . . . . . . . . 97
\circledslash . see \oslash
\circledstar (✪) . . . . . . 142
\circledtimes . see \otimes
\circledtwodots (⚇) . . . 142
\circledvee (U) . . . . . . . 31
\circledvert (⦶) . . . . . . 37
\circledvert (⦶) . . . . . . 38
\circledwedge (T) . . . . . 31
\circledwhitebullet (⦾) 142
\circlehbar (⦵) . . . . . . . 38
\circleleft (’) . . . . . . 73
\circlelefthalfblack (◐) 142
\circlellquad (◵) . . . . . 142
\circlelrquad (◶) . . . . . 142
\circleonleftarrow (⬰) . 84
\circleonrightarrow (⇴) 84
\circleright (‘) . . . . . 73
\circlerighthalfblack (◑) .
. . . . . . . 142
circles . . . . . . . 128, 140–145,
147, 182, 183, 188, 199–
200, 205, 215–216
\CircleShadow (d) . . . . . 143
\CircleSolid (a) . . . . . . 143
\circlet ( ) . . . . . . . . . 144
\circletcross ( ) . . . . . 144
\circletdot ( ) . . . . . . . 144
\circletfill ( ) . . . . . . 144
\circletfillha ( ) . . . . 144
\circletfillhb ( ) . . . . 144
\circletfillhl ( ) . . . . 144
\circletfillhr ( ) . . . . 144
\circletlineh ( ) . . . . . 144
\circletlinev ( ) . . . . . 144
\circletlinevh ( ) . . . . 144
\circletophalfblack (◓) 142
\circleulquad (◴) . . . . . 142
\circleurquad (◷) . . . . . 142
\circleurquadblack (◔) . 142
\circlevertfill (◍) . . . 142
\Circpipe (›) . . . . . . . . . 131
\circplus (˘) . . . . . . . . 31
\circplus (‹) . . . . . . . . . 33
\Circsteel (•) . . . . . . . . 131
circumflex (^
a) . . . see accents
\circumflexus (ã) . . . . . 23
\cirE (⧃) ⨐. . . . . . . . . . . 142
\cirfnint ( ) . . . . . . . . . 48
\cirfnint (⨐) . . . . . . . . . 46
\cirfnintsl (⨐) . . . . . . . 47
\cirfnintup (⨐) . . . . . . . 47
\cirmid (⫯) . . . .
\cirmid (⫯) . . . .
\cirscir (⧂) . .
\Cja (j) . . . . . .
\Cjo (b) . . . . .
\Cka (k) . . . . . .
\Cke (K) . . . . .
\Cki (c) . . . . .
\Cko (h) . . . . .
\Cku (v) . . . . .
\Cla (l) . . . . .
\Cle (L) . . . . . .
\CleaningA («) .
\CleaningF (¾) .
\CleaningFF (¿)
\CleaningP (¬) .
\CleaningPP (î)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
89
58
142
153
153
153
153
153
153
153
153
153
177
177
177
177
177
\clefC ( ) . . . . . . . . . . . 162
\clefCInline . . . . . . . . . 162
\clefF ( ) . . . . . . . . . . . 162
\clefFInline . . . . . . . . . 162
\clefG ( ) . . . . . . . . . . . 162
\clefGInline . . . . . . . . . 162
clefs . . . . . 159–160, 162, 168,
192–193
\Cli (d) . . . . . . . . . . . . . 153
\clickb (;) . . . . . . . . . . 19
\clickc ( ) . . . . . . . . . . . 19
\clickt (R) . . . . . . . . . . . 19
\Clo (f) . . . . . . . . . . . . . 153
clock (package) . 179, 239, 240
\clock () . . . . . . . . . . . 176
1i’
\clock (
) . . . . . . . . . . 179
clock symbols . . . . . 176–179,
192–193
\ClockFramefalse . . . . . . 179
\ClockFrametrue . . . . . . 179
\ClockLogo (U) . . . . . . . . 177
\ClockStyle . . . . . . . . . . 179
\clocktime . . . . . . . . . . . 179
\closedcurlyvee (¾) . . . . 32
\closedcurlywedge (¼) . . 32
\closedequal (Ü) . . . . . . 53
\closedniomega (?) . . . . 19
\closedprec (½) . . . . . . . 53
\closedrevepsilon () . . 19
\closedsucc (») . . . . . . . 53
\closedvarcap (⩍) . . . . . 34
\closedvarcup (⩌) . . . . . 34
\closedvarcupsmashprod (⩐) .
. . . . . . . . 34
\closure ( ) . . . . . . . . . . 105
\closure (⁐) . . . . . . . . 55, 90
\closure (⁐) . . . . . . . . . 58
\Cloud ( ) . . . . . . . . . . . 178
clouds . . . . . . . . . . . . . . . 38
clovers . . . . . . . . . . . . . . 139
\Clu (q) . . . . . . . . . . . . 153
clubs . . . . . . . . . . . . 145, 146
\clubsuit (♣) . . . . . . . . 145
\clubsuit (ô) . . . . . . . . . 145
\clubsuit (♣) . . . . . . . . 145
\clubsuit (♣) . . . . . . . . . 145
\clubsuit (♣) . . . . . . . . . 146
\Cma (m) . . . . . . . . . . . . 153
\Cme (M) . . . . . . . . . . . . 153
\Cmi (y) . . . . . . . . . . . . 153
cmll (package) . 29, 35, 50, 61,
98, 239
\Cmo (A) . . . . . . . . . . . . 153
cmr (emf package option) . 126
\Cmu (B) . . . . . . . . . . . . 153
cmupint (package) 48, 49, 239,
240
\Cna (n) . . . . . . . . . . . . . 153
\Cne (N) . . . . . . . . . . . . . 153
\Cni (C) . . . . . . . . . . . . 153
\Cno (E) . . . . . . . . . . . . 153
\Cnu (F) . . . . . . . . . . . . . 153
\CO (
) . . . . . . . . . . . . . . 129
\Co (o) . . . . . . . . . . . . . 153
\coAsterisk (ˇ) . . . . . . . 31
\coAsterisk (`) . . . . . . . 33
\coasterisk (ˇ) . . . . . . . 31
i
\Coda () . . . . . . . . . . . . . 159
U
\coda () . . . . . . . . . . . . . 159
code page 1252 . . . . . . . . 235
table . . . . . . . . . . . . 237
code page 437 . . 130, 185, 234
\Coffeecup (K) . . . 177, 192
\coh (¨) . . . . . . . . . . . . . 61
coins, ancient . . . . . . . . . 26
\Colon (∷) . . . . . . . . . . . 115
\Colon (∷) . . . . . . . . . . . 115
\colon . . . . . . . . . . . . . . 114
\colon ( : ) . . . . . . . . . . . 114
\colon (∶) . . . . . . . . . . . . 115
\colon (∶) . . . . . . . . . . . . 115
\Colonapprox () . . . . . 51
\Colonapprox (::≈) . . . . . 59
\colonapprox (:≈) . . . . . 61
\colonapprox (:≈) . . . . . 59
\colonapprox ( ) . . . . . . 51
\coloncolon (::) . . . . . . . 61
\coloncolonapprox (::≈)
61
\coloncolonequals (::=)
61
\coloncolonminus (::−) . 61
\coloncolonsim (::∼) . . . 61
\Coloneq (H) . . . . . . . . . 51
\Coloneq (::−) . . . . . . . . 59
\Coloneq (⩴) . . . . . . . . . 58
\coloneq (–) . . . . . . . 29, 52
\coloneq (:−) . . . . . . . . . 59
\coloneq (D) . . . . . . . . . 51
\coloneq (≔) . . . . . . . . . 55
\coloneq (∶=) . . . . . . . . . 53
\coloneq (≔) . . . . . . . . . 58
\Coloneqq (F) . . . . . . . . 51
254
\Coloneqq (::=) . . . . . . . 59
\coloneqq (:=) . . . . . . . . 59
\coloneqq (B) . . . . . . 29, 51
\coloneqq (≔) . . . . . . . . 55
colonequals (package) . 29, 61,
239, 240
\colonequals (:=) . . . 29, 61
\colonminus (:−) . . . . . . 61
\Colonsim () . . . . . . . . 51
\Colonsim (::∼) . . . . . . . 59
\colonsim (:∼) . . . . . . . . 61
\colonsim (:∼) . . . . . . . . 59
\colonsim () . . . . . . . . 51
combelow (package) . 24, 239,
240
combinatorial logic gates . 130
comma-below accent (a, ) . . see
accents
\commaminus (⨩) . . . . . . . 34
communication symbols . . 130
commutative diagrams . . . 226
comp.text.tex (newsgroup) 13,
29, 30, 222–228
compass . . . . . . . . . 199–200
\compensation (n) . . . . . 181
\complement (A) . . . . . . . 96
\complement ({) . . . . . . . 96
\complement (ý) . . . . . . . 97
\complement (∁) . . . . . . . 97
\complement (∁) . . . . . . . 44
\complement (∁) . . . . . . . 97
complete shuffle product ( ) 35
\COMPLEX ( ) . . . . . . . . . . 92
\Complex ( ) . . . . . . . . . . 92
complex numbers (C) . . . see
alphabets, math
composited accents . . . . . 20
Comprehensive TEX Archive
Network 1, 12, 107, 124,
130, 219, 235, 238, 239
computer hardware symbols 129
computer keys . . . . . . . . . 129
Computer Modern (font) . 87,
219, 221, 234
computer symbols . . 194–197
\ComputerMouse (Í) . . . . 129
\concavediamond (⟡) . . . 38
\concavediamondtickleft (⟢)
. . . . . . . . 38
\concavediamondtickright
(⟣) . . . . . . . . . . . . 38
\Conclusion (;) . . . . . . . 116
\conductivity (𝜒) . . . . . 133
\cong () . . . . . . . . . . . . 50
\cong (æ) . . . . . . . . . . . . 57
\cong (≅) . . . . . . . . . . . . 55
\cong (≅) . . . . . . . . . . . . 53
\cong (≅) . . . . . . . . . . . . 58
\congdot (⩭) . . . . . . . . . 58
\Congruent (]) . . . . . . . . 116
congruent . . . . . . see \equiv
\conictaper (⌲) . . . . . . . 121
\conjquant (⨇) . . . . . . . 45
»
Ã
⨇
\conjquant ( ) . . . . . . . 46
\Conjunction (q) . . . . . . 128
\conjunction (V) . . . . . . 126
conjunction, logical see \wedge
and \&
consequence relations . . . . 60
contradiction symbols . 29, 90
control characters . . . . . . 130
\Conv (Conv) . . . . . . . . . 92
converse implication . . . . see
\leftarrow and \subset
converse nonimplication . . . . .
. . see \nleftarrow and
\nsubset
\convolution (˙) . . . . . . 31
\convolution (@) . . . . . . 33
\cooker ( ) . . . . . . . . . . 191
cooking symbols 191, 194–197
cookingsymbols (package) 191,
239, 240
\Cooley ( ) . . . . . . . . . . 191
\Coppa (Ϙ) . . . . . . . . . . . 154
\coppa (ϙ)∐︀ . . . . . . . . . . . 154
\coprod ( ) . . . . . . . . 29, 40
\coprod (∐) . . . . . . . . . . 45
\coprod (∐) . . . . . . . . . . 44
∐
\coprod ( ) . . . . . . . . . . 46
copyright . 14, 15, 26, 27, 236
\copyright (©) . . . . . . . 15
c
\copyright (○)
. . . . . . . 15
\corner (k) . . . . . . . . . . . 24
corners, box . . . . . . . . . . 185
\corona ( ̮) . . . . . . . . . . 184
\coronainv (Ϙ) . . . . . . . . 184
\Corresponds (=) . . . . . . 116
\corresponds (fl) . . . . . . 52
\corresponds () . . . . . . 57
\cos (cos) . . . . . . . . 91, 232
\cosh (cosh) . . . . . . . . . 91
\cot (cot) . . . . . . . . . . . 91
\coth (coth) . . . . . . . . . . 91
\counterplay (V) . . . . . . 181
countries . . . . . . . . . . . . . 188
European . . . . . . . . . 188
countriesofeurope (package) 188,
239, 240
CountriesOfEurope (font) 190
\countriesofeuropefamily . .
. . . . . . . 190
Courier (font) . . . . . . . . . 25
\Cov (Cov) . . . . . . . . . . . 92
\cov (cov) . . . . . . . . . . . 92
\covbond (⁀) . . . . . . . . . 133
cowboy hat . . . . . . . . . . . 107
CP1252 . . see code page 1252
CP437 . . . see code page 437
\Cpa (p) . . . . . . . . . . . . . 153
\Cpe (P) . . . . . . . . . . . . . 153
\Cpi (G) . . . . . . . . . . . . 153
\Cpo (H) . . . . . . . . . . . . 153
\Cpu (I) . . . . . . . . . . . . 153
\CR (
-) . . . . . . . . . . 129, 130
\cr . . . . . . . . . . . . . . . . . 224
\Cra (r) . . . . . . . . . . . . . 153
\Cre (R) . . . . . . . . . . . . 153
Creative Commons licenses 26,
27
crescent (fge package option) .
. . . . . . . 106
\crescHairpin ( ) . . . . 163
\Cri (O) . . . . . . . . . . . . 153
\Cro (U) . . . . . . . . . . . . . 153
\Croatia (‡) . . . . . . . . . . 189
\Cross (†) . . . . . . . . . . . 177
\Cross (*) . . . . . . . . . . . 137
\Cross ( ) . . . . . . . . . . . 143
\Cross ( ) . . . . . . . . . . . 143
\Cross († vs. * vs. ) . . . 220
\cross (*) . . . . . . . . . . . . 157
cross ratio . . see \textrecipe
\crossb () . . . . . . . . . . . 19
\CrossBoldOutline (-) . . 137
\CrossClowerTips (4) . . 137
\crossd ( ) . . . . . . . . . . . 19
\CrossedBox (X) . . . . . . . 138
\CrossedBox (X) . . . . . . . 138
\Crossedbox (X) . . . . . . . 138
crosses 137, 146, 169–173, 177,
182, 183, 199–200
\crossh (#) . . . . . . . . . . . 19
\crossing (œ) . . . . . . . . 55
\CrossMaltese (.) . . . . . 137
\crossnilambda (3) . . . . . 19
\CrossOpenShadow (+) . . . 137
\CrossOutline (,) . . . . . 137
crotchet
see musical symbols
\crotchet ( C ) . . . . . . . . . 162
\crotchetDotted ( u ) . . . . 162
\crotchetDottedDouble ( u u ) .
. . . . . . . 162
\crotchetDottedDoubleDown
uu
( ) . . . . . . . . . . . 162
u
\crotchetDottedDown ( ) 162
C
\crotchetDown ( ) . . . . . . 162
\crotchetRest ( ) . . . . . . 163
\crotchetRestDotted ( ) 163
crown . . . . . . . . . . . . . . . 107
Ŕ
\crtilde (ã) . . . . . . . . . . 22
\Cru (V) . . . . . . . . . . . . . 153
crucifixes . . 137, 177, 199–200
\Crux (†) . . . . . . . . . . . . 105
\crux (†) . . . . . . . . . . . . 105
cryst (package) . . . . 215, 239
crystallography symbols . 215–
216
\CS (/
-) . . . . . . . . . . . . . . 129
\Csa (s) . . . . . . . . . . . . . 153
\csc (csc) . . . . . . . . . . . . 91
\csch (csch) . . . . . . . . . . 92
\Cse (S) . . . . . . . . . . . . . 153
\cshuffle ( ) . . . . . . . . 35
255
\Csi (Y) . . . . . . . . . . . . . 153
\Cso (1) . . . . . . . . . . . . 153
\Csu (2) . . . . . . . . . . . . 153
\csub (⫏) . . . . . . . . . . . . 64
\csube (⫑) . . . . . . . . . . . 64
\csup (⫐) . . . . . . . . . . . . 64
\csupe (⫒) . . . . . . . . . . . 64
\Cta (t) . . . . . . . . . . . . . 153
CTAN see Comprehensive TEX
Archive Network
\Cte (T) . . . . . . . . . . . . . 153
\Cti (3) . . . . . . . . . . . . . 153
\Cto (4) . . . . . . . . . . . . . 153
\Ctrl ( Ctrl ) . . . . . . . . . 129
\Ctu (5) . . . . . . .
\Cu (u) . . . . . . .
\Cube (
222
cube root . . . . . .
cube rotations . . .
\Cup (d) . . . . . . .
\Cup (Ê) . . . . . . .
\Cup (⋓) . . . . . . .
\Cup (⋓) . . . . . . .
\Cup (⋓) . . . . . . .
\cup (Y) . . . . . . .
\cup (∪) . . . . . .
\cup (ƒ) . . . . . . .
\cup (∪) . . . . . . .
\cup (∪) . . . . . . .
\cup (∪) . . . . . . .
\cupbarcap (⩈) . .
\cupdot (⊍) . . . .
\cupdot (⊍) . . . .
\cupdot (⊍) . . . .
\Cupido (ä) . . . .
\cupleftarrow (¯)
\cupleftarrow (⊌)
\cupovercap (⩆) .
\cupplus (⊎) . . .
\cupplus (⊎) . . . .
\cupvee (⩅) . . . .
# »
\curl (curl) . . . .
\curlyc ( ) . . . . .
\curlyeqprec (ű)
\curlyeqprec (2)
\curlyeqprec (Ì)
\curlyeqprec (⋞)
\curlyeqprec (⋞)
\curlyeqprec (⋞)
\curlyeqsucc (ů)
\curlyeqsucc (3)
\curlyeqsucc (Í)
\curlyeqsucc (⋟)
\curlyeqsucc (⋟)
\curlyeqsucc (⋟)
\curlyesh (N) . . .
\curlyvee (O) . .
\curlyvee (g) . .
\curlyvee (Ï) . . .
\curlyvee (⋎) . . .
. . . . . . 153
. . . . . . 153
) 178,
. see \sqrt
. . . . . . 198
. . . . . . 30
. . . . . . 33
. . . . . . 33
. . . . . . 32
. . . . . . 34
. . . . . . 31
30, 223, 232
. . . . . . 33
. . . . . . 32
. . . . . . 32
. . . . . . 34
. . . . . . 34
. . . . . . 32
. . . . . . 32
. . . . . . 34
. . . . . . 128
. . . 33, 82
. . . . . 34
. . . . . . 34
. . . . 32, 33
. . . . . . 32
. . . . . . 34
. . . . . . 92
. . . . . . 19
. . . . . . 52
. . . . . . 50
. . . . . . 57
. . . . . . 55
. . . . . . 53
. . . . . . 58
. . . . . . 52
. . . . . . 50
. . . . . . 57
. . . . . . 55
. . . . . . 53
. . . . . . 58
. . . . . . 19
. . . . . . 31
. . . . . . 30
. . . . . . 33
. . . . . . 32
\curlyvee (⋎) . . . . . . . . . 32
\curlyvee (⋎) . . . . . . . . . 34
\curlyveedot (5) . . . . . . 32
\curlyveedownarrow (.) . 30
\curlyveedownarrow (Ý)
82
\curlyveeuparrow (/) . . . 30
\curlyveeuparrow (Ü) . . 82
\curlywedge (N) . . . . . . . 31
\curlywedge (f) . . . . . . . 30
\curlywedge (Î) . . . . . . . 33
\curlywedge (⋏) . . . . . . . 32
\curlywedge (⋏) . . . . . . . 32
\curlywedge (⋏) . . . . . . . 34
\curlywedgedot (4) . . . . 32
\curlywedgedownarrow (') 30
\curlywedgedownarrow (ß) 82
\curlywedgeuparrow (&) . 30
\curlywedgeuparrow (Þ) . 82
\curlyyogh (a) . . . . . . . . 19
\curlyz (^) . . . . . . . . . . . 19
\currency (¤) . . . . . . . . . 25
currency symbols . 25, 26, 121,
124
\curvearrowbotleft (ó)
73
\curvearrowbotleft (ó) . 82
\curvearrowbotleftright (õ)
. . . . . . . . 73
\curvearrowbotleftright (õ)
. . . . . . . . 82
\curvearrowbotright (ô) 73
\curvearrowbotright (ô) 82
\curvearrowdownup (Ë) . . 74
\curvearrowleft (ð) . . . 73
\curvearrowleft (x) . . . 72
\curvearrowleft (ð) . . . 82
\curvearrowleft (⤺) . . . 79
\curvearrowleft (↶) . . . 75
\curvearrowleft (↶) . . . 84
\curvearrowleftplus (⤽) 84
\curvearrowleftright (ò) 73
\curvearrowleftright (ò) 82
\curvearrowleftright (È) 74
\curvearrownesw (Ì) . . . 74
\curvearrownwse (Í) . . . 74
\curvearrowright (ñ) . . 73
\curvearrowright (y) . . 72
\curvearrowright (ñ) . . 82
\curvearrowright (”) . . 79
\curvearrowright (↷) . . 75
\curvearrowright (↷) . . 84
\curvearrowrightleft (Ê) 74
\curvearrowrightminus (⤼) .
. . . . . . . . 84
\curvearrowsenw (Ï) . . . 74
\curvearrowswne (Î) . . . 74
\curvearrowupdown (É) . . 74
cut time . . 159, 161, 163, 164
\CutLeft (q) . . . . . . . . . 135
cutoff subtraction see \dotdiv
\CutRight (s) . . . . . . . . . 135
\CuttingLine (R) . . . . . . 135
\Cwa (w) . . . . . . . . . . . . 153
\cwcirclearrow (⥁) . . . . 84
\cwcirclearrowdown (⟳)
\cwcirclearrowleft (µ)
\cwcirclearrowright (↻)
\cwcirclearrowup (´) . .
\Cwe (W) . . . . . . . . . . . . .
\cwgapcirclearrow (⟳) .
\cwgapcirclearrow (⟳) .
\Cwi (6) . . . . . . . . . . . .
\cwleftarcarrow (•) . . . .
\cwnearcarrow (⤵) . . . . .
\cwnwarcarrow (˜) . . . . .
\Cwo (7) . . . . . . . . . . . . .
\cwopencirclearrow (↻)
\cwopencirclearrow (↻)
142
\cwoverarcarrow (”) . . .
\cwrightarcarrow (⤸) . . .
\cwrightarcarrow (⤸) . . .
\cwsearcarrow (⤶) . . . . .
\cwswarcarrow (™) . . . . .
\cwunderarcarrow (–) . .
\cwundercurvearrow (⤾) .
\Cxa (x) . . . . . . . . . . . . .
\Cxe (X) . . . . . . . . . . . . .
\Cya (j) . . . . . . . . . . . . .
\Cyo (b) . . . . . . . . . . . .
\cyprfamily . . . . . . . . . .
Cypriot . . . . . . . . . . . . . .
cypriot (package) 153, 239,
\CYRSH (Ш) . . . . . . . . . .
\Cza (g) . . . . . . . . . . . .
\Czechia (ˆ) . . . . . . . . . .
\Czo (9) . . . . . . . . . . . . .
78
78
78
78
153
79
84
153
78
78
78
153
79
85,
78
78
84
78
78
78
84
153
153
153
153
153
153
240
222
153
189
153
D
D (D) . . . . . . . . . . . . . . . 157
\D (a) . . . . . . . . . . . . . . . 24
¨
d (esvect
package option) . 110
\d (ď) . . . . . . . . . . . . . . 157
\d (a.) . . . . . . . . . . . . . . . 20
d (d) . . . . . . . . . . . . . . . 157
d’Alembert operator . . . . see
\laplac
\DA () . . . . . . . . . . . . . . 129
\dag (†) . . . . . . . . . . 15, 237
\dag (†) . . . . . . . . . . . . . 15
\dagger (†) . . . . . . . . . . 30
\dagger (ñ) . . . . . . . . . . . 33
\dagger (†) . . . . . . . . . . . 34
\dalambert (å) . . . . . . . . 120
\daleth (k) . . . . . . . . . . 95
\daleth (ú) . . . . . . . . . . 95
\daleth (ℸ) . . . . . . . . . . 95
\daleth (ℸ) . . . . . . . . . . 95
\daleth (ℸ) . . . . . . . . . . 96
dancers (package) . . . 211, 239
dancing men . . . . . . 211–213
\danger (☡) . . . . . . . . . . 121
dangerous bend symbols . 176
Danish runes see normal runes
\dAnnoey ( ) . . . . . . . . . 191
\DArrow ( ↓ ) . . . . . . . . 129
256
\dasharrow . . . . . . . . . . . see
\dashrightarrow
\dasharrow (⇢) . . . . . . . 79
\dasharrow (⤏) . . . . . . . 85
\dashcolon (∹) . . . . . . . . 58
\dasheddownarrow (⇣) . . . 74
\dashedleftarrow (⇠) . . 74
\dashednearrow (d) . . . . 74
\dashednwarrow (e) . . . . 74
\dashedrightarrow (⇢) . . 74
\dashedsearrow (g) . . . . 74
\dashedswarrow (f) . . . . 74
\dasheduparrow
(⇡) . . . . . 74
∫︀
\dashint (−) . . . . . . . . . 225
\dashleftarrow (c) . . . . 72
\dashleftarrow (⇠) . . . . 79
\dashleftarrow (⇠) . . . . 75
\dashleftarrow (⤎) . . . . 85
\dashleftharpoondown (⥫) 86
\dashleftrightarrow (e) 73
\dashrightarrow (d) . . . 72
\dashrightarrow (⇢) . . . 79
\dashrightarrow (⇢) . . . 75
\dashrightarrow (⤏) . . . 85
\dashrightharpoondown (⥭) .
. . . . . . . . 86
\DashV ()) . . . . . . . . . . . 52
\DashV (Ú) . . . . . . . . . . . 57
\DashV (⫥) . . . . . . . . . . . 55
\DashV (⫥) . . . . . . . . . . . 58
\Dashv ()) . . . . . . . . . . . 52
\Dashv (⫤) . . . . . . . . . . . 55
\Dashv (⫤) . . . . . . . . . . . 58
\dashV (Û) . . . . . . . . . . . 57
\dashV (⫣) . . . . . . . . . . . 55
\dashV (⫣) . . . . . . . . . . . 58
\dashv (⊣) . . . . . . . . . . . 50
\dashv (⊣) . . . . . . . . . . . 55
\dashv (⊣) . . . . . . . . . . . 53
\dashv (⊣) . . . . . . . . . . . 58
\DashVDash (⟚) . . . . . . . 58
\dashVdash (⟛) . . . . . . . 58
\dashVv (-) . . . . . . . . . . 52
\dashVv (Ø) . . . . . . . . . . 57
\dashVv (ý) . . . . . . . . . . 55
database symbols . . . . . . 121
\davidsstar (C) . . . . . . . 139
\DavidStar (0) . . . . . . . 139
\DavidStarSolid (/) . . . 139
\dBar (||) . . . . . . . . . . . . 184
\dbar (¯
𝑑) . . . . . . . . . . . . 223
\dbend () . . . . . . . . . . 176
\dbkarow (⤏) . . . . . . . 84, 85
dblaccnt (package) . . . . . . 227
\dblcolon (::) . . . . . . . . . 59
\DCa (␑) . . . . . . . . . . . . . 130
\DCb (␒) . . . . . . . . . . . . . 130
\DCc (␓) . . . . . . . . . . . . . 130
\dcChangey ( ) . . . . . . . . 191
\DCd (␔) . . . . . . . . . . . . . 130
\dChangey ( ) . . . . . . . . . 191
\dCooley ( ) . . . . . . . . . 191
\DD () . . . . . . . . . . 129, 160
\ddag (‡) . . .
\ddag (‡) . . .
\ddagger (‡) .
\ddagger (ò) .
\ddagger (‡)∫︀ .
\ddashint (=)
\Ddashv (ÿ) .
\ddddot (⃜) . .
....
\ddddot ( ) .
\dddot (⃛) . .
...
\dddot ( ) . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
15,
..
..
..
..
..
..
..
..
..
..
237
15
30
33
34
225
55
106
105
106
105
\dddtstile ( ) . . . . . . .
\ddigamma (ϝ) . . . . . . . . .
\DDohne (D
/D) . . . . . . . . . .
\ddot ( ̈ ) . . . . . . . . . . . .
\ddot (¨) . . . . . . . . . . . .
\ddotdot () . . . . . . . 32,
\ddotdot () . . . . . . . 32,
.
\ddots ( . . ) . . . . . . . . . .
.
\ddots ( . . ) . . . 114, 226,
\ddots (⋱) . . . . . . . . . . .
\ddots (⋱) . . . . . . . . . . .
\ddots (⋱) . . . . . . . . . . .
\ddotseq (⩷) . . . . . . . . .
\DDownarrow (⟱) . . . . . .
⟰
⟰
⟰
\DDownarrow ( ⟰
⟰
⟰) . . . . .
\Ddownarrow (⤋)⟱. . . . . . .
60
154
160
106
105
115
115
.
.
.
.
.
.
.
.
.
.
115
227
115
115
115
58
84
102
78
\Ddownarrow (⤋) . . . . . . . 84
⤊
⤊
⤊
\Ddownarrow ( ⤊
⤊
⤊) . . . . . 102
⤋
\ddststile ( ) . . . . . . . 60
\ddtstile (
) ........
60
\ddttstile (
) . . . . . . 60
\DE () . . . . . . . . . . . . . . 129
\DeclareFontFamily 218, 231
\DeclareFontShape . 218, 231
\DeclareMathOperator . . 232
\DeclareMathOperator* . 232
\declareslashed . . . . . . 224
\DeclareUnicodeCharacter . .
. . . . . . . 237
\decofourleft (;) . . . . . 140
\decofourright (<) . . . . 140
\decoone (8) . . . . . . . . . 140
decorative borders . . 204–210
\decosix (=) . . . . . . . . . 140
\decothreeleft (9) . . . . 140
\decothreeright (:) . . . 140
\decotwo (A) . . . . . . . . . 140
\decrescHairpin ( ) . . 163
Dedekind, Richard . . . . . . 222
definite-description operator ( )
. . . . . . . 222
definition symbols . . . 29, 227
\deg (deg) . . . . . . . . . . . 91
\degree (0) . . . . . . . . . . . 119
\degree (°) . . . . . . . . . . . 125
degrees . . . . see \textdegree
\DEL (␡) . . . . . . . . . . . . . 130
\DEL (␡) . . . . . . . . . . . . . 130
\Del ( Del ) . . . . . . . . . . 129
\Del ( Del ) . . . . . . . . . . 129
\Deleatur . . . . see \Denarius
delimiters . . . . . . . . . 98–105
text-mode . . . . 104, 105
variable-sized . . . 99–104
wavy-line . . . . . 100–103
\Delta (Δ) . . . . . . . . . . . 93
\delta (𝛿) . . . . . . . . . . . 93
\deltaup (δ) . . . . . . . . . . 94
deminutum . . . . see musixgre
demisemiquaver . . see musical
symbols
\demisemiquaver ( Z ) . . . . 162
\demisemiquaverDotted ( Z ) .
. . . . . . . 162
\demisemiquaverDottedDouble
( Z ) . . . . . . . . . . . 162
\demisemiquaverDottedDoubleDown
Z
( ) . . . . . . . . . . . 162
\demisemiquaverDottedDown
Z
( ) . . . . . . . . . . . . 162
Z
\demisemiquaverDown ( ) 162
\Denarius (¢) . . . . . . . . 25
\denarius (Ε) . . . . . . . . 26
\Denmark (‰) . . . . . . . . . . 189
\dental (ag ) . . . . . . . . . . . 22
\Dep () . . . . . . . . . . . . . . 159
derivitive, partial see \partial
Descartes’s equal sign (›) . . .
. . see \rightpropto and
\backpropto
\descnode () . . . . . . . . 126
\det (det) . . . . . . . . . . . 91
\devadvantage (t) . . . . . 181
!
.
\Dfourier ( ... ) . . . . . .
\Dfourier (Ë) . . . . . . . . .
.
\dfourier ( ... ) . . . . . .
\dfourier (Ê) . . . . . . . . .
\DFT (
61
57
61
57
) . . . . . . . . . . . 112
\dft (
) ...
\DH (D) . . . . . .
\DH (Ð) . . . . . .
\dh (k) . . . . . .
\dh (ð) . . . . . .
diacritics . . . . .
\diaeresis (ä)
diæresis (ä) . . .
\diagdown (å)
\diagdown ()
\diagdown (Ü)
\diagdown (Ó)
\diagdown (⟍)
\diagonal (G)
\diagup (ä) . .
\diagup () . .
\diagup (Û) . .
\diagup (Ò) . .
\diagup (⟋) . .
\diameter (I)
\diameter ()
257
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . . . 112
. . . . . 19
. . 15, 236
. . . . . 19
. . 15, 236
see accents
. . . . . . 23
see accents
. . . . . . 119
. . . . . . 119
. . . . . . 120
. . . . . . 53
. . . . . . 121
. . . . . . 181
. . . . . . 119
. . . . . . 119
. . . . . . 120
. . . . . . 53
. . . . . . 121
. . . . . . 119
. . . . . . 29
\diameter (∅) . . . . . . . . 120
\diameter (∅) . . . . . . . . . 119
\diameter (⌀) . . . . . . . . . 121
\diameter () . . . . . . . . 176
\Diamond (^) . . . . . . . . . 118
\Diamond (3) . . . . . . . . . 119
\Diamond (◇) . . . . . . . . . 37
\Diamond (◇) . . . . . . . . . 36
\Diamond (◊) . . . . . . . . . 142
\diamond (◇) . . . . . . . . . . 30
\diamond (}) . . . . . . . 37, 141
\diamond (⋄) . . . . . . . . . . 37
\diamond (◇) . . . . . . . . . . 36
\diamond (⋄) . . . . . . . 38, 142
\diamondbackslash (ˆ) . 36
\diamondbackslash ({) . . 36
\diamondbar (ª) . . . . . . . 37
\Diamondblack (_) . . . . . 119
\diamondbotblack (⬙) . . 142
\diamondbslash (ˆ) . . . . 37
\diamondcdot (⟐) . . . . . . 37
\diamondcdot (⟐) . . . . . 142
\diamondcircle (®) . . . . 37
\diamonddiamond (Œ) . . . 36
\diamonddiamond () . . . 36
\Diamonddot () . . . . . . . 119
\diamonddot (⟐) . . . . . . . 36
\diamonddot (⟐) . . . . . . . 36
\DiamonddotLeft () . . 73
\Diamonddotleft (‡) . . 73
\DiamonddotRight (Ž) . 73
\Diamonddotright (†) . 73
\diamonddots ( ) . . . 32, 115
\DiamondLeft () . . . . . 73
\Diamondleft ( ) . . . . . 73
\diamondleftarrow (⤝) . 84
\diamondleftarrowbar (⤟) 84
\diamondleftblack (⬖) . 142
\diamondminus (©) . . . . . 37
\diamondminus ( ) . . . . . 36
\diamondminus (x) . . . . . 36
\diamondop (¨) . . . . . . . . 37
\diamondplus (¬) . . . . . . 37
\diamondplus (‰) . . . . . . 36
\diamondplus (|) . . . . . . 36
\DiamondRight (Œ) . . . . 73
\Diamondright („) . . . . 73
\diamondrightblack (⬗) 142
diamonds . . . . see rhombuses
\DiamondShadowA ( ) . . . 143
\DiamondShadowB ( ) . . . 143
\DiamondShadowC ( ) . . . 143
\Diamondshape ( ) . . . . . 143
\diamondslash (‡) . . . . . 36
\diamondslash (z) . . . . . 36
\DiamondSolid (p) . . . . . 143
\diamondsuit (♢) . . . . . . 145
\diamondsuit (õ) . . . . . . 145
\diamondsuit (♢) . . . . . . 145
\diamondsuit (♢) . . . . . . 145
\diamondsuit (♢) . . . . . . 146
\diamondtimes («) . . . . . 37
6
𝜄
\diamondtimes (Š) . . . . . 36
\diamondtimes (}) . . . . . 36
\diamondtopblack (⬘) . . 142
\diamondtriangle (­) . . . 37
\diamondvert (†) . . . . . . 36
\diamondvert (y) . . . . . . 36
\diatop . . . . . . . . . . 24, 227
\diaunder . . . . . . . . . 24, 227
dice . . . . . 178, 179, 216, 222
dice (package) . . . . . 216, 239
\dicei (⚀) . . . . . . . . . . . 179
\diceii (⚁) . . . . . . . . . . 179
\diceiii (⚂) . . . . . . . . . 179
\diceiv (⚃) . . . . . . . . . . 179
\dicev (⚄) . . . . . . . . . . . 179
\dicevi (⚅) . . . . . . . . . . 179
dictionary symbols 17–20, 184
dictsym (package) 184, 239, 240
died . . . . . . . . see \textdied
differential, inexact see \dbar
\Digamma (\) . . . . . . . . . . 154
\Digamma (Ϝ) . . . . . . . . . 154
\digamma (z) . . . . . . 93, 154
\digamma (?) . . . . . . . . . . 154
\digamma (ϝ) . . . . . . . . . . 97
\digamma (ϝ) . . . . . . . . . . 154
digital logic gates . . . . . . 130
digits . . . . . . . . see numerals
\dim (dim) . . . . . . . . . . . 91
\ding . 16, 134–139, 144, 146
\ding{33} (!) . . . . . . . . 135
\ding{34} (") . . . . . . . . 135
\ding{35} (#) . . . . . . . . 135
\ding{36} ($) . . . . . . . . 135
\ding{37} (%) . . . . . . . . . 146
\ding{38} (&) . . . . . . . . 146
\ding{39} (') . . . . . . . . 146
\ding{40} (() . . . . . . . . 146
\ding{41} ()) . . . . . . . . . 146
\ding{42} (*) . . . . . . . . 136
\ding{43} (+) . . . . . . . . 136
\ding{44} (,) . . . . . . . . . 136
\ding{45} (-) . . . . . . . . 136
\ding{46} (.) . . . . . . . . 136
\ding{47} (/) . . . . . . . . 136
\ding{48} (0) . . . . . . . . 136
\ding{49} (1) . . . . . . . . 136
\ding{50} (2) . . . . . . . . 136
\ding{51} (3) . . . . . . . . . 138
\ding{52} (4) . . . . . . . . 138
\ding{53} (5) . . . . . . . . 138
\ding{54} (6) . . . . . . . . 138
\ding{55} (7) . . . . . . . . . 138
\ding{56} (8) . . . . . . . . . 138
\ding{57} (9) . . . . . . . . 137
\ding{58} (:) . . . . . . . . 137
\ding{59} (;) . . . . . . . . 137
\ding{60} (<) . . . . . . . . . 137
\ding{61} (=) . . . . . . . . . 137
\ding{62} (>) . . . . . . . . . 137
\ding{63} (?) . . . . . . . . . 137
\ding{64} (@) . . . . . . . . . 137
\ding{65} (A) . . . . . . . . . 139
\ding{66} (B)
\ding{67} (C)
\ding{68} (D)
\ding{69} (E)
\ding{70} (F)
\ding{71} (G)
\ding{72} (H)
\ding{73} (I)
\ding{74} (J)
\ding{75} (K)
\ding{76} (L)
\ding{77} (M)
\ding{78} (N)
\ding{79} (O)
\ding{80} (P)
\ding{81} (Q) .
\ding{82} (R) .
\ding{83} (S) .
\ding{84} (T)
\ding{85} (U)
\ding{86} (V) .
\ding{87} (W)
\ding{88} (X)
\ding{89} (Y)
\ding{90} (Z)
\ding{91} ([) .
\ding{92} (\) .
\ding{93} (]) .
\ding{94} (^) .
\ding{95} (_)
\ding{96} (`)
\ding{97} (a)
\ding{98} (b)
\ding{99} (c) .
\ding{100} (d)
\ding{101} (e)
\ding{102} (f)
\ding{103} (g)
\ding{104} (h)
\ding{105} (i)
\ding{106} (j)
\ding{107} (k)
\ding{108} (l)
\ding{109} (m)
\ding{110} (n)
\ding{111} (o)
\ding{112} (p)
\ding{113} (q)
\ding{114} (r)
\ding{115} (s)
\ding{116} (t)
\ding{117} (u)
\ding{118} (v)
\ding{119} (w)
\ding{120} (x) .
\ding{121} (y)
\ding{122} (z)
\ding{123} ({)
\ding{124} (|)
\ding{125} (})
\ding{126} (~)
\ding{161} (¡)
\ding{162} (¢)
258
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
139
144
144
144
144
144
144
144
144
144
144
146
144
144
144
144
16
16
16
16
16
16
\ding{163}
\ding{164}
\ding{165}
\ding{166}
\ding{167}
\ding{168}
\ding{169}
\ding{170}
\ding{171}
\ding{172}
\ding{173}
\ding{174}
\ding{175}
\ding{176}
\ding{177}
\ding{178}
\ding{179}
\ding{180}
\ding{181}
\ding{182}
\ding{183}
\ding{184}
\ding{185}
\ding{186}
\ding{187}
\ding{188}
\ding{189}
\ding{190}
\ding{191}
\ding{192}
\ding{193}
\ding{194}
\ding{195}
\ding{196}
\ding{197}
\ding{198}
\ding{199}
\ding{200}
\ding{201}
\ding{202}
\ding{203}
\ding{204}
\ding{205}
\ding{206}
\ding{207}
\ding{208}
\ding{209}
\ding{210}
\ding{211}
\ding{212}
\ding{213}
\ding{214}
\ding{215}
\ding{216}
\ding{217}
\ding{218}
\ding{219}
\ding{220}
\ding{221}
\ding{222}
\ding{223}
\ding{224}
\ding{225}
(£)
(¤)
(¥)
(¦)
(§)
(¨)
(©)
(ª)
(«)
(¬)
(­)
(®)
(¯)
(°)
(±)
(²)
(³)
(´)
(µ)
(¶)
(·)
(¸)
(¹)
(º)
(»)
(¼)
(½)
(¾)
(¿)
(À)
(Á)
(Â)
(Ã)
(Ä)
(Å)
(Æ)
(Ç)
(È)
(É)
(Ê)
(Ë)
(Ì)
(Í)
(Î)
(Ï)
(Ð)
(Ñ)
(Ò)
(Ó)
(Ô)
(Õ)
(Ö)
(×)
(Ø)
(Ù)
(Ú)
(Û)
(Ü)
(Ý)
(Þ)
(ß)
(à)
(á)
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
.
..
..
.
..
.
.
.
.
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
16
146
146
146
146
146
146
146
146
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
138
134
134
134
134
134
134
134
134
134
134
134
134
134
134
\ding{226} (â) . . . . . . . 134
\ding{227} (ã) . . . . . . . 134
\ding{228} (ä) . . . . . . . 134
\ding{229} (å) . . . . . . . 134
\ding{230} (æ) . . . . . . . 134
\ding{231} (ç) . . . . . . . . 134
\ding{232} (è) . . . . . . . 134
\ding{233} (é) . . . . . . . . 134
\ding{234} (ê) . . . . . . . . 134
\ding{235} (ë) . . . . . . . 134
\ding{236} (ì) . . . . . . . 134
\ding{237} (í) . . . . . . . . 134
\ding{238} (î) . . . . . . . . 134
\ding{239} (ï) . . . . . . . 134
\ding{241} (ñ) . . . . . . . 134
\ding{242} (ò) . . . . . . . . 134
\ding{243} (ó) . . . . . . . 134
\ding{244} (ô) . . . . . . . . 134
\ding{245} (õ) . . . . . . . 134
\ding{246} (ö) . . . . . . . . 134
\ding{247} (÷) . . . . . . . 134
\ding{248} (ø) . . . . . . . 134
\ding{249} (ù) . . . . . . . 134
\ding{250} (ú) . . . . . . . . 134
\ding{251} (û) . . . . . . . 134
\ding{252} (ü) . . . . . . . 134
\ding{253} (ý) . . . . . . . 134
\ding{254} (þ) . . . . . . . 134
\dingasterisk (✽) . . . . . 121
dingautolist . . . . . . . . . 138
dingbat (package) . . . 136, 146,
207, 220, 239, 240
dingbat symbols . . . 134–147
\dInnocey ( ) . . . . . . . . . 191
\Diple (>) . . . . . . . . . . . 183
\diple (>) . . . . . . . . . . . 183
· ) . . . . . . . . . . 183
\Diple* (>
·
\diple* (>·· ) . . . . . . . . . . 183
\dipole (𝑉) . . . . . . . . . . 133
Dirac notation . . . . . . . . . 99
\Direct (7) . . . . . . . . . . 128
discount . see \textdiscount
discretionary hyphen . . . . 235
\Dish () . . . . . . . . . . . . 191
\disin (<) . . . . . . . . . . . 57
\disin (⋲) . . . . . . . . . . . 58
disjoint union . . . . . . . . . 29
\disjquant (⨈) . . . . . . . 45
⨈
\disjquant ( ) . . . . . . . 46
disjunction . . . . . . . see \vee
\displaystyle 225, 226, 228,
232
ditto marks see \textquotedbl
\div (÷) . . . . . . . . . . . . 30
\div (|) . . . . . . . . . . . . . 33
\div (÷) . . . . . . . . . . . . . 32
\div (÷) . . . . . . . . . . . . . 32
\div (÷) . . . . . . . . . . . . . 34
\divdot (˜) . . . . . . . . . . 31
\divg (div) . . . . . . . . . . 92
\divideontimes (¸) . . . . 31
\divideontimes (>) . . . . 30
\divideontimes (Ã) . . . . 33
\divideontimes (⋇) . . . . 32
\divideontimes (⋇) . . . . 34
\Divides ([) . . . . . . . . . . 116
\divides () . . . . . . . . . . 52
\divides (Ò) . . . . . . . . . 53
\DividesNot (\) . . . . . . . 116
division . . . . 30, 107, 109, 114
long . . . . . . . . . 107, 109
non-commutative . . . 114
polynomial . . . . . . . . 107
division times . . . . . . . . . see
\divideontimes
divorced . see \textdivorced
\divslash (/) . . . . . . . . . 32
\DJ (Ð) . . . . . . . . . . . . . . 15
\dj (đ) . . . . . . . . . . . . . . 15
\DL () . . . . . . . . . . . . . . 129
\dLaughey ( ) . . . . . . . . . 191
\dlbari (() . . . . . . . . . . . 19
\DLE (␐) . . . . . . . . . . . . . 130
\dlsh (ê) . . . . . . . . . . . . 73
\dlsh (ø) . . . . . . . . . . . . 82
\DM ( ) . . . . . . . . . . . . . . 129
\Dmesonminus (Ý) . . . . . 133
\Dmesonnull (Þ) . . . . . . 133
\Dmesonplus (Ü) . . . . . . 133
\dndtstile ( ) . . . . . . . 60
\dNeutrey ( ) . . . . . . . . . 191
\dNinja ( ) . . . . . . . . . . 191
\dnststile ( ) . . . . . . . 60
\dntstile ( ) . . . . . . . . 60
) . . . . . . 60
\dnttstile (
\dNursey ( ) . . . . . . . . . . 191
do not enter . . . . see \noway
does not divide . . . see \nmid
does not exist . see \nexists
does not imply . . . . . . . . 224
\Dohne (D
/ ) . . . . . . . . . . . 160
Dohse, Max . . . . . . . . . . . 225
dollar . . . . . see \textdollar
dollar sign . . . . . . . . . . see \$
dominance . . . . . . see \prec
negative . . . . see \nprec
negative weak . . . . . see
\npreccurlyeq
strict . . . . . . . see \Prec
weak . see \preccurlyeq
\Dontwash (Ý) . . . . . . . . 177
\dot ( ̇ ) . . . . . . . . . . . . . 106
\dot ( ˙ ) . . . . . . . . . . . . . 105
\dot (.) . . . . . . . . . . . . . 157
dot accent (ȧ or . ) see accents
dot symbols . . . 14, 114–116,
226–227
DotArrow (package) . 112, 239,
240
≻ )
. . . . . 112
\dotarrow (
˙ . . . . . . . . . . 55
\dotcong (≅)
· . . . . . . . 29, 223
\dotcup (∪)
\dotdiv (´) . . . . . . . . . . 31
\Doteq . . . . . . see \doteqdot
\Doteq (≑) . . . . . . . . . . . 55
259
\Doteq (≑) . . . . . . . . . . . 53
\Doteq (≑) . . . . . . . . . 58, 59
\doteq () . . . . . . . . . . . 50
\doteq (ƒ) . . . . . . . . . . . 57
\doteq (≐) . . . . . . . . . . . 55
\doteq (≐) . . . . . . . . . . . 53
\doteq (≐) . . . . . . . . . . . 58
\doteqdot (+) . . . . . . . . 50
\doteqdot (Û) . . . . . . . . . 57
\doteqdot (≑) . . . . . . . . . 55
\doteqdot (≑) . . . . . . . . . 53
\doteqdot (≑) . . . . . . . . . 59
\dotequiv (⩧) . . . . . . . . . 58
dotless 𝑗 (𝚥)
text mode . . . . . . . . 20
dotless 𝑖 (𝚤)
math mode . . . 105, 118
text mode . . . . . . . . 20
dotless 𝑗 (𝚥)
math mode . . . 105, 118
\dotmedvert () . . . . . . . 32
\dotminus (†) . . . . . . . . . 57
\dotminus (∸) . . . . . . . . . 32
\dotminus () . . . . . . . . . 32
\dotminus (∸) . . . . . . . . . 34
\dotplus (`) . . . . . . . . . 31
\dotplus (u) . . . . . . . . . 30
\dotplus (Þ) . . . . . . . . . 33
\dotplus (∔) . . . . . . . . . 32
\dotplus (∔) . . . . . . . . . 34
\dots . . . . . . . . . . . . . . . 15
\dots (. . . ) . . . . . . . . . . . 237
dots (ellipses) 14, 15, 114–116,
118, 226–227
\dotsb (· · · ) . . . . . . . . . 114
\dotsb (⋯) . . . . . . . . . . . 115
\dotsc (. . .) . . . . . . . . . . 114
\dotseq („) . . . . . . . . . . 52
\dotsi (· · · ) . . . . . . . . . 114
\dotsim (‰) . . . . . . . . . . 57
\dotsim (⩪)
¯ . . . . . . . . . . 58
\dotsint ( ) . . . . . . . . 43
\dotsint (∫⋯∫) . . . . . . . . 45
\dotsm (· · · ) . . . . . . . . . 114
\dotsm (⋯) . . . . . . . . . . . 115
\dotsminusdots (∺) . . . . 55
\dotsminusdots (∺) . . . . 58
\dotso (. . .) . . . . . . . . . . 114
dotted arrows . . . . . . . . . 112
˙ . . . . . . . 232
dotted union (∪)
\dottedcircle (◌) . . . . . 142
\dottedsquare (⬚) . . . . . 142
.. . . . . . . 22
\dottedtilde (ã)
\dottimes (ˆ) . . . . . . . . 31
\dottimes (Œ) . . . . . . . . . 33
\dottimes (⨰) . . . . . . . . . 33
\dottimes (⨰) . . . . . . . . . 34
\double . . . . . . . . . . . . . 104
double acute (a̋) . see accents
\doublebar (") ⨎. . . . . . . . 157
\doublebarint ( ) . . . . . . 48
\doublebarvee (⩢) . . . . . 34
\doublebarwedge (Z) . . . 31
\doublebarwedge ([) . . . 30
\doublebarwedge (Ò) . . . . 33
\doublebarwedge (⩞) . . . 33
\doublebarwedge (⩞) . . . . 34
\doublecap . . . . . . . see \Cap
\doublecap (\) . . . . . . . . 31
\doublecap (⋒) . . . . . . . 33
\doublecap (⋒) . . . . . . . . 32
\doublecap (⋒) . . . . . . . . 34
\doublecovbond (Å) . . . 133
\doublecross (%) . . . . . . 157
\doublecup . . . . . . . see \Cup
\doublecup (]) . . . . . . . . 31
\doublecup (⋓) . . . . . . . 33
\doublecup (⋓) . . . . . . . . 32
\doublecup (⋓) . . . . . . . . 34
\doublecurlyvee (7) . . . 32
\doublecurlywedge (6) . . 32
\doubledot (:) . . . . . . . . 157
\doubleeye (:) . . . . . . . . 157
\doublefrown () . . . . . . 89
\doublefrowneq (%) . . . . . 89
\doublepawns (d) . . . . . . 181
\doubleplus (,) . . . . . . . 157
\doubleplus (⧺) . . . . . . . 34
\doublesharp ( ) . . . . . . . 163
\doublesmile () . . . . . . 89
\doublesmileeq ($) . . . . . 89
\doublesqcap (⩎) . . . . . . 33
\doublesqcap (⩎) . . . . . . 32
\doublesqcup (⩏) . . . . . . 33
\doublesqcup (⩏) . . . . . . 31
\doublestar (%) . . . . . . . 157
\doublethumb () . . . . . . . 159
\doubletilde (˜
ã) . . . . . . 22
\doublevee (⩖) . . . . . 32, 33
\doublevee (⩔) . . . . . . . . 31
\doublewedge (⩕) . . . . 32, 33
\doublewedge (⩕) . . . . . . 31
\DOWNarrow (L) . . . . . . . . 176
\Downarrow (⇓) . . . . . . 72, 99
\Downarrow (⇓) . . . . . . . . 78
Ë
Ë
Ë
Ë
Ë
\Downarrow ( ⇓) . . . . . . . 101
\Downarrow (⇓) . . . . . . . . 74
\Downarrow (⇓) . . . . . . . . 84
⇑
⇑
⇑
⇑
\Downarrow ( ⇑
⇑) . . . . . . . 103
\downarrow . .⇓. . . . . . . . . 232
y
\downarrow (↓) .
È
È
È
È
È
\downarrow ( ↓)
\downarrow (↓) .
\downarrow (↓) .
\downarrow (↓) .
⏐
⏐
⏐
\downarrow ( ⏐
⏐
⏐)
\downarrow (↓)↓ .
. . . . . 72, 99
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 101
. 78
. 74
. 87
....
....
\downarrowbar (⤓) . .
\downarrowbarred (⤈)
\downarrowtail (#) . .
\downarrowtail (#) . .
\downAssert (⫧) . . . .
\downassert (⫟) . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 103
. 84
. 84
. 84
. 78
. 74
. 55
. 55
\downbkarrow (⇣) . . . . . . 78
\downblackarrow (0) . . . . 82
\downblackspoon (o) . . . . 89
\downbow () . . . . . . . . . . . 159
\downbracketfill . . . . . . 228
\downdasharrow (#) . . . . . 82
\downdasharrow (⇣) . . . . . 84
\downdownarrows (Ó) . . . 73
\downdownarrows () . . . 72
\downdownarrows (—) . . . 82
\downdownarrows (⇊) . . . 78
\downdownarrows (⇊) . . . 74
\downdownarrows (⇊) . . . 84
\downdownharpoons (Û) . . 74
Downes, Michael J. . . 91, 241
\downfilledspoon (s) . . . 88
\downfishtail (⥿) . . . . . 58
\downfootline ({) . . . . . . 53
\downfree (⫝) . . . . . . . . . 53
\downharpoonccw (⇂) . . . . 77
\downharpooncw (⇃) . . . . . 77
\downharpoonleft (å) . . . 74
\downharpoonleft () . . . 72
\downharpoonleft () . . . 83
\downharpoonleft (⇃) . . . 81
\downharpoonleft (⇃) . . . 86
\downharpoonleftbar (⥙)
86
\downharpoonright (ç) . . 74
\downharpoonright () . . 72
\downharpoonright () . . 83
\downharpoonright (⇂) . . 81
\downharpoonright (⇂) . . 86
\downharpoonrightbar (⥕) 86
\downharpoonsleftright (⥥) .
. . . .⨜. . . . 86
\downint ( ) . . . . . . . . . . 48
\downlcurvearrow (⤸) . . . 79
\downleftcurvedarrow (¢) 79
\downlsquigarrow (‹) . . . 79
\downlsquigarrow (£) . . . 74
\Downmapsto (/) . . . . . . . 78
\downmapsto (↧) . . . . . . . 78
\downmapsto (↧) . . . . . . . 74
\downModels (ó) . . . . . . . 53
\downmodels (ï) . . . . . . . 55
\downmodels (ã) . . . . . . . 53
\downp (u) . . . . . . . . . . . . 24
\downparenthfill . . . . . . 228
\downpitchfork (w) . . . . 90
\downpitchfork (⫛) . . . . . 88
\downpropto () . . . . . . . 53
\downrcurvearrow (⤹) . . . 79
\downrightcurvedarrow (⤵) .
. . . . . . . . 79
\downrightcurvedarrow (⤵) .
. . . . . . . . 84
\downrsquigarrow () . . . 79
\downrsquigarrow («) . . . 74
\downslice (Â) . . . . . . . . 36
\downspoon (⫰) . . . . . . . . 89
\downspoon (⫰) . . . . . . . . 88
\downt (m) . . . . . . . . . . . . 24
\downtherefore (∵) . . . . 115
—
260
\downtherefore (∵) . 31, 115
\downtouparrow (ß) . . . . 73
\downtouparrow (ë) . . . . 82
\downtriangleleftblack (⧨)
. . . . . . . 141
\downtrianglerightblack
(⧩) . . . . . . . . . . . 141
\downuparrows (Œ) . . . . . 73
\downuparrows (⇵) . . . . . 78
\downuparrows () . . . . . 74
\downuparrows (⇵) . . . . . 84
\downupcurvearrow (§) . . 79
\downupharpoons (ë) . . . . 74
\downupharpoons (⥯) . . . 81
\downupharpoons (⥯) . . . . 77
\downupharpoonsleftright
(⥯) . . . . . . . . . . . . 81
\downupharpoonsleftright
(⥯) . . . . . . . . . . . . . 86
\downupsquigarrow (“) . . 79
\downVDash (û) . . . . . . . . 55
\downVdash (⍑) . . . . . . . . 55
\downVdash (⍑) . . . . . . . . 53
\downvDash (⫪) . . . . . . . . 55
\downvdash (⊤) . . . . . . . . 55
\downvdash (⊤) . . . . . . . . 53
\downwavearrow (‹) . . . . . 78
\downwhitearrow (%) . . . . 82
\downwhitearrow (⇩) . . . . 84
\downY (/) . . . . . . . . . . . 32
\downY (+) . . . . . . . . . . . 31
\downzigzagarrow () . . . 82
\downzigzagarrow (↯) . . . 79
\downzigzagarrow (↯) . . . 84
Doyle, Sir Arthur Conan . 213
dozenal (package) . . . 117, 180,
239, 240
dozenal (base 12)
numerals . . . . . . . . . 117
tally markers . . . . . . 180
\dprime (″) . . . . . . . . . . 117
\DQ (%
) . . . . . . . . . . . . . . 129
\dracma (Δ) . . . . . . . . . . . 26
\draftingarrow (➛) . . . . 84
\drbkarow (⤐) . . . . . . . 84
\Dreizack ( ) . . . . . . . . . . 191
\droang ( ̚ ) . . . . . . . . . . . 106
\drsh (ë) . . . . . . . . . . . . 73
\drsh (ù) . . . . . . . . . . . . 82
M
\drumclef (
)
\drWalley ( ) .
\DS (SS) . . . . . . .
\Ds (ss) . . . . . . .
.
.
.
.
.
.
.
.
\ds () . . . . . . . . . . . .
\dSadey ( ) . . . . . . .
\dsaeronautical (a)
\dsagricultural (G)
\dsarchitectural (A)
\dsbiological (B) . .
\DSC (2) . . . . . . . . .
\dschemical (C) . . . .
.
.
.
.
?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
160
191
160
160
.
.
.
.
.
..
..
..
.
.
.
.
.
.
.
.
159
191
184
184
184
184
128
184
\dscommercial (c) . . . . . 184
\dsdtstile ( ) . . .
\dSey ( ) . . . . . . . .
dsfont (package) . . .
\dsheraldical (H) .
\dsjuridical (J) . .
\dSleepey ( ) . . . .
\dsliterary (L) . . .
\dsmathematical (M)
\dsmedical (m) . . . .
\dSmiley ( ) . . . . .
\dsmilitary (X) . . .
\dsol (⧶) . . . . . . . .
\dsrailways (R) . . .
dsserif (package) . . .
....
....
123,
....
....
....
....
....
....
....
....
....
....
123,
60
191
239
184
184
191
184
184
184
191
184
34
184
239
\dsststile ( ) . . . . . . . 60
\dstechnical (T) . . . . . . 184
\dststile (
) ........
60
) ......
\dsttstile (
\dsub (⩤) . . . . . . . . . . .
60
38
) .......
60
\dtdtstile (
\dtimes (⨲) . . . .
\dtimes (_) . . . .
\dtimes (") . . . .
\dTongey ( ) . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
32, 33
. . 34
. . 31
. . 191
\dtststile (
) .......
60
\dttstile (
) ........
60
) ......
60
\dtttstile (
\DU () . . . . . . . . . . . . . . 129
\dualmap (⧟) . . . . . . . . . 89
\dualmap (⧟) . . . . . . . . . 58
\duevolte () . . . . . . . . . .
dunce cap . . . . . . . . . . . .
duodecimal (base 12)
numerals . . . . . . . . .
tally markers . . . . . .
DVI . . . . . . . . . 27, 129,
.dvi files . . . . . . . . . . . .
\dVomey ( ) . . . . . . . . .
\dWalley ( ) . . . . . . . . .
\dWinkey ( ) . . . . . . . . .
\dXey ( ) . . . . . . . . . . . .
\dz () . . . . . . . . . . . . .
117
180
230
235
191
191
191
191
19
E
E (E) . . . . . . . . . . . . . .
e (esvect package option)
\e (e ) . . . . . . . . . . . . . .
\e (E) . . . . . . . . . . . . . .
e (e) . . . . . . . . . . . . . .
𝜀-TEX . . . . . . . . . . . . . .
\Earth (C) . . . . . . . . . .
\Earth (Ê) . . . . . . . . . .
\Earth (Ñ) . . . . . . . . . .
\earth (♁) . . . . . . . . . .
\eastcross (♱) . . . . . . .
\EastPoint (’) . . . . . .
\Ecommerce () . . . . . .
\eggbeater ( ) . . . . . . .
157
110
97
117
157
99
127
126
128
126
137
128
25
191
N
.
.
.
.
.
.
.
.
.
.
.
.
.
.
159
107
\egsdot (⪘) . . . . . . . . . . 68
\EightAsterisk (Z) . . . . 139
\EightFlowerPetal (S) . 139
\EightFlowerPetalRemoved
(Y) . . . . . . . . . . . 139
eighth note . . . . . see musical
symbols ’
\eighthNote ( ) . . . . . . . 161
\eighthnote (♪) . . . . . . . 158
\eighthnote (♪) . . . . . . . 158
\eighthnote ( ) . . . . . . . 158
’
\eighthNoteDotted ( ) . 161
\eighthNoteDottedDouble
’
( ) . . . . . . . . . . . 161
\eighthNoteDottedDoubleDown
( ) . . . . . . . . . . . 161
\eighthNoteDottedDown ( ) .
. . . . . . . 161
\eighthNoteDown ( ) . . . . 161
\EightStar (H) . . . . . . . 139
\EightStarBold (I) . . . . 139
\EightStarConvex (F) . . 139
\EightStarTaper (E) . . . 139
\ejective (e) . . . . . . . . . 19
electrical impulse . . . . . . . 125
electrical symbols . . . . . . 125
electromotive force . . . . . 126
\electron (𝑎) . . . . . . . . 133
element of . . . . . . . . . see \in
elements . . . . . . . . . . . . . 128
\elinters (⏧) . . . . . . . . 121
\ell (ℓ) . . . . . . . . . . . . . 96
\ell (𝓁) . . . . . . . . . . . . . 97
\Ellipse (b) . . . . . . . . . 143
ellipses (dots) 14, 15, 114–116,
118, 226–227
ellipses (ovals) . 143, 144, 169–
173, 199–200, 205, 215–
216
\EllipseShadow (e) . . . . 143
\EllipseSolid (c) . . . . . 143
\elsdot (⪗) . . . . . . . . . . 68
\EM (␙) . . . . . . . . . . . . . . 130
\Email (k) . . . . . . . . . . . 130
\EmailCT (z) . . . . . . . . . 130
emf (package) . . 126, 239, 240
\emf (E) . . . . . . . . . . . . . 126
\emf (E) . . . . . . . . . . . . . 126
\emf E
( ) . . . . . . . . . . . . . 126
\emf (E) . . . . . . . . . . . . . 126
\emf (ℰ) . . . . . . . . . . . . . 126
\emf (E ) . . . . . . . . . . . . . 126
\emf (E) . . . . . . .
\emf (E) . . . . . . .
\emf (ℰ) . . . . . . .
\emgma (M) . . . . .
Emmentaler (font)
emoticons . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
126
126
126
19
163
191
\empty ( ) . . . . . . . . . . . 183
empty set . . . . . . . . 117–120
\emptyset (∅) . . . . . . . . . 118
261
\emptyset (∅) . . .
\emptyset (∅) . . . .
\emptyset (∅) . . . .
\emptysetoarr (⦳)
\emptysetoarrl (⦴)
\emptysetobar (⦱)
\emptysetocirc (⦲)
\EN () . . . . . . . . .
\enclosecircle (⃝)
\enclosediamond (⃟)
\enclosesquare (⃞)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
120
119
117
117
117
117
117
129
141
141
141
\enclosetriangle (⃤) . . . . 141
\End (End) . . . . . . . . . . . 92
\End ( End ) . . . . . . . . . . 129
end of proof . . . . . . 118, 121
\ending (L) . . . . . . . . . . 181
endofproofwd (package) . 121,
239
\eng (8) . . . . . . . . . . . . . 19
engineering symbols . 121, 125,
131
\engma (n) . . . . . . . . . . . 19
\enleadertwodots (‥) . . . 115
\ENQ (␅) . . . . . . . . . . . . . 130
entails . . . . . . . . see \models
\Enter ( Enter ) . . . . . . . 129
enter . . . 129, see also carriage
return
enumerate . . . . . . . . . . . . 180
\Envelope ( ) . . . . . . . . . 146
envelopes . . . . . . . . 146, 187
\enya (N) . . . . . . . . . . . . 19
\EOafter (§) . . . . . . . . 154
\EOandThen (Ş) . . . . . . 154
\EOAppear (Ť) . . . . . . . 154
\EOBeardMask (t) . . . . 154
\EOBedeck (ą) . . . . . . . 154
\EOBlood (u) . . . . . . . . 155
\EObrace (ć) . . . . . . . . 155
\EObuilding (Æ) . . . . . 155
\EOBundle (v)
\EOChop (w)
. . . . . . 155
. . . . . . . . 155
\EOChronI (Ř) . . . . . . 155
\EOCloth (x) . . . . . . . . 155
\EODealWith (r) . . . . . 155
\EODeer (Ţ) . . . . . . . . 155
\EOeat (Ű)
. . . . . . . . . 155
\EOflint (đ) . . . . . . . 155
\EOflower (č) . . . . . . . 155
\EOFold (Ä) . . . . . . . . 155
\EOGod (ď)
\EOGoUp (Â)
. . . . . . . . . 155
. . . . . . . . 155
\EOgovernor (ę) . . . . . 155
\EOGuise (z) . . . . . . . . 155
\EOHallow (¡)
\EOi (
) ....
\EOii () . . .
\EOiii () . .
\EOiv () . . .
\EOix (˘) . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
155
156
156
156
156
156
\EOofficerII (|) . . . . . 155
\EOofficerIII (}) . . . . 155
\EOofficerIV (~)
. . . . 155
\EOpa (3) . . . . . . . . . . 155
\EOpak (n) . . . . . . . . . 155
\EOja (V) . . . . . . . . . . 155
\EOPatron (Ś) . . . . . . 155
\EOjaguar (ĺ) . . . . . . 155
\EOje (U) . . . . . . . . . . 155
\EOJI (-) . . . . . . . . . . . 155
\EOji (T) . . . . . . . . . . 155
\EOjo (Y) . . . . . . . . . . 155
\EOju (X)
. . . . . . . . . . 155
\EOkak (m) . . . . . . . . 155
\EOke (D) . . . . . . . . . . 155
\EOki (C)
. . . . . . . . . . 155
\EOPatronII (Ů) . . . . . . 155
\EOpe (1) . . . . . . . . . . 155
\EOpenis (ť) . . . . . . . . 155
\EOpi (0)
. . . . . . . . . . 155
\EOPierce (Ÿ)
\EOPlant (Ę) .
\EOPlay (Ğ) .
\EOpo (6) . . .
\EOpriest (ţ)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
155
155
155
155
155
\EOsu (S) . . . . . . . . . . 154
\EOsun (ž) . . . . . . . . . 154
\EOSuu (K) . . . . . . . . . 155
\EOsuu (Q) . . . . . . . . . . 155
\EOT (␄) . . . . . . . . . . . . . 130
\EOta (:) . . . . . . . . . . 155
\EOte (8) . . . . . . . . . . 155
\EOthrone (ż) . . . . . . 155
\EOti (7) . . . . . . . . . . 155
\EOTime (ij) . . . . . . . . . 155
\EOtime (IJ)
. . . . . . . . 155
\EOTitle (£) . . . . . . . . 155
\EOTitleII (Ŋ) . . . . . . 155
\EOTitleIV (ş) . . . . . . 155
\EOto (<) . . . . . . . . . . 155
\EOtu (;) . . . . . . . . . . 155
\EOtuki (Ő) . . . . . . . . . 155
. . . . . . . . . 155
\EOPrince (Ĺ) . . . . . . . 155
\EOKing (Ă) . . . . . . . . . 155
\EOpu (5) . . . . . . . . . . 155
\EOpuu (2) . . . . . . . . . 155
\EOknottedCloth (ł) . . 155
\EOknottedClothStraps (ń)
. . . . . . . 156
\EOpuuk (o) . . . . . . . . 155
\EOturtle (À) . . . . . . 155
\EOtuu (9) . . . . . . . . . 155
\EORain (Ä)
\EOtza (@) . . . . . . . . . . 155
\EOkij (Ź)
\EOko (H) . . . . . . . . . . 156
\EOku (G) . . . . . . . . . . 156
\EOkuu (E) . . . . . . . . . 156
\EOLetBlood (Ã) . . . . . 156
\EOloinCloth (Ą) . . . . 156
. . . . . . . . 155
\EOSa (L) . . . . . . . . . . 155
\EOsa (R) . . . . . . . . . . 155
\EOsacrifice (Å) . . . . 155
\EOSaw (y) . . . . . . . . . 155
\EOlongLipII (Ć) . . . . 156
\EOLord (ň)
. . . . . . . . 156
\EOLose (Č)
. . . . . . . . 156
\EOma (]) . . . . . . . . . . 156
\EOmacaw (ŋ) . . . . . . . . 156
\EOmacawI (ŕ) . . . . . . . 156
\EOme ([) . . . . . . . . . . 156
\EOScorpius (q) . . . . . 155
\EOset (Â) . . . . . . . . . . 156
\EOSi (I) . . . . . . . . . . 156
\EOsi (O) . . . . . . . . . . 156
\EOsing (ů) . . . . . . . . 156
\EOSini (ľ) . . . . . . . . 156
\EOskin (ÿ)
. . . . . . . . 156
\EOmexNew (Ď) . . . . . . . 156
\EOmi (Z) . . . . . . . . . . 156
\EOMiddle (Ě) . . . . . . . 154
\EOSky (Ľ)
. . . . . . . . . 156
\EOskyAnimal (ś) . . . . 156
\EOskyPillar (Ł)
\EOmonster (ő) . . . . . 154
\EOMountain (ě) . . . . . 154
. . . . 156
\EOmuu (\) . . . . . . . . . 154
\EOsnake (Ż) . . . . . . 156
\EOSo (N) . . . . . . . . . . 156
\EOna (b) . . . . . . . . . . 154
\EOSpan (,) . . . . . . . . . 156
\EOne (‘) . . . . . . . . . . 155
\EOni (^) . . . . . . . . . . 155
\EOSprinkle (Ń) . . . . . 156
\EOstar (Ž) . . . . . . . . . 156
\EOnow (š) . . . . . . . . . . 155
\EOnu (c) . . . . . . . . . . . 155
\EOnuu (a) . . . . . . . . . 155
\EOofficerI ({) . . . . . . 155
\EOStarWarrior (ź)
. . 154
\EOstarWarrior (Ň) . . 156
\EOstep (ű) . . . . . . . . . 154
\EOSu (M) . . . . . . . . . . 154
262
\EOtukpa (İ)
\EOtze (>)
. . . . . . . 155
. . . . . . . . . 155
\EOtzetze (Ŕ)
. . . . . . 155
\EOtzi (=) . . . . . . . . . 155
\EOtzu (B) . . . . . . . . . . 155
\EOtzuu (?) . . . . . . . . 155
\EOundef () . . . . . . . . 155
\EOv (¨) . . . . . . . . . . . 156
\EOvarBeardMask (ă) . . 155
\EOvarja (W) . . . . . . . 155
\EOvarji (.) . . . . . . . . 155
\EOvarki (/) .
\EOvarkuu (F)
\EOvarni (_) . .
\EOvarpa (4) .
\EOvarSi (J) .
\EOvarsi (P) .
\EOvartza (A)
\EOvarwuu (g) .
\EOvarYear (Ã)
\EOvi (˝) . . . .
\EOvii (˚) . . .
\EOviii (ˇ) . .
\EOwa (h) . . . .
\EOwe (e) . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
155
155
155
155
156
156
156
156
156
156
156
156
156
156
\EOwi (d) . . . . . . . . . . 156
\EOwo (i) . . . . . . . . . . 156
\EOwuu (f) . . . . . . . . . 156
\EOx (¯) . . . . . . . . . . . 156
\EOxi (˙) . . . . . . . . . . 156
\EOxii (¸) . . . . . . . . . 156
\EOxiii (˛) . . . . . . . . 156
\EOxiv (‚) . . . . . . . . . 156
\EOxix („) . . . . . . . . . 156
\EOxv (‹) . . . . . . . . . . 156
\EOxvi (›) . . . . . . . . . 156
\EOxvii (“) . . . . . . . . 156
\EOxviii (”) . . . . . . . 156
\EOxx («) . . . . . . . . . . 156
\EOya (l) . . . . . . . . . . . 156
\EOyaj (p) . . . . . . . . . 156
\EOye (j) . . . . . . . . . . 156
\EOYear (s) . . . . . . . . 156
\EOyuu (k) . . . . . . . . . 156
\EOzero () . . . . . . . . 156
\EP () . . . . . . . . . . . . . . 129
\eparsl (⧣) . . . . . . . . . . 58
Epi-Olmec script . . . 154–156
epiolmec (package) . . 154, 156,
239, 240
epsdice (package) 179, 239, 240
) . . . 179
\epsdice (
\epsi (") . . . . . . . . . . . . 19
\Epsilon (E) . . . . . . . . . 93
\epsilon (𝜖) . . . . . . . . . . 93
\epsilonup () . . . . . . . . 94
\eqbump () . . . . . . . . . . . 53
\eqbumped (‰) . . . . . . . . 52
\eqbumped ( ) . . . . . . . . . 57
\eqcirc (ff) . . . . . . . . . . 52
\eqcirc (P) . . . . . . . . . . 50
\eqcirc (Ú) . . . . . . . . . . 57
\eqcirc (≖) . . . . . . . . . . 55
\eqcirc (≖) . . . . . . . . . . . 53
\eqcirc (≖) . . . . . . . . . . 58
\Eqcolon (I) . . . . . . . . . 51
\Eqcolon (−::) . . . . . . . . 59
\eqcolon (—) . . . . . . . . . 52
\eqcolon (−:) . . . . . . . . . 59
\eqcolon (E) . . . . . . . . . 51
\eqcolon (≕) . . . . . . . . . 55
\eqcolon (≕) . . . . . . . . . 58
\eqdef (≝) . . . . . . . . . . . 58
\eqdot (⩦) . . . . . . . . . . . 55
\eqdot (⩦) . . . . . . . . . . . 53
\eqdot (⩦) . . . . . . . . . . . 58
\eqeq (⩵) . . . . . . . . . . . . 59
\eqeqeq (⩶) . . . . . . . . . 59
\eqfrown (#) . . . . . . . . . . 89
\eqgtr (⋝) . . . . . . . . . . . 68
\eqleftrightarrow (÷) . 82
\eqless (⋜) . . . . . . . . . . 68
\Eqqcolon (G) . . . . . . . . 51
\Eqqcolon (=::) . . . . . . . 59
\eqqcolon (=:) . . . . . . . . 59
\eqqcolon (C) . . . . . . . . 51
\eqqcolon (≕) . . . . . . . . 55
\eqqgtr (⪚) . . . . . . . . . . 68
\eqqless (⪙) . . . . . . . . . 68
\eqqplus (⩱) . . . . . . . . . 34
\eqqsim (⩳) . . . . . . . . . . 59
\eqqslantgtr (⪜) . . . . . . 68
\eqqslantless (⪛) . . . . . 68
\eqsim (h) . . . . . . . . . . . 51
\eqsim (Ò) . . . . . . . . . . . 57
\eqsim (≂) . . . . . . . . . . . 55
\eqsim (≂) . . . . . . . . . . . 53
\eqsim (≂) . . . . . . . . . . . 59
\eqslantgtr (ů) . . . . . . . 65
\eqslantgtr (1) . . . . . . . 64
\eqslantgtr (Ë) . . . . . . . 68
\eqslantgtr (⪖) . . . . . . . 67
\eqslantgtr (⪖) . . . . . . . 66
\eqslantgtr (⪖) . . . . . . . 68
\eqslantless (ű) . . . . . . 65
\eqslantless (0) . . . . . . 64
\eqslantless (Ê) . . . . . . 68
\eqslantless (⪕) . . . . . . 67
\eqslantless (⪕) . . . . . . 66
\eqslantless (⪕) . . . . . . 68
\eqsmile (") . . . . . . . . . . 89
\equal (=) . . . . . . . . . . . 55
\equal (=) . . . . . . . . . . . 53
\equal (j) . . . . . . . . . . . 181
\equalclosed (Ý) . . . . . . 53
\equalleftarrow (⭀) . . . 84
\equalparallel (ô) . . . . 57
\equalparallel (⋕) . . . . 59
\equalrightarrow (⥱) . . 84
\equalscolon (=:) . . . . . 61
\equalscoloncolon (=::)
61
\equalsfill . . . . . . . 29, 227
equidecomposable . . . . . . 223
equilibrium . . . . . . . . . . . see
\rightleftharpoons
\Equiv (≣) . . . . . . . . . . . 59
\equiv (≡) . . . . . . . . . 29, 50
\equiv (≡) . . . . . . . . . . . 55
\equiv (≡) . . . . . . . . . . . 53
\equiv (≡) . . . . . . . . . . . 59
\Equivalence (?) . . . . . . 116
equivalence . . . . . see \equiv,
\leftrightarrow,
and
\threesim
\equivclosed (Þ) . . . . . . 53
\equivDD (⩸) . . . . . . . . . 59
\equivVert (⩨) . . . . . . . . 59
\equivVvert (⩩) . . . . . . . 59
\eqvparsl (⧥) . . . . . . . . . 58
\er () . . . . . . . . . . . . . . 19
\erf (erf ) . . . . . . . . . . . . 92
\Eros (@) . . . . . . . . . . . . 128
\errbarblackcircle (⧳) . 141
\errbarblackdiamond (⧱) 141
\errbarblacksquare (⧯) . 141
\errbarcircle (⧲) . . . . . 141
\errbardiamond (⧰) . . . . 141
\errbarsquare (⧮) . . . . . 141
\errorsym (𝑞) . . . . . . . . 133
263
es-zet . . . . . . . . . . . . see \ss
\ESC (␛) . . . . . . . . . . . . . 130
\Esc ( Esc ) . . . . . . . . . . 129
escapable characters . . . . 14
\esh (s) . . . . . . . . . . . . . 19
\esh (M) . . . . . . . . . . . . . 19
esint (package) . . . . . . 43, 239
esrelation (package) . 88, 113,
239
\Estatically (J) . . . . . . 131
estimated see \textestimated
\Estonia (Š) . . . . . . . . . . 189
esvect (package) . . . . 110, 239
\Eta (H) . . . . . . . . . . . . . 93
\eta (𝜂) . . . . . . . . . . . . . 93
\etameson (è) . . . . . . . . . 133
\etamesonprime (é) . . . . 133
\etaup (η) . . . . . . . . . . . 94
\ETB (␗) . . . . . . . . . . . . . 130
\eth (ð) . . . . . . . . . . . . . 119
\eth (d) . . . . . . . . . . . . . 19
\eth (ð) . . . . . . . . . . . . . 121
\eth () . . . . . . . . . . . . . 19
\ETX (␃) . . . . . . . . . . . . . 130
euflag (package) . 190, 239, 240
F F F
F
F
\euflag (
) . . . . . . . . . 190
eufrak (package) . . . . . . . 123
Euler Roman . . . . . . . . . . 94
\Eulerconst (ℇ) . . . . . . . 97
\EUR (e ) . . . . . . . . . . . . . 25
\EURcr (d) . . . . . . . . . . . 25
\EURdig (D) . . . . . . . . . . 25
\EURhv (c) . . . . . . . . . . . 25
\Euro ( ) . . . . . . . . . . . . 26
\euro . . . . . . . . . . . . . . . 26
\euro (€) . . . . . . . . . . . . 25
euro signs . . . . . . . . . . 25, 26
blackboard bold . . . . 124
\eurologo (() . . . . . . . . . 26
European countries . . . . . 188
eurosym (package) 26, 239, 240
\EURtm (e) . . . . . . . . . . . 25
euscript (package) . . 123, 239
evaluated at . . . . . see \vert
evil spirits . . . . . . . . . . . . 186
\exciton (𝑖) . . . . . . . . 133
\Exclam (‼) . . . . . . . . . . . 121
exclusive disjunction . . . . . . .
. see \nleftrightarrow
\nequiv, and \oplus
exclusive or . . . . . . . . . . . 222
\exists (D) . . . . . . . . . . . 96
\exists (∃) . . . . . . . . . . 96
\exists (∃) . . . . . . . . . . 97
\exists (∃) . . . . . . . . . . . 96
\exists (∃) . . . . . . . . . . . 97
\exp (exp) . . . . . . . . . . . 91
\experimentalsym (𝑣) . . 132
\Explosionsafe (`) . . . . 131
extarrows (package) . 112, 239,
240
extensible accents . . 107–111,
114, 228–229
F
F
F
F
F F F
ÿ
extensible arrows . . . 107–112
extensible braces . . . 107–110
extensible symbols, creating . .
. . . . . . 227–229
extensible tildes . . . . 107, 110
extension characters . . 90, 91
\externalsym (𝛥) . . . . . . 132
extpfeil (package) 112, 239, 240
extraipa (package) . . . 22, 239
\eye (.) . . . . . . . . . . . . . 157
\eye (
) . . . . . . . . . . . 146
\EyesDollar (¦) . . . . . . . 25
ezh . . . . . . . . . . see \roundz
E
F
F (F) . . . . . . . . . . . . . . .
f (esvect package option) .
\f (
a) . . . . . . . . . . . . . . .
f (f) . . . . . . . . . . . . . . . .
\fa (¿) . . . . . . . . . . . . .
\faAdjust (è) . . . . . . . .
\faAdn (é) . . . . . . . . . . .
\faAlignCenter (ê) . . . .
\faAlignJustify (ë) . . .
\faAlignLeft (ì) . . . . . .
\faAlignRight (í) . . . . .
\faAmazon (À) . . . . . . . .
\faAmbulance (î) . . . . .
\faAnchor (ï) . . . . . . . .
\faAndroid (ð) . . . . . . . .
\faAngellist (h) . . . . . .
\faAngleDoubleDown (∠) .
\faAngleDoubleLeft (∠) .
\faAngleDoubleRight (∠)
\faAngleDoubleUp (∠) . . .
\faAngleDown (∠) . . . . . .
\faAngleLeft (∠) . . . . . . .
\faAngleRight (∠) . . . . . .
\faAngleUp (∠) . . . . . . . .
\faApple () . . . . . . . . .
\faArchive (ö) . . . . . . .
\faAreaChart (^) . . . . .
\faArrowCircleDown (○) .
\faArrowCircleLeft (○) .
\faArrowCircleODown (H)
\faArrowCircleOLeft (○)
\faArrowCircleORight ( )
\faArrowCircleOUp (d) . .
\faArrowCircleRight (○)
\faArrowCircleUp (○) . .
\faArrowDown (ø) . . . . . .
\faArrowLeft (ù) . . . . . .
\faArrowRight (ú) . . . . .
\faArrows (È) . . . . . . . .
\faArrowsAlt (ƒ) . . . . . .
\faArrowsH (ò) . . . . . . .
\faArrowsV (ô) . . . . . . . .
\faArrowUp (û) . . . . . . .
\faAsterisk (*) . . . . . . .
\faAt ([) . . . . . . . . . . . .
\faAutomobile ()) . . . .
\faBackward (ý) . . . . . . .
\faBalanceScale (¤) . . .
157
110
20
157
194
194
194
194
194
194
194
194
194
194
194
194
194
194
194
194
194
194
194
194
194
194
194
135
135
135
135
135
135
135
135
135
135
135
135
135
135
135
135
194
194
197
194
194
\faBan (○) . . . . . . . . . . .
\faBank () . . . . . . . . . .
\faBarChart (|) . . . . . .
\faBarChartO (|) . . . . .
\faBarcode ( ) . . . . . . .
\faBars (í) . . . . . . . . . .
\faBattery0 (š) . . . . . .
\faBattery1 (™) . . . . . .
\faBattery2 (˜) . . . . . .
\faBattery3 (—) . . . . . .
\faBattery4 (–) . . . . . .
\faBatteryEmpty (š) . . .
\faBatteryFull (–) . . .
\faBatteryHalf (˜) . . .
\faBatteryQuarter (™) .
\faBatteryThreeQuarters
(—) . . . . . . . . . . .
\faBed () . . . . . . . . . .
\faBeer () . . . . . . . . . .
\faBehance ($) . . . . . . .
\faBehanceSquare (%) . .
\faBell () . . . . . . . . . .
\faBellO () . . . . . . . . .
\faBellSlash (W) . . . . .
\faBellSlashO (X) . . . .
\faBicycle (e) . . . . . . .
\faBinoculars (I) . . . . .
\faBirthdayCake (]) . . .
\faBitbucket ([) . . . . . .
\faBitbucketSquare () .
\faBitcoin ( ) . . . . . . . .
\faBlackTie (f) . . . . . . .
\faBold () . . . . . . . . . .
\faBolt () . . . . . . . . . . .
\faBomb (F) . . . . . . . . . .
\faBook () . . . . . . . . . .
\faBookmark ( ) . . . . . . .
\faBookmarkO ( ) . . . . . .
\faBriefcase ( ) . . . . . .
\faBtc ( ) . . . . . . . . . . .
\faBtc ( ) . . . . . . . . . . .
\faBug ( ) . . . . . . . . . . .
\faBuilding () . . . . . . .
\faBuildingO () . . . . . .
\faBullhorn () . . . . . .
\faBullseye (◎) . . . . . . .
\faBus (f) . . . . . . . . . . .
\faBuysellads (l) . . . . .
\faCab (*) . . . . . . . . . .
\faCalculator (P) . . . . .
\faCalendar () . . . . . . .
\faCalendarCheckO (Ä) .
\faCalendarMinusO (Â) .
\faCalendarO () . . . . . .
\faCalendarPlusO (Á) . .
\faCalendarTimesO (Ã) .
\faCamera () . . . . . . . .
\faCameraRetro () . . . .
\faCar ()) . . . . . . . . . .
\faCaretDown () . . . . . .
\faCaretLeft () . . . . . . .
\faCaretRight () . . . . . .
\faCaretSquareODown (4)
264
194
197
194
197
194
194
197
197
197
197
197
194
194
194
194
194
194
194
194
194
194
194
194
194
194
194
194
194
194
25
194
194
195
195
195
195
195
195
25
25
195
195
195
195
195
195
195
197
195
195
195
195
195
195
195
195
195
195
195
195
195
195
\faCaretSquareOLeft ( ) 195
\faCaretSquareORight () 195
\faCaretSquareOUp (5) . . 195
\faCaretUp () . . . . . . . . 195
\faCartArrowDown (t) . . 195
\faCartPlus (s) . . . . . . . 195
\faCc (i) . . . . . . . . . . . 195
\faCcAmex (_) . . . . . . . . 195
\faCcDinersClub (¢) . . . 195
\faCcDiscover (T) . . . . 195
\faCcJcb (¡) . . . . . . . . 195
\faCcMastercard (S) . . . 195
\faCcPaypal (U) . . . . . . 195
\faCcStripe (V) . . . . . . 195
\faCcVisa () . . . . . . . . 195
\faCertificate () . . . . 195
faces . . . . . . . . 121, 130, 148,
176, 177, 184, 186, 190–
197, 201–203
\faChain (®) . . . . . . . . . 197
\faChainBroken (a) . . . . 195
\faCheck (Ë) . . . . . . . . . 138
\faCheckCircle (Í) . . . . 138
\faCheckCircleO (○) . . . 138
\faCheckSquare () . . . . 138
\faCheckSquareO () . . . 138
\faChevronCircleDown (!) 135
\faChevronCircleLeft (") 135
\faChevronCircleRight (#) .
. . . . . . . 135
\faChevronCircleUp ($) . 135
\faChevronDown () . . . . 135
\faChevronLeft () . . . . 135
\faChevronRight ( ) . . . 135
\faChevronUp (%) . . . . . . 135
\faChild ( ) . . . . . . . . . 195
\faChrome (¹) . . . . . . . . 195
\faCircle (○) . . . . . . . . 144
\faCircleO (○␣) . . . . . . . 144
\faCircleONotch (;) . . . 144
\faCircleThin (A) . . . . . 144
\faClipboard (Ð) . . . . . . 195
\faClockO (/) . . . . . . . . 195
\faClone (£) . . . . . . . . . 195
\faClose (é) . . . . . . . . . 138
\faCloud (,) . . . . . . . . . 195
\faCloudDownload (-) . . 195
\faCloudUpload (.) . . . . 195
\faCny (£) . . . . . . . . . . . 25
\faCode (/) . . . . . . . . . . 195
\faCodeFork (0) . . . . . . . 196
\faCodepen (8) . . . . . . . 196
\faCoffee (1) . . . . . . . . 196
\faCog (2) . . . . . . . . . . . 196
\faCogs (3) . . . . . . . . . . 196
\faColumns (6) . . . . . . . 196
\faComment (7) . . . . . . . 196
\faCommenting (Ê) . . . . . 196
\faCommentingO (Ë) . . . . 196
\faCommentO (8) . . . . . . 196
\faComments (9) . . . . . . 196
\faCommentsO (:) . . . . . . 196
\faCompass (☼) . . . . . . . 196
\faCompress (ó) . . . . . . . 196
\faConnectdevelop (m) . 196
\faContao (¾) . . . . . . . . 196
\Facontent (
) . . . . . 116
\faCopy (<) . . . . . . . . . . 197
\faCopyright (Z) . . . . . . 26
\faCreativeCommons (³)
26
\faCreditCard (=) . . . . . 196
\faCrop (>) . . . . . . . . . . 196
\faCrosshairs (û) . . . . . 196
\faCss3 (?) . . . . . . . . . . 196
\faCube (") . . . . . . . . . . 196
\faCubes (#) . . . . . . . . 196
\faCut (@) . . . . . . . . . . . 197
\faCutlery () . . . . . . . . 196
\faDashboard (A) . . . . . . 197
\faDashcube (a) . . . . . . . 196
\faDatabase () . . . . . . . 196
\faDedent () . . . . . . . . 197
\faDelicious () . . . . . . 196
\faDesktop (B) . . . . . . . 196
\faDeviantart (-) . . . . . 196
\faDiamond (u) . . . . . . . 196
\faDigg () . . . . . . . . . . 196
\faDollar (f) . . . . . . . . . 25
\faDotCircleO (○) . . . . . 144
\faDownload (I) . . . . . . . 196
\faDribbble (J) . . . . . . . 196
\faDropbox (K) . . . . . . . 196
\faDrupal () . . . . . . . . 196
\faEdit (L) . . . . . . . . . . 197
\faEject (N) . . . . . . . . . 196
\faEllipsisH (…) . . . . . . 196
\faEllipsisV (…) . . . . . . . 196
\faEmpire () . . . . . . . . 196
\faEnvelope (R) . . . . . . 196
\faEnvelopeO (Q) . . . . . . 196
\faEnvelopeSquare () . . 196
\faEraser () . . . . . . . . 196
\faEur (S) . . . . . . . . . . . 25
\faEur (S) . . . . . . . . . . . 25
\faEuro (S) . . . . . . . . . . . 25
\faExchange (T) . . . . . . 196
\faExclamation (U) . . . . . 196
\faExclamationCircle (V) 196
\faExclamationTriangle (o)
. . . . . . . 196
\faExpand (ñ) . . . . . . . . 196
\faExpeditedssl (•) . . . 196
\faExternalLink (W) . . . 196
\faExternalLinkSquare () .
. . . . . . . 196
\faEye (Y) . . . . . . . . . . . 196
\faEyedropper (\) . . . . . 196
\faEyeSlash (X) . . . . . . 196
\faFacebook (g) . . . . . . . 197
\faFacebookF (g) . . . . . . 197
\faFacebookOfficial (‡) 197
\faFacebookSquare (h) . . 197
\faFastBackward (j) . . . 197
\faFastForward (k) . . . . 197
\faFax () . . . . . . . . . . . 197
\faFeed (ø) . . . . . . . . . .
\faFemale (♀) . . . . . . . . .
\faFighterJet (m) . . . . .
\faFile (n) . . . . . . . . . .
\faFileArchiveO (3) . . .
\faFileAudioO (4) . . . . .
\faFileCodeO (6) . . . . . .
\faFileExcelO (0) . . . . .
\faFileImageO (2) . . . . .
\faFileMovieO (5) . . . . .
\faFileO (o) . . . . . . . . .
\faFilePdfO () . . . . . . .
\faFilePhotoO (2) . . . . .
\faFilePictureO (2) . . .
\faFilePowerpointO (1) .
\faFilesO (<) . . . . . . . .
\faFileSoundO (4) . . . . .
\faFileText (p) . . . . . . .
\faFileTextO (q) . . . . . .
\faFileVideoO (5) . . . . .
\faFileWordO (/) . . . . . .
\faFileZipO (3) . . . . . . .
\faFilm (r) . . . . . . . . . .
\faFilter (s) . . . . . . . .
\faFire (t) . . . . . . . . . .
\faFireExtinguisher (u)
\faFirefox (º) . . . . . . .
\faFlag (v) . . . . . . . . . .
\faFlagCheckered (x) . .
\faFlagO (w) . . . . . . . . .
\faFlash () . . . . . . . . . .
\faFlask () . . . . . . . . .
\faFlickr (y) . . . . . . . .
\faFloppyO (ú) . . . . . . .
\faFolder (z) . . . . . . . .
\faFolderO ({) . . . . . . .
\faFolderOpen (|) . . . . .
\faFolderOpenO (}) . . . .
\faFont (~) . . . . . . . . . .
\faFonticons () . . . . . .
\faForumbee (n) . . . . . . .
\faForward (€) . . . . . . .
\faFoursquare () . . . . .
\faFrownO (‚) . . . . . . . .
\faFutbolO (G) . . . . . . .
\faGamepad („) . . . . . . .
\faGavel (©) . . . . . . . . .
\faGbp ( ) . . . . . . . . . . .
\faGe () . . . . . . . . . . . .
\faGear (2) . . . . . . . . . .
\faGears (3) . . . . . . . . .
\faGenderless (†) . . . . .
\faGetPocket (¶) . . . . . .
\faGg (c) . . . . . . . . . . .
\faGgCircle (d) . . . . . .
\faGift (†) . . . . . . . . . .
\faGit (<) . . . . . . . . . . .
\faGithub (‡) . . . . . . . .
\faGithubAlt (ˆ) . . . . . .
\faGithubSquare (‰) . . .
\faGitSquare () . . . . . .
\faGittip (Š) . . . . . . . .
265
197
194
194
194
194
194
194
194
194
197
194
194
197
197
194
194
197
194
194
194
194
197
194
194
194
194
194
194
194
194
197
194
194
194
194
194
194
194
194
194
194
194
194
194
194
194
194
25
197
197
197
131
194
194
194
194
194
194
194
194
194
197
\faGlass (‹) . . . . . . . . .
\faGlobe (Œ) . . . . . . . . .
\faGoogle () . . . . . . . .
\faGooglePlus (+) . . . .
\faGooglePlusSquare (+)
\faGoogleWallet (R) . . .
\faGraduationCap () . .
\faGratipay (Š) . . . . . . .
\faGroup () . . . . . . . . .
\faHackerNews (=) . . . . .
\faHandGrabO (ª) . . . . . .
\faHandLizardO (­) . . . .
\faHandODown (‘) . . . . . .
\faHandOLeft (’) . . . . . .
\faHandORight (“) . . . . .
\faHandOUp (”) . . . . . . .
\faHandPaperO («) . . . . .
\faHandPaperO («) . . . . .
\faHandPeaceO (°) . . . . .
\faHandPointerO (¯) . . .
\faHandRockO (ª) . . . . . .
\faHandRockO (ª) . . . . . .
\faHandScissorsO (¬) . .
\faHandSpockO (®) . . . .
\faHandStopO («) . . . . . .
\faHddO (•) . . . . . . . . . .
\faHeader (B) . . . . . . . .
\faHeadphones (–) . . . . .
\faHeart (♥) . . . . . . . . .
\faHeartbeat (z) . . . . . .
\faHeartO (♥) . . . . . . . .
\faHistory (@) . . . . . . .
\faHome (™) . . . . . . . . . .
\faHospitalO (š) . . . . . .
\faHotel () . . . . . . . . .
\faHourglass (©) . . . . . .
\faHourglassEnd (¨) . . .
\faHourglassHalf (§) . .
\faHourglassO (¥) . . . . .
\faHourglassStart (¦) . .
\faHouzz (Ì) . . . . . . . . . .
\faHSquare (h) . . . . . . .
\faHtml5 (›) . . . . . . . . .
\faICursor (œ) . . . . . . . .
\faIls (j) . . . . . . . . . . .
\faIls (j) . . . . . . . . . . .
\faImage (Õ) . . . . . . . . .
\faInbox (œ) . . . . . . . . .
\faIndent (ž) . . . . . . . .
\faIndustry (Å) . . . . . .
\faInfo ( ) . . . . . . . . . . .
\faInfoCircle (Ÿ) . . . . .
\faInr ( ) . . . . . . . . . . .
\faInr ( ) . . . . . . . . . . .
\faInstagram (¡) . . . . . .
\faInstitution () . . . .
\faInternetExplorer (¼)
\faIntersex (}) . . . . . . .
\faIoxhost (g) . . . . . . .
\faItalic (¢) . . . . . . . . .
\faJoomla () . . . . . . . .
\faJpy (£) . . . . . . . . . . .
\faJpy (£) . . . . . . . . . . .
194
194
195
195
195
195
195
195
197
195
137
137
137
137
137
137
137
137
137
137
137
137
137
137
137
195
195
195
195
195
195
195
195
195
197
195
195
195
195
195
195
195
195
195
25
25
197
195
195
195
195
195
25
25
195
197
195
131
195
195
195
25
25
\faJsfiddle (9) . . . . . . 195
\faKey (¤) . . . . . . . . . . . 195
\faKeyboardO (¥) . . . . . 195
\faKrw (¦) . . . . . . . . . . . 25
\faKrw (¦) . . . . . . . . . . . 25
\faLanguage (^) . . . . . . . 195
\faLaptop (§) . . . . . . . . 195
\faLastfm (a) . . . . . . . . 195
\faLastfmSquare (b) . . . 195
\faLeaf (¨) . . . . . . . . . . 195
\faLeanpub (b) . . . . . . . 195
\faLegal (©) . . . . . . . . . 197
\faLemonO (ª) . . . . . . . . 195
\faLevelDown («) . . . . . . 195
\faLevelUp (¬) . . . . . . . . 195
\faLifeBouy (:) . . . . . . 197
\faLifeRing (:) . . . . . . 195
\faLifeSaver (:) . . . . . . 197
\faLightbulbO (­) . . . . . 195
\faLineChart (`) . . . . . 195
\faLink (®) . . . . . . . . . . 195
\faLinkedin (¯) . . . . . . . 195
\faLinkedinSquare (°) . . 195
\faLinux (±) . . . . . . . . . 196
\faList (²) . . . . . . . . . . 196
\faListAlt (³) . . . . . . . 196
\faListOl (Î) . . . . . . . . 196
\faListUl (9) . . . . . . . . 196
\fallingdotseq (») . . . . 52
\fallingdotseq (;) . . . . 50
\fallingdotseq (Ý) . . . . 57
\fallingdotseq (≒) . . . . 55
\fallingdotseq (≒) . . . . . 53
\fallingdotseq (≒) . . . . 58
\FallingEdge ( ) . . . . . . 125
\faLocationArrow (´) . . 196
\faLock (µ) . . . . . . . . . . 196
\faLongArrowDown (¶) . . . 135
\faLongArrowLeft (·) . . 135
\faLongArrowRight (¸) . 135
\faLongArrowUp (¹) . . . . . 135
falsum . . . . . . . . . . see \bot
\faMagic (º) . . . . . . . . . 196
\faMagnet (») . . . . . . . . 196
\faMailForward (þ) . . . . 197
\faMailReply (ï) . . . . . . 197
\faMailReplyAll (ð) . . . 197
\faMale (♂) . . . . . . . . . . . 196
\faMap (É) . . . . . . . . . . . 196
\faMapMarker (½) . . . . . . 196
\faMapO (È) . . . . . . . . . . 196
\faMapPin (Æ) . . . . . . . . . 196
\faMapSigns (Ç) . . . . . . 196
\faMars ({) . . . . . . 127, 131
\faMarsDouble (€) . . . . . 131
\faMarsStroke (‚) . . . . . 131
\faMarsStrokeH („) . . . . 131
\faMarsStrokeV (ƒ) . . . . 131
\faMaxcdn (¾) . . . . . . . . 196
\faMeanpath (k) . . . . . . . 196
\faMedium (‘) . . . . . . . . 196
\faMedkit (¿) . . . . . . . . 196
\faMehO (À) . . . . . . . . . . 196
!
\faMercury (|) . . . . . . . . 127
\faMicrophone (Á) . . . . . 196
\faMicrophoneSlash (Â) . 196
\faMinus (−) . . . . . . . . . 196
\faMinusCircle (−) . . . . 196
\faMinusSquare (−) . . . . 196
\faMinusSquareO (−) . . . 196
\faMobile (Æ) . . . . . . . . . 196
\faMobilePhone (Æ) . . . . . 197
\faMoney (Ç) . . . . . . . . . 196
\faMoonO () . . . . . . . . . 127
\faMortarBoard () . . . 197
\faMotorcycle (x) . . . . 196
\faMousePointer (›) . . . 196
\faMusic (É) . . . . . . . . . 196
\faNavicon (í) . . . . . . . 197
\Fancontent (
) . . . . 116
fancy borders . . . . . 204–210
\faNeuter ( ) . . . . . . . . . 131
\faNewspaperO (N) . . . . 196
\Fanncontent (
) . . . 116
\Fannquant (
) . . . . . 116
) . . . . 116
\Fannquantn (
) . . . 116
\Fannquantnn (
\Fanoven () . . . . . . . . . 191
\Fanquant (
) . . . . . . 116
) . . . . . 116
\Fanquantn (
\Fanquantnn (
) . . . . 116
\faObjectGroup () . . . . 196
\faObjectUngroup (ž) . . 196
\faOdnoklassniki (e) . . . 196
\faOdnoklassnikiSquare (µ)
. . . . . . . 196
\faOpencart (”) . . . . . . 196
\faOpenid () . . . . . . . . 196
\faOpera (») . . . . . . . . . 196
\faOptinMonster (“) . . . 196
\faOutdent () . . . . . . . 196
\faPagelines ( ) . . . . . . 196
\faPaintBrush (`) . . . . . 196
\faPaperclip (Ï) . . . . . . 196
\faPaperPlane (>) . . . . . 196
\faPaperPlaneO (?) . . . . 196
\faParagraph (C) . . . . . . 196
\faPaste (Ð) . . . . . . . . . 197
\faPause (Ñ) . . . . . . . . . 196
\faPaw () . . . . . . . . . . . 196
\faPaypal (Q) . . . . . . . . 196
\faPencil (Ò) . . . . . . . . 136
\faPencilSquare (M) . . . 136
\faPencilSquareO (L) . . 136
\faPhone (Ó) . . . . . . . . . 196
\faPhoneSquare (Ô) . . . . 196
\faPhoto (Õ) . . . . . . . . . 197
\faPictureO (Õ) . . . . . . 196
\faPieChart (_) . . . . . . 197
\faPiedPiper () . . . . . 197
\faPiedPiperAlt () . . . 197
\faPinterest (Ö) . . . . . . 197
\faPinterestP (ˆ) . . . . . 197
\faPinterestSquare (×) . 197
266
\faPlane (Ø) . . . . . . .
\faPlay (Ù) . . . . . . . .
\faPlayCircle (Û) . . .
\faPlayCircleO (○) . .
\faPlug (J) . . . . . . . .
\faPlus (+) . . . . . . . .
\faPlusCircle (+) . . .
\faPlusSquare (Z) . . .
\faPlusSquareO (+o) . .
\faPowerOff (Ê) . . . . .
\faPrint (ß) . . . . . . .
\faPuzzlePiece (á) . .
\faQq () . . . . . . . . . .
\faQrcode (â) . . . . . .
\Faquant (
) .....
\Faquantn (
) ....
\Faquantnn (
) ...
\faQuestion (?) . . . . .
\faQuestionCircle (?)
\faQuoteLeft (å) . . . .
\faQuoteRight (æ) . . .
\faRa () . . . . . . . . . .
\faRandom (ç) . . . . . .
\faRebel () . . . . . . .
\faRecycle (() . . . . .
\faReddit (\) . . . . . .
\faRedditSquare () .
\faRefresh (è) . . . . .
\faRegistered (²) . . .
\faRemove (é) . . . . . .
\faRenren (ì) . . . . . .
\faReorder (í) . . . . .
\faRepeat (î) . . . . . .
\faRepeat (î) . . . . . .
\faReply (ï) . . . . . . .
\faReplyAll (ð) . . . .
\faRetweet (õ) . . . . .
\faRmb (£) . . . . . . . . .
\faRoad (ö) . . . . . . . .
\faRocket (÷) . . . . . .
\faRotateLeft (<) . . .
\faRotateRight (î) . .
\faRouble (ù) . . . . . . .
\faRss (ø) . . . . . . . . .
\faRssSquare () . . . .
\faRub (ù) . . . . . . . . .
\faRub (ù) . . . . . . . . .
\faRuble (ù) . . . . . . .
\faRupee ( ) . . . . . . . .
\faSafari (¸) . . . . . .
\faSave (ú) . . . . . . . .
\faScissors (@) . . . .
\faSearch (ü) . . . . . .
\faSearchMinus (y) . .
\faSearchPlus (x) . . .
\faSellsy (o) . . . . . .
\faSend (>) . . . . . . . .
\faSendO (?) . . . . . . .
\faServer (Š) . . . . . .
\faShare (þ) . . . . . . .
\faShareAlt () . . . . .
\faShareAltSquare (E)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
194
194
194
194
194
194
194
194
194
194
194
194
194
194
116
116
116
194
194
194
194
197
194
194
194
194
194
194
26
138
194
197
135
135
194
194
194
25
194
194
135
135
25
194
194
25
25
25
25
194
197
194
194
194
194
194
197
197
194
194
194
194
\faShareSquare (ÿ) . . . .
\faShareSquareO (ý) . . .
\faShekel (j) . . . . . . . .
\faSheqel (j) . . . . . . . .
\faShield ( ) . . . . . . . . .
\faShip (v) . . . . . . . . . .
\faShirtsinbulk (p) . . .
\faShoppingCart () . . .
\faSignal () . . . . . . . .
\faSignIn () . . . . . . . .
\faSignOut () . . . . . . .
\faSimplybuilt (q) . . . .
\faSitemap () . . . . . . .
\faSkyatlas (r) . . . . . .
\faSkype () . . . . . . . . .
\faSlack () . . . . . . . . .
\faSliders (D) . . . . . . .
\faSlideshare (K) . . . . .
\faSmileO () . . . . . . . .
\faSoccerBallO (G) . . . .
\faSort ( ) . . . . . . . . . . .
\faSortAlphaAsc ( ) . . .
\faSortAlphaDesc () . .
\faSortAmountAsc ( ) . .
\faSortAmountDesc ( ) .
\faSortAsc () . . . . . . . .
\faSortDesc () . . . . . . .
\faSortDown () . . . . . . .
\faSortNumericAsc ( ) . .
\faSortNumericDesc () .
\faSortUp () . . . . . . . . .
\faSoundcloud (.) . . . .
\faSpaceShuttle () . . .
\faSpinner () . . . . . . .
\faSpoon (!) . . . . . . . . . .
\faSpotify (,) . . . . . . .
\faSquare (␣) . . . . . . . .
\faSquareO () . . . . . . . .
\faStackExchange () . . .
\faStackOverflow () . .
\faStar () . . . . . . . . . .
\faStarHalf () . . . . . . .
\faStarHalfEmpty () . .
\faStarHalfFull () . . .
\faStarHalfO () . . . . . .
\faStarHalfO () . . . . . .
\faStarO () . . . . . . . . .
\faSteam (&) . . . . . . . . .
\faSteamSquare (') . . . .
\faStepBackward () . . . .
\faStepForward () . . . . .
\faStethoscope () . . . .
\faStickyNote (Ÿ) . . . . .
\faStickyNoteO ( ) . . . .
\faStop () . . . . . . . . . .
\faStreetView (y) . . . . .
\faStrikethrough () . .
\faStumbleupon (]) . . . .
\faStumbleuponCircle ()
\faSubscript () . . . . . .
\faSubway () . . . . . . . .
\faSuitcase () . . . . . .
194
194
25
25
194
194
194
194
194
194
194
195
195
195
195
195
195
195
195
197
195
195
195
195
195
195
195
197
195
195
197
195
195
195
195
195
144
144
195
195
140
140
140
140
140
140
140
195
195
195
195
195
195
195
195
195
195
195
195
195
195
195
\faSunO (☼) . . . . . . . .
\faSuperscript ( ) . .
\faSupport (:) . . . . .
\faTable (!) . . . . . . .
\faTablet (") . . . . . . .
\faTachometer (A) . . .
\faTag (#) . . . . . . . . .
\faTags ($) . . . . . . . .
\faTasks (%) . . . . . . .
\faTaxi (*) . . . . . . . .
\fatbslash ()) . . . . . .
\fatbslash (?) . . . . . .
\faTelevision (½) . .
\faTencentWeibo () .
\faTerminal (&) . . . . .
\faTextHeight (') . . .
\faTextWidth (() . . . .
\faTh ()) . . . . . . . . . .
\faThLarge (*) . . . . .
\faThList (+) . . . . . .
\faThumbsDown () . . .
\faThumbsODown (,) . .
\faThumbsOUp (-) . . . .
\faThumbsUp () . . . . .
\faThumbTack (à) . . . .
\faTicket (.) . . . . . .
\faTimes (é) . . . . . . .
\faTimes (é) . . . . . . .
\faTimesCircle (ë) . .
\faTimesCircleO (○) .
\faTint (0) . . . . . . . . .
\faToggleDown (4) . . .
\faToggleLeft ( ) . . .
\faToggleOff (c) . . .
\faToggleOn (d) . . . .
\faToggleRight () . .
\faToggleUp (5) . . . . .
\faTrademark (±) . . .
\faTrain () . . . . . . .
\faTransgender (}) . .
\faTransgender (}) . .
\faTransgenderAlt (~)
\faTrash (Y) . . . . . . .
\faTrashO (1) . . . . . .
\faTree (+) . . . . . . . .
\faTrello (2) . . . . . .
\faTripadvisor (´) .
\faTrophy (3) . . . . . .
\faTruck (4) . . . . . . .
\faTry ( ) . . . . . . . . .
\faTry ( ) . . . . . . . . .
\fatsemi (#) . . . . . . . .
\fatsemi (ý) . . . . . . . .
\fatslash (() . . . . . . .
\fatslash (>) . . . . . . .
\faTty (H) . . . . . . . . .
\faTumblr (5) . . . . . . .
\faTumblrSquare (6) .
\faTurkishLira ( ) . .
\faTv (½) . . . . . . . . .
\faTwitch (L) . . . . . .
\faTwitter (7) . . . . .
\faTwitterSquare (8)
267
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
127
195
197
195
195
195
195
195
195
195
30
57
195
195
195
195
195
195
196
196
137
137
137
137
196
196
138
138
138
138
196
197
197
196
196
197
197
26
196
131
131
131
196
196
196
196
196
196
196
25
25
30
33
30
57
196
196
196
25
197
196
196
196
\faUmbrella (:) . . . . . . . 196
\faUnderline (;) . . . . . . 196
\faUndo (<) . . . . . . . . . . 135
\faUndo (<) . . . . . . . . . . 135
\faUniversity () . . . . 196
\faUnlink (a) . . . . . . . . 197
\faUnlock (b) . . . . . . . . 196
\faUnlockAlt (c) . . . . . . 196
\faUnsorted ( ) . . . . . . . 197
\faUpload (e) . . . . . . . . 196
\faUsd (f) . . . . . . . . . . . 25
\faUsd (f) . . . . . . . . . . . 25
\faUser (g) . . . . . . . . . . 196
\faUserMd (h) . . . . . . . . 196
\faUserPlus (‹) . . . . . . 196
\faUsers () . . . . . . . . . 196
\faUserSecret (w) . . . . . 196
\faUserTimes (Œ) . . . . . 196
\faVenus (♀) . . . . . 127, 131
\faVenusDouble () . . . . 131
\faVenusMars () . . . . . 131
\faViacoin (Ž) . . . . . . . 25
\faVideoCamera (i) . . . . 196
\faVimeo (Í) . . . . . . . . . 196
\faVimeoSquare (j) . . . . 196
\faVine (7) . . . . . . . . . . 196
\faVk (k) . . . . . . . . . . . 196
\faVolumeDown (l) . . . . . 196
\faVolumeOff (m) . . . . . . 196
\faVolumeUp (n) . . . . . . . 196
\faWarning (o) . . . . . . . 197
\faWechat () . . . . . . . . 197
\faWeibo (p) . . . . . . . . . 196
\faWeixin () . . . . . . . . 196
\faWhatsapp (‰) . . . . . . . 196
\faWheelchair ( ) . . . . . 196
\faWifi (O) . . . . . . . . . . 196
\faWikipediaW (·) . . . . 196
\faWindows (q) . . . . . . . 196
\faWon (¦) . . . . . . . . . . . 25
\faWordpress () . . . . . . 196
\faWrench (r) . . . . . . . . 196
\FAX (u) . . . . . . . . . . . . 130
\fax (t) . . . . . . . . . . . . . 130
\faXing (s) . . . . . . . . . . 196
\faXingSquare (t) . . . . . 196
\Faxmachine (v) . . . . . . 130
\faYahoo () . . . . . . . . . 196
\faYc (’) . . . . . . . . . . . . 197
\faYCombinator (’) . . . . 197
\faYCombinatorSquare (=) 197
\faYcSquare (=) . . . . . . . 197
\faYelp (M) . . . . . . . . . . 197
\faYen (£) . . . . . . . . . . . 25
\faYoutube (u) . . . . . . . 197
\faYoutubePlay (v) . . . . 197
\faYoutubeSquare (w) . . 197
\fbowtie (⧓) . . . . . . . . . 58
fc (package) . . . . . . . . 16, 20
) . . 179
\fcdice (
fclfont (package) . . . . . . . 239
\fcmp (⨾) . . . . . . . . . . . . . 34
\Fcontent (
) . . . . . . 116
\fcscore (
) . . . . 180
.fd files . . . . . . 12, 231, 238
\fdiagovnearrow (⤯) . . . 84
\fdiagovrdiag (⤬) . . . . . 121
fdsymbol (package) . 32, 33, 36,
44, 45, 55, 56, 63, 67, 71,
78–82, 89, 90, 95, 97, 101,
102, 106, 108, 115, 118,
120, 141, 145, 158, 239,
240
feet . . . . . . . . see \prime and
\textquotesingle
\FEMALE () . . . . . . . . . . . 131
\Female (~) . . . . . . . . . . . 131
female . . . . . 18, 126–128, 131,
192–197, 201–203
\female (♀) . . . . . . . . . . 131
\female (♀) . . . . . . . . . . . 131
\FemaleFemale („) . . . . . 131
\FemaleMale ( ) . . . . . . . 131
.
a
\Ferli (a) . . . . . . . . . . . 161
\fermata . . . . . . . . . . . . 165
\fermata ( ) . . . . . . . . . 164
\fermatadown () . . . . . . . 159
\fermataup () . . . . . . . . . 159
.
a
\Fermi (a) . . . . . . . . . . . 161
\fermiDistrib (𝑐) . . . . . 132
\fermion (𝛤) . . . . . . . . . 132
fermions . . . . . . . . . 132–133
feyn (package) . . 132, 239, 240
Feynman slashed character notation . . . . . . . . . . 224
Feynman-diagram symbols 132
\feyn{a} () . . . . . . . . . . . 132
\feyn{c} ( ) . . . . . . . . . 132
\feyn{fd} ( ) . . . . . . . . . 132
\feyn{flS} () . . . . . . . . . 132
\feyn{fl} () . . . . . . . . . . 132
\feyn{fs} ( ) . . . . . . . . . 132
\feyn{fu} ( ) . . . . . . . . . 132
\feyn{fv} () . . . . . . . . . . 132
\feyn{f} ( ) . . . . . . . . . 132
\feyn{g1} () . . . . . . . . . . 132
\feyn{gd} ( ) . . . . . . . . . 132
Q
P
⊣
⌋
⌈
≀
↕
→
⌉
⌊
{
⨿
⊑
\feyn{glB} ()¶ . . . . . . . . . 132
\feyn{glS} ()♣ . . . . . . . . . 132
\feyn{glu} ()‡ . . . . . . . . . 132
\feyn{gl} ()† . . . . . . . . . . 132
\feyn{gu} (⊓) . . . . . . . . . 132
\feyn{gvs} ()♢∫ . . . . . . . . . 132
\feyn{gv} ()♢ . . . . . . . . . . 132
\feyn{g} (}) . . . . . . . . . 132
\feyn{hd} (|) . . . . . . . . . 132
\feyn{hs} (↑) . . . . . . . . . 132
\feyn{hu} (⟩) . . . . . . . . . 132
\feyn{h} (⟨) . . . . . . . . . 132
\feyn{ms} (↓) . . . . . . . . . 132
\feyn{m} (⇕) . . . . . . . . . 132
\feyn{P} (𝒫) . . . . . . . . . 132
\feyn{p} (√) . . . . . . . . . 132
\feyn{x} ()S . . . . . . . . . . . 132
fez . . . . . . . . . . . . . . . . . 107
\FF (␌) . . . . . . . . . . . . . . 130
fge (package) 87, 97, 106, 117,
122, 239, 240
\fgeA (A) . . . . . . . . . . . . 97
\fgebackslash (K) . . . . . . 122
\fgebaracute (M) . . . . . . 122
\fgebarcap (O) . . . . . . . . 122
\fgec (c) . . . . . . . . . . . . 97
\fgecap (S) . . . . . . . . . . 122
\fgecapbar (Q) . . . . . . . . 122
\fgecup (N) . . . . . . . . . . 122
\fgecupacute (R) . . . . . . 122
\fgecupbar (P) . . . . . . . . 122
\fged (p) . . . . . . . . . . . . 97
\fgee (e) . . . . . . . . . . . . 97
\fgeeszett (ı) . . . . . . . . 97
\fgeeta (”) . . . . . . . . . . 97
\fgeF (F) . . . . . . . . . . . . 97
\fgef (f) . . . . . . . . . . . . 97
\fgeinfty (i) . . . . . . . . 122
\fgelangle (h) . . . . . . . . 122
\fgelb . . . . . . . . . . . . . . 97
\fgelb (”) . . . . . . . . . . . 97
\fgeleftB (D) . . . . . . . . . 97
\fgeleftC (C) . . . . . . . . . 97
\fgeN (”) . . . . . . . . . . . . 97
\fgeoverU (”) . . . . . . . . . 97
\fgerightarrow (!) . . . 87
\fgerightB (B) . . . . . . . . 97
\fges (s) . . . . . . . . . . . . . 97
\fgestruckone (1) . . . . . . 117
\fgestruckzero (0) . . . . . 117
\fgeU (U) . . . . . . . . . . . . 97
\fgeuparrow (") . . . . . . . 87
\fgeupbracket (L) . . . . . 122
field (F)
see alphabets, math
\file (H) . . . . . . . . . . . . 181
file extensions
.dvi . . . . . . . . . . . . 235
.fd . . . . . . 12, 231, 238
.mf . . . . . . 12, 199, 229
.otf . . . . . . . . . . . . 158
.pdf . . . . . . . . . . . . 235
.sty . . . . . . . . . . . . 12
.tex . . . . . . . . 235, 237
.tfm . 12, 123, 199, 219,
238
file symbols . . . . . . . 194–197
\FilledBigCircle ( ) . . 143
\FilledBigDiamondshape ( )
. . . . . . . 143
\FilledBigSquare ( ) . . 143
\FilledBigTriangleDown ( )
. . . . . . . 143
\FilledBigTriangleLeft ( )
. . . . . . . 143
\FilledBigTriangleRight ( )
. . . . . . . 143
\FilledBigTriangleUp ( ) . .
. . . . . . . 143
\FilledCircle ( ) . . . . . 143
U
V
P
S
R
T
Q
e
268
\FilledCloud ( ) . . . . . . 178
\filleddiamond (◆) . . . . . 36
\FilledDiamondShadowA ( ) .
. . . . . . . 143
\FilledDiamondShadowC ( ) .
. . . . . . . 143
f
\FilledDiamondshape ( ) 143
\FilledHut ( ) . . . . . . . . 178
\filledlargestar (☀) . . 140
\filledlozenge (⧫) . . . . . 140
\filledmedlozenge (⧫) . . 140
\filledmedsquare (∎) . . . 36
\filledmedtriangledown (▼)
. . . . . . 36, 70
\filledmedtriangleleft (◀)
. . . . . . 36, 70
\filledmedtriangleright (▶)
. . . . . . 36, 70
\filledmedtriangleup (▲) 36,
70
\FilledRainCloud ( ) . . 178
\FilledSectioningDiamond
( ) . . . . . . . . . . . 178
!
u 143
\FilledSmallCircle (u) 143
\FilledSmallDiamondshape
(v) . . . . . . . . . . . 143
\FilledSmallSquare (p) 143
\FilledSmallTriangleDown
(s) . . . . . . . . . . . 143
\FilledSmallTriangleLeft
(r) . . . . . . . . . . . 143
\FilledSmallTriangleRight
(t) . . . . . . . . . . . 143
\FilledSmallTriangleUp (q)
. . . . . . . 143
\FilledSnowCloud ($) . . 178
\FilledSquare (`) . . . . . 143
\filledsquare (◾) . . . . . . 36
\FilledSquareShadowA () . .
. . . . . . . 143
\FilledSquareShadowC () . .
\FilledSmallCircle ( )
.......
143
\filledsquarewithdots (C) .
. . . . . . . 146
\filledstar (★) . . . . . . . 36
#
\FilledSunCloud ( ) . . . 178
c
\FilledTriangleDown ( ) 143
\filledtriangledown (▾) 36,
70
\FilledTriangleLeft ( ) 143
\filledtriangleleft (◂) 36,
70
\FilledTriangleRight ( ) . .
. . . . . . . 143
\filledtriangleright (▸) 36,
70
\FilledTriangleUp ( ) . 143
\filledtriangleup (▴) 36, 70
b
d
a
"
\FilledWeakRainCloud ( ) . .
. . . . . . . 178
finger, pointing . . . . see fists
finite field (F) . see alphabets,
math
\Finland (‹) . . . . . . . . . . 189
\finpartvoice (a») . . . . . 22
ˇ (a) . . 22
\finpartvoiceless
»
>
˚
\fint (⨏ ) . . . . . . . . . . . . 42
\fint (ffl) . . . . . . . . . . . . 48
\fint ( ) . . . . . . . . . . . . 43
\fint (⨏) . . . . . . . . . . . . 45
\fint (⨏) . . . . . . . . . . . . 46
\fintsl (⨏) . . . . . . . . . . . 47
\fintup (⨏) . . . . . . . . . . . 47
\Finv (F) . . . . . . . . . . . . 96
\Finv (`) . . . . . . . . . . . . 96
\Finv (û) . . . . . . . . . . . . 97
\Finv (Ⅎ) . . . . . . . . . . . . 97
\Finv (Ⅎ) . . . . . . . . . . . . 97
\Fire ( ) . . . . . . . . 178, 192
\Fire (Ð) . . . . . . . . . . . 128
fish . . . . . . . . . . . . . . . . . 205
fish hook . . . . . see \strictif
\fisheye (◉) . . . . . . . . . 141
fists . . . . . . . . . 136, 137, 199
\fivedots () . . . . . . 31, 115
\FiveFlowerOpen (R) . . . 139
\FiveFlowerPetal (P) . . 139
\FiveStar (8) . . . . . . . . 139
\FiveStarCenterOpen (;) 139
\FiveStarConvex (?) . . . 139
\FiveStarLines (7) . . . . 139
\FiveStarOpen (9) . . . . . 139
\FiveStarOpenCircled (:) . .
. . . . . . . 139
\FiveStarOpenDotted (<) 139
\FiveStarOutline (=) . . 139
\FiveStarOutlineHeavy (>) .
. . . . . . . 139
\FiveStarShadow (@) . . . 139
\Fixedbearing (%) . . . . . 131
.
\fixedddots ( . . ) . . . . . . 114
.
\fixedvdots (..) . . . . . . . . 114
fixmath (package) . . . . . . 233
\fj (F) . . . . . . . . . . . . . . 19
\FL () . . . . . . . . . . . . . . 129
\fl ( ) . . . . . . . . . . . . . . 160
\Flag ( ) . . . . . . . . . . . . 178
\flageolett () . . . . . . . . 159
flags . . . . . 178, 190, 192–197,
213–215
\flap (f) . . . . . . . . . . . . 19
\flapr (D) . . . . . . . . . . . . 19
\Flasche ( ) . . . . . . . . . . 191
\flat (♭) . . . . . . . . . . . . 158
\flat (ù) . . . . . . . . . . . . . 158
\flat (♭) . . . . . . . . . . . . 158
\flat ( ) . . . . . . . . . . . . . 163
Z
x
\flat (♭) . . . . . . . . . . . . . 158
\flat (♭) . . . . . . . . . . . . 158
\flatflat ( ) . . . . . . . . . 163
\Flatsteel (–) . . . . . . . . 131
fletched arrows . . . . . 87, 134
fleurons . . . . . . . 140, 146, 204
\Florin (í) . . . . . . . . . . 25
florin . . . . . see \textflorin
flourishes . . . . . 146, 147, 207
\floweroneleft (B) . . . . 140
\floweroneright (C) . . . 140
flowers . . . 139, 140, 192–193,
204–205
\fltns (⏥) . . . . . . . . . . . 141
Flynn, Peter . . . . . . . . . . 223
\FM (
) . . . . . . . . . . . . . . 129
) . . . . . 116
\Fncontent (
\Fnncontent (
) . . . . 116
\Fnnquant (
) . . . . . . 116
) . . . . . 116
\Fnnquantn (
) . . . . 116
\Fnnquantnn (
\Fnquant (
) . . . . . . . 116
\Fnquantn (
) . . . . . . 116
) . . . . . 116
\Fnquantnn (
\fnsymbol . . . . . . . . . . . . 180
\Fog ( ) . . . . . . . . . . . . 178
\font . . . . . . . . . . . . . . . 12
font encodings . 12, 14–16, 20,
23, 222, 227, 233–235, 239
7-bit . . . . . . . . . . . . 12
8-bit . . . . . . . . . . . . 12
ASCII . . . . . . . . . . . 239
Cyrillic . . . . . . . . . . 20
document . . . . . . . . . 235
Latin 1 . . . . . . . . . . 239
limiting scope of . . . . 12
LY1 . . . . . . . . . . . . . 12
OT1 . . . 12, 15, 20, 227,
233–235
OT2 . . . . . . . . . . . . 222
T1 12, 14–16, 20, 234, 235
T2A . . . . . . . . . 20, 222
T2B . . . . . . . . . . . . 20
T2C . . . . . . . . . . . . 20
T4 . . . . . . . . . 16, 20, 23
T5 . . . . . . . . . . . . 16, 20
TS1 . . . . . . . . . 222, 235
U . . . . . . . . . . . . . . 222
X2 . . . . . . . . . . . . . . 20
fontawesome (package) . . . . . .
25, 26, 127, 131, 135–138,
140, 144, 194, 197, 239,
240
fontdef.dtx (file) . . 223, 226
fontenc (package) . . 12, 15, 16,
20, 235
\fontencoding . . . . . . . . 12
fonts
Calligra . . . . . . . . . . 123
Charter . . . . . . . . 25, 49
Computer Modern . . 87,
219, 221, 234
269
CountriesOfEurope . . 190
Courier . . . . . . . . . . 25
Emmentaler . . . . . . . 163
Garamond . . . . . . 25, 49
Helvetica . . . . . . . . . 25
“pi” . . . . . . . . . . . . . 222
Soyombo . . . . . . . . . 187
Symbol . . . . . . . 94, 222
Times Roman . . 25, 221
Type 1 . . . . . . . . . . 232
Utopia . . . . . . . . . 25, 49
Zapf Chancery . . . . . 123
Zapf Dingbats . 134, 138
\fontsize . . . . . . . . 219, 221
fontspec (package) . . 158, 238
\Football (o) . . . . . . . . 177
\forall (∀) . . . . . . . . . . 96
\forall (∀) . . . . . . . . . . 97
\forall (∀) . . . . . . . . . . 96
\forall (∀) . . . . . . . . . . . 97
\Force (l) . . . . . . . . . . . 131
\Fork () . . . . . . . . . . . . . 191
\forks (⫝̸) . . . . . . . . . . . 59
\forksnot (⫝) . . . . . . . . . 58
\forkv (þ) . . . . . . . . . . . 57
\forkv (⫙) . . . . . . . . . . . 58
forte ( ) . . . . . . . . . 163, 175
\Fortune (K) . . . . . . . . . 128
\Forward (·) . . . . . . . . . . 177
\ForwardToEnd (¸) . . . . . 177
\ForwardToIndex (¹) . . 177
\FourAsterisk (1) . . . . . 139
\FourClowerOpen (V) . . . 139
\FourClowerSolid (W) . . 139
\Fourier (
) . . . . . . . 61
fourier (package) . . . . 26, 61,
94, 98, 104, 109, 137, 140,
177, 239
fourier (emf package option) 126
) . . . . . . . 61
\fourier (
Fourier transform (ℱ) . . . see
alphabets, math
\FourStar (5) . . . . . . . . 139
\FourStarOpen (6) . . . . . 139
\fourth (4) . . . . . . . . . . 119
\fourvdots (⦙) . . . . . . . . . 115
\Fquantn (
) . . . . . . . 116
\Fquantnn (
) . . . . . . 116
\fracslash (⁄) . . . . . . . . . 34
fractions . . . . . . . . . . . . . 121
fraktur . see alphabets, math
\France (Œ) . . . . . . . . . . 189
frcursive (emf package option) .
. . . . . . . 126
Freemason’s cipher . . . . . 186
frege (package) . 116, 239, 240
Frege logic symbols . . 87, 97,
116, 117, 122
Frege, Gottlob . . . . . . . . . 116
\frown (⌢) . . . . . . . . . . 50
\frown (ý) . . . . . . . . . . . 57
\frown (⌢) . . . . . . . . . 55, 90
\frown (⌢) . . . . . . . . . . . 89
\frown (⌢) . . . . . . . . . . . 58
frown symbols . . . . . . . 89, 90
\frowneq (≘) . . . . . . . . 55, 90
\frowneq (!) . . . . . . . . . . 89
\frowneqsmile (') . . . . . 89
\frownie (/) . . . . . . . . . 176
\frownsmile (⁐) . . . . . 55, 90
\frownsmile () . . . . . . . 89
\frownsmileeq ()) . . . . . 89
\Frowny (§) . . . . . . . . . . 177
frowny faces . . 130, 176, 177,
190–197
) . . . . . . 191
\fryingpan (
\FS (␜) . . . . . . . . . . . . . . 130
\fullmoon (M) . . . . . . . . 127
\fullmoon (#) . . . . . . . . 126
\fullnote () . . . . . . . . . 158
\fullouterjoin (⟗) . . . 121
G
\G (a
Ÿ) . . . . . . . . . . . . . . . 20
g (esvect package option) . 110
g (g) . . . . . . . . . . . . . . . 157
gaffing hook . . see \strictif
\Game (G) . . . . . . . . . . . . 96
\Game (a) . . . . . . . . . . . . 96
\Game (ü) . . . . . . . . . . . . 97
\Game (⅁) . . . . . . . . . . . . 97
\Game (⅁) . . . . . . . . . . . . 97
game-related symbols 145, 146,
178, 179, 181–183, 194–
197, 216–218
\Gamma (Γ) . . . . . . . . . . . 93
\gamma (𝛾) . . . . . . . . . . . 93
\gammaup (γ) . . . . . . . . . . 94
\Ganz (¯ ) . . . . . . . . . . . . 160
\GaPa (<) . . . . . . . . . . . . 160
Garamond (font) . . . . . 25, 49
\garlicpress (
) . . . . 191
\Gasstove () . . . . . . . . . 191
\gcd (gcd) . . . . . . . . . . . 91
\GD (|
) . . . . . . . . . . . . . . 129
\GE ( ) . . . . . . . . . . . . . . 129
\ge . . . . . . . . . . . . . see \geq
\ge (≥) . . . . . . . . . . . . . . 67
\ge (≥) . . . . . . . . . . . . . . 69
\Gemini (R) . . . . . . . . . . 127
\Gemini (â) . . . . . . . . . . 126
\Gemini (v) . . . . . . . . . . 128
\gemini (^) . . . . . . . . . . 126
genealogical symbols . . . . 176
\geneuro (A
C) . . . . . . . . . 26
\geneuronarrow (B
C) . . . . 26
\geneurowide (C
C) . . . . . . 26
gensymb (package) . . . . . . 125
\Gentsroom (x) . . . . . . . . 177
geometric shapes 128, 140–145,
169–173, 182, 183, 194–
197, 199–200, 215–216
\geq (ě) . . . . . . . . . . . . . 65
\geq (≥) . . . . . . . . . . 64, 65
\geq (≥) . . . . . . . . . . . . . 67
\geq (≥) . . . . . . . . . . . . . 66
\geq (≥) . . . . . . . . . . . 68, 69
\geqclosed (⊵) . . . . . . 67, 71
\geqclosed (⊵) . . . . . . 66, 70
\geqdot (c) . . . . . . . . . . 67
\geqdot (u) . . . . . . . . . . . 66
\geqq (ŕ) . . . . . . . . . . . . 65
\geqq (=) . . . . . . . . . . . . 64
\geqq (Á) . . . . . . . . . . . . 68
\geqq (≧) . . . . . . . . . . . . 67
\geqq (≧) . . . . . . . . . . . . 66
\geqq (≧) . . . . . . . . . . . . 68
\geqqslant (⫺) . . . . . . . . 68
\geqslant (>) . . . . . 64, 226
\geqslant (É) . . . . . . . . . 68
\geqslant (⩾) . . . . . . . . . 67
\geqslant (⩾) . . . . . . . . . 66
\geqslant (⩾) . . . . . . . . . 68
\geqslantdot (⪀) . . . . . . 67
\geqslantdot (⪀) . . . . . . 66
\geqslcc (⪩) . . . . . . . . . 67
german (keystroke package option) . . . . . . . . . . 129
Germanic runes . . . . . . . . 157
\Germany () . . . . . . . . . . 189
\gescc (⪩) . . . . . . . . . . . 67
\gescc (⪩) . . . . . . . . . . . 68
\gesdot (⪀) . . . . . . . . . . 67
\gesdot (⪀) . . . . . . . . . . 68
\gesdoto (⪂) . . . . . . . . . 68
\gesdotol (⪄) . . . . . . . . . 68
\gesl (⋛) . . . . . . . . . . . . 67
\gesles (⪔) . . . . . . . . . . 69
\gets . . . . . . see \leftarrow
\gets (←) . . . . . . . . . . . . 79
\gg (") . . . . . . . . . . . . . . 65
\gg (≫) . . . . . . . . . . . . . 64
\gg (≫) . . . . . . . . . . . . . 67
\gg (≫) . . . . . . . . . . . . . 66
\gg (≫) . . . . . . . . . . . . . 69
\ggcurly (Ï) . . . . . . . . . 52
\ggcurly (ë) . . . . . . . . . 57
\ggg (Ï) . . . . . . . . . . . . . 65
\ggg (≫) . . . . . . . . . . . . 64
\ggg (≫ vs. Ï) . . . . . . . 220
\ggg (×) . . . . . . . . . . . . 68
\ggg (⋙) . . . . . . . . . . . . 67
\ggg (⋙) . . . . . . . . . . . . 66
\ggg (⋙) . . . . . . . . . . . . 69
\gggnest (⫸) . . . . . . . . . 69
\gggtr . . . . . . . . . . see \ggg
\gggtr (⋙) . . . . . . . . . . 67
\gggtr (⋙) . . . . . . . . . . 66
\gggtr (⋙) . . . . . . . . . . 69
ghosts . . . . . . . . 38, 114, 186
Gibbons, Jeremy . . . . . . . 241
\gimel (‫ )ג‬. . . . . . . . . . . 95
\gimel (ù) . . . . . . . . . . . 95
\gimel (ℷ) . . . . . . . . . . . 95
\gimel (ℷ) . . . . . . . . . . . . 95
\gimel (ℷ) . . . . . . . . . . . 96
\girl (B) . . . . . . . . . . . . 127
\gla (⪥) . . . . . . . . . . . . . 69
270
\glE (⪒) . . . . . . . . . . . . . 69
\gleichstark (⧦) . . . . . . 58
\glj (ú) . . . . . . . . . . . . . 68
\glj (⪤) . . . . . . . . . . . . . 69
globe . . . . . . . . . . . . . . . 177
\glotstop (b) . . . . . . . . . 19
\glottal (?) . . . . . . . . . . 19
\Gloves ( ) . . . . . . . . . . 191
\Gluon (ð) . . . . . . . . . . . 132
\gluon (QPPPPPPR) . . . . . . . . 125
gluons . . . . . . . . . . . . . . . 132
\gnapprox (Ë) . . . . . . . . 65
\gnapprox () . . . . . . . . 64
\gnapprox (›) . . . . . . . . . 68
\gnapprox (⪊) . . . . . . . . . 67
\gnapprox (⪊) . . . . . . . . . 66
\gnapprox (⪊) . . . . . . . . . 69
\gneq (ŋ) . . . . . . . . . . . . 65
\gneq ( ) . . . . . . . . . . . . 64
\gneq () . . . . . . . . . . . . 68
\gneq (⪈) . . . . . . . . . . . . 67
\gneq (⪈) . . . . . . . . . . . . 69
\gneqq (ş) . . . . . . . . . . . 65
\gneqq ( ) . . . . . . . . . . . 64
\gneqq (‰) . . . . . . . . . . . 68
\gneqq (≩) . . . . . . . . . . . 67
\gneqq (≩) . . . . . . . . . . . 66
\gneqq (≩) . . . . . . . . . . . 69
\gnsim (Å) . . . . . . . . . . . 65
\gnsim () . . . . . . . . . . . 64
\gnsim (“) . . . . . . . . . . . 68
\gnsim (⋧) . . . . . . . . . . . 67
\gnsim (≵) . . . . . . . . . . . 66
\gnsim (⋧) . . . . . . . . . . . 69
\GO () . . . . . . . . . . . . . . 129
go (package) . . . . . . 183, 239
Go boards . . . . . . . . 182, 183
Go stones . . . . . . . . 182, 183
goban . . . . . . . . . . . 182, 183
\Goofy . . . . . . . . . . . . . . 184
# »
\grad (grad) . . . . . . . . . . 92
\graphene (𝑠) . . . . . . . . 132
graphics (package) . . . 87, 222
graphicx (package) . . 24, 219,
222, 226
\grater ( ) . . . . . . . . . . . 191
\grave ( ̀ ) . . . . . . . . . . . 106
\grave (`) . . . . . . . . . . . 105
grave (à) . . . . . . . see accents
\gravis (à) . . . . . . . . . . . 23
\graviton (÷) . . . . . . . . . 132
\GreatBritain (Ž) . . . . . 189
greater-than signs . . . . . . see
inequalities
greatest lower bound . . . . see
\sqcap
\greatpumpkin ( ) . . . . 38
\Greece () . . . . . . . . . . 189
Greek . . . . . . . . . . 15, 93, 94
blackboard bold . . . . 124
bold . . . . . . . . . 93, 233
coins . . . . . . . . . . . . 26
letters . . 15, 93, 94, 124,
154, 233
numerals . . . . . . . . . 154
polytonic . . . . 15, 93, 94
upright . . . . . . . . 15, 94
greek (babel package option) 15,
93, 94, 154
Green Dot . . see \Greenpoint
and \PackingWaste
\Greenpoint ( ) . . . . . . . 186
greenpoint (package)
199, 239
Gregorian music . . . . . . . 160
¨
b) . . 160
\gregorianFclef (z) . . 160
\gregorianCclef (
Gregorio, Enrico 105, 223, 224
Griffith’s separation vector (r)
. . . . . . . 123
\grimace (-) . . . . . . . . . 177
Grüne Punkt see \Greenpoint
and \PackingWaste
\GS (␝) . . . . . . . . . . . . . . 130
\gsime (⪎) . . . . . . . . . . . 69
\gsiml (⪐) . . . . . . . . . . . 69
\Gt (Ï) . . . . . . . . . . . . . . 68
\Gt (⪢) . . . . . . . . . . . . . . 69
\gtcc (⪧) . . . . . . . . . . . . 67
\gtcc (⪧) . . . . . . . . . . . . 69
\gtcir (ù) . . . . . . . . . . . 68
\gtcir (⩺) . . . . . . . . . . . 69
\gtlpar (⦠) . . . . . . . . . . 118
\gtlpar (⦠) . . . . . . . . . . 118
\gtquest (⩼) . . . . . . . . . 68
\gtr (>) . . . . . . . . . . . . . 67
\gtr (>) . . . . . . . . . . . . . 66
\gtrapprox (Ç) . . . . . . . . 65
\gtrapprox (') . . . . . . . 64
\gtrapprox (¿) . . . . . . . . 68
\gtrapprox (⪆) . . . . . . . . 67
\gtrapprox (⪆) . . . . . . . . 66
\gtrapprox (⪆) . . . . . . . . 68
\gtrarr (⥸) . . . . . . . . . . 68
\gtrcc (⪧) . . . . . . . . . . . 67
\gtrclosed (⊳) . . . . . . 67, 71
\gtrclosed (⊳) . . . . . . 66, 70
\gtrdot (Í) . . . . . . . . . . 65
\gtrdot (m) . . . . . . . . . . 64
\gtrdot (Å) . . . . . . . . . . 33
\gtrdot (⋗) . . . . . . . . . . 67
\gtrdot (⋗) . . . . . . . . . . . 66
\gtrdot (⋗) . . . . . . . . . . 68
\gtreqless (¡) . . . . . . . . 65
\gtreqless (R) . . . . . . . 64
\gtreqless (Å) . . . . . . . . 68
\gtreqless (⋛) . . . . . . . . 67
\gtreqless (⋛) . . . . . . . . 66
\gtreqless (⋛) . . . . . . . . 68
\gtreqlessslant (⋛) . . . . 67
\gtreqlessslant (O) . . . . 66
\gtreqqless (£) . . . . . . . 65
\gtreqqless (T) . . . . . . .
64
\gtreqqless (Ç) . . .
\gtreqqless (⪌) . . .
\gtreqqless (⪌) . . .
\gtreqqless (⪌) . . .
\gtreqslantless (⋛)
\gtrless (ż) . . . . .
\gtrless (≷) . . . . .
\gtrless (Ã) . . . . .
\gtrless (≷) . . . . . .
\gtrless (≷) . . . . . .
\gtrless (≷) . . . . .
.
.
.
.
.
.
.
.
.
.
.
68
67
66
68
67
65
64
68
67
66
68
\gtrneqqless (ó) . . . . . .
66
\gtrsim (Á) . . . . . . . . . .
\gtrsim (&) . . . . . . . 64,
\gtrsim (½) . . . . . . . . . .
\gtrsim (≳) . . . . . . . . . .
\gtrsim (≳) . . . . . . . . . . .
\gtrsim (≳) . . . . . . . . . .
\gtrsimslant (>) . . . . . .
∼
\GU (|
) . . . . . . . . . . . . . .
\guillemetleft («) . . 16,
\guillemetright (») . 16,
\guillemotleft . . . . . . .
\guillemetleft
\guillemotright . . . . . .
\guillemetright
\guilsinglleft (‹) . . 16,
\guilsinglright (›) . 16,
\gvcropped ( ) . . . . . . .
\gvertneqq (ţ) . . . . . . . .
\gvertneqq () . . . . . . .
\gvertneqq () . . . . . . . .
\gvertneqq (≩) . . . . . . . .
\gvertneqq (≩) . . . . . . . .
\gvertneqq (≩) . . . . . . . .
65
226
68
67
66
68
226
∓
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
129
236
236
see
see
237
237
132
65
64
68
67
66
68
H
H (H) . . . . . . . . . . . . . . . 157
\H (a̋) . . . . . . . . . . . . . . . 20
h (esvect package option) . 110
\h (è) . . . . . . . . . . . . . . . 157
\h (ả) . . . . . . . . . . . . . . . 20
h (h) . . . . . . . . . . . . . . . 157
Hälsinge runes . . see staveless
runes
\HA (A) . . . . . . . . . . . . 149
\Ha (a) . . . . . . . . . . . . . 149
háček (ǎ) . . . . . . see accents
\Hades (Ü) . . . . . . . . . . . 128
\Hail ( ) . . . . . . . . . . . . 178
\Halb (˘ “ ) . . . . . . . . . . . . 160
half note see musical symbols
\HalfCircleLeft (s) . . . . 143
\HalfCircleRight (r) . . . 143
\HalfFilledHut ( ) . . . . 178
\halflength (p) . . . . . . . 24
\halfNote ( ,) . . . . . . . . . 161
\halfnote ( ) . . . . . . . . . 158
\halfNoteDotted ( u) . . . . 161
\halfNoteDottedDouble ( u u) .
. . . . . . . 161
271
\halfNoteDottedDoubleDown
uu
( ) . . . . . . . . . . . 161
u
\halfNoteDottedDown ( ) 161
,
\halfNoteDown ( ) . . . . . . 161
\halfNoteRest ( ) . . . . . 163
\halfNoteRestDotted ( ) . .
. . . . . . . 163
\HalfSun ( ) . . . . . . . . . 178
Halloween symbols 38, 113, 114
halloweenmath (package) . 38,
90, 106, 112–114, 239, 240
Hamiltonian (ℋ) . . . . . . . see
alphabets, math
\HandCuffLeft () . . . . . 136
\HandCuffLeftUp () . . . 136
\HandCuffRight ( ) . . . . 136
\HandCuffRightUp () . . 136
\HandLeft () . . . . . . . . 136
\HandLeftUp () . . . . . . 136
\HandPencilLeft () . . . 136
\HandRight () . . . . . . . 136
\HandRightUp () . . . . . 136
hands . . . . . . . . . . . see fists
hands (package) . . . . 199, 239
\Handwash (Ü) . . . . . . . . 177
\HaPa (<) . . . . . . . . . . . . 160
harmony (package) . . 160, 161,
239, 240
harpoon (package) 87, 239, 240
harpoons . . 72, 74, 77, 81–83,
86–88, 215–216
\hash (#) . . . . . . . . . . . . 119
\hash (>) . . . . . . . . . . . . 57
hash mark . see \# and \hash
\hat ( ̂ ) . . . . . . . . . . . . . 106
\hat (^) . . . . . . . . . . . . . 105
\hat[ash] ( ) . . . . . . . . 107
\hat[beret] ( ) . . . . . . 107
\hat[cowboy] ( ) . . . . . . 107
\hat[crown] ( ) . . . . . . 107
D
\hat[dunce] ( ) . . . . . . . 107
\hat[fez] ( ) . . . . . . . . . 107
\hat[santa] ( ) . .
\hat[sombrero] ( )
\hat[tophat] ( ) . .
\hat[witch] ( ) . . .
\hatapprox (⩯) . . . .
\hateq (≙) . . . . . . .
\hateq (≙) . . . . . . .
\hausaB (B) . . . . . .
\hausab (b) . . . . . .
\hausaD (T) . . . . . .
\hausad (D) . . . . . .
\hausaK (K) . . . . . .
\hausak (k) . . . . . .
\HB (B) . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
107
107
107
107
58
55
52
19
19
19
19
19
19
149
\Hb (b) . . . . . . . . . . . . . 149
\HBar ( ) . . . . . . . . . . . . 143
\hbar (~) . . . . . . . . . 96, 223
\hbar ( ) . . . .
̵) . . . .
\hbar (h
\hbar (ℏ) . . . .
\hbipropto (ˆ)
\hbond (Ë) . .
\HC (C) . . . . . .
....
....
....
...
....
....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 97
. 97
. 97
. 31
. 132
. 149
\Hc (c) . . . . . . . . . . . . . . 149
\hcrossing () . . . . . . . . 52
\HCthousand (6) . . . . . . 149
\HD (D) . . . . . . . . . . . . . 149
\Hd (d) . . . . . . . . . . . . . 149
\hdotdot () . . . . . . 32, 115
\hdotdot () . . . . . . . 31, 115
\hdots (⋯) . . . . . . . . . . . 115
\hdots (⋯) . . . . . . . . . . . 115
\Hdual (ff) . . . . . . . . . . . 149
\HE (E) . . . . . . . . . . . . . 149
\He (e) . . . . . . . . . . . . . 149
heads . . . . . . . . . . . see faces
\Heart (Œ) . . . . . . . . . . . 177
heartctrbull (bullcntr package option) . . . . . . . . . . 180
\heartctrbull . . . . . . . . 180
hearts . 128, 145, 146, 192–197
\heartsuit (♡) . . . . . . . 145
\heartsuit (ö) . . . . . . . . 145
\heartsuit (♡) . . . . . . . . 145
\heartsuit (♡) . . . . . . . . 145
\heartsuit (♡) . . . . . . . . 146
\heavyqtleft (❝) . . . . . . 190
\heavyqtright (❞) . . . . . 190
Hebrew . . . . . . . . 95, 96, 124
Helvetica (font) . . . . . . . . 25
\hemiobelion (Α) . . . . . . 26
\Herd ( ) . . . . . . . . . . . . 191
\HERMAPHRODITE (€) . . . . 131
\Hermaphrodite (}) . . . . 131
\Hermaphrodite (⚥) . . . . 131
\hermitmatrix (ò) . . . . . 120
\hermitmatrix (⊹) . . . . . 121
\Heta ([) . . . . . . . . . . . . 154
\heta (() . . . . . . . . . . . . . 154
\hexago ( ) . . . . . . . . . . 144
\hexagocross ( ) . . . . . . 144
\hexagodot ( ) . . . . . . . . 144
\hexagofill ( ) . . . . . . . 144
\hexagofillha ( ) . . . . . 144
\hexagofillhb ( ) . . . . . 144
\hexagofillhl ( ) . . . . . 144
\hexagofillhr ( ) . . . . . 144
\hexagolineh ( ) . . . . . . 145
\hexagolinev ( ) . . . . . . 145
\hexagolinevh ( ) . . . . . 145
\hexagon (⎔) . . . . . . . . . 141
\hexagon (7) . . . . . . . . . 140
\hexagonblack (⬣) . . . . . 141
hexagons . . . . . . . . . 144–145
\Hexasteel (’) . . . . . . . . 131
\hexstar (A) . . . . . . . . . 139
\HF ( :
: ) . . . . . . . . . . . . . . 125
\HF (F) . . . . . . . . . . . . 149
\Hf (f) . . . . . . . . . . . . 149
‖
\hfermion ()
\hfil . . . . .
\HG (G) . . . .
\Hg (g) . . .
\HH . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
\HH (H) . . . . . . . .
\Hh (h) . . . . . . .
hhcount (package)
239, 240
\Hhundred (3) . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
132
224
149
149
161
. . . . . . 149
. . . . . . 149
. . 179, 180,
. . . . . . 149
\HI (I) . . . . . . . . . . . . . 149
\Hi (i) . . . . . . . . . . . . . . 149
\hiatus (H ) . . . . . . . . . . 184
\Hibl (Π) . . . . . . . . . . 149
\Hibp (Θ) . . . . . . . . . . . 149
\Hibs (Ξ) . . . . . . . . . . . 149
\Hibw (Λ) . . . . . . . . . . .
\Hidalgo (%) . . . . . . . . . .
hieroglf (package) 149, 239,
hieroglyphics . . . . . . . . . .
\Higgsboson (ñ) . . . . . .
Hilbert space (ℋ) . . . . . .
alphabets, math
\hill (a) . . . . . . . . . . . .
{
149
128
240
149
132
see
23
Hirst, Daniel . . . . . . . . . . 158
\HJ (J) . . . . . .
\Hj (j) . . . . .
\HK (K) . . . . . .
\Hk (k) . . . . .
\hknearrow (⤤)
\hknearrow (⤤)
\hknwarrow (⤣)
\hknwarrow (⤣)
\hksearow (⤥)
\hksearrow (⤥)
√
\hksqrt (
) .
\hkswarow (⤦)
\hkswarrow (⤦)
\HL (L) . . . . .
\Hl (l) . . . . .
\HM (M) . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
149
149
149
149
79
84
79
84
84
79
225
84
79
149
149
149
\Hm (m) . . . . . . . . . . . . . 149
\Hman (ϒ) . . . . . . . . . . . 149
\Hmillion (7) . . . . . . . . 149
\hmleftpitchfork (−−∈) . 90
\hmrightpitchfork (∋−−) 90
\Hms (Δ)
\HN (N)
\Hn (n)
\HO (O) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
149
149
149
149
\Ho (o) . . . . . .
\hole (ℎ) . . . . .
\HollowBox (O) .
Holmes, Sherlock
Holt, Alexander .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1,
149
132
138
213
238
\hom (hom) . . . . . . . . . . 91
\Home ( Home ) . . . . . . . 129
\Homer (
) . . . . . . 184
\Hone (—) . . . . . . . . . . . . . 149
hook accent (ả) . . see accents
\hookb () . . . . . . . . . . . 19
\hookd (D) . . . . . . . . . . . 19
\hookd () . . . . . . . . . . . 19
\hookdownarrow (;) . . . . . 78
\hookdownminus (⌐) . . . . 120
\hookdownminus (⌐) . . . . 119
\hookg () . . . . . . . . . . . 19
\hookh ($) . . . . . . . . . . . 19
\hookheng (%) . . . . . . . . . 19
\hookleftarrow (←˒) . . . 72
\hookleftarrow () . . . . 82
\hookleftarrow (↩) . . . . 78
\hookleftarrow (↩) . . . . 75
\hookleftarrow (←˒) . . . . 87
\hookleftarrow (↩) . . . . 84
\hooknearrow (⤤) . . . . . . 78
\hooknwarrow (⤣) . . . . . . 78
\hookrevepsilon () . . . . 19
\hookrightarrow (˓→) . . 72
\hookrightarrow ( ) . . . 82
\hookrightarrow (↪) . . . 78
\hookrightarrow (↪) . . . 75
\hookrightarrow (˓→) . . . 87
\hookrightarrow (↪) . . . 84
\hooksearrow (⤥) . . . . . . 78
\hookswarrow (⤦) . . . . . . 78
\hookuparrow (1) . . . . . . 78
\hookupminus (⨽) . . . . . . 33
\hookupminus (⨽) . . . . . . 119
Horn, Berthold . . . . . . . . 124
\hoshi ( ) . . .
\hourglass (⧖)
\hourglass (⧖)
\house (⌂) . . .
\HP (P) . . . .
\Hp (p) . . . . . .
\hpause ( ) . .
\Hplural (Ω)
<
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
183
33
38
141
149
149
159
149
\Hplus (+) . . . . . . . . . . . 149
\HQ (Q) . . . . . . . . . . . . . 149
\Hq (q) . . . . . . . . . . . . . . 149
\Hquery (?) . . . . . . . . .
\HR (R) . . . . . . . . . . .
\Hr (r) . . . . . . . . . .
\hrectangle (▭) . . . .
\hrectangleblack (▬)
\HS (S) . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
149
149
149
141
141
149
\Hs (s) . . . . . . . . . . . . . . 149
A
\hs () . . . . . . . . . . . . . . . 159
\Hscribe (Ψ) . . . . . . . . . 149
\holter (
) . . . . . . . . . 114
holtpolt (package)
272
. . 114, 239
\Hslash (/) . . . . . . . . . . . 149
\hslash (}) . . . . . . . . . . 96
\hslash („)
̷)
\hslash (h
\hslash (ℏ)
\Hsv (Σ) .
\HT (␉) . . .
\HT (T) . .
\Ht (t) . .
\Hten (2) .
.
..
.
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
97
97
97
149
130
149
149
149
\Hthousand (4) . . . . . . . . 149
\Htongue (Φ) . . . . . . . . 149
\HU (U) . . . . . . . . . . . . . . 149
\Hu (u) . . . . . . . . . .
Hungarian umlaut (a̋)
accents
\Hungary () . . . . . .
\Hut ( ) . . . . . . . . .
. . . . 149
. . . see
\HV (V) . .
\Hv (v) .
\hv (") . .
\Hvbar (—)
\HW (W) . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . . 190
. . . . 178
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
149
149
19
149
149
\Hw (w) . . . . . . . . . . . . . 149
\HX (X) . . . . . . . . . . . . . . 149
\Hx (x) . . . . . . . . . . . . . . 149
\HXthousand (5) . . . . . . . 149
\HY (Y) . . . . . . . . . . . . . 149
\Hy (y) . . . . . . . . .
\Hygiea (½) . . . . . .
hyphen, discretionary
\hyphenbullet (⁃) . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
149
128
235
121
\HZ (Z) . . . . . . . . . . . . . 149
\Hz (z) . . . . . . . . . . . . 149
\hzigzag (〰) . . . . . . . . 121
I
I (I) . . . . . . . . . . . . . . .
ï . . . . . . . . . . . . . . . . . . .
\i (Á) . . . . . . . . . . . . . .
\i (ı) . . . . . . . . . . . . . . .
i (i) . . . . . . . . . . . . . . . .
\ialign . . . . . . 224, 226,
\IB (
) . . . . . . . . . . . . . .
\ibar (¯i ) . . . . . . . . . . . .
IBM PC . . . . . . 130, 185,
\IC (4) . . . . . . . . . . . . . .
\Iceland (‘) . . . . . . . . . .
Icelandic staves . . . . . . . .
\IceMountain ( ) . . . . . .
\Id (Id) . . . . . . . . . . . . .
\id (id) . . . . . . . . . . . . .
.
\iddots ( . . ) . . . . . . . . .
\iddots () ∫︀. . . .∫︀. . . . . . .
\idotsint ('
··· ) . . . . .
\idotsint (
) ......
∫
∫
\idotsint (∬
··· ) . . . . . .
\idotsint ( ) . . . . . . .
\idotsint (∫⋯∫) . . . . . . .
157
20
157
20
157
228
129
19
234
128
190
185
178
92
92
115
227
40
42
49
49
45
\idotsint (∫…∫) . . . . . . . . 44
\iff see \Longleftrightarrow
ifsym (package) 125, 143, 178,
220, 222, 239, 240
igo (package) . . . . . . 182, 239
\igocircle ( ) . . . . . . . 182
\igocircle ( ) . . . . . . . 182
\igocross ( ) . . . . . . . . 182
\igocross ( ) . . . . . . . . 182
\igonone ( ) . . . . . . . . . 182
\igonone ( ) . . . . . . . . . 182
\igosquare ( ) . . . . . . . 182
\igosquare ( ) . . . . . . . 182
\igotriangle ( ) . . . . . . 182
\igotriangle
∫︀∫︀∫︀∫︀ ( ) . . . . . . 182
\iiiint (% ) . . . . . . . . 40
\iiiint (⨌ ) . . . . . . . . . 42
\iiiint (ˇ) . . . . . . . . . 49
\iiiint ( ) . . . . . . . . . 43
\iiiint (⨌) . . . . . . . . . 45
\iiiint (⨌) . . . . . . . . . 44
\iiiint (⨌) . . . . . . . . . . 46
\iiiintsl (⨌) . . . . . . . . 47
\iiiintup
ţ (⨌) . . . . . . . . 47
\iiint (∫︀∫︀∫︀) . . . . . . . . . . 41
\iiint (t ) . . . . . . . . . . 40
\iiint (#) . . . . . . . . . . 40
\iiint (∭ ) . . . . . . . . . . 42
\iiint (˝) . . . . . . . . . . 49
\iiint ( ) . . . . . . . . . . 43
\iiint (∭) . . . . . . . . . . . 45
\iiint (∭) . . . . . . . . . . . 44
\iiint (∭) . . . . . . . . . . . 46
\iiintsl (∭) . . . . . . . . . 47
\iiintup (∭) . . . . . . . . . 47
\iinfin (÷) . . . . . . . . . . 120
\iinfinť(⧜) . . . . . . . . . . 117
\iint (∫︀∫︀) . . . . . . . . . . . . 41
\iint (s ) . . . . . . . . . . . 40
\iint (!) . . . . . . . . . . . . 40
\iint (∬ ) . . . . . . . . . . . 42
\iint (˜) . . . . . . . . . . . . 49
\iint ( ) . . . . . . . . . . . . 43
\iint (∬) . . . . . . . . . . . . 45
\iint (∬) . . . . . . . . . . . . 44
\iint (∬) . . . . . . . . . . . . 46
\iintsl (∬) . . . . . . . . . . 47
\iintup (∬) . . . . . . . . . . 47
\IJ (IJ) . . . . . . . . . . . . . 15
\ij (ij) . . . . . . . . . . . . . . 15
\Im (ℑ) . . . . . . . . . . . 92, 96
\Im (Im) . . . . . . . . . . . . . 92
\Im (ℑ) . . . . . . . . . . . . . . 97
\im (im) . . . . . . . . . . . . . 92
\im (j) . . . . . . . . . . . . . . 97
\imageof (⊷) . . . . . . . . . 89
\imageof (⊷) . . . . . . . . . 58
\imath (𝚤) . . . . . . . . . 96, 105
\imath ({) . . . . . . . . . . . . 97
\imath (𝚤) . . . . . . . . . . . . 97
\impliedby . . . . . . . . . . . see
\Longleftarrow
}
}
|
|
~
~


273
\implies see \Longrightarrow
and \vdash
impulse train . . . . . . . see sha
\in (P) . . . . . . . . . . . . . . 96
\in (∈) . . . . . . . . . . . . . 96
\in (∈) . . . . . . . . . . . . 55, 97
\in (∈) . . . . . . . . . . . . . . 97
\in (∈) . . . . . . . . . . . . . . 96
\in (∈) . . . . . . . . . . . . . . 58
inches . . . . . see \second and
\textquotedbl
\incoh (˚) . . . . . . . . . . . 61
\increment (∆) . . . . . . . . 121
independence
probabilistic . . . . . . . 225
statistical . . . . . . . . . 225
stochastic . . . . see \bot
\independent (⊥
⊥) . . . . . 225
\Industry (I) . . . . . . . . 177
inequalities . . . . . . 14, 64–69
inexact differential . see \dbar
\inf (inf ) . . . . . . . . . . . . 91
infimum see \inf and \sqcap
infinity . . . 117–120, 122, 225
\Info (i) . . . . . . . . . . . . 177
\Info ( ) . . . . . . . . . . . . 187
information symbols . . . . 177
informator symbols . . . . . 181
\infty (8) . . . . . . . . . . . 119
\infty (∞) . . . . . . . . . . 118
\infty (∞) . . . . . . . . . . . 120
\infty (∞) . . . . . . . . . . . 119
\infty (∞) . . . . . . . . . . . 117
\ING (İ) . . . . . . . . . . . . . 157
\Ing (¡) . . . . . . . . . . . . . 157
\ing (ţ) . . . . . . . . . . . . . 157
\inipartvoice (a
–ˇ) . . . . . 22
\inipartvoiceless
(a
– ) . . 22
˚
\injlim (inj lim) . . . . . . 91
\Innocey ( ) . . . . . . . . . 191
\inplus (A) . . . . . . . . . . 51
\inplus (¶) . . . . . . . . . . . 57
inputenc (package) . . . . . . 237
\Ins ( Ins ) . . . . . . . . . . 129
ş
\int (r) . . . . . . . . . . . . . 41
\int (r) . . . . . . . . . . . . . 40
\int (∫︀) . . . . . . . . . . . . . 40
\int (∫ ) . . . . . . . . . . . . . 40
\int ( ) . . . . . . . . . . . . . 49
\int (∫) . . . . . . . . . . . . . 45
\int (∫) . . . . . . . . . . . . . 44
\int (∫) . . . . . . . . . . . . . 46
\intBar (⨎) . . . . . . . . . . 45
\intBar (⨎) . . . . . . . . . . . 46
\intbar (⨍) . . . . . . . . . . 45
\intbar (⨍) . . . . . . . . . . . 46
\intBarsl (⨎) . . . . . . . . . 47
\intbarsl (⨍) . . . . . . . . . 47
\intBarup (⨎) . . . . . . . . . 47
\intbarup⨙(⨍) . . . . . . . . . 47
\intcap ( ) . . . . . . . . . . 49
\intcap (⨙) . . . . . . . . . . . 46
¡
\intcapsl (⨙) . . . . . . . . . 48
\intcapup (⨙) . . . . . . . . . 48
∱
\intclockwise ( ) . . . . . . 49
\intclockwise (∱) . . . . . 45
€
\intclockwise ( ) . . . . . 49
\intclockwise (∱) . . . . . . 46
\intclockwisesl (∱) . . . . 47
\intclockwiseup (∱) . . . . 47
\intctrclockwise (⨑) . . . 45
⨚
\intcup ( ) . . . . . . . . . . 49
\intcup (⨚) . . . . . . . . . . . 46
\intcupsl (⨚) . . . . . . . . . 48
\intcupup (⨚) . . . . . . . . . 48
\INTEGER ( ) . . . . . . . . . . 92
\Integer ( ) . . . . . . . . . . 92
integers (Z) . . . see alphabets,
math
integrals
39–50, 119, 120, 225
product . . . . . . . . . . 50
integrals (wasysym package option) . . . . . . . . . . . 40
\interaction (Ó) . . . . . . 132
\intercal (|) . . . . . . . . . 30
\intercal (þ) . . . . . . . 33, 97
\intercal (⊺) . . . . . . . . . 32
\intercal (⊺) . . . . . . . . . 96
\intercal (⊺) . . . . . . . 34, 97
interior . . . . . . see \mathring
\interleave (9) . . . . . . . 30
\interleave (⫴) . . . . . . . 34
\internalsym (𝛩) . . . . . . 132
intersection . . . . . . . see \cap
¿
Ú
™
\Interval ( ) .
⨗
\intlarhk ( ) . .
\intlarhk (⨗) . .
\intlarhksl (⨗)
\intlarhkup (⨗)
\intprod (⨼) . .
\intprod (⨼) . . .
\intprodr (⨽) . .
\intprodr (⨽) . .
\intsl (∫) . . . . .
Š
\intup ( ) . . . . .
\intup (∫) . . . . .
\intx (⨘) . . . . .
\intxsl (⨘) . . . .
\intxup (⨘) . . . .
\inva ( ) . . . . .
\invamp (M) . . .
\invamp (`) . . .
\invbackneg (⨽)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.....
.....
.....
.....
.....
32, 33,
.....
32, 33,
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
178
49
46
48
48
120
34
120
34
47
45
47
46
48
48
19
31
35
119
\INVd () . . . . . . . . . . 130
\invdiameter () . . . . . . 176
\inve (U) . . . . . . . . . . . . 19
inverse limit see \varprojlim
\inversebullet (◘) . . . . 121
\inversewhitecircle (◙) 141
\InversTransformHoriz ( )
. . . . . . . . 61
\InversTransformVert ( )
61
inverted symbols
222
inverters . . . . . .
\invf (,) . . . . . .
\invglotstop (d)
\invh (&) . . . . .
...
...
..
...
.
.
.
.
.
.
.
.
.
.
.
.
. 130
. 19
. 19
. 19
\INVl () .
\invlazys (∾)
\invlegr (I) .
\invm (5) . . .
\invneg () .
\invneg (⌐) .
\invneg (⨼) .
\invnot (‡) .
\invnot (⌐) .
\invnot (⌐) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . 17–19, 24,
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
130
34
19
19
51
120
119
120
120
121
\INVr () . . . . .
\invr (G) . . . . . . .
\invscr (K) . . . . .
\invscripta () . .
\invsmileface (☻)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 130
. 19
. 19
. 19
. 190
\INVu () . . . . . . . . . . 130
\invv () . . . . . . . . . . . . 19
\invw (Z) . . . . . . . . . . . . 19
\invwhitelowerhalfcircle
(◛) . . . . . . . . . . . 141
\invwhiteupperhalfcircle
(◚) . . . . . . . . . . . 141
\invy (\) . . . . . . . . . . . . 19
\IO ( ) . . . . . . . . . . . . . . 129
\ion (𝑓) . . . . . . . . . . . . . 132
\ionicbond (Î) . . . . . . . 132
\Iota (I) . . . . . . . . . . . . . 93
\iota (𝜄) . . . . . . . . . . . . 93
iota, upside-down . . . . . . 222
\iotaup (ι) . . . . . . . . . . . 94
\ipagamma ( ) . . . . . . . . . 19
\ipercatal (η) . . . . . . . . 184
\Ireland (’) . . . . . . . . . . 190
\IroningI (¯) . . . . . . . . 177
\IroningII (°) . . . . . . . 177
\IroningIII (±) . . . . . . 177
irony mark (? ) . . . . . . . . . 222
irrational numbers (J) . . . see
alphabets, math
\Irritant ( ) . . . . . . . . 178
\isindot (⋵) . . . . . . . . . 58
\isinE (⋹) . . . . . . . . . . . 58
\isinobar (⋷) . . . . . . . . . 58
\isins (⋴) . . . . . . . . . . . 58
\isinvb (⋸) . . . . . . . . . . 58
\ismodeledby (=|) . . . . . 223
ISO character entities . . . 235
isoent (package) . . . . . . . . 235
Isthmian script . . . . 154–156
italic 14, 15, 26, 229, 231, 233,
235
\Italy (“) . . . . . . . . . . . 190
J
J (J) . . . . . . . . . . . . . . . . 157
274
\j (ł) . . . . . . . . . . . . . . 157
\j (ȷ) . . . . . . . . . . . . . . . 20
j (j) . . . . . . . . . . . . . . . . 157
\JackStar (2) . . . . . . . . 139
\JackStarBold (3) . . . . . 139
Jewish star . . . . . . . . . . . 139
\jmath (𝚥) . . . . . . . . 96, 105
\jmath (|) . . . . . . . . . . . . 97
\jmath (𝚥) . . . . . . . . . . . . 97
\Joch ( ) . . . . . . . . . . . . 178
\Join (Z) . . . . . . . . . . 50, 51
\Join (⋈) . . . . . . . . . . 33, 55
\Join (&) . . . . . . . . . . . . 32
\Join (⨝) . . . . . . . . . . . 121
\joinrel . . . . . . . . . . . . 223
joint denial . . see \downarrow
\Jpsimeson (ö) . . . . . . . 132
junicode (package) . . 238, 239
Junicode.ttf (file) . . . . . 238
\Juno (;) . . . . . . . . . . . . 128
\Jupiter (E) . . . . . . . . . 127
\Jupiter (Å) . . . . . . . . . . 126
\Jupiter (j) . . . . . . . . . 128
\jupiter (X) . . . . . . . . . 126
K
\K (Č) . . . . . . . . . . . . . . . 157
\k (ń) . . . . . . . . . . . . . . . 157
\k (a)
. . . . . . . . . . . . . . . 24
˓
\k (a)
˛ . . . . . . . . . . . . . . . 20
k (k) . . . . . . . . . . . . . . . . 157
\Kaonminus (î) . . . . . . . 132
\Kaonnull (ï) . . . . . . . . 132
\Kaonplus (í) . . . . . . . . 132
\Kappa (K) . . . . . . . . . . . 93
\kappa (𝜅) . . . . . . . . . . . 93
\kappaup (κ) . . . . . . . . . . 94
\ker (ker) . . . . . . . . . . . 91
\kernelcontraction (ˆ) . 57
\kernelcontraction (∻) . 58
ket . . . . . . . . . . . . . . . . . 99
\Keyboard (Ï) . . . . . . . . 129
keyboard symbols . . . . . . 129
keys, computer . . . . . . . . 129
keystroke (package) . 129, 239,
240
\keystroke (
) . . . . . . 129
king . . . . . . . . . 182, 217–218
\Knife () . . . . . . . . . . . . 191
knight . . . . . . . . 182, 217–218
knitting (package) 188, 239, 240
knitting symbols . . . . . . . 188
\Knoblauchpresse (
) . 191
knot (package) . . 207, 210, 239
knots . . . . . . . . . . . 207–210
Knuth, Donald E. 12, 87, 233,
241
symbols by . . . . . . . . 176
\Kochtopf ( ) . . . . . . . . 191
\Koppa (Ϙ) . . . . . . . . . . . 154
\koppa (ϟ) . . . . . . . . . . . . 154
\Kr ( l
) . . . . . . . . . . . . 161
\kreuz (6) . . . . . . . . . . . 176
Kronecker product
Kronecker sum . .
\Kronos (Ä) . . . .
kroužek (å) . . . . .
\kside (O) . . . . .
see \otimes
see \oplus
. . . . . . 128
see accents
. . . . . . 181
L
\L (L) . . . . . . . . . . . . . . . 15
\l (l) . . . . . . . . . . . . . . . 15
l (l) . . . . . . . . . . . . . . . . 157
\labdentalnas (4) . . . . . 19
\labvel . . . . . . . . . . . . . 23
\Ladiesroom (y) . . . . . . . 177
Lagrangian (ℒ) see alphabets,
math
\Lambda (Λ) . . . . . . . . . . 93
\lambda (𝜆) . . . . . . . . . . 93
\lambdabar (o) . . . . . . . . 119
\lambdabar (†) . . . . . . . . 120
\lambdaslash (n) . . . . . . 119
\lambdaslash (‡) . . . . . . 120
\lambdaup (λ) . . . . . . . . . 94
Lamport, Leslie . . . . 238, 241
\land . . . . . . . . . see \wedge
\land (∧) . . . . . . . . . . . . 33
\land (∧) . . . . . . . . . . . . 34
land masses . . ∫. . . . . . . . . 188
\landdownint (%) . . . . . . 49
\landdownint ( ) . . . . . . 43
\landdownint (⨑) . . . . . . 45
\landdownint∫ (⨚) . . . . . . 44
\landupint (#) . . . . . . . . 49
\landupint ( ) . . . . . . . . 43
\landupint (∱) . . . . . . 44, 45
\landupint (⨙) . . . . . . . . 44
\Langle (<) . . . . . . . . . . 124
\lAngle (⟨⟨) . . . . . . . . . . . 104
\lAngle (⟪) . . . . . . . . . . 101
⟪
\lAngle (
)
. . . . . . . . . 102
\langle (⟨) . . . . . . . . . 29, 99
\langle (⟨) . . . . . . . . . . . 101
\langle (⟨) . . . . . . . . . . . 101
⟨
\langle ( ) . . . . . . . . . . 103
\langlebar (n) . . . . . . . . 101
\langledot (⦑) . . . . . . . . 101
\langledot (⦑) . . . . . . . . 98
\laplac (⧠) . . . . . . . . . . 121
\Laplace (
) .......
61
\laplace (
) . . . . . . . 61
Laplace transform (ℒ) . . . see
alphabets, math
Laplacian (Δ) . . . see \Delta
Laplacian (∇2 ) . . see \nabla
\largeblackcircle (⬤) . 141
\largeblacksquare (⬛) . 141
\largeblackstar (★) . . . 141
\largecircle (◯) . . . . . 141
\largecircle (◯) . . . . . . 140
largectrbull (bullcntr package option) . . . . . . . . . . 180
\largectrbull . . . . . . . . 180
\largediamond (◇) . . . . 140
\largelozenge (◊) . . . . . 140
\largepencil (
W)
. . . . . 136
\largepentagram ( ) . . . 140
\LargerOrEqual (>) . . . . 116
\largesquare (⬜) . . . . . . 141
\largesquare (◻) . . . . . . 140
\largestar (☆) . . . . . . . 140
\largestarofdavid (✡) . 140
\largetriangledown (_) 71,
141
\largetriangledown (▽)
70
\largetriangleleft (◁)
70
\largetriangleright (▷) 70
\largetriangleup (^) . . 71,
141
\largetriangleup (△) . . 70
\largewhitestar (☆) . . . 141
\LArrow ( ← ) . . . . . . . . 129
\larrowfill . . . . . . . . . . 111
\Laserbeam (a) . . . . . . 131
\lat (⪫) . . . . . . . . . . . . . 68
\late (⪭) . . . . . . . . . . . . 68
LATEX . . . . . 1, 12, 16, 20, 50,
91, 99, 114, 118, 134, 180,
190, 199, 218, 219, 222–
227, 229, 232–235, 237–
241
LATEX 2𝜀 . . . 1, 12, 14, 15, 26,
30, 50, 61, 72, 106, 114,
118, 124, 145, 158, 199,
218–220, 222, 223, 225–
227, 231–237, 241
latexsym (package) . 30, 50, 61,
72, 118, 219, 239
\latfric (/) . . . . . . . . . . 19
Latin 1 . . . . 12, 235–236, 239
\Latvia (”) . . . . . . . . . . . 188
\Laughey ( ) . . . . . . . . . 191
laundry symbols . . . . . . . 177
\LB ({) . . . . . . . . . . . . . . 129
\lb (lb) . . . . . . . . . . . . . 92
\Lbag (P) . . . . . . . . . . . . 98
\lbag (N) . . . . . . . . . . . . 98
\lbag (Þ) . . . . . . . . . . . . . 33
\lbag (⟅) . . . . . . . . . . . . 98
\lblackbowtie (ì) . . . . . 33
\lblkbrbrak (⦗) . . . . . . . 98
⦃
\lBrace (
)
. . . . . . . . . 102
275
\lbrace ({)
. . . . . . . . . . 101
\lbrace ({) . . . . . . . . . . . 102
⎧
⎪
⎪
\lbrace ( ⎨) . . . . . . . . . 100
{⎪
⎩
\lbrace (
) . . . . . . . . . . 102
\Lbrack ([) . . . . . . . . . . . 124
\lBrack ([[) . . . . . . . . . . . 104
\lBrack (⟦)
. . . . . . . . . . 101
\lBrack (⟦) . . . . . . . . . . . 102
⟦
\lBrack ( ) . . . . . . . . . . 102
\lbrack ([) . . . . . . . . . . . 101
\lbrack ([) . . . . .
\lbracklltick (⦏)
\lbrackubar (⦋) .
\lbrackultick (⦍)
\Lbrbrak (⟬) . . . .
❲
\lbrbrak (
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 102
. 98
. 98
. 98
. 98
) . . . . . . . . . 102
LCD numerals . . . . . . . . . 125
\lCeil (⌈⌈) . . . . . . . . . . . 104
\lceil (⌈) . . . . . . . . . . . 99
\lceil (⌈)
. . . . . . . . . . . 102
⎡⎢
\lceil ( ⎢⎢⎢) . . . . . . . . . . . 100
⌈⎢
\lceil ( ) . . . . . . . . . . . 103
\lcirclearrowdown (ÿ) . 74
\lcirclearrowleft (⤾) . 74
\lcirclearrowright (⟳)
74
\lcirclearrowup (↻) . . . 74
\lcircleleftint (∲) . 44, 45
\lcircleleftint (∲) . . . . 44
\lcirclerightint (∲) . . . 45
\lcirclerightint (∲) . . . 44
\lcm (lcm) . . . . . . . . . . . 92
\lcm (lcm) . . . . . . . . . . . 232
\lcorners (v) . . . . . . . . . 98
\lcurvearrowdown (⤸) . . . 74
\lcurvearrowleft (º) . . 74
\lcurvearrowne (¼) . . . . 74
\lcurvearrownw (½) . . . . 74
\lcurvearrowright (↷) . . 74
\lcurvearrowse (¿) . . . . 74
\lcurvearrowsw (¾) . . . . 74
\lcurvearrowup (¹) . . . . . 74
\lcurvyangle (⧼) . . . . . . 98
\LD () . . . . . . . . . . . . . . 129
\ldbrack (v) . . . . . . . . . . 100
\ldotp (.) . . . . . . . . . . . . 114
\ldotp (.) . . . . . . . . . . . . 115
\ldots (. . .) . . . . . . . . . . 114
\Ldsh (↲) . . . . . . . . . . . . 78
\Ldsh (↲) . . . . . . . . . . . . 84
\LE ( ) . . . . . . . . . . . . . . 129
\le . . . . . . . . . . . . . see \leq
\le (≤) . . . . . . . . . . . . . . 68
\le (≤) . . . . . . . . . . . . . . 69
\leadsto ({) . . . . . . . 51, 72
\leadsto (↝) . . . . . . . . . 79
\leadsto (↝) . . . . . . . . . 75
\leadsto (⇝) . . . . . . . . . 85
leaf . . . . . . . . . see \textleaf
\leafleft (J) . . . . . . . . 140
\leafNE (F) . . . . . . . . . . 140
\leafright (K) . . . . . . . 140
leaves . . . . . . . . 140, 146, 204
Lefschetz motive (ℒ) . . . . see
alphabets, math
\Left . . . . . . . . . . . . . . . 184
\left . 99, 103, 104, 219, 221
\LEFTarrow () . . . . . . . . 176
\Leftarrow (⇐) . . . . . 29, 72
\Leftarrow (⇐) . . . . . . . 79
\Leftarrow (⇐) . . . . . . . 74
\Leftarrow (⇐) . . . . . . . 85
\leftarrow (Ð) . . . . . . . 73
\leftarrow (←) . . . . . . . 72
\leftarrow (←) . . . . . . . 78
\leftarrow (←) . . . . . . . . 75
\leftarrow (←) . . . . . . . 87
\leftarrow (←) . . . . . . . 85
\leftarrowaccent (⃖) . . . 106
\leftarrowapprox (⭊) . . 85
\leftarrowbackapprox (⭂) 85
\leftarrowbsimilar (⭋) . 85
\leftarrowless (⥷) . . . . 68
\leftarrowonoplus (⬲) . 85
\leftarrowplus (⥆) . . . . 85
\leftarrowshortrightarrow
(⥃) . . . . . . . . . . . . 85
\leftarrowsimilar (⥳) . 85
\leftarrowsubset (⥺) . . 64
\leftarrowtail () . . . 72
\leftarrowtail (›) . . . . 82
\leftarrowtail (↢) . . . . 78
\leftarrowtail (↢) . . . . 75
\leftarrowtail (↢) . . . . 85
\leftarrowTriangle (ú) . 82
\leftarrowtriangle (^)
73
\leftarrowtriangle (ý) . 83
\leftarrowtriangle (⇽) . 85
\leftarrowx (⬾) . . . . . . . 85
\leftAssert (⫣) . . . . . . . 55
\leftassert (⫞) . . . . . . . 55
\leftbarharpoon (Ü) . . . 74
\leftbkarrow (⇠) . . . . . . 78
\leftbkarrow (⤌) . . . . . . 85
\leftblackarrow (-) . . . 83
\leftblackspoon (n) . . . 89
\leftbroom (−−<
−) . . . . . 90
\LEFTCIRCLE (G) . . . . . . . 140
\LEFTcircle (G
#) . . . . . . . 140
\Leftcircle (I) . . . . . . . 140
\leftcurvedarrow (↜) . . 79
\leftcurvedarrow (⬿) . . 85
\leftdasharrow ( ) .
\leftdasharrow (⇠) .
\leftdbkarrow (⤎) . .
\leftdbltail (⤛) . . .
\leftdotarrow (⬸) . .
\leftdowncurvedarrow
\leftdowncurvedarrow
Ñ
Ñ
\leftevaw ( ÑÑ) . . . . .
...
...
...
...
...
(⤶)
(⤶)
. . . 103
\leftfilledspoon (r) . .
\leftfishtail (⥼) . . . . .
\leftfootline (¬) . . . . .
\leftfootline (z) . . . . .
\leftfree (‚) . . . . . . . .
\lefthalfcap (⌜) . . . . . .
\lefthalfcup (⌞) . . . . . .
\lefthand (T) . . . . . . . .
\leftharpoonaccent (⃐) .
\leftharpoonccw (↽) . . .
\leftharpooncw (↼) . . . .
\leftharpoondown (â) . .
\leftharpoondown (↽) . .
\leftharpoondown (‰) . .
\leftharpoondown (↽) . .
\leftharpoondown (↽) . .
\leftharpoondownbar (⥞)
\leftharpoonsupdown (⥢)
\leftharpoonup (à) . . . .
\leftharpoonup (↼) . . .
\leftharpoonup (ˆ) . . . .
\leftharpoonup (↼) . . . .
\leftharpoonup (↼) . . . .
\leftharpoonupbar (⥚) .
\leftharpoonupdash (⥪) .
\leftlcurvearrow (–) . .
\leftleftarrows (Ð) . . .
\leftleftarrows (⇔) . . .
\leftleftarrows (”) . . .
\leftleftarrows (⇇) . . .
\leftleftarrows (⇇) . . .
\leftleftarrows (⇇) . . .
\leftleftharpoons (Ø) .
\leftlsquigarrow (↜) . .
\leftlsquigarrow (¢) . .
\Leftmapsto (⤆) . . . . . .
\leftmapsto (↤) . . . . . . .
\leftmapsto (↤) . . . . . . .
\leftModels (ò) . . . . . . .
\leftmodels (î) . . . . . . .
\leftmodels (â) . . . . . . .
\leftmoon (K) . . . . . . . . .
\leftmoon (☾) . . . . . . . . .
\leftmoon ($) . . . . . . . .
\leftouterjoin (⟕) . . . .
\leftp (v) . . . . . . . . . . . .
\leftpitchfork (v) . . . .
\leftpitchfork (Š) . . . .
\leftpointright (
) ..
\leftpropto (∝) . . . . . . .
\leftrcurvearrow (⤺) . .
\Leftrightarrow (⇔) . . .
\Leftrightarrow (⇔) . . .
\Leftrightarrow (⇔) . . .
R
276
83
85
85
58
85
79
85
88
58
55
52
52
31
32
137
106
77
77
74
72
83
81
86
86
86
74
72
83
81
86
86
86
79
73
72
83
78
75
85
74
79
75
78
78
75
52
55
52
127
127
126
121
24
90
88
136
52
79
72
78
75
\Leftrightarrow (⇔) . . . 85
\leftrightarrow (Ø) . . . 73
\leftrightarrow (↔) . . . 72
\leftrightarrow (↔) . . . 78
\leftrightarrow (↔) . . . 75
\leftrightarrow (↔) . . . 87
\leftrightarrow (↔) . . . 85
\leftrightarrowaccent (⃡) . .
. . . . . . . 106
\leftrightarrowcircle (⥈) .
. . . . . . . . 85
\leftrightarroweq (-) . . 73
\leftrightarroweq (ö) . 83
\leftrightarrows (Ô) . . 73
\leftrightarrows () . . 72
\leftrightarrows () . . 83
\leftrightarrows (⇆) . . 78
\leftrightarrows (⇆) . . 75
\leftrightarrows (⇆) . . 85
\leftrightarrowTriangle (ü)
. . . . . . . . 83
\leftrightarrowtriangle (])
. . . . . . . . 73
\leftrightarrowtriangle (ÿ)
. . . . . . . . 83
\leftrightarrowtriangle (⇿)
. . . . . . . . 85
\leftrightblackarrow (1) 83
\leftrightblackspoon (q) 89
\leftrightcurvearrow (¤) 79
\leftrightharpoon (à) . 74
\leftrightharpoondowndown
(⥐) . . . . . . . . . . . . 86
\leftrightharpoondownup (⥊)
. . . . . . . . 81
\leftrightharpoondownup (⥊)
. . . . . . . . 77
\leftrightharpoondownup (⥋)
. . . . . . . . 86
\leftrightharpoons (è)
74
\leftrightharpoons ( )
72
\leftrightharpoons (“) . 83
\leftrightharpoons (⇋) . 81
\leftrightharpoons (⇋) . 77
\leftrightharpoons (⇋) . 86
\leftrightharpoonsdown (⥧)
. . . . . . . . 86
\leftrightharpoonsfill . 111
\leftrightharpoonsup (⥦) 86
\leftrightharpoonupdown (⥋)
. . . . . . . . 81
\leftrightharpoonupdown (⥋)
. . . . . . . . 77
\leftrightharpoonupdown (⥊)
. . . . . . . . 86
\leftrightharpoonupup (⥎) .
. . . . . . . . 86
\Leftrightline (Ô) . . . . 52
\leftrightline (Ð) . . . . 52
\leftrightspoon (⧟) . . . 89
\leftrightsquigarrow (ú)
. . . . . . . . 73
\leftrightsquigarrow (!) .
. . . . . . . . 72
\leftrightsquigarrow () 83
\leftrightsquigarrow (↭) 79
\leftrightsquigarrow (↭) 75
\leftrightsquigarrow (↭) 85
\leftrightwavearrow (↭) 78
\leftrsquigarrow (↜) . . 79
\leftrsquigarrow (↜) . . 75
\LeftScissors (Q) . . . . . 135
\leftslice (2) . . . . . . . . 30
\leftslice (Ð) . . . . . . . . 33
\leftslice (⪦) . . . . . . . . 52
\leftspoon (⟜) . . . . . . . 89
\leftspoon (⟜) . . . . . . . 88
\leftsquigarrow (ø) . . 73
\leftsquigarrow (f) . . . 73
\leftsquigarrow () . . . 83
\leftsquigarrow (↜) . . . 79
\leftsquigarrow (⇜) . . . 85
\leftt (n) . . . . . . . . . . . . 24
\lefttail (⤙) . . . . . . . . 58
\lefttherefore ( ) . . . . 115
\lefttherefore ( ) . 32, 115
\leftthreearrows (⬱) . . 85
\leftthreetimes ($) . . . 119
\leftthreetimes (h) . . . 30
\leftthreetimes (Ó) . . . 33
\leftthreetimes (⋋) . . . 32
\leftthreetimes (⋋) . . . . 32
\leftthreetimes (⋋) . . . 34
\leftthumbsdown (
) . . 136
\leftthumbsup (
) . . . . 136
\lefttorightarrow (ü) . 73
\lefttorightarrow (ç) . . 83
\Lefttorque (&) . . . . . . 131
\leftturn (") . . . . . . . . 176
\leftupcurvedarrow (¡)
79
\leftVDash (⫥) . . . . . . . 55
\leftVdash (⫣) . . . . . . . 55
\leftVdash (ê) . . . . . . . . 52
\leftvDash (⫤) . . . . . . . . 55
\leftvdash (⊣) . . . . . . . . 55
\leftvdash (⊣)
Ð . . . . . . . . 53
Ð
\leftwave ( ÐÐ) . . . . . . . . 103
D
U
\leftwavearrow (↜) . . . . 78
\leftwavearrow (↜) . . . . 85
\leftwhitearrow (â) . . . 83
\leftwhitearrow (⇦) . . . 85
\leftwhiteroundarrow (ä) 83
\leftY (.) . . . . . . . . . . . 32
\leftY (*) . . . . . . . . . . . 32
\leftzigzagarrow () . . 83
legal symbols . . 14, 15, 26, 27,
236
\legm (6) . . . . . . . . . . . . 19
\legr (E) . . . . . . . . . . . . 19
\length (q) . . . . . . . . . . . 24
\Leo (ä) . . . . . . . . . . . . . 126
\Leo (n) . . . . . . . . . . . . 128
\leo () . . . . . . . . . . . . . 126
\leq (ď) . . . . . . . . . . . . . 65
\leq (≤) . . . . . . . . . . 64, 65
\leq (≤) . . . . . . . . . . . . . 67
\leq (≤) . . . . . . . . . . . . . 66
\leq (≤) . . . . . . . . . . . 68, 69
\leqclosed (⊴) . . . . . . 67, 71
\leqclosed (⊴) . . . . . . 66, 70
\leqdot (b) . . . . . . . . . . 67
\leqdot (t) . . . . . . . . . . . 66
\leqq (ő) . . . . . . . . . . . . 65
\leqq (5) . . . . . . . . . . . . 64
\leqq (À) . . . . . . . . . . . . 68
\leqq (≦) . . . . . . . . . . . . 67
\leqq (≦) . . . . . . . . . . . . 66
\leqq (≦) . . . . . . . . . . . . 68
\leqqslant (⫹) . . . . . . . . 68
\leqslant (6) . . . . . . . . 64
\leqslant (È) . . . . . . . . . 68
\leqslant (⩽) . . . . . . . . . 67
\leqslant (⩽) . . . . . . . . . 66
\leqslant (⩽) . . . . . . . . . 68
\leqslantdot (⩿) . . . . . . 67
\leqslantdot (⩿) . . . . . . 66
\leqslcc (⪨) . . . . . . . . . 67
\lescc (⪨) . . . . . . . . . . . 68
\lescc (⪨) . . . . . . . . . . . 68
\lesdot (⩿) . . . . . . . . . . 67
\lesdot (⩿) . . . . . . . . . . 68
\lesdoto (⪁) . . . . . . . . . 69
\lesdotor (⪃) . . . . . . . . . 69
\lesg (⋚) . . . . . . . . . . . . 67
\lesges (⪓) . . . . . . . . . . 69
\less (<) . . . . . . . . . . . . 67
\less (<) . . . . . . . . . . . . 66
less-than signs see inequalities
\lessapprox (Æ) . . . . . . . 65
\lessapprox (/) . . . . . . . 64
\lessapprox (¾) . . . . . . . 68
\lessapprox (⪅) . . . . . . . 67
\lessapprox (⪅) . . . . . . . 66
\lessapprox (⪅) . . . . . . . 69
\lesscc (⪦) . . . . . . . . . . 67
\lessclosed (⊲) . . . . . 67, 71
\lessclosed (⊲) . . . . . 66, 70
\lessdot (Ì) . . . . . . . . . 65
\lessdot (l) . . . . . . . . . 64
\lessdot (Ä) . . . . . . . . . 33
\lessdot (⋖) . . . . . . . . . . 67
\lessdot (⋖) . . . . . . . . . . 66
\lessdot (⋖) . . . . . . . . . 69
\lesseqgtr (ij) . . . . . . . . 65
\lesseqgtr (Q) . . . . . . . 64
\lesseqgtr (Ä) . . . . . . . . 68
\lesseqgtr (⋚) . . . . . . . . 67
\lesseqgtr (⋚) . . . . . . . . 66
\lesseqgtr (⋚) . . . . . . . . 69
\lesseqgtrslant (⋚) . . . . 67
\lesseqgtrslant (N) . . . . 66
\lesseqqgtr (¿) . . . . . . . 65
\lesseqqgtr (S) . . . . . . .
64
\lesseqqgtr (Æ) . . . . . . .
\lesseqqgtr (⪋) . . . . . . .
\lesseqqgtr (⪋) . . . . . . .
68
67
66
277
\lesseqqgtr (⪋) . . .
\lesseqslantgtr (⋚)
\lessgtr (ž) . . . . .
\lessgtr (≶) . . . . .
\lessgtr (Â) . . . . .
\lessgtr (≶) . . . . . .
\lessgtr (≶) . . . . . .
\lessgtr (≶) . . . . .
.
.
.
.
.
.
.
.
69
67
65
64
68
67
66
69
\lessneqqgtr (ò) . . . . . .
66
\LessOrEqual (<) .
\lesssim (À) . . . .
\lesssim (.) . . . .
\lesssim (¼) . . . .
\lesssim (≲) . . . . .
\lesssim (≲) . . . . .
\lesssim (≲) . . . .
\lesssimslant (<
∼)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
...
64,
...
...
...
...
...
116
65
226
68
67
66
69
226
\Letter (B) . . . . . . . . . . 130
\Letter ( ) . . . . . . . . . . 178
\Letter (B vs. ) . . . . . 220
letter-like symbols . . . 96–98,
194–197
letters see alphabets, 223, 224
barred . . . . . . . . . . . 223
non-ASCII . . . . . . . . 15
slashed . . . . . . . . . . 224
variant Greek . . . . . . 95
variant Latin . . . . . . 95
Ñ
Ñ
\levaw ( ÑÑ) . . . . . . . . . . . 103
\LF (␊) . . . . . . . . . . . . . . 130
\lfbowtie (⧑) . . . . . . . . 58
7
7
\lfilet (77) . . . . . . . . . . . 100
\lFloor (⌊⌊) . . . . . . . . . . . 104
\lfloor (⌊) . . . . . . . . . . 99
\lfloor (⌊) . . . . . . . . . . . 102
⎢⎢
\lfloor ( ⎢⎢⎢) . . . . . . . . . . 100
⌊⎣
\lfloor ( ) . . . . . . . . . . 103
\lftborder (
)
. . . . . . . 183
\lfttopcorner () . . . . . 183
\lftbotcorner ( ) . . . . . 183
\lftimes (⧔) . . . . . . . . . 58
\LG (
*) . . . . . . . .
\lg (lg) . . . . . . .
\lgblkcircle (⬤)
\lgblkcircle (⬤)
\lgblksquare (⬛)
\lgblksquare (⬛)
\lgE (⪑) . . . . . . .
⎧
\lgroup (⎩) . . . .
...
...
..
..
...
..
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
129
91
141
142
141
142
69
. . . . . . 99
⎧
⎪
⎪
⎪
\lgroup ( ⎪
⎩) . . . . . . . . . . 102
⎧
⎪
⎪
⎪
\lgroup ( ⎪
⎩) . . . . . . . . . 100
⎫
\lgroup ( ⎪) . . . . . . . . . 103
⎭
\lgwhtcircle (◯) . . . . . 141
\lgwhtcircle (◯) . . . . . 142
\lgwhtsquare (⬜) . . . . . . 141
\lgwhtsquare (⬜) . . . . . 142
\LHD () . . . . . . . . . . . . . 31
\lhd (C) . . . . . . . . . . . 30, 31
\lhd (⊲) . . . . . . . . . . . . . 67
\lhd (⊲) . . . . . . . . . . . 66, 70
\lhd (⊲) . . . . . . . . . . 34, 142
\lhdbend (~) . . . . . . . . 176
\lhook () . . . . . . . . . . . . 91
\lhookdownarrow (3) . . . . 79
\lhookdownarrow (3) . . . . 75
\lhookleftarrow (↩) . . . 79
\lhookleftarrow (2) . . . 75
\lhooknearrow (⤤) . . . . . 79
\lhooknearrow (4) . . . . . 75
\lhooknwarrow (⤣) . . . . . 79
\lhooknwarrow (⤣) . . . . . 75
\lhookrightarrow (↪) . . 79
\lhookrightarrow (↪) . . 75
\lhooksearrow (⤥) . . . . . 79
\lhooksearrow (⤥) . . . . . 75
\lhookswarrow (⤦) . . . . . 79
\lhookswarrow (6) . . . . . 75
\lhookuparrow (1) . . . . . 79
\lhookuparrow (1) . . . . . . 75
\Libra (æ) . . . . . . . . . . . 126
\Libra (X) . . . . . . . . . . . 128
\libra (a) . . . . . . . . . . 126
Lie derivative (ℒ) . . . . . . see
alphabets, math
\Liechtenstein (•) . . . . . 188
life-insurance symbols . . 111,
227–228
\lightbulb (A) . . . . . . . . 231
lightbulb.mf (file) . 229, 230
lightbulb.sty (file) 231, 232
lightbulb10.2602gf (file) 230
lightbulb10.dvi (file) . . 230
lightbulb10.mf (file) 229, 231
lightbulb10.tfm (file) . . 231
\Lightning (E) . . . . . . . . 130
\Lightning ( ) . . . . . . . 178
\Lightning (E vs. ) .
\lightning ( ) . . . . . .
\lightning ( vs. ) . .
\lightning (↯) . . . . . .
\lightning (☇) . . . . . .
\lightning () . . . . . .
\Lilith (Ø) . . . . . . . .
\lilyAccent ( ) . . . . .
\lilyDynamics{f} ( )
\lilyDynamics{m} ( ) .
\lilyDynamics{p} ( ) .
\lilyDynamics{r} ( ) .
\lilyDynamics{s} ( ) .
\lilyDynamics{z} ( ) .
\lilyEspressivo (
)
\lilyGlyph{. . . } ( ) . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
220
73
220
78
75
176
128
164
163
163
163
163
163
163
164
174
\lilyGlyph{. . . } ( ) . . . . 174
\lilyGlyph{. . . } ( ) . . . . 174
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
( )
( )
( )
( )
( )
()
() .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
174
174
174
174
174
174
174
\lilyGlyph{. . . } ( ) . . . . 174
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
()
() .
() .
()
() .
( )
( )
()
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
174
174
174
174
174
174
174
174
\lilyGlyph{. . . } ( ) . . . . 174
\lilyGlyph{. . . } ( ) . . . 168
\lilyGlyph{. . . } ( ) . . . . 168
\lilyGlyph{. . . } ( )
. . . 168
\lilyGlyph{. . . } ( ) . . . . 168
\lilyGlyph{. . . } ( )
\lilyGlyph{. . . } ( )
. . . 168
. . . . 168
\lilyGlyph{. . . } ( ) . . . . 168
\lilyGlyph{. . . } ( )
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
(
(
(
(
(
)
)
)
)
)
. . . . 168
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
168
168
168
168
168
\lilyGlyph{. . . } ( ) . . . . 168
\lilyGlyph{. . . } ( ) . . . . 168
\lilyGlyph{. . . } ( ) . . . . 168
\lilyGlyph{. . . } ( ) . . . . 174
\lilyGlyph{. . . } ( ) . . . . 168
\lilyGlyph{. . . } ( ) . . . . 168
\lilyGlyph{. . . } ( ) . . . . 174
\lilyGlyph{. . . } ( ) . . . . 168
\lilyGlyph{. . . } ( ) . . . . . 174
\lilyGlyph{. . . } ( ) . . . . . 174
\lilyGlyph{. . . } ( )
\lilyGlyph{. . . } ( ) . . . . 174
\lilyGlyph{. . . } ( ) . . . . 174
\lilyGlyph{. . . } ( ) . . . . 174
. . . . 168
\lilyGlyph{. . . } ( ) . . . . 168
\lilyGlyph{. . . } ( ) . . . . 168
\lilyGlyph{. . . } ( ) . . . . 168
\lilyGlyph{. . . } ( ) . . . . 168
\lilyGlyph{. . . } ( ) . . . . 168
\lilyGlyph{. . . } ( ) . . . . 174
\lilyGlyph{. . . } ( ) . . . . . 174
\lilyGlyph{. . . } ( ) . . . . 168
\lilyGlyph{. . . } ( )
\lilyGlyph{. . . } ( )
\lilyGlyph{. . . } ( ) . . . 168
\lilyGlyph{. . . } ( ) . . . . 168
\lilyGlyph{. . . } ( ) . . . . 168
. . . . 174
. . . . 174
\lilyGlyph{. . . } ( ) . . . . 174
\lilyGlyph{. . . } ( ) . . . . . 174
\lilyGlyph{. . . } ( ) . . . . . 174
\lilyGlyph{. . . } ( )
. . . . 168
\lilyGlyph{. . . } ( )
. . . . 168
\lilyGlyph{. . . } ( )
. . . . 168
\lilyGlyph{. . . } ( )
. . . . 168
\lilyGlyph{. . . } ( )
. . . . 168
\lilyGlyph{. . . } ( )
. . . . 168
\lilyGlyph{. . . } ( )
. . . . 168
\lilyGlyph{. . . } ( )
. . . . 168
\lilyGlyph{. . . } ( )
. . . . 168
\lilyGlyph{. . . } ( )
. . . . 168
\lilyGlyph{. . . } ( ) . . . . 173
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
( )
() . .
( ) .
( ) .
() .
() .
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
(
(
(
(
(
(
(
(
(
(
(
)
)
)
)
)
)
)
)
)
)
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
173
173
173
173
173
173
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
173
174
174
174
174
174
174
174
174
175
175
\lilyGlyph{. . . } ( ) . . . . 168
278
\lilyGlyph{. . . } ( ) . . . . 168
\lilyGlyph{. . . } ( ) . . . . 168
\lilyGlyph{. . . } ( ) . . . . 168
\lilyGlyph{. . . } ( ) . . . . 168
\lilyGlyph{. . . } ( ) . . . . . 167
\lilyGlyph{. . . } ( ) . . . . . 167
\lilyGlyph{. . . } ( ) . . . . 168
\lilyGlyph{. . . } ( ) . . . . . 167
\lilyGlyph{. . . } ( ) . . . . . 167
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . } ( ) . . . . . 167
( )
() .
() .
()
()
() .
( )
( )
( )
( )
( )
( )
() .
() .
() .
() .
() .
() .
( )
\lilyGlyph{. . . } (
\lilyGlyph{. . . } (
\lilyGlyph{. . . } (
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
168
168
168
168
168
175
167
167
167
167
167
167
167
167
167
167
167
167
167
) . . . 167
) . . . 167
) . . . 167
( )
( )
() . .
() . .
() . .
() . .
() . .
() . .
() .
() . .
() . .
( ) .
( ) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
167
167
167
167
167
167
167
167
175
175
175
175
175
\lilyGlyph{. . . } ( ) . . . . 167
\lilyGlyph{. . . } ( ) . . . . 167
\lilyGlyph{. . . } ( ) . . . . 167
\lilyGlyph{. . . } ( ) . . . . 167
\lilyGlyph{. . . } ( ) . . . . 167
\lilyGlyph{. . . } ( ) . . . . 167
\lilyGlyph{. . . } ( ) . . . . . 167
\lilyGlyph{. . . } ( ) . . . . . 167
\lilyGlyph{. . . } ( ) . . . . . 167
\lilyGlyph{. . . } ( ) . . . . . 167
\lilyGlyph{. . . } ( ) . . . . . 167
\lilyGlyph{. . . } ( ) . . . . . 167
\lilyGlyph{. . . } ( ) . . . . . 167
\lilyGlyph{. . . } ( ) . . . . . 167
\lilyGlyph{. . . } ( ) . . . . . 167
\lilyGlyph{. . . } ( ) . . . . . 167
\lilyGlyph{. . . } ( ) . . . . . 167
\lilyGlyph{. . . } ( ) . . . . . 167
\lilyGlyph{. . . } ( ) . . . . . 167
\lilyGlyph{. . . } ( ) . . . . . 167
\lilyGlyph{. . . } ( ) . . . . . 167
\lilyGlyph{. . . } ( ) . . . . . 167
\lilyGlyph{. . . } ( ) . . . . . 167
\lilyGlyph{. . . } ( ) . . . . . 167
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
(
(
(
(
(
)
)
)
)
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
169
169
169
169
169
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
(
(
(
(
(
(
(
(
(
(
)
)
)
)
)
)
)
)
)
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
169
169
169
169
169
169
169
169
169
169
\lilyGlyph{. . . } ( ) . . . . 169
\lilyGlyph{. . . } ( )
. . . . 169
\lilyGlyph{. . . } ( ) . . . . . 167
\lilyGlyph{. . . } ( ) . . . . 169
\lilyGlyph{. . . } ( ) . . . . 169
\lilyGlyph{. . . } ( )
. . . . 167
\lilyGlyph{. . . } ( )
\lilyGlyph{. . . } ( )
. . . . 167
\lilyGlyph{. . . } ( )
\lilyGlyph{. . . } ( )
. . . . 167
\lilyGlyph{. . . } ( ) . . . . 169
\lilyGlyph{. . . } ( )
. . . . 167
\lilyGlyph{. . . } ( ) . . . . 170
\lilyGlyph{. . . } ( ) . . . 170
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
279
()
( )
( )
( )
() .
( )
( )
()
()
( )
( )
( )
()
()
()
( )
()
( )
()
( )
()
( )
( )
()
( )
()
( )
()
( )
()
( )
( )
()
( )
()
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
167
167
175
175
175
175
175
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
. . . . 169
. . . 169
\lilyGlyph{. . . } ( ) . . . . 170
\lilyGlyph{. . . } ( ) . . . . 170
\lilyGlyph{. . . } ( ) . . . . 170
\lilyGlyph{. . . } ( )
. . . . 170
\lilyGlyph{. . . } ( ) . . . . 170
\lilyGlyph{. . . } ( ) . . . 170
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
( ) .
() . .
( ) .
( ) .
( ) .
( ) .
() .
( ) .
() .
( ) .
() .
() .
( ) .
() .
( ) .
() . .
( ) .
( ) .
( ) .
( ) .
() .
( ) .
( ) .
() .
( ) .
( )
() .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
170
170
170
170
170
170
170
170
170
170
170
170
170
170
170
170
170
170
170
170
170
170
170
170
170
170
170
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
( ) ..
( ) ..
() ..
( ) ..
( ) ..
( ) ..
( ) ..
( ) ..
( ) ..
() ..
() ..
( ) ..
() ..
( ) ..
() . . .
( ) ..
( ) ..
( ) ..
( ) ..
() ..
( ) ..
( ) ..
() ..
( ) ..
( ) ..
( ) ..
( ) ..
( ) ..
( ) ..
() ..
( ) ..
() ..
( ) ..
() . . .
( ) ..
( ) ..
( ) ..
( ) ..
( ) ..
() ..
( ) ..
( ) ..
() ..
( ) ..
( ) ..
( ) ..
() ..
( ) .
(
)
() ..
( ) ..
() ..
( ) .
\lilyGlyph{. . . } ( )
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
170
170
170
170
170
170
170
170
170
170
170
170
170
170
170
170
171
171
170
171
171
171
171
171
170
171
171
171
171
171
171
171
171
171
171
171
171
171
171
171
171
171
171
171
171
171
171
171
171
171
171
171
171
. . . . 171
\lilyGlyph{. . . } ( ) . . . . 171
\lilyGlyph{. . . } ( )
. . . . 171
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
.
.
.
.
.
.
(
(
(
(
(
(
)
)
)
)
)
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
171
171
171
171
171
171
\lilyGlyph{. . . } ( ) . . . . 171
\lilyGlyph{. . . } ( ) . . . . 171
\lilyGlyph{. . . } ( ) . . . . 171
\lilyGlyph{. . . } ( )
. . . . 171
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
.
.
.
.
.
()
()
()
( )
()
\lilyGlyph{. . . } ( )
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
280
()
( )
( )
() .
() .
() .
() .
() .
() .
() .
() .
() .
() .
() .
()
()
() .
() .
() .
() .
() .
() .
() .
() .
() .
() .
() .
() .
()
()
( )
( )
( )
()
()
()
( )
()
( )
()
( )
()
( )
( )
()
( )
()
( )
()
( )
()
( )
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
171
171
171
171
171
. . . . 172
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
172
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
(
(
(
(
(
(
(
(
(
)
)
)
)
)
)
)
)
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
173
173
173
173
173
173
173
173
173
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
(
(
(
(
(
(
(
(
(
(
)
)
)
)
)
)
)
)
)
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
173
173
173
173
173
173
173
173
173
173
\lilyGlyph{. . . } ( )
. . . . 173
\lilyGlyph{. . . } ( )
. . . . 173
\lilyGlyph{. . . } ( ) . . . . 173
\lilyGlyph{. . . } ( ) . . . . 173
\lilyGlyph{. . . } ( )
. . . . 173
\lilyGlyph{. . . } ( )
. . . 173
\lilyGlyph{. . . } ( ) . . . . 173
\lilyGlyph{. . . } ( ) . . . . 173
\lilyGlyph{. . . } ( ) . . . 173
\lilyGlyph{. . . } ( ) . . . . 173
\lilyGlyph{. . . } ( ) . . . . 173
\lilyGlyph{. . . } ( ) . . . . 173
\lilyGlyph{. . . } ( )
. . . . 173
\lilyGlyph{. . . } ( ) . . . . 173
\lilyGlyph{. . . } ( ) . . . 173
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
( ) .
( ) .
( ) .
() . .
() .
( )
( ) .
( ) .
() .
() . .
() .
( ) .
() . .
() . .
( )
( ) .
() . .
() . .
( )
( ) .
() .
() .
() .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
173
175
166
166
166
166
166
166
166
175
175
175
166
166
166
166
166
166
166
166
166
166
166
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
()
()
()
()
()
()
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
166
166
166
166
166
166
\lilyGlyph{. . . } ( ) . . . . 166
\lilyGlyph{. . . } ( ) . . . . 166
\lilyGlyph{. . . } ( ) . . . . 166
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
( )
() .
() .
( )
() .
() .
() .
() .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
166
166
166
166
166
166
166
166
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
() .
( )
( )
( )
( )
( )
()
() .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
166
166
166
175
165
165
165
165
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
( )
( )
( )
() .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
165
165
165
165
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
( ) .
() . .
( )
( )
() .
( ) .
( )
( )
() .
() .
( ) .
() . .
( ) .
( ) .
() . .
( )
( )
() .
() .
( ) .
() . .
() . .
( )
() ..
( ) .
() .
( )
( )
( )
( )
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
( )
() .
( )
() .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
165
165
165
165
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
( )
( )
()
() .
( )
( )
()
( )
()
( )
( )
( )
() .
( )
( )
()
( )
()
()
( )
( )
( )
() .
( )
( )
() .
( )
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
165
.
.
.
.
.
.
.
.
.
\lilyGlyph{. . . } ( ) . . . . 165
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
(
(
(
(
(
(
(
)
)
)
)
)
)
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
165
175
175
175
175
175
175
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
\lilyGlyph{. . . }
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
164
164
164
164
164
164
164
164
164
164
164
164
164
164
164
164
164
164
164
164
164
281
\lilyGlyph{. . . } ( )
\lilyGlyph{. . . } ( )
\lilyGlyph{. . . } ( )
\lilyGlyph{. . . } ( )
\lilyGlyph{. . . } ( )
\lilyGlyph{. . . } ( )
lilyglyphs
(package)
.
.
.
.
.
.
.
.
.
.
.
.
..
161–169, 173–175
lilyglyphs (package) . . .
\lilyPrintMoreDots . .
\lilyRF ( ) . . . . . . . .
\lilyRFZ ( ) . . . . . .
\lilyStaccato ( ) . . . .
\lilyText . . . . . . . . . .
\lilyThumb ( ) . . . . . . .
\lilyTimeC ( ) . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
164
164
164
175
175
175
. 158,
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
239
163
163
163
164
175
164
163
\lilyTimeCHalf ( ) . . . . 163
\lilyTimeSignature . . . . 163
\lim (lim) . . . . . . . . 91, 232
\liminf (lim inf ) . . . 91, 232
limits . . . . . . . . . . . . . . . 91
\limsup (lim sup) . . . 91, 232
\linbfamily . . . . . . 152, 153
Linear A . . . . . . . . . . . . . 149
Linear B . . . . . . . . . 152, 153
linear implication . . . . . . see
\multimap
linear logic symbols 29–31, 35,
36, 40, 44–45, 50, 61, 96,
97
linearA (package) 149, 239, 240
\LinearAC (c) . . . . . . . . . 149
\LinearACC () . . . . . . . . 149
\LinearACCC (y) . . . . . . . 149
\LinearACCCI (z) . . . . . . . 149
\LinearACCCII ({) . . . . . 149
\LinearACCCIII (|) . . . . 149
\LinearACCCIV (}) . . . . . 149
\LinearACCCIX (‚) . . . . . 150
\LinearACCCL («) . . . . . . 150
\LinearACCCLI (¬) . . . . . 150
\LinearACCCLII (­) . . . . 150
\LinearACCCLIII (®) . . . . 150
\LinearACCCLIV (¯) . . . . . 150
\LinearACCCLIX (´) . . . . 150
\LinearACCCLV (°) . . . . . 150
\LinearACCCLVI (±) . . . . 150
\LinearACCCLVII (²) . . . 150
\LinearACCCLVIII (³) . . . 150
\LinearACCCLX (µ) . . . . . 150
\LinearACCCLXI (¶) . . . . 151
\LinearACCCLXII (·) . . . . 151
\LinearACCCLXIII (¸) . . . 151
\LinearACCCLXIV (¹) . . . 151
\LinearACCCLXIX (¾) . . . . 151
\LinearACCCLXV (º) . . . . 151
\LinearACCCLXVI (») . . . . 151
\LinearACCCLXVII (¼) . . . 151
\LinearACCCLXVIII (½) . . 151
\LinearACCCLXX (¿) . . . . . 151
\LinearACCCLXXI (À) . . . 151
\LinearACCCLXXII (Á) . . 151
\LinearACCCLXXIII (Â) .
\LinearACCCLXXIV (Ã) . . .
\LinearACCCLXXIX (È) . .
\LinearACCCLXXV (Ä) . . . .
\LinearACCCLXXVI (Å) . .
\LinearACCCLXXVII (Æ) . .
\LinearACCCLXXVIII (Ç) .
\LinearACCCLXXX (É) . . . .
\LinearACCCLXXXI (Ê) . . .
\LinearACCCLXXXII (Ë) . .
\LinearACCCLXXXIII (Ì) .
\LinearACCCLXXXIV (Í) .
\LinearACCCLXXXIX (Ò) .
\LinearACCCLXXXV (Î) . . .
\LinearACCCLXXXVI (Ï) . .
\LinearACCCLXXXVII (Ð) .
\LinearACCCLXXXVIII (Ñ)
\LinearACCCV (~) . . . . . . .
\LinearACCCVI () . . . . .
\LinearACCCVII (€) . . . .
\LinearACCCVIII () . . .
\LinearACCCX (ƒ) . . . . . .
\LinearACCCXI („) . . . . .
\LinearACCCXII ( ) . . . .
\LinearACCCXIII (†) . . .
\LinearACCCXIV (‡) . . . .
\LinearACCCXIX (Œ) . . . .
\LinearACCCXL (¡) . . . . .
\LinearACCCXLI (¢) . . . .
\LinearACCCXLII (£) . . . .
\LinearACCCXLIII (¤) . . .
\LinearACCCXLIV (¥) . . .
\LinearACCCXLIX (ª) . . . .
\LinearACCCXLV (¦) . . . .
\LinearACCCXLVI (§) . . .
\LinearACCCXLVII (¨) . . .
\LinearACCCXLVIII (©) . .
\LinearACCCXV (ˆ) . . . . .
\LinearACCCXVI (‰) . . . . .
\LinearACCCXVII (Š) . . . .
\LinearACCCXVIII (‹) . .
\LinearACCCXX () . . . . .
\LinearACCCXXI (Ž) . . . .
\LinearACCCXXII () . . . .
\LinearACCCXXIII () . . .
\LinearACCCXXIV (‘) . . . .
\LinearACCCXXIX (–) . . . .
\LinearACCCXXV (’) . . . .
\LinearACCCXXVI (“) . . . .
\LinearACCCXXVII (”) . . .
\LinearACCCXXVIII (•) . .
\LinearACCCXXX (—) . . . .
\LinearACCCXXXI (˜) . . . .
\LinearACCCXXXII (™) . .
\LinearACCCXXXIII (š) . .
\LinearACCCXXXIV (›) . . .
\LinearACCCXXXIX ( ) . . .
\LinearACCCXXXV (œ) . . . .
\LinearACCCXXXVI () . . .
\LinearACCCXXXVII (ž) .
\LinearACCCXXXVIII (Ÿ) .
\LinearACCI () . . . . . . .
\LinearACCII () . . . . . .
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
149
149
149
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
149
149
\LinearACCIII () . . . .
\LinearACCIV () . . . .
\LinearACCIX () . . . . .
\LinearACCL (G) . . . . . .
\LinearACCLI (H) . . . . .
\LinearACCLII (I) . . . .
\LinearACCLIII (J) . . . .
\LinearACCLIV (K) . . . . .
\LinearACCLIX (P) . . . . .
\LinearACCLV (L) . . . . .
\LinearACCLVI (M) . . . . .
\LinearACCLVII (N) . . . .
\LinearACCLVIII (O) . .
\LinearACCLX (Q) . . . . .
\LinearACCLXI (R) . . . . .
\LinearACCLXII (S) . . . .
\LinearACCLXIII (T) . . .
\LinearACCLXIV (U) . . .
\LinearACCLXIX (Z) . . .
\LinearACCLXV (V) . . . .
\LinearACCLXVI (W) . . . .
\LinearACCLXVII (X) . . .
\LinearACCLXVIII (Y) . .
\LinearACCLXX ([) . . . .
\LinearACCLXXI (\) . . . .
\LinearACCLXXII (]) . . .
\LinearACCLXXIII (^) .
\LinearACCLXXIV (_) . . .
\LinearACCLXXIX (d) . . .
\LinearACCLXXV (`) . . .
\LinearACCLXXVI (a) . . .
\LinearACCLXXVII (b) . .
\LinearACCLXXVIII (c) .
\LinearACCLXXX (e) . . .
\LinearACCLXXXI (f) . . .
\LinearACCLXXXII (g) . .
\LinearACCLXXXIII (h) .
\LinearACCLXXXIV (i) .
\LinearACCLXXXIX (n) . .
\LinearACCLXXXV (j) . .
\LinearACCLXXXVI (k) . .
\LinearACCLXXXVII (l) .
\LinearACCLXXXVIII (m)
\LinearACCLXXXX (o) . .
\LinearACCV () . . . . . .
\LinearACCVI () . . . . .
\LinearACCVII () . . . .
\LinearACCVIII () . . . .
\LinearACCX () . . . . . .
\LinearACCXCI (p) . . . .
\LinearACCXCII (q) . . .
\LinearACCXCIII (r) . . .
\LinearACCXCIV (s) . . .
\LinearACCXCIX (x) . . .
\LinearACCXCV (t) . . . .
\LinearACCXCVI (u) . . .
\LinearACCXCVII (v) . . .
\LinearACCXCVIII (w) .
\LinearACCXI ( ) . . . . .
\LinearACCXII (!) . . . .
\LinearACCXIII (") . . .
\LinearACCXIV (#) . . . .
\LinearACCXIX (() . . . .
282
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
149
149
149
150
150
150
150
150
150
150
150
150
150
150
150
150
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
149
149
149
149
150
151
151
151
151
149
149
149
149
149
150
150
150
150
150
\LinearACCXL (=) . . . .
\LinearACCXLI (>) . . .
\LinearACCXLII (?) . . .
\LinearACCXLIII (@) .
\LinearACCXLIV (A) . . .
\LinearACCXLIX (F) . .
\LinearACCXLV (B) . . .
\LinearACCXLVI (C) . .
\LinearACCXLVII (D) . .
\LinearACCXLVIII (E) .
\LinearACCXV ($) . . . .
\LinearACCXVI (%) . . . .
\LinearACCXVII (&) . . .
\LinearACCXVIII (') . .
\LinearACCXX ()) . . . .
\LinearACCXXI (*) . . .
\LinearACCXXII (+) . .
\LinearACCXXIII (,) . .
\LinearACCXXIV (-) . . .
\LinearACCXXIX (2) . .
\LinearACCXXV (.) . . .
\LinearACCXXVI (/) . .
\LinearACCXXVII (0) .
\LinearACCXXVIII (1)
\LinearACCXXX (3) . . .
\LinearACCXXXI (4) . . .
\LinearACCXXXII (5) . .
\LinearACCXXXIII (6) .
\LinearACCXXXIV (7) .
\LinearACCXXXIX (<) .
\LinearACCXXXV (8) . . .
\LinearACCXXXVI (9) . .
\LinearACCXXXVII (:)
\LinearACCXXXVIII (;)
\LinearACI (d) . . . . . .
\LinearACII (e) . . . . .
\LinearACIII (f) . . . .
\LinearACIV (g) . . . . .
\LinearACIX (l) . . . . .
\LinearACL (•) . . . . . .
\LinearACLI (–) . . . . .
\LinearACLII (—) . . . .
\LinearACLIII (˜) . . .
\LinearACLIV (™) . . . .
\LinearACLIX (ž) . . . .
\LinearACLV (š) . . . . .
\LinearACLVI (›) . . . .
\LinearACLVII (œ) . . .
\LinearACLVIII () . .
\LinearACLX (Ÿ) . . . . .
\LinearACLXI ( ) . . . .
\LinearACLXII (¡) . . .
\LinearACLXIII (¢) . . .
\LinearACLXIV (£) . . .
\LinearACLXIX (¨) . . .
\LinearACLXV (¤) . . . .
\LinearACLXVI (¥) . .
\LinearACLXVII (¦) . .
\LinearACLXVIII (§) .
\LinearACLXX (©) . . . .
\LinearACLXXI (ª) . . .
\LinearACLXXII («) . .
\LinearACLXXIII (¬) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
149
149
149
149
149
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
151
151
151
151
151
151
151
151
151
\LinearACLXXIV (­) . .
\LinearACLXXIX ( ) . . .
\LinearACLXXV (®) . . .
\LinearACLXXVI (¯) . .
\LinearACLXXVII (°) . .
\LinearACLXXVIII (±) .
\LinearACLXXX () . . .
\LinearACLXXXI () . .
\LinearACLXXXII () . .
\LinearACLXXXIII () .
\LinearACLXXXIV () .
\LinearACLXXXIX ( ) . .
\LinearACLXXXV () . . .
\LinearACLXXXVI () .
\LinearACLXXXVII () .
\LinearACLXXXVIII ( )
\LinearACLXXXX ( ) . .
\LinearACV (h) . . . . . .
\LinearACVI (i) . . . . .
\LinearACVII (j) . . . .
\LinearACVIII (k) . . .
\LinearACX (m) . . . . . .
\LinearACXCI ( ) . . . .
\LinearACXCII ( ) . . .
\LinearACXCIII () . . .
\LinearACXCIV () . . .
\LinearACXCIX () . . .
\LinearACXCV () . . . . .
\LinearACXCVI () . . .
\LinearACXCVII () . .
\LinearACXCVIII () . .
\LinearACXI (n) . . . . .
\LinearACXII (o) . . . .
\LinearACXIII (p) . . .
\LinearACXIV (q) . . . .
\LinearACXIX (v) . . . .
\LinearACXL (‹) . . . . .
\LinearACXLI (Œ) . . . .
\LinearACXLII () . . .
\LinearACXLIII (Ž) . .
\LinearACXLIV () . . .
\LinearACXLIX (”) . . .
\LinearACXLV () . . . .
\LinearACXLVI (‘) . . .
\LinearACXLVII (’) . .
\LinearACXLVIII (“) .
\LinearACXV (r) . . . . .
\LinearACXVI (s) . . . .
\LinearACXVII (t) . . .
\LinearACXVIII (u) . . .
\LinearACXX (w) . . . . .
\LinearACXXI (x) . . . .
\LinearACXXII (y) . . .
\LinearACXXIII (z) . .
\LinearACXXIV ({) . . .
\LinearACXXIX (€) . . .
\LinearACXXV (|) . . . .
\LinearACXXVI (}) . . .
\LinearACXXVII (~) . .
\LinearACXXVIII () .
\LinearACXXX () . . . .
\LinearACXXXI (‚) . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
149
149
149
149
149
151
151
151
151
149
151
151
149
149
149
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
\LinearACXXXII (ƒ) .
\LinearACXXXIII („) .
\LinearACXXXIV ( ) . .
\LinearACXXXIX (Š) .
\LinearACXXXV (†) . .
\LinearACXXXVI (‡) .
\LinearACXXXVII (ˆ) .
\LinearACXXXVIII (‰)
\LinearAI ( ) . . . . . .
\LinearAII () . . . . .
\LinearAIII () . . . .
\LinearAIV () . . . . .
\LinearAIX () . . . . .
\LinearAL (1) . . . . . .
\LinearALI (2) . . . . .
\LinearALII (3) . . . .
\LinearALIII (4) . . .
\LinearALIV (5) . . . .
\LinearALIX (:) . . . .
\LinearALV (6) . . . . .
\LinearALVI (7) . . . .
\LinearALVII (8) . . .
\LinearALVIII (9) . .
\LinearALX (;) . . . . .
\LinearALXI (<) . . . .
\LinearALXII (=) . . .
\LinearALXIII (>) . .
\LinearALXIV (?) . . .
\LinearALXIX (D) . . .
\LinearALXV (@) . . . .
\LinearALXVI (A) . . .
\LinearALXVII (B) . .
\LinearALXVIII (C) . .
\LinearALXX (E) . . . .
\LinearALXXI (F) . . .
\LinearALXXII (G) . .
\LinearALXXIII (H) .
\LinearALXXIV (I) . .
\LinearALXXIX (N) . .
\LinearALXXV (J) . . .
\LinearALXXVI (K) . .
\LinearALXXVII (L) .
\LinearALXXVIII (M) .
\LinearALXXX (O) . . .
\LinearALXXXI (P) . .
\LinearALXXXII (Q) . .
\LinearALXXXIII (R) .
\LinearALXXXIV (S) .
\LinearALXXXIX (X) .
\LinearALXXXV (T) . . .
\LinearALXXXVI (U) .
\LinearALXXXVII (V) .
\LinearALXXXVIII (W)
\LinearALXXXX (Y) . .
\LinearAV () . . . . . .
\LinearAVI () . . . . .
\LinearAVII () . . . .
\LinearAVIII () . . .
\LinearAX ( ) . . . . . .
\LinearAXCI (Z) . . . .
\LinearAXCII ([) . . .
283
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
150
150
150
150
150
150
150
150
149
149
149
149
149
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
151
150
150
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
151
149
149
149
149
149
151
151
\LinearAXCIII (\) . . . . . 151
\LinearAXCIV (]) . . . . . . 151
\LinearAXCIX (b) . . . . . . 149
\LinearAXCV (^) . . . . . . . 151
\LinearAXCVI (_) . . . . . . 151
\LinearAXCVII (`) . . . . . . 151
\LinearAXCVIII (a) . . . . . 151
\LinearAXI ( ) . . . . . . . . 149
\LinearAXII ( ) . . . . . . . 149
\LinearAXIII ( ) . . . . . . 149
\LinearAXIV ( ) . . . . . . . 150
\LinearAXIX () . . . . . . . 150
\LinearAXL (') . . . . . . . . 150
\LinearAXLI (() . . . . . . . 150
\LinearAXLII ()) . . . . . . 150
\LinearAXLIII (*) . . . . . 150
\LinearAXLIV (+) . . . . . . 150
\LinearAXLIX (0) . . . . . . 150
\LinearAXLV (,) . . . . . . . 150
\LinearAXLVI (-) . . . . . . 150
\LinearAXLVII (.) . . . . . 150
\LinearAXLVIII (/) . . . . 150
\LinearAXV () . . . . . . . . 150
\LinearAXVI () . . . . . . . 150
\LinearAXVII () . . . . . . 150
\LinearAXVIII () . . . . . 150
\LinearAXX () . . . . . . . . 150
\LinearAXXI () . . . . . . . 150
\LinearAXXII () . . . . . . 150
\LinearAXXIII () . . . . . 150
\LinearAXXIV () . . . . . . 150
\LinearAXXIX () . . . . . . 150
\LinearAXXV () . . . . . . . 150
\LinearAXXVI () . . . . . . 150
\LinearAXXVII () . . . . . 150
\LinearAXXVIII () . . . . . 150
\LinearAXXX () . . . . . . . 150
\LinearAXXXI () . . . . . . 150
\LinearAXXXII () . . . . . 150
\LinearAXXXIII ( ) . . . . 150
\LinearAXXXIV (!) . . . . . 150
\LinearAXXXIX (&) . . . . . 150
\LinearAXXXV (") . . . . . . 150
\LinearAXXXVI (#) . . . . . 150
\LinearAXXXVII ($) . . . . 150
\LinearAXXXVIII (%) . . . . 150
linearb (package) 152, 153, 239,
240
\linefeed () . . . . . . . . . 83
\linefeed (↴) . . . . . . . . 85
\lineh ( ) . . . . . . . . . . . 146
\Lineload (L) . . . . . . . . 131
\linev () . . . . . . . . . . . . 146
\linevh ( ) . . . . . . . . . . 146
linguistic symbols . . . . 17–20
\Lisa (
)
\Lithuania (–)
\lito (o) . . . .
liturgical music
...
....
....
....
.
.
.
.
.
.
.
.
.
.
.
.
. 184
. 188
. 92
. 160
\lJoin (X)
\lJoin (⋉)
\LK () . . .
\ll (!) . . .
\ll (≪) . .
\ll (≪) . .
\ll (≪) . .
\ll (≪) . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
\llangle (⟪)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 51
. 33
. 129
. 65
. 64
. 67
. 66
. 69
. . . . . . . . . 100
\llangle (⦉) . . . . . . . . . .
\llap . . . . . . . . . 24, 25,
\llarc (◟) . . . . . . . . . . .
\llblacktriangle (◣) . .
\llbracket (~) . . . . . . . .
98
226
121
142
99
‹
\llbracket ( ) . . . . . . . . 104
\llceil (V) . .
\llcorner (z)
\llcorner (x)
\llcorner (à)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
98
98
98
98
\llcorner (⌞) . . . . . . . . . 102
\llcorner (⌞) . . . . . . . . . 100
\llcorner (⌞) . . . .
\llcurly (Î) . . . .
\llcurly (ê) . . . .
\LLeftarrow (⭅) . .
\Lleftarrow (W) .
\Lleftarrow (®) . .
\Lleftarrow (⇚) .
\Lleftarrow (⇚) .
\Lleftarrow (⇚) . .
\llfloor (T) . . . . .
\lll (Î) . . . . . . . .
\lll (≪) . . . . . . .
\lll (≪ vs. Î) . .
\lll (Ö) . . . . . . .
\lll (⋘) . . . . . . .
\lll (⋘) . . . . . . .
\lll (⋘) . . . . . . .
\llless . . . . . . . .
\llless (⋘) . . . .
\llless (⋘) . . . .
\llless (⋘) . . . .
\lllnest (⫷) . . . .
\llparenthesis (L)
\llparenthesis (⦇)
\lltriangle (◺) . .
\LMex . . . . . .⎧. . . .
\lmoustache (⎭) . .
\lmoustache (
\lmoustache (
\lmoustache (
\ln (ln) . . . .
\lnapprox (Ê)
\lnapprox ()
⎧
⎪
⎪
⎪
⎪
⎭)
⎧
⎪
⎪
⎪
⎪
⎭)
⎧
⎪)
⎭
...
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . 98
. . . 52
. . . 57
. . . 85
. . . 72
. . . 83
. . . 78
. . . 75
. . . 85
. . . 98
. . . 65
. . . 64
. . . 220
. . . 68
. . . 67
. . . 66
. . . 69
see \lll
. . . . 67
. . . . 66
. . . . 69
. . . . 69
. . . . 98
. . . . 98
. . . . 142
. . . . 226
.....
99
. . . . . . 102
. . . . . . 100
. . . . . . 103
......
......
......
91
65
64
\lnapprox (š) . . . . . . . . . 68
\lnapprox (⪉) . . . . . . . . . 67
\lnapprox (⪉) . . . . . . . . . 66
\lnapprox (⪉) . . . . . . . . . 69
\lneq (ň) . . . . . . . . . . . . 65
\lneq ( ) . . . . . . . . . . . . 64
\lneq (Œ) . . . . . . . . . . . . 68
\lneq (⪇) . . . . . . . . . . . . 67
\lneq (⪇) . . . . . . . . . . . . 69
\lneqq (š) . . . . . . . . . . . 65
\lneqq () . . . . . . . . . . . 64
\lneqq (ˆ) . . . . . . . . . . . 68
\lneqq (≨) . . . . . . . . . . . 67
\lneqq (≨) . . . . . . . . . . . 66
\lneqq (≨) . . . . . . . . . . . 69
\lnot . . . . . . . . . . . see \neg
\lnot (¬) . . . . . . . . . . . . 120
\lnot (¬) . . . . . . . . . . . . 119
\lnot (¬) . . . . . . . . . . . . 121
\lnsim (Ä) . . . . . . . . . . . 65
\lnsim () . . . . . . . . . . . 64
\lnsim (’) . . . . . . . . . . . 68
\lnsim (⋦) . . . . . . . . . . . 67
\lnsim (≴) . . . . . . . . . . . 66
\lnsim (⋦) . . . . . . . . . . . 68
\LO () . . . . . . . . . . . . . . 129
local ring (𝒪) . see alphabets,
math
\log (log) . . . . . . . . . 91, 232
log-like symbols . . 91, 92, 232
logic (package) . . . . . . . . . 130
logic gates . . . . . . . . . . . . 130
logical operators
and . . . . . . . see \wedge
not . . see \neg and \sim
or . . . . . . . . . . see \vee
\logof () . . . . . . . . . . . 51
lollipop . . . . . . see \multimap
long division . . . . . . 107, 109
long s (ſ) . . . . . . . . . . . . . 222
long s (ſ) . . . . . . . . . . . . . 27
long-branch runes
see normal
runes
\longa () . . . . . . . . . . . . 159
\longa (λ) . . . . . . . . . . . 184
\longcastling (O-O-O) . 181
\longdashv (⟞) . . . . . . 55
\longdashv (⟞) . . . . . . 58
longdiv (package) . . . . . . . 107
longdiv.tex (file) . . . . . . 107
⟌
\longdivision ( ⃖⃖⃖⃖) . 107, 109
’
\longhookrightarrow
(˓−→)
∬
\longiint ∫( ) . . . . . . . .
\longint ( ) . . . . . . . . . .
\longleadsto (⟿) . . . .
\Longleftarrow (⇐=) . .
\Longleftarrow (⇐Ô) . . .
\Longleftarrow (⟸) . . .
\Longleftarrow (⟸) . . .
\longleftarrow (←Ð) . . .
\longleftarrow (←−) . .
\longleftarrow (⟵) . . .
\longleftarrow (←−) . . .
284
87
49
49
79
72
74
78
85
74
72
78
87
\longleftarrow (⟵) . . . 85
\longleftfootline (⟝)
55
\longleftharpoondown (↽−)
. . . . . . . . 88
\longleftharpoonup (↼−) 88
\Longleftrightarrow (⇐⇒)
. . . . . . . . 72
\Longleftrightarrow (⇐⇒) 74
\Longleftrightarrow (⟺) 78
\Longleftrightarrow (⟺) 85
\longleftrightarrow (←→) 74
\longleftrightarrow (←→)
. . . . . . . . 72
\longleftrightarrow (⟷) 78
\longleftrightarrow (←→) 87
\longleftrightarrow (⟷) 85
\longleftsquigarrow (⬳) 79
\longleftsquigarrow (⬳) 85
\longleftwavearrow (⬳) 78
\Longmapsfrom (⇐=\) . . . 73
\Longmapsfrom (⟽) . . 55, 78
\Longmapsfrom (⟽) . . . . 85
\longmapsfrom (←−[) . . . 73
\longmapsfrom (⟻) . . 55, 78
\longmapsfrom (←−[) . . . . 87
\longmapsfrom (⟻) . . . . 85
\Longmapsto (=⇒) . . . . . 73
\Longmapsto (⟾) . . . . . 78
\Longmapsto (⟾) . . . . . 84
\longmapsto (z→) . . . . . . 74
\longmapsto (↦−→) . . . . . 72
\longmapsto (⟼) . . . . . 78
\longmapsto (↦−→) . . . . . 87
\longmapsto ∯
(⟼) . . . . . 84
\longoiint ∮( ) . . . . . . . . 49
\longoint ( ) . . . . . . . . . 49
\LongPulseHigh (
) . . . 125
\LongPulseLow (
) . . . 125
\Longrightarrow (=⇒) . 72
\Longrightarrow (Ô⇒) . . 74
\Longrightarrow (⟹) . . 78
\Longrightarrow (⟹) . . 84
\longrightarrow (Ð→) . . 74
\longrightarrow (−→) . 72
\longrightarrow (⟶) . . 78
\longrightarrow (−→) . . 87
\longrightarrow (⟶) . . 84
\longrightfootline (⟞) 55
\longrightharpoondown (−⇁)
. . . . . . . . 88
\longrightharpoonup (−⇀) .
. . . . . . . . 88
\longrightsquigarrow (⟿) .
. . . . . . . . 79
\longrightsquigarrow (⟿) .
. . . . . . . . 84
\longrightwavearrow (⟿) 78
\longs (ſ) . . . . . . . . . 27, 222
\looparrowdownleft (î)
73
\looparrowdownleft (è) . 83
\looparrowdownright (ï) 73
\looparrowdownright (é) 83
\looparrowleft (ì) . . . . 73
&
'
\looparrowleft (") . . . . 72
\looparrowleft ( ) . . . . 83
\looparrowleft (↫) . . . . 78
\looparrowleft (↫) . . . . 74
\looparrowleft (↫) . . . . 84
\looparrowright (í) . . . 73
\looparrowright (#) . . . 72
\looparrowright (¡) . . . 83
\looparrowright (↬) . . . 78
\looparrowright (↬) . . . 74
\looparrowright (↬) . . . 84
\Loosebearing ($) . . . . . 131
\lor . . . . . . . . . . . . see \vee
\lor (∨) . . . . . . . . . . . . . 33
\lor (∨) . . . . . . . . . . . . . 34
\LowerDiamond ( ) . . . . . 143
lowering . see \textlowering
\lowint (⨜) . . . . . . . . . . . 46
\lowintsl (⨜) . . . . . . . . . 48
\lowintup (⨜) . . . . . . . . . 48
\lozenge (♦) . . . . . 118, 119
\lozenge (â) . . . . . . . . . . 141
\lozenge (◊) . . . . . . . . . 141
\lozenge (◊) . . . . . . . . . . 140
\lozenge (◊) . . . . . . . . . 142
\lozengedot (ç) . . . . . . . 141
\lozengeminus (⟠) . . . . . 141
\lozengeminus (⟠) . . . . . 38
lozenges . . . . . see rhombuses
\Lparen (() . . . . . . . . . . . 124
⦅
o
\lParen (
) . . . . . . . . . . 103
\lparen (() . . . . . . . . . . . 102
\lparen (() . . . . . . . .
\Lparengtr (⦕) . . . . .
\lparenless (⦓) . . . .
\lrarc (◞) . . . . . . . .
\lrblacktriangle (◢)
\lrcorner ({) . . . . . .
\lrcorner (y) . . . . . .
\lrcorner (á) . . . . . .
.
.
.
.
.
.
.
.
.
..
..
..
. 102
. 98
. 98
. 121
. 142
. 98
. 98
. 98
\lrcorner (⌟) . . . . . . . . . 101
\lrcorner (⌟) . . . . . . . . . 100
\lrcorner (⌟) . . . . . . . . . 98
\lrJoin . . . . . . . . see \Join
\lrtimes (\) . . . . . . . . . . 51
\lrtimes (⋈) . . . . . . . . . 33
\lrtriangle (◿) . . . . . . . 142
\lrtriangleeq (⧡) . . . . . 71
\lsem (⟦) . . . . . . . . . . . . 102
L
P
\lsem ( P
) . . . . . . . . . . . 100
P
P
N . . . see \ldbrack
\lsemantic
\lsf () . . . . . . . . . . . . . . 159
\lsfz () . . . . . . . . . . . . . 159
\Lsh (è) . . . . . . . . . . . . . 73
\Lsh () . . . . . . . . . . . . . 72
\Lsh (ž) . . . . . . . . . . . . . 82
ffl
–
\Lsh (↰) . . . . . . .
\Lsh (↰) . . . . . . .
\Lsh (↰) . . . . . . .
\lsime (⪍) . . . . .
\lsimg (⪏) . . . . .
\lsqhook (⫍) . .
\Lsteel (™) . . . .
\Lt (Î) . . . . . . . .
\Lt (⪡) . . . . . . . .
\ltcc (⪦) . . . . . .
\ltcc (⪦) . . . . . .
\ltcir (ø) . . . . .
\ltcir (⩹) . . . . .
\ltimes (˙) . . . .
\ltimes (n) . . . .
\ltimes (Ô) . . . .
\ltimes (⋉) . . . .
\ltimes (⋉) . . . .
\ltimes (⋉) . . . .
\ltimesblack (é)
\ltlarr (⥶) . . . .
\ltquest (⩻) . . .
\ltriple . . . . . .
\ltrivb (⧏) . . . .
\LU () . . . . . . . .
LuaLATEX . . . . . .
Luecking, Dan . . .
\Luxembourg (—) . .
\lVert (‖) . . . . .
\lVert (||) . . . . . .
∥
∥
∥
∥
\lVert ( ∥
∥) . . . .
\lvert (|) . . . . . .
∣∣
∣
\lvert ( ∣∣∣) . . . . .
\lvertneqq (ť) . .
\lvertneqq ( ) .
\lvertneqq (€) . .
\lvertneqq (≨) . .
\lvertneqq (≨) . .
\lvertneqq (≨) . .
Å
Å
Å
Å
Å
\lVvert ( Å) . . .
\Lvzigzag (⧚) . . .
\lvzigzagÐ (⧘) . . .
Ð
\lwave ( ÐÐ) . . . . .
_
_
\lWavy ( _
_
_) . . . .
^^_
\lwavy ( ^^^) . . . . .
\lz (1) .^. . . . . . .
M
\M . . . . . . . . . .
\M (´) . . . . . . .
\m .¯. . . . . . . . .
\m ( ) . . . . . . .
¯ .......
m (m)
\ma (¯
×) . . . . . .
\Macedonia (˜) .
\macron (ā) . . .
macron (ā) . . .
285
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 78
. 74
. 84
. 68
. 68
. 58
. 131
. 68
. 68
. 67
. 68
. 68
. 68
. 31
. 30
. 33
32, 33
. . 32
. . 34
. . 33
. . 68
. . 68
. . 104
. . 71
. . 129
. . 158
. . 225
. . 188
. . 99
. . 104
. . . . . . 101
. . . . . . 99
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 101
. 65
. 64
. 68
. 67
. 66
. 68
. . . . . . 101
. . . . . . 98
. . . . . . 98
. . . . . . 103
. . . . . . 100
. . . . . . 100
. . . . . . 19
.
.
.
.
.
.
.
.
. . . . . 16
. . . . . 183
. . . . . 16
. . . . . 183
. . . . . 157
. . . . . 183
. . . . . 188
. . . . . 23
see accents
\Maggie (
) . . . . . . . 184
magic (package) . . . . 217, 239
Magic: The Gathering symbols
. . . . . . . 217
magical signs . . . . . . . . . . 185
\magnon (Í) . . . . . . . . . 132
majuscules . . . . . . . . . . . 93
\makeatletter . . . . . . . . 226
\makeatother . . . . . . . . . 226
\MALE (‚) . . . . . . . . . . . . 131
\Male (|) . . . . . . . . . . . . 131
male . 126–128, 131, 192–197,
201–203
\male (♂) . . . . . . . . . . . . 131
\male (♂) . . . . . . . . . . . . 131
\MaleMale (ƒ) . . . . . . . . 131
\Malta (™) . . . . . . . . . . . . 188
\maltese (z) . . . . . . . . . 15
\maltese (î) . . . . . . . . . 120
\maltese (✠) . . . . . . . . . 120
\maltese (✠) . . . . . . . . . 119
\maltese (✠) . . . . . . . . . 121
man . 148, 177, 192, 199–200,
211–215
\manboldkidney () . . . . . 176
\manconcentriccircles ($) .
. . . . . . . 176
\manconcentricdiamond (%) .
. . . . . . . 176
\mancone (#) . . . . . . . . . 176
\mancube () . . . . . . . . . 176
\manerrarrow (y) . . . . . 176
\ManFace (ÿ) . . . . . . . . . . 177
\manfilledquartercircle (!)
. . . . . . . 176
manfnt (package) . . . 176, 239
\manhpennib () . . . . . . . 176
\manimpossiblecube () . 176
\mankidney () . . . . . . . . 176
\manlhpenkidney () . . . . 176
\manpenkidney () . . . . . 176
\manquadrifolium (&) . . 176
\manquartercircle ( ) . . 176
\manrotatedquadrifolium
(') . . . . . . . . . . . 176
\manrotatedquartercircle (")
. . . . . . . 176
\manstar () . . . . . . . . . 176
\mantiltpennib () . . . . 176
\mantriangledown (7) . . . 176
\mantriangleright (x) . . 176
\mantriangleup (6) . . . . 176
\manvpennib () . . . . . . . . 176
map symbols . . . . . . 199–200
\Mappedfromchar () . . . . . 90
\mappedfromchar () . . . . . 90
maps . . . . . . . . . . . . . . . 188
\Mapsdown (/) . . . . . . . . . 79
\mapsdown () . . . . . . . . . 82
\mapsdown (↧) . . . . . . . . . 79
\mapsdown (↧) . . . . . . . . . 84
\Mapsfrom (⇐\) .
\Mapsfrom (à) .
\Mapsfrom (⤆) .
\Mapsfrom (⤆) .
\mapsfrom (←[) .
\mapsfrom () .
\mapsfrom (↤) .
\mapsfrom (←[) .
\mapsfrom (↤) .
\Mapsfromchar (û)
\Mapsfromchar (\)
\mapsfromchar (ß)
\mapsfromchar ([)
\mapsfromchar (:)
\Mapsto (⇒) . .
\Mapsto (á) . . .
\Mapsto (⤇) . . .
\Mapsto (⤇) . . .
\mapsto (↦→) . .
\mapsto () . . .
\mapsto (↦) . . .
\mapsto (↦) . . .
\mapsto (↦→) . . .
\mapsto (↦) . . .
\Mapstochar (ú) .
\Mapstochar () .
\mapstochar (Þ) .
\mapstochar () .
\Mapsup (-) . . .
\mapsup () . . . .
\mapsup (↥) . . . .
\mapsup (↥) . . . .
\marcato ( ) . . .
\marcatoDown ( )
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 73
. 82
. 79
. 84
. 73
. 82
. 79
. 87
. 84
. 91
. 90
. 91
. 90
. 91
. 73
. 82
. 79
. 84
. 72
. 82
. 79
. 75
. 87
. 84
. 91
. 90
. 91
. 91
. 79
. 82
. 79
. 84
. 164
. 164
\Marge (
) . . . . . . . 184
\markera (x) . . . . . . . . . 181
\markerb (y) . . . . . . . . . 181
married . . . see \textmarried
\Mars (D) . . . . . . . . . . . . 127
\Mars (Ä) . . . . . . . . . . . . 126
\Mars (h) . . . . . . . . . . . . 128
\mars (♂) . . . . . . . . . . . . 126
marvosym (package) . . . . . . . .
. 25, 116, 117, 126, 129–
131, 135, 138, 177, 187,
220
masonic cipher . . . . . . . . 186
\mate (m) . . . . . . . . . . . . 181
material biconditional . . . . . .
. . see \leftrightarrow
and \equiv
material conditional . . . . . see
\rightarrow and \supset
material equivalence . . . . . . .
. . see \leftrightarrow
and \equiv
material implication . . . . . see
\rightarrow and \supset
material nonimplication . . . . .
. . see \nrightarrow and
\nsupset
math alphabets . . . . . . . . 123
mathabx (package) . 29, 31, 35,
41, 52, 62, 65, 69, 73, 74,
91, 96, 98–100, 105, 109,
117, 119, 127, 181, 219,
220, 239, 240
\mathaccent . . . . . . . . . . 223
\mathbat (
) . . . . . . . . 38
\mathbb . . . . . . . . . 123, 124
\mathbbb . . . . . . . . . . . . 123
\mathbbm . . . . . . . . . . . . 123
\mathbbmss . . . . . . . . . . . 123
\mathbbmtt . . . . . . . . . . . 123
mathbbol (package) . 123, 124
\mathbf . . . . . . . . . . . . . 233
\mathbin . . . . . . . . . . . . 232
\mathbold . . . . . . . . . . . . 233
mathcal (euscript package option) . . . . . . . . . . 123
\mathcal . . . . . . . . 123, 126
\mathcent (¢) . . . . . . . . . 96
\mathchoice . . . . . . . . . . 225
\mathclose . . . . . . . . . . . 232
\mathcloud ( ) . . . . . . 38
\mathcolon (∶) . . . . . . . . 115
mathcomp (package) . . . . 116
mathdesign (package) . 25, 34,
49, 97, 103, 122, 239
\mathdollar ($) . . . . . . . 29
\mathdollar ($) . . . . . . . 97
mathdots (package) . 105, 114,
115, 227, 239, 240
\mathds . . . . . . . . . . . . . 123
\mathellipsis (. . .) . . . . 29
\mathellipsis (…) . . . . . 115
mathematical symbols 29–124
\mathfrak . . . . . . . . . . . . 123
\mathghost ( ) . . . . . . . . 38
\mathit . . . . . . . . . . . . . 123
\mathleftbat ( ) . . . . . 38
\mathleftghost ( ) . . . . 38
\mathnormal . . . . . . . . . . 123
\mathop . . . . . . . . . . . . . 232
\mathopen . . . . . . . . . . . . 232
\mathord . . . . . . . . . . . . 232
\mathpalette . . . . . 225, 226
\mathparagraph (¶) . . . . 29
\mathparagraph (¶) . . . . . 97
\mathpunct . . . . . . . . . . . 232
\mathratio (∶) . . . . . . . . 115
\mathrel . . . . . . . . 223, 232
) . . . . 38
\mathrightbat (
\mathrightghost ( ) . . . 38
\mathring ( ̊ ) . . . . . . . . . 106
\mathring (˚) . . . . . 105, 106
\mathrm . . . . . . . . . . . . . 123
mathrsfs (package) . . 123, 239
mathscr (euscript package option) . . . . . . . . . . 123
286
mathscr (urwchancal package option) . . . . . . . . . . 123
\mathscr . . . . . . . . . . . . 123
\mathsection (S) . . . . . . 29
\mathsection (§) . . . . . . 121
\mathslash (/) . . . . . . . 101
\mathslash (/) . . . . . . . . 102
mathspec (package) . . . . . 93
mathspec.sty (file) . . . . . 93
\mathsterling (£) . . . . . . 96
\mathsterling (£) . . . . . 29
\mathsterling (£) . . . . . . 97
mathtools (package) 29, 59, 87,
109, 111, 239, 240
\mathunderscore ( ) . . . . 29
\mathvisiblespace (␣) . . 121
\mathwitch ( ) . . . . . . 38
\mathwitch* ( ) . . . . . . 38
\max (max) . . . . . . . . . . 91
\maxima () . . . . . . . . . . . 159
Maxwell-Stefan diffusion coefficient . . . . . . . . . . . see
\DH
\maxwellDistrib (𝛬) . . . 133
\maya . . . . . . . . . . . . . . . 117
Mayan numerals . . . . . . . 117
\Mb (´
˘¯) . . . . . . . . . . . . . . 183
\mb (¯) . . . . . . . . . . . . . . 183
˘ ) . . . . . . . . . . . . 183
\Mbb (¯´
˘¯˘) . . . . . . . . . . . . 183
\mBb (¯
˘´¯˘) . . . . . . . . . . . . 183
\mbB (¯¯
˘˘´
\mbb (¯¯) . . . . . . . . . . . . 183
˘˘
mbboard (package) . . 123, 124,
239
\mbbx (¯¯ ) . . . . . . . . . . . 183
˘˘˘
\mbox .¯.¯. . . . . . . . . 225, 226
\MC (3) . . . . . . . . . . . . . 128
\mdblkcircle (⚫) . . . . . . 142
\mdblkdiamond (◆) . . . . . 37
\mdblkdiamond (⬥) . . . . . 142
\mdblklozenge (⧫) . . . . . 141
\mdblklozenge (⬧) . . . . . 142
\mdblksquare (■) . . . . . . 37
\mdblksquare (◼) . . . . . . 142
\mdlgblkcircle (●) . . . . 37
\mdlgblkcircle (●) . . . . 142
\mdlgblkdiamond (◆) . . . 37
\mdlgblkdiamond (◆) . . . 142
\mdlgblklozenge (⧫) . . . 141
\mdlgblklozenge (⧫) 38, 142
\mdlgblksquare (■) . . . . 37
\mdlgblksquare (■) . . . . 142
\mdlgwhtcircle (○) . . . . 37
\mdlgwhtcircle (○) . . . . 38
\mdlgwhtdiamond (◇) . . . 37
\mdlgwhtdiamond (◇) . . . 142
\mdlgwhtlozenge (◊) . . . 141
\mdlgwhtlozenge (◊) . . . 142
\mdlgwhtsquare (□) . . . . 37
\mdlgwhtsquare (□) . . . . 142
\mdsmblkcircle (⦁) . . . . . 142
\mdsmblksquare (◾) . . . . 142
$
\mdsmwhtcircle (⚬) . . . . . 142
\mdsmwhtsquare (◽) . . . . 142
\mdwhtcircle (⚪) . . . . . . 142
\mdwhtdiamond (◇) . . . . . 37
\mdwhtdiamond (⬦) . . . . . 142
\mdwhtlozenge (◊) . . . . . 141
\mdwhtlozenge (⬨) . . . . . 142
\mdwhtsquare (□) . . . . . . 37
\mdwhtsquare (◻) . . . . . . 142
mdwmath (package) . 110, 239,
240
\measangledltosw (⦯) . . . 118
\measangledrtose (⦮) . . . 118
\measangleldtosw (⦫) . . . 118
\measanglelutonw (⦩) . . . 118
\measanglerdtose (⦪) . . . 118
\measanglerutone (⦨) . . . 118
\measangleultonw (⦭) . . . 118
\measangleurtone (⦬) . . . 118
\measeq (≞) . . . . . . . . . . 58
\measuredangle (>) . . . . 119
\measuredangle (]) . . . . 117
\measuredangle (Ö) . . . . 118
\measuredangle (∡) . . . . 118
\measuredangle (∡) . . . . 117
\measuredangle (∡) . . . . 118
\measuredangleleft (⦛) . 118
\measuredangleleft (⦛) . 118
\measuredrightangle (á) 118
\measuredrightangle (⊾) 118
\measuredrightangle (⊾) 118
\measuredrightangledot (⦝)
. . . . . . . 118
mechanical scaling . . 229, 231
\medbackslash (∖) . . . 32, 33
\medbackslash (∖) . . . . . 32
\medblackcircle (●) . . . 36
\medblackdiamond (◆) . . 36
\medblacklozenge (⧫) . . . 141
\medblacksquare (■) . . . 36
\medblackstar (⭑) . . . . . 36
\medblackstar (⭑) . . . . . 142
\medblacktriangledown (▼) .
. . . . . . 36, 71
\medblacktriangleleft (◀) .
. . . . . . 36, 71
\medblacktriangleright (▶)
. . . . . . 36, 71
\medblacktriangleup (▲) 36,
71
\medbullet () . . . . . . . . 31
\medcirc () . . . . . . . . . 31
\medcircle (○) . . . . . . . . 36
\medcircle (◯) . . . . . . . . 32
\meddiamond (◇) . . . . . . . 36
\meddiamond (◇) . . . . . . . 36
media control symbols . . 177,
194–197
medieval runes . . . . . . . . 157
\medlozenge (◊) . . . . . . . 141
\medlozenge (◊) . . . . . . . 140
\medslash (∕) . . . . 32, 33, 36
\medslash (∕) . . . . . . . . . 32
\medsquare (□) . . . . . . . . 36
\medsquare (◻) . . . . . . . . 36
\medstar (⭑) . . . . . . . . . 37
\medstar (☆) . . . . . . . . . 36
\medstarofdavid (✡) . . . 140
\medtriangledown (▽) 36, 71
\medtriangledown (▽) 36, 70
\medtriangleleft (◁) 36, 71
\medtriangleleft (◁) 36, 70
\medtriangleright (▷) 36, 71
\medtriangleright (▷) 36, 70
\medtriangleup (△) . . 36, 71
\medtriangleup (△) . . 36, 70
\medvert (∣) . . . . . . . . . . 32
\medvertdot () . . . . . . . 32
\medwhitestar (⭐) . . . . . 36
\medwhitestar (⭐) . . . . . 142
Mellin transform (ℳ) . . . see
alphabets, math
membership . . . . . . . see \in
\Mercury (A) . . . . . . . . . . 127
\Mercury (Â) . . . . . . . . . . 126
\Mercury (f) . . . . . . . . . . 128
\mercury (') . . . . . . . . . . 126
\merge (!) . . . . . . . . . . . 30
\merge (Ž) . . . . . . . . . . . 33
METAFONT 12, 124, 229, 230,
232
METAFONTbook symbols . 176
\metalbond (Ç) . . . . . . . 133
\meterC (S ) . . . . . . . . . . 161
\meterCThree (S 3) . . . . . 161
\meterCThreeTwo (S 3
2) . . . 161
\meterCutC (R ) . . . . . . . . 161
\meterCZ (S Z) . . . . . . . . . 161
\meterO (○ ) . . . . . . . . . 161
\meterplus ( ) . . . . . . . 159
\method (𝐴) . . . . . . . . . . 133
metre (package) . 23, 105, 183,
239, 240
metre . . . . . . . . . . . . . . . 183
metrical symbols . . . 183, 184
mezzo ( ) . . . . . . . . 163, 175
.mf files . . . . . . 12, 199, 229
\mglgwhtcircle (○) . . . . 142
\mglgwhtlozenge (◊) . . . 142
\mho (f) . . . . . . . . . 118, 119
\mho (℧) . . . . . . . . . . . . . 95
miama (emf package option) 126
micro . . . . . . . . see \textmu
\micro (µ) . . . . . . . . . . . 125
Microsoft® Windows® . . 235
\mid (|) . . . . . . . . . . 50, 101
\mid (∣) . . . . . . . . . . . . . 55
\mid (∣) . . . . . . . . . . . . . . 58
\midbarvee (⩝) . . . . . . . . 34
\midbarwedge (⩜) . . . . . . 34
\midcir (⫰) . . . . . . . . . . . 89
\midcir (⫰) . . . . . . . . . . . 58
\middle . . . . . . . . . . . . . 99
\middlebar ( ̵ ) . . . . . . . . 106
\middleslash ( ̷ ) . . . . . . 106
9
287
\midtilde ({) . . . . . . . . . 24
MIL-STD-806 . . . . . . . . . 130
millesimal sign . . . . . . . . see
\textperthousand
milstd (package) . 130, 239, 240
\min (min) . . . . . . . . 91, 232
\MineSign (³) . . . . . . . . 177
minim . . see musical symbols
\minim ( ,) . . . . . . . . . . . . 162
\minimDotted ( u) . . . . . . 162
\minimDottedDouble ( u u) . 162
uu
\minimDottedDoubleDown ( )
. . . . . . . 162
u
\minimDottedDown ( ) . . . 162
,
\minimDown ( ) . . . . . . . . 162
Minkowski space (M) . . . . see
alphabets, math
minus . . . . . . see \textminus
\minus (−) . . . . . . . . . . . 32
\minus (−) . . . . . . . . . . . 32
minus, double-dotted (÷) see
\div
\minuscolon (−:) . . . . . . 61
\minuscoloncolon (−::) . 61
\minusdot (⨪) . . . . . . . . . 32
\minusdot () . . . . . . . . . 32
\minusdot (⨪) . . . . . . . . . 34
\minusfdots (⨫) . . . . . . . 32
\minusfdots (⨫) . . . . . . . 34
\minushookdown (¬) . . . . 120
\minushookdown (¬) . . . . 119
\minushookup (⨼) . . . . . . 33
\minushookup (⨼) . . . . . . 119
\minuso ( ) . . . . . . . 30, 224
\minuso (é) . . . . . . . . . . 33
\minusrdots (⨬) . . . . . . . 32
\minusrdots (⨬) . . . . . . . 34
minutes, angular . see \prime
miscellaneous symbols . . 118–
120, 122, 146, 147, 176–
193, 198
mismath (package) . . . 92, 239
“Missing $ inserted” . . 29
\mlcp (⫛) . . . . . . . . . . . . 58
\Mmappedfromchar () . . . 90
\mmappedfromchar () . . . 90
\Mmapstochar () . . . . . . . 90
\mmapstochar () . . . . . . . 90
MnSymbol (package) 29, 31, 32,
36, 44, 52–54, 63, 66, 70,
74–77, 88, 89, 95, 96, 100,
105, 107, 108, 115, 117,
119, 120, 140, 145, 158,
239, 240
\Moai ( ) . . . . . . . . . . . . 192
\Mobilefone (H) . . . . . . . 130
\mod . . . . . . . . . . . . . . . . 91
\models (|=) . . . . . . . 50, 223
\models (⊧) . . . . . . . . . . 55
\models (⊧) . . . . . . . . . . 53
\models (⊧) . . . . . . . . . . . 58
\modtwosum (⨊) . . . . . . . 45
⨊
\modtwosum ( ) . . . . . . . 46
moduli space . . see alphabets,
math
\Moldova (š) . . . . . . . . . . 189
monetary symbols 25, 26, 124
\Montenegro (›) . . . . . . . . 189
monus . . . . . . . . see \dotdiv
\moo () . . . . . . . . . . . . . 30
\moo (æ) . . . . . . . . . . . . . 33
\Moon (K) . . . . . . . . . . . . 127
\Moon (Á) . . . . . . . . . . . . 126
\Moon (d) . . . . . . . . . . . . 128
moon . 126–128, 186, 201–203
\MoonPha . . . . . . . . . . . . 186
moonphase (package) 201, 239
\Mordent () . . . . . . . . . . . 159
\mordent () . . . . . . . . . . . 159
\morepawns (S) . . . . . . . . 181
\moreroom (U) . . . . . . . . 181
\Mountain ( ) . . . . . . . . 178
mouse . . see \ComputerMouse
\MoveDown (») . . . . . . . . . 177
\moverlay . . . . . . . . . . . . 226
\MoveUp (º) . . . . . . . . . . 177
\mp (∓) . . . . . . . . . . . . . 30
\mp (ÿ) . . . . . . . . . . . . . . 33
\mp (∓) . . . . . . . . . . . . . . 32
\mp (∓) . . . . . . . . . . . . . . 32
\mp (∓) . . . . . . . . . . . . . . 34
\Mu (M) . . . . . . . . . . . . . 93
\mu (𝜇) . . . . . . . . . . . . . . 93
multiline braces . . . . . . . . 110
\multimap (() . . . . . . 50, 51
\multimap (³) . . . . . . . . 57
\multimap (⊸) . . . . . . . . 89
\multimap (⊸) . . . . . . . . 88
\multimap (⊸) . . . . . . . . 58
\multimapboth () . . . . 51
\multimapboth (À) . . . . . 57
\multimapboth (˛) . . . . 61
\multimapbothvert (•) . . 51
\multimapbothvert (Æ) . . 57
\multimapdot () . . . . . . 51
\multimapdot (´) . . . . . . 57
\multimapdotboth () . . 51
\multimapdotboth (Á) . . 57
\multimapdotbothA () . 51
\multimapdotbothA (Ã) . 57
\multimapdotbothAvert (˜) 51
\multimapdotbothAvert (É) 57
\multimapdotbothB () . 51
\multimapdotbothB (Â) . 57
\multimapdotbothBvert (—) 51
\multimapdotbothBvert (È) 57
\multimapdotbothvert (–) 51
\multimapdotbothvert (Ç) 57
\multimapdotinv () . . . 51
\multimapdotinv (Å) . . . 57
\multimapinv () . . . . . . 51
\multimapinv (Ä) . . . . . . 57
\multimapinv (⟜) . . . . . . 89
\multimapinv (⟜) . . . . . . 58
multiple accents per character
. . . . . . . 227
w
Y
\MultiplicationDot (÷) . 116
multiplicative disjunction . see
\bindnasrepma, \invamp,
and \parr
\Mundus (m) . . . . . . . . . . 177
\muon (𝑥) . . . . . . . . . . . . 133
\musCorchea (ˇ “( ) . . . . . . . 160
\musCorcheaDotted (ˇ “( ‰ ) . . 160
\musDoubleFlat ( ) . . . . 160
\musDoubleSharp ( ) . . . . 160
\musEighth (ˇ “( ) . . . . . . . . 160
\musEighthDotted (ˇ “( ‰ ) . . 160
Museum of Icelandic Sorcery
and Witchcraft . . . 186
\musFlat ( ) . . . . . . . . . . 160
\musFusa (ˇ “( ) . . . . . . . . . . 160
\musFusaDotted (ˇ “( ‰ ) . . . . 160
\musHalf (˘ “ ) . . . . . . . . . . 160
\musHalfDotted (˘ “‰ ) . . . . . 160
musical symbols . . . 158–175,
192–197
musicography (package) . 160,
161, 239, 240
musixgre (package) . . . . . . 160
musixlit (package) . . . . . . 160
musixper (package) . . . . . . 160
MusiXTEX . . . . . . . 159–161
musixtex (package) . . 239, 240
\musMeter . . . . . . . . . . . . 161
\musMinim (˘ “ ) . . . . . . . . . 160
\musMinimDotted (˘ “‰ ) . . . . 160
\musNatural ( ) . . . . . . . 160
musNatural (musNatural) 160
\musQuarter (ˇ “ ) . . . . . . . 160
\musQuarterDotted (ˇ “‰ ) . . 160
\musSegno ( V ) . . . . . . . . . 160
\musSemibreve (¯ ) . . . . . . 160
\musSemibreveDotted (¯ ‰ ) 160
\musSemiminim (ˇ “ ) . . . . . . 160
\musSeminiminimDotted (ˇ “‰ ) . .
. . . . . . . 160
\musSharp ( ) . . . . . . . . . 160
\musSixteenth (ˇ “) ) . . . . . 160
\musSixteenthDotted (ˇ “) ‰ ) 160
\MVMinus (-) . . . . . . . .
\MVMultiplication (*)
\MVNine (9) . . . . . . . .
\MVOne (1) . . . . . . . . .
\MVPeriod (.) . . . . . . .
\MVPlus (+) . . . . . . . .
\MVRightArrow (:) . . .
\MVRightBracket ()) . .
\MVSeven (7) . . . . . . . .
\MVSix (6) . . . . . . . . .
\MVThree (3) . . . . . . . .
\MVTwo (2) . . . . . . . . .
\MVZero (0) . . . . . . . .
\musSixtyFourth (ˇ “+ ) . . . . 160
\NANDu () . .
\napprox (ff) . . .
\napprox (≉) . . . .
\napprox (≉) . . . .
\napprox (≉) . . .
\napproxeq (6) . .
\napproxeq (≊̸) . .
\napproxeq (≊̸) . .
\napproxeqq () .
\napproxident (≋̸)
\narceq (≘̸) . . . .
\nAssert (⊮) . . .
\nassert (⊦̸) . . . .
\nasymp (-) . . . .
\nasymp (≭) . . . .
\nasymp (≭) . . . . .
\nasymp (≭) . . . .
[
]
Z
^
\
\musSixtyFourthDotted (ˇ “+ ‰ ) .
. . . . . . . 160
\musThirtySecond (ˇ “* ) . . . 160
\musThirtySecondDotted (ˇ “* ‰ )
. . . . . . . 160
\musWhole (¯ ) . . . . . . . . . 160
\musWholeDotted (¯ ‰ ) . . . . 160
\muup (µ) . . . . . . . . . . . . 94
\MVAt (@) . . . . . . . . . . . . 177
\MVComma (,) . . . . . . . . . . 116
\MVDivision (/) . . . . . . . 116
\MVEight (8) . . . . . . . . . . 117
\MVFive (5) . . . . . . . . . . 117
\MVFour (4) . . . . . . . . . . 117
\MVLeftBracket (() . . . . 116
288
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
116
116
117
117
116
116
116
116
117
117
117
117
117
N
n (n) . . . . . . . . . . . . . . . . 157
\na ( ) . . . . . . . . . . . . . . 160
\nabla (∇) . . . . . . . . . . . 118
\nabla (∇) . . . . . . . . . . . 119
\nabla (∇) . . . . . . . . . . . 121
\nacwcirclearrowdown (⟲̸) 79
\nacwcirclearrowleft (↺̸) 79
\nacwcirclearrowright (̸)
. . . . . . . . 79
\nacwcirclearrowup (̸)
79
\nacwgapcirclearrow (⟲̸) 80
\nacwleftarcarrow (⤹̸) . . 79
\nacwnearcarrow (̸) . . . 79
\nacwnwarcarrow (̸) . . . 79
\nacwopencirclearrow (↺̸) 80
\nacwoverarcarrow (⤺̸) . 79
\nacwrightarcarrow (̸) . 80
\nacwsearcarrow (⤴̸) . . . 80
\nacwswarcarrow (⤷̸) . . . 80
\nacwunderarcarrow (⤻̸) . 80
\NAK (␕) . . . . . . . . . . . . . 130
NAND gates . . . . . . . . . . 130
^
\NANDd () . . . . . . . . 130
\NANDl ()
. . . . . . . 130
\NANDr ()
. . . . . . . 130
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 130
. 52
. 56
. 54
. 59
. 51
. 56
. 54
. 59
. 56
56, 90
. . 56
. . 56
. . 51
56, 90
. . 89
. . 59
\Natal (0) . .
nath (package)
\NATURAL ( ) .
\Natural ( ) .
\natural (♮) .
\natural (ú) .
\natural (♮) .
¼
Î
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.......
98, 104,
.......
.......
.......
.......
.......
128
239
92
92
158
158
158
\natural ( ) . . . . . . . . . . 163
\natural (♮) . . . . . . . . . . 158
\natural (♮) . . . . . . . . . . 158
natural numbers (N) . . . . see
alphabets, math
\nbackapprox (̸) . . . . . . 54
\nbackapproxeq (̸) . . . . . 54
\nbackcong (≌̸) . . . . . . . . 56
\nbackcong (≌̸) . . . . . . . . 54
\nbackeqsim (̸) . . . . . . . 54
\nbacksim (*) . . . . . . . . . 51
\nbacksim (∽̸) . . . . . . . . . 56
\nbacksim (∽̸) . . . . . . . . . 54
\nbacksimeq (+) . . . . . . . 51
\nbacksimeq (⋍̸) . . . . . . . 56
\nbacksimeq (⋍̸) . . . . . . . 54
\nbacktriplesim (̸) . . . . 54
\nBarv (⫧̸) . . . . . . . . . . . 56
\nbarV (⫪̸) . . . . . . . . . . . 56
\nbdleftarcarrow (̸) . . . 80
\nbdnearcarrow (̸) . . . . 80
\nbdnwarcarrow (̸) . . . . 80
\nbdoverarcarrow (̸) . . 80
\nbdrightarcarrow (̸) . . 80
\nbdsearcarrow (̸) . . . . 80
\nbdswarcarrow (̸) . . . . 80
\nbdunderarcarrow (̸) . 80
\nblackwhitespoon (⊷̸) . 89
\NBSP ( ) . . . . . . . . . . . . 130
\NBSP ( ) . . . . . . . . . . . . 130
\nBumpeq ()) . . . . . . . . . 51
\nBumpeq (≎̸) . . . . . . . . . . 56
\nBumpeq (≎̸) . . . . . . . . . . 54
\nBumpeq () . . . . . . . . . 59
\nbumpeq (() . . . . . . . . . 51
\nbumpeq (≏̸) . . . . . . . . . . 56
\nbumpeq (≏̸) . . . . . . . . . . 54
\nbumpeq () . . . . . . . . . 59
\nbumpeqq (⪮̸) . . . . . . . . . 56
\ncirceq (≗̸) . . . . . . . . . . 56
\ncirceq (≗̸) . . . . . . . . . . 54
\ncirclearrowleft (↺̸) . 80
\ncirclearrowleft (↺̸) . 77
\ncirclearrowright (↻̸)
80
\ncirclearrowright (↻̸)
77
\ncirmid (⫯̸) . . . . . . . . . 89
\nclosedequal (̸) . . . . . 54
\nclosure (⁐̸) . . . . . . . 56, 90
\ncong (fl) . . . . . . . . . . . 52
\ncong () . . . . . . . . . . . 51
\ncong (™) . . . . . . . . . . . 57
\ncong (≇) . . . . . . . . . . . 56
\ncong (≇) . . . . . . . . . . . 54
\ncong (≇) . . . . . . . . . . . 59
\ncongdot () . . . . . . . . . 59
\ncurlyeqprec (ÿ) . . . . . 52
\ncurlyeqprec (⋞̸) . . . . .
\ncurlyeqprec (⋞̸) . . . . .
\ncurlyeqsucc (ź) . . . . .
\ncurlyeqsucc (⋟̸) . . . . .
\ncurlyeqsucc (⋟̸) . . . . .
\ncurvearrowdownup (̸) .
\ncurvearrowleft (⤺̸) . .
\ncurvearrowleft (↶̸) . .
\ncurvearrowleftright (̸)
\ncurvearrownesw (̸) . .
\ncurvearrownwse (̸) . .
\ncurvearrowright (̸) .
\ncurvearrowright (↷̸) . .
\ncurvearrowrightleft (̸)
\ncurvearrowsenw (̸) . .
\ncurvearrowswne (̸) . .
\ncurvearrowupdown (̸) .
\ncwcirclearrowdown (⟳̸)
\ncwcirclearrowleft (̸)
\ncwcirclearrowright (↻̸)
\ncwcirclearrowup (̸) .
\ncwgapcirclearrow (⟳̸)
\ncwleftarcarrow (̸) . . .
\ncwnearcarrow (⤵̸) . . . .
\ncwnwarcarrow (̸) . . . .
\ncwopencirclearrow (↻̸)
\ncwoverarcarrow (̸) . .
\ncwrightarcarrow (⤸̸) . .
\ncwsearcarrow (⤶̸) . . . .
\ncwswarcarrow (̸) . . . .
\ncwunderarcarrow (̸) .
\ndasharrow (⇢̸) . . . . . . .
\ndasharrow (⇢̸) . . . . . . .
\ndasheddownarrow (⇣̸) . .
\ndashedleftarrow (⇠̸) . .
\ndashednearrow (̸) . . .
\ndashednwarrow (̸) . . .
\ndashedrightarrow (⇢̸) .
\ndashedsearrow (̸) . . .
\ndashedswarrow (̸) . . .
\ndasheduparrow (⇡̸) . . . .
\ndashleftarrow (⇠̸) . . .
\ndashleftarrow (⇠̸) . . .
\ndashrightarrow (⇢̸) . .
\ndashrightarrow (⇢̸) . .
\nDashV (+) . . . . . . . . . .
\nDashV (⫥̸) . . . . . . . . . .
\nDashv (+) . . . . . . . . . .
\nDashv (⫤̸) . . . . . . . . . .
\ndashV (/) . . . . . . . . . .
\ndashV (⫣̸) . . . . . . . . . .
\ndashv (’) . . . . . . . . . .
\ndashv (⊣̸) . . . . . . . . . .
\ndashv (⊣̸) . . . . . . . . . .
\ndashVv (/) . . . . . . . . .
\ndashVv (̸) . . . . . . . . .
\nDdashv (̸) . . . . . . . . .
\nDdownarrow (⤋̸) . . . . . .
56
54
52
56
54
75
80
77
75
75
75
80
77
75
75
75
75
80
80
80
80
80
80
80
80
80
80
80
80
80
80
81
77
76
76
76
76
76
76
76
76
81
77
81
77
52
56
52
56
52
56
52
56
54
52
56
56
80
\nddtstile ( )
\ndiagdown (̸)
\ndiagup (̸) . .
\ndivides (∤) . .
\nDoteq (≑̸) . . .
60
54
54
54
56
289
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
\nDoteq (≑̸) . . . . . . . . . . . 54
\ndoteq (≐̸) . . . . . . . . . . 56
\ndoteq (≐̸) . . . . . . . . . . . 54
\ndoublefrown (̸) . . . . . 89
\ndoublefrowneq (̸) . . . . 89
\ndoublesmile (̸) . . . . . 89
\ndoublesmileeq (̸) . . . . 89
\nDownarrow (⇓̸) . . . . . . . 80
\nDownarrow (⇓̸) . . . . . . . 76
\ndownarrow (↓̸) . . . . . . . 80
\ndownarrow (↓̸) . . . . . . . 76
\ndownarrowtail (̸) . . . 80
\ndownarrowtail (̸) . . . . 76
\ndownAssert (⫧̸) . . . . . . 56
\ndownassert (⫟̸) . . . . . . 56
\ndownbkarrow (⇣̸) . . . . . 80
\ndownblackspoon (̸) . . . 89
\ndowndownarrows (⇊̸) . . 80
\ndowndownarrows (⇊̸) . . . 76
\ndownfilledspoon (̸) . . 88
\ndownfootline (̸) . . . . . 54
\ndownfree (⫝̸) . . . . . . . . 54
\ndownharpoonccw (⇂̸) . . . 77
\ndownharpooncw (⇃̸) . . . . 77
\ndownharpoonleft (⇃̸) . . 82
\ndownharpoonright (⇂̸) . 82
\ndownlcurvearrow (⤸̸) . . 81
\ndownleftcurvedarrow (̸) .
. . . . . . . . 81
\ndownlsquigarrow (̸) . . 81
\ndownlsquigarrow (̸) . . 76
\nDownmapsto (̸) . . . . . . 80
\ndownmapsto (↧̸) . . . . . . 80
\ndownmapsto (↧̸) . . . . . . 76
\ndownModels (̸) . . . . . . 54
\ndownmodels (̸) . . . . . . 56
\ndownmodels (̸) . . . . . . 54
\ndownpitchfork (̸) . . . 90
\ndownpitchfork (⫛̸) . . . 88
\ndownrcurvearrow (⤹̸) . . 81
\ndownrightcurvedarrow (⤵̸)
. . . . . . . . 81
\ndownrsquigarrow (̸) . . 81
\ndownrsquigarrow (̸) . . 76
\ndownspoon (⫰̸) . . . . . . . 89
\ndownspoon (⫰̸) . . . . . . . 88
\ndownuparrows (⇵̸) . . . . 80
\ndownuparrows (̸) . . . . 76
\ndownupcurvearrow (̸) . 81
\ndownupharpoons (⥯̸) . . 82
\ndownupharpoons (⥯̸) . . . 77
\ndownupharpoonsleftright
(⥯̸) . . . . . . . . . . . . 82
\ndownupsquigarrow (̸) . 81
\ndownVDash (̸) . . . . . . . 56
\ndownVdash (⍑̸) . . . . . . . 56
\ndownVdash (⍑̸) . . . . . . . 54
\ndownvDash (⫪̸) . . . . . . . 56
\ndownvdash (⊤̸) . . . . . . . 56
\ndownvdash (⊤̸) . . . . . . . 54
\ndownwavearrow (̸) . . . 80
\ndststile (
) .......
60
\ndtstile ( ) . . . . . . . .
60
\ndttstile ( ) . . .
\ndualmap (⧟̸) . . . .
\NE () . . . . . . . . . .
\ne . . . . . . . . . . . . .
\ne (≠) . . . . . . . . . .
\ne (≠) . . . . . . . . . .
\ne (≠) . . . . . . . . . .
\Nearrow (t) . . . . .
\Nearrow () . . . . .
\Nearrow (⇗) . . . . .
\Nearrow (⇗) . . . . .
\Nearrow (⇗) . . . . .
\nearrow (Õ) . . . . .
\nearrow (↗) . . . .
\nearrow (↗) . . . . .
\nearrow (↗) . . . . .
\nearrow (↗) . . . . .
\nearrow (↗) . . . . .
\nearrowcorner ( )
\nearrowtail ($) . .
\nearrowtail ($) . .
\nebkarrow (d) . . .
\nefilledspoon (t)
\nefootline (|) . . .
\nefree („) . . . . . .
\neg (¬) . . . . . . . . .
\neg (¬) . . . . . . . . .
\neg (¬) . . . . . . . . .
\neg (¬) . . . . . . . . .
negation . . see \neg
\neharpoonccw (D) .
\neharpooncw (L) . .
\neharpoonnw (D) . .
\neharpoonse (L) . .
\nelcurvearrow (˜)
\nelsquigarrow (¤)
\nemapsto (,) . . . .
\neModels (ô) . . . .
\nemodels (ä) . . . .
\nenearrows (|) . .
\nenearrows (”) . .
\neovnwarrow (⤱) . .
\neovsearrow (⤮) . .
\nepitchfork (Œ) . .
\Neptune (H) . . . . .
\Neptune (È) . . . . .
\Neptune (G) . . . . .
\neptune ([) . . . . . .
\neq (‰) . . . . . . . . .
\neq (,) . . . . . . . . .
\neq (ä) . . . . . . . . .
\neq (≠) . . . . . . . . .
\neq (≠) . . . . . . . . .
\neq (≠) . . . . . . . . .
\neqbump (̸) . . . . . .
\neqcirc (≖̸) . . . . . .
\neqcirc (≖̸) . . . . . .
\neqdot (⩦̸) . . . . . .
\neqdot (⩦̸) . . . . . . .
\neqfrown (̸) . . . . .
\neqsim (≂̸) . . . . . .
\neqsim (≂̸) . . . . . . .
\neqsim () . . . . . .
. . . . 60
. . . . 89
. . . . 129
see \neq
. . . . 56
. . . . 54
. . . . 59
. . . . 73
. . . . 82
. . . . 78
. . . . 74
. . . . 84
. . . . 73
. 72, 226
. . . . 78
. . . . 74
. . . . 87
. . . . 84
. . . . 82
. . . . 78
. . . . 74
. . . . 78
. . . . 88
. . . . 53
. . . . 53
. . . . 118
. . . . 120
. . . . 119
. . . . 121
and \sim
. . . . 77
. . . . 77
. . . . 81
. . . . 81
. . . . 79
. . . . 74
. . . . 74
. . . . 53
. . . . 53
. . . . 78
. . . . 74
. . . . 84
. . . . 84
. . . . 88
. . . . 127
. . . . 126
. . . . 128
. . . . 126
. . . . 52
. . . . 64
. . . . 57
. . . . 56
. . . . 54
. . . . 59
. . . . 54
. . . . 56
. . . . 54
. . . . 56
. . . . 54
. . . . 89
. . . . 56
. . . . 54
. . . . 59
\neqslantgtr (ź) . . . . . . 65
\neqslantgtr (⪖̸) . . . . . . 67
\neqslantgtr (⪖̸) . . . . . . 66
\neqslantgtr () . . . . . . 68
\neqslantless (ÿ) . . . . . 65
\neqslantless (⪕̸) . . . . . 67
\neqslantless (⪕̸) . . . . . 66
\neqslantless () . . . . . 68
\neqsmile (̸) . . . . . . . . . 89
\nequal (≠) . . . . . . . . . . 56
\nequal (≠) . . . . . . . . . . . 54
\nequalclosed (̸) . . . . . 54
\nequiv (.) . . . . . . . . . . 51
\nequiv (@) . . . . . . . . . . 57
\nequiv (≢) . . . . . . . . . . 56
\nequiv (≢) . . . . . . . . . . . 54
\nequiv (≢) . . . . . . . . . . 59
\nequivclosed (̸) . . . . . 54
\nercurvearrow (⤴) . . . . 79
\nersquigarrow (¬) . . . . 74
\nespoon (l) . . . . . . . . . 88
\Neswarrow () . . . . . . . 78
\Neswarrow () . . . . . . . 74
\neswarrow (↗
↘) . . . . . . . 226
\neswarrow (⤡) . . . . . . . 78
\neswarrow (⤡) . . . . . . . 74
\neswarrow (⤢) . . . . . . . 84
\neswarrows (‚) . . . . . . 78
\neswarrows (š) . . . . . . 74
\neswbipropto (‰) . . . . . 32
\neswcrossing (‘) . . . . . 54
\neswcurvearrow (¨) . . . 79
\neswharpoonnwse (R) . . 81
\neswharpoonnwse (R) . . 77
\neswharpoons (Z) . . . . . 81
\neswharpoons (Z) . . . . . 77
\neswharpoonsenw (V) . . 81
\neswharpoonsenw (V) . . 77
\Neswline (Ö) . . . . . . . . 53
\neswline (Ò) . . . . . . . . 53
\Netherlands (œ) . . . . . . . 189
neumes . . . . . . . . . . . . . . 160
\neuter (⚲) . . . . . . . . . . 131
\Neutral ({) . . . . . . . . . . 131
\Neutrey ( ) . . . . . . . . . 191
\neutrino (𝑁) . . . . . . . . . 133
\neutron (𝑔) . . . . . . . . . 133
\neVdash (ì) . . . . . . . . . 53
\nevdash (Ü) . . . . . . . . . 53
new (old-arrows package option)
. . . . . . 87, 88
\newextarrow . . . . . . . . . 112
\newmetrics . . . . . . . . . . 184
\newmoon (N) . . . . . . . . . 127
\newmoon ( ) . . . . . . . . . 126
\newtie (
a) . . . . . . . . . . . 20
\nexists (E) . . . . . . . . . . 96
\nexists (@) . . . . . . . . . . 96
\nexists (â) . . . . . . . . . . 97
\nexists (∄) . . . . . . . . . . 97
\nexists (∄) . . . . . . . . . . 96
\nexists (∄) . . . . . . . . . . 97
\nfallingdotseq (≒̸) . . . . 56
290
\nfallingdotseq (≒̸)
\nforksnot (⫝̸) . . . .
\nfrown (⌢̸) . . . . . .
\nfrown (⌢̸) . . . . . . .
\nfrowneq (≘̸) . . . . .
\nfrowneq (̸) . . . . .
\nfrowneqsmile (̸) .
\nfrownsmile (⁐̸) . .
\nfrownsmile (̸) . .
\nfrownsmileeq (̸) .
\NG () . . . . . . . . . .
\NG (Ŋ) . . . . . . . . . .
\NG (Ŋ) . . . . . . . . . .
\ng (ŋ) . . . . . . . . . .
\ng (ŋ) . . . . . . . . . .
\nge (≱) . . . . . . . . .
\ngeq (ğ) . . . . . . . .
\ngeq () . . . . . . . .
\ngeq (ƒ) . . . . . . . .
\ngeq (≱) . . . . . . . .
\ngeq (≱) . . . . . . . .
\ngeq (≱) . . . . . . . .
\ngeqclosed (⋭) . . .
\ngeqclosed (⋭) . . .
\ngeqdot (̸) . . . . . .
\ngeqdot (̸) . . . . . .
\ngeqq (ś) . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . 54
. . 59
56, 90
. . 89
56, 90
. . 89
. . 89
56, 90
. . 89
. . 89
. . 129
. . 157
. . 15
. . 157
. . 15
. . 69
. . 65
64, 65
. . 68
. . 67
. . 66
68, 69
67, 71
66, 70
. . 67
. . 66
. . 65
\ngeqq () . . . . .
\ngeqq (‘) . . . . .
\ngeqq (≧̸) . . . . .
\ngeqq (≧̸) . . . . .
\ngeqq () . . . . .
\ngeqslant ( ) .
\ngeqslant (‹) . .
\ngeqslant (⩾̸) . .
\ngeqslant (≱) . .
\ngeqslant () . .
\ngeqslantdot (⪀̸)
\ngeqslantdot (⪀̸)
\ngeqslcc (⪩̸) . . .
\ngescc (⪩̸) . . . .
\ngesdot (⪀̸) . . . .
\ngesl (⋛̸) . . . . .
\ngets (↚) . . . . .
\ngets (↚) . . . . .
\ngets (↚) . . . . .
\ngg (4) . . . . . .
\ngg (≫̸) . . . . . .
\ngg (≫̸) . . . . . . .
\ngg () . . . . . .
\nggg (⋙̸) . . . . .
\nggg (⋙̸) . . . . .
\ngtcc (⪧̸) . . . . .
\ngtr (č) . . . . . .
\ngtr (≯) . . . . . .
\ngtr ( ) . . . . . .
\ngtr (≯) . . . . . .
\ngtr (≯) . . . . . .
\ngtr (≯) . . . . . .
\ngtrapprox (É) .
\ngtrapprox (#) .
\ngtrapprox (⪆̸) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
64
68
67
66
68
64
68
67
66
68
67
66
67
67
68
68
81
77
86
65
67
66
68
67
66
67
65
64
68
67
66
68
65
65
67
\ngtrcc (⪧̸) . . .
\ngtrclosed (⋫)
\ngtrclosed (⋫)
\ngtrdot (⋗̸) . . .
\ngtrdot (⋗̸) . . .
\ngtreqless (⋛̸)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
67,
66,
..
..
..
67
71
70
67
66
67
\ngtreqless (⋛̸) . . . .
\ngtreqlessslant (⋛̸)
\ngtreqlessslant (̸)
\ngtreqqless (⪌̸) . . .
.
.
.
.
.
.
.
.
.
.
.
.
66
67
66
67
\ngtreqqless (⪌̸) . . . . . .
66
\ngtreqslantless (⋛̸) . . . 67
\ngtrless (&) . . . . . . . . . 65
\ngtrless (≹) . . . . . . . . . 67
\ngtrless (≹) . . . . . . . . . 66
\ngtrless (≹) . . . . . . . . . 68
\ngtrsim (Ã) . . . . . . . . . 65
\ngtrsim (!) . . . . . . . . . 65
\ngtrsim (≵) . . . . . . . . . . 67
\ngtrsim (≵) . . . . . . . . . 68
\nhateq (≙̸) . . . . . . . . . . 56
\nhateq (≙̸) . . . . . . . . . . . 54
\nHdownarrow () . . . . . . 83
\nHdownarrow (⇟) . . . . . . 86
\nhknearrow (⤤̸) . . . . . . 81
\nhknwarrow (⤣̸) . . . . . . 81
\nhksearrow (⤥̸) . . . . . . 81
\nhkswarrow (⤦̸) . . . . . . 81
\nhookdownarrow (̸) . . . 80
\nhookleftarrow (↩̸) . . . 80
\nhookleftarrow (↩̸) . . . 77
\nhooknearrow (⤤̸) . . . . . 80
\nhooknwarrow (⤣̸) . . . . . 80
\nhookrightarrow (↪̸) . . 80
\nhookrightarrow (↪̸) . . 77
\nhooksearrow (⤥̸) . . . . . 80
\nhookswarrow (⤦̸) . . . . . 80
\nhookuparrow (̸) . . . . . 80
\nhpar (⫲) . . . . . . . . . . . 59
\nHuparrow () . . . . . . . . 83
\nHuparrow (⇞) . . . . . . . . 86
\nhVvert (⫵) . . . . . . . . . 34
\ni (∋) . . . . . . . . . . 96, 224
\ni (∋) . . . . . . . . . . . . . . 55
\ni (∋) . . . . . . . . . . . . . . 97
\ni (∋) . . . . . . . . . . . . . . 96
\ni (∋) . . . . . . . . . . . . 58, 59
\nialpha () . . . . . . . . . . 19
\nibar . . . . . . see \ownsbar
\nibeta ( ) . . . . . . . . . . . 19
\NibLeft () . . . . . . . . . 136
\NibRight () . . . . . . . . 136
nibs . . . . . . . . . . . . . . . . 136
\NibSolidLeft ( ) . . . . . 136
\NibSolidRight () . . . . 136
nicefrac (package) 121, 239, 240
niceframe (package) . 204–207,
210
\NiceReapey ( ) . . . . . . 191
\nichi ([) . . . . . . . . . . . 19
\niepsilon () . . . . . . . . 19
\nigamma () . . . . . . . . . . 19
\niiota ()) . . . . . . . . . . . 19
\nilambda (2) . . . . . . . . . 19
\nimageof (⊷̸) . . . . . . . . 89
\nin (∉) . . . . . . . . . . . 56, 97
\nin (∉) . . . . . . . . . . . . . 96
\Ninja ( ) . . . . . . . . . . . 191
\niobar (⋾) . . . . . . . . . . . 58
\niomega (>) . . . . . . . . . . 19
\niphi (C) . . . . . . . . . . . 19
\niplus (B) . . . . . . . . . . 51
\niplus (·) . . . . . . . . . . . 57
\nis (⋼) . . . . . . . . . . . . . 58
\nisd (=) . . . . . . . . . . . . 57
\nisd (⋺) . . . . . . . . . . . . 58
\nisigma (O) . . . . . . . . . . 19
\nitheta (S) . . . . . . . . . . 19
\niupsilon (V) . . . . . . . . 19
\niv ( ) . . . . . . . . . . . . . 98
\nj (7) . . . . . . . . . . . . . . 19
nkarta (package) . . . 199, 239
\nlcirclearrowdown (̸)
76
\nlcirclearrowleft (⤾̸)
76
\nlcirclearrowright (⟳̸) 76
\nlcirclearrowup (↻̸) . . 76
\nlcurvearrowdown (⤸̸) . . 76
\nlcurvearrowleft (̸) . . 76
\nlcurvearrowne (̸) . . . 76
\nlcurvearrownw (̸) . . . 76
\nlcurvearrowright (↷̸) . 76
\nlcurvearrowse (̸) . . . 76
\nlcurvearrowsw (̸) . . . 76
\nlcurvearrowup (̸) . . . . 76
\nle (≰) . . . . . . . . . . . . . 69
\nleadsto (↝̸) . . . . . . . . 81
\nleadsto (↝̸) . . . . . . . . 77
\nLeftarrow (ö) . . . . . . 73
\nLeftarrow (:) . . . . . . 72
\nLeftarrow («) . . . . . . . 83
\nLeftarrow (⇍) . . . . . . 79
\nLeftarrow (⇍) . . . . . . 76
\nLeftarrow (⇍) . . . . . . . 86
\nleftarrow (Ú) . . . . . . 73
\nleftarrow (8) . . . . . . 72
\nleftarrow (¨) . . . . . . . 83
\nleftarrow (↚) . . . . . . . 79
\nleftarrow (↚) . . . . . . . 76
\nleftarrow (↚) . . . . . . . 86
\nleftarrowtail (↢̸) . . . 79
\nleftarrowtail (↢̸) . . . 76
\nleftAssert (⫣̸) . . . . . . 56
\nleftassert (⫞̸) . . . . . . 56
\nleftbkarrow (⇠̸) . . . . . 79
\nleftblackspoon (̸) . . 89
\nleftcurvedarrow (↜̸) . 81
\nleftdowncurvedarrow (⤶̸) .
. . . . . . . . 80
\nleftfilledspoon (̸) . 88
\nleftfootline (̸) . . . . 56
\nleftfootline (̸) . . . . 54
\nleftfree (̸) . . . . . . . . 54
\nleftharpoonccw (↽̸) . . 77
\nleftharpooncw (↼̸) . . . 77
291
\nleftharpoondown (↽̸) . 82
\nleftharpoonup (↼̸) . . . 82
\nleftlcurvearrow (̸) . 80
\nleftleftarrows (⇇̸) . . 79
\nleftleftarrows (⇇̸) . . 76
\nleftlsquigarrow (↜̸) . 80
\nleftlsquigarrow (̸) . . 76
\nLeftmapsto (⤆̸) . . . . . 79
\nleftmapsto (↤̸) . . . . . . 79
\nleftmapsto (↤̸) . . . . . . 76
\nleftModels (̸) . . . . . . 54
\nleftmodels (̸) . . . . . . 56
\nleftmodels (̸) . . . . . . 54
\nleftpitchfork (̸) . . . 90
\nleftpitchfork (̸) . . . 88
\nleftrcurvearrow (⤺̸) . 80
\nLeftrightarroW (°) . . 83
\nLeftrightarrow (ø) . . 73
\nLeftrightarrow (<) . . 72
\nLeftrightarrow (­) . . 83
\nLeftrightarrow (⇎) . . 80
\nLeftrightarrow (⇎) . . 76
\nLeftrightarrow (⇎) . . 86
\nleftrightarrow (Ü) . . 73
\nleftrightarrow (=) 29, 72
\nleftrightarrow (ª) . . 83
\nleftrightarrow (↮) . . 79
\nleftrightarrow (↮) . . 76
\nleftrightarrow (↮) . . 86
\nleftrightarrows (⇆̸) . 80
\nleftrightarrows (⇆̸) . . 76
\nleftrightblackspoon (̸) .
. . . . . . . . 89
\nleftrightcurvearrow (̸) .
. . . . . . . . 80
\nleftrightharpoondownup
(⥊̸) . . . . . . . . . . . . 82
\nleftrightharpoondownup
(⥊̸) . . . . . . . . . . . . 77
\nleftrightharpoons (⇋̸) 82
\nleftrightharpoons (⇋̸) 77
\nleftrightharpoonupdown
(⥋̸) . . . . . . . . . . . . 82
\nleftrightharpoonupdown
(⥋̸) . . . . . . . . . . . . 77
\nLeftrightline (̸) . . . 54
\nleftrightline (̸) . . . 54
\nleftrightspoon (⧟̸) . . 89
\nleftrightsquigarrow (↭̸) .
. . . . . . . . 80
\nleftrightsquigarrow (̸) .
. . . . . . . . 77
\nleftrightwavearrow (↭̸) 80
\nleftrsquigarrow (↜̸) . 80
\nleftrsquigarrow (↜̸) . . 76
\nleftspoon (⟜̸) . . . . . . . 89
\nleftspoon (⟜̸) . . . . . . 88
\nleftsquigarrow (↜̸) . . 80
\nleftupcurvedarrow (̸) 81
\nleftVDash (⫥̸) . . . . . . 56
\nleftVdash (⫣̸) . . . . . . 56
\nleftVdash (̸) . . . . . . . 54
\nleftvDash (⫤̸) . . . . . . . 56
\nleftvdash (⊣̸) . . . .
\nleftvdash (⊣̸) . . . .
\nleftwavearrow (↜̸)
\nleq (ę) . . . . . . . . .
\nleq () . . . . . . . . .
\nleq (‚) . . . . . . . . .
\nleq (≰) . . . . . . . . .
\nleq (≰) . . . . . . . . .
\nleq (≰) . . . . . . . . .
\nleqclosed (⋬) . . . .
\nleqclosed (⋬) . . . .
\nleqdot (̸) . . . . . . .
\nleqdot (̸) . . . . . . .
\nleqq (ř) . . . . . . . .
\nleqq () . . . . . . . .
\nleqq () . . . . . . . .
\nleqq (≦̸) . . . . . . . .
\nleqq (≦̸) . . . . . . . .
\nleqq () . . . . . . . .
\nleqslant ( ) . . . .
\nleqslant (Š) . . . . .
\nleqslant (⩽̸) . . . . .
\nleqslant (≰) . . . . .
\nleqslant () . . . . .
\nleqslantdot (⩿̸) . .
\nleqslantdot (⩿̸) . .
\nleqslcc (⪨̸) . . . . . .
\nlescc (⪨̸) . . . . . . .
\nlesdot (⩿̸) . . . . . . .
\nlesg (⋚̸) . . . . . . . .
\nless (ć) . . . . . . . .
\nless (≮) . . . . . . . .
\nless („) . . . . . . . .
\nless (≮) . . . . . . . .
\nless (≮) . . . . . . . .
\nless (≮) . . . . . . . .
\nlessapprox (È) . . .
\nlessapprox (") . . .
\nlessapprox (⪅̸) . . .
\nlesscc (⪦̸) . . . . . .
\nlessclosed (⋪) . . .
\nlessclosed (⋪) . . .
\nlessdot (⋖̸) . . . . . .
\nlessdot (⋖̸) . . . . . .
\nlesseqgtr (⋚̸) . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
64,
..
..
..
..
67,
66,
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
67,
66,
..
..
..
56
54
80
65
65
68
67
66
69
71
70
67
66
65
64
68
67
66
69
64
68
67
66
69
67
66
67
67
67
67
65
64
68
67
66
69
65
65
67
67
71
70
67
66
67
\nlesseqgtr (⋚̸) . . . . . . .
\nlesseqgtrslant (⋚̸) . . .
\nlesseqgtrslant (̸) . . .
66
67
66
\nlesseqqgtr (⪋̸) . . . . . .
67
\nlesseqqgtr (⪋̸) . . . . . .
66
\nlesseqslantgtr (⋚̸)
\nlessgtr (') . . . . . .
\nlessgtr (≸) . . . . . .
\nlessgtr (≸) . . . . . .
\nlessgtr (≸) . . . . . .
\nlesssim (Â) . . . . .
\nlesssim ( ) . . . . . .
\nlesssim (≴) . . . . . .
\nlesssim (≴) . . . . . .
\nlhookdownarrow (̸)
\nlhookleftarrow (̸)
67
65
67
66
69
65
65
67
69
76
76
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
\nlhooknearrow (̸) . . . . 76
\nlhooknwarrow (⤣̸) . . . . 75
\nlhookrightarrow (↪̸) . . 75
\nlhooksearrow (⤥̸) . . . . 75
\nlhookswarrow (̸) . . . . 75
\nlhookuparrow (̸) . . . . . 75
\nll (3) . . . . . . . . . . . . 65
\nll (≪̸) . . . . . . . . . . . . 67
\nll (≪̸) . . . . . . . . . . . . . 66
\nll () . . . . . . . . . . . . 69
\nLleftarrow (⇚̸) . . . . . 80
\nLleftarrow (⇚̸) . . . . . . 75
\nlll (⋘̸) . . . . . . . . . . . 67
\nlll (⋘̸) . . . . . . . . . . . 66
\nlongdashv (⟞̸) . . . . . 56
\nlongleadsto (⟿̸) . . . . 81
\nLongleftarrow (⟸̸) . . 80
\nlongleftarrow (⟵̸) . . 80
\nlongleftfootline (⟝̸) 56
\nLongleftrightarrow (⟺̸) .
. . . . . . . . 80
\nlongleftrightarrow (⟷̸) .
. . . . . . . . 80
\nlongleftsquigarrow (⬳̸) .
. . . . . . . . 81
\nlongleftwavearrow (⬳̸) 80
\nLongmapsfrom (⟽̸) . 56, 80
\nlongmapsfrom (⟻̸) . 56, 80
\nLongmapsto (⟾̸) . . . . 80
\nlongmapsto (⟼̸) . . . . 80
\nLongrightarrow (⟹̸) . 80
\nlongrightarrow (⟶̸) . 80
\nlongrightfootline (⟞̸) 56
\nlongrightsquigarrow (⟿̸)
. . . . . . . . 81
\nlongrightwavearrow (⟿̸) .
. . . . . . . . 80
\nltcc (⪦̸) . . . . . . . . . . . 67
\nMapsdown (̸) . . . . . . . . 81
\nmapsdown (↧̸) . . . . . . . . 81
\nMapsfrom (⤆̸) . . . . . . . 81
\nmapsfrom (↤̸) . . . . . . . 81
\nMapsto (⤇̸) . . . . . . . . . 81
\nmapsto (↦̸) . . . . . . . . . 81
\nmapsto (↦̸) . . . . . . . . . 77
\nMapsup (̸) . . . . . . . . . 81
\nmapsup (↥̸) . . . . . . . . . 81
\nmid (-) . . . . . . . . . . . . . 51
\nmid (­) . . . . . . . . . . . . . 57
\nmid (∤) . . . . . . . . . . . . 56
\nmid (∤) . . . . . . . . . . . . 54
\nmid (∤) . . . . . . . . . . . . 59
\nmidcir (⫰̸) . . . . . . . . . 89
\nmodels (⊧̸) . . . . . . . . . . 56
\nmodels (⊭) . . . . . . . . . . 54
\nmultimap (⊸̸) . . . . . . . 89
\nmultimap (⊸̸) . . . . . . . 88
\nmultimapinv (⟜̸) . . . . . 89
\NN (
&) . . . . . . . . . . . . . . 129
\nndtstile ( ) . . . . . . . 60
\nNearrow (⇗̸) . . . . . . . . 80
\nNearrow (⇗̸) . . . . . . . . 75
\nnearrow (1) . . . . . . . . . 73
292
\nnearrow (ì) . . . . . . .
\nnearrow (↗̸) . . . . . .
\nnearrow (↗̸) . . . . . .
\nnearrowtail (̸) . . .
\nnearrowtail (̸) . . .
\nnebkarrow (̸) . . . .
\nnefilledspoon (̸) .
\nnefootline (̸) . . . .
\nnefree (̸) . . . . . . .
\nneharpoonccw (̸) . .
\nneharpooncw (̸) . . .
\nneharpoonnw (̸) . . .
\nneharpoonse (̸) . . .
\nnelcurvearrow (̸) .
\nnelsquigarrow (̸) .
\nnemapsto (̸) . . . . .
\nneModels (̸) . . . . .
\nnemodels (̸) . . . . .
\nnenearrows (̸) . . .
\nnenearrows (̸) . . .
\nnepitchfork (̸) . . .
\nnercurvearrow (⤴̸) .
\nnersquigarrow (̸) .
\nnespoon (̸) . . . . . .
\nNeswarrow (̸) . . . .
\nNeswarrow (̸) . . . .
\nneswarrow (⤡̸) . . . .
\nneswarrow (⤡̸) . . . .
\nneswarrows (̸) . . .
\nneswarrows (̸) . . .
\nneswcurvearrow (̸)
\nneswharpoonnwse (̸)
\nneswharpoonnwse (̸)
\nneswharpoons (̸) .
\nneswharpoons (̸) . .
\nneswharpoonsenw (̸)
\nneswharpoonsenw (̸)
\nNeswline (̸) . . . . .
\nneswline (̸) . . . . .
\nneVdash (̸) . . . . . .
\nnevdash (̸) . . . . . .
\nni (∌) . . . . . . . . . . .
\nni (∋) . . . . . . . . . . .
\nni (∌) . . . . . . . . . . .
\nnststile ( ) . . . . .
\nntstile ( ) . . . . . .
\nnttstile ( ) . . . . .
\nNwarrow (⇖̸) . . . . . .
\nNwarrow (⇖̸) . . . . . .
\nnwarrow (0) . . . . . . .
\nnwarrow (î) . . . . . . .
\nnwarrow (↖̸) . . . . . .
\nnwarrow (↖̸) . . . . . .
\nnwarrowtail (̸) . . .
\nnwarrowtail (̸) . . .
\nnwbkarrow (̸) . . . .
\nnwfilledspoon (̸) .
\nnwfootline (̸) . . . .
\nnwfree (̸) . . . . . . .
\nnwharpoonccw (̸) . .
\nnwharpooncw (̸) . . .
\nnwharpoonne (̸) . . .
\nnwharpoonsw (̸) . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
82
80
75
80
76
80
88
54
54
77
77
82
82
81
76
76
54
54
80
76
88
81
76
88
80
76
80
76
80
76
81
82
77
82
77
82
77
54
54
54
54
56
97
59
60
60
60
80
76
73
82
80
76
80
76
80
88
54
54
77
77
82
82
\nnwlcurvearrow (̸) . . . 81
\nnwlsquigarrow (̸) . . . 76
\nnwmapsto (̸) . . . . . . . 76
\nnwModels (̸) . . . . . . . 54
\nnwmodels (̸) . . . . . . . 54
\nnwnwarrows (̸) . . . . . 80
\nnwnwarrows (̸) . . . . . 76
\nnwpitchfork (̸) . . . . . 88
\nnwrcurvearrow (̸) . . . 81
\nnwrsquigarrow (̸) . . . 76
\nNwsearrow (̸) . . . . . . 80
\nNwsearrow (̸) . . . . . . 76
\nnwsearrow (⤢̸) . . . . . . 80
\nnwsearrow (⤢̸) . . . . . . 76
\nnwsearrows (̸) . . . . . 80
\nnwsearrows (̸) . . . . . 76
\nnwsecurvearrow (̸) . . 81
\nnwseharpoonnesw (̸) . 82
\nnwseharpoonnesw (̸) . 77
\nnwseharpoons (̸) . . . 82
\nnwseharpoons (̸) . . . . 77
\nnwseharpoonswne (̸) . 82
\nnwseharpoonswne (̸) . 77
\nNwseline (̸) . . . . . . . 54
\nnwseline (̸) . . . . . . . 54
\nnwspoon (̸) . . . . . . . . 88
\nnwVdash (̸) . . . . . . . . 54
\nnwvdash (̸) . . . . . . . . 54
no entry . . . . . . . see \noway
\NoBleech (Ì) . . . . . . . . 177
\NoChemicalCleaning (¨) 177
noeuro (wasysym package option) . . . . . . . . . . . 25
nointegrals (wasysym package option) . . . . . . . . . . . 40
\NoIroning (²) . . . . . . . 177
non-commutative division 114
nonbreaking space . . . . . . 130
NOR gates . . . . . . . . . . . 130
\NORd () . . . . . . . . . 130
\norigof (⊶̸) . . . . . . . . . 89
\NORl () . . . . . . . . 130
norm
see \lVert and \rVert
normal runes . . . . . . . . . . 157
\NORr (
) . . . . . . . . 130
\NorthNode (k) . . . . . . . 128
\NORu () . . . . . . . . . 130
\Norway () . . . . .
\NoSun ( ) . . . . . .
\Not (⫬) . . . . . . . .
not . . . . . . . . . . . .
\not . . . . . . . . . . .
not equal (­= vs. ­=)
\notasymp (ffi) . . .
\notbackslash (−)
∖
\notbot (M) . . . . .
.
.
.
.
.
. . . . 189
. . . . 178
. . . . 58
see \neg
. 52, 224
. . . . 52
. . . . . 52
. . . . . 128
. . . . . 96
\notbot (Ý) . . . . . . . . . . 120
\notchar (̸) . . . . . . . . . . . 58
\NotCongruent (^) . . . . . 116
\notdivides (ffl) . . . . . . . 52
\notequiv (ı) . . . . . . . . 52
\notin (R) . . . . . . . . . . . 96
\notin (<) . . . . . . . . . . . 96
\notin (∉) . . . . . . . . . . . 97
\notin (∉) . . . . . . . . . . . 56
\notin (6∈) . . . . . . . . . . . 97
\notin (∉) . . . . . . . . . . . . 96
\notin (∉) . . . . . . . . . . . 59
\notni (=) . . . . . . . . . . . 96
\notowner (S) . . . . . . . . . 96
\notowns
see \notowner and
\notni
\notperp (M) . . . . . . . . . 52
\notslash (−)
/ . . . . . . . . 128
\notsmallin () . . . . . . . 97
\notsmallowns () . . . . . . 97
\nottop (L) . . . . . . . . . . 96
\nottop (Ü) . . . . . . . . . . 120
\NoTumbler () . . . . . . . . 177
\novelty (N) . . . . . . . . . 181
\noway (!) . . . . . . . . . . . 177
\nowns (∌) . . . . . . . . . 56, 97
\nowns (∋) . . . . . . . . . . . 97
\nowns (∌) . . . . . . . . . . . . 96
\nparallel (∦) . . . . . . . . 51
\nparallel (¬) . . . . . . . . 57
\nparallel (∦) . . . . . . . . 56
\nparallel (∦) . . . . . . . . 54
\nparallel (∦) . . . . . . . . 59
\nparallelslant (Ô) . . . 61
\nperp (⊥̸) . . . . . . . . . . . 56
\nperp (⊥̸) . . . . . . . . . . . 54
\npitchfork (⋔̸) . . . . . . 90
\npitchfork (⋔̸) . . . . . . . 88
\nplus (`) . . . . . . . . . . . 30
\nplus (¾) ⨔ . . . . . . . . . . . 33
\npolint ( ) . . . . . . . . . . 48
\npolint (⨔) . . . . . . . . . . 46
\npolintsl (⨔) . . . . . . . . 47
\npolintup (⨔) . . . . . . . . 47
\nprec (ć) . . . . . . . . . . . 52
\nprec (⊀) . . . . . . . . . . . 51
\nprec (†) . . . . . . . . . . . 57
\nprec (⊀) . . . . . . . . . . . 56
\nprec (⊀) . . . . . . . . . . . 54
\nprec (⊀) . . . . . . . . . . . 59
\nprecapprox (È) . . . . . . 52
\nprecapprox (7) . . . . . . 51
\nprecapprox (⪷̸) . . . . . . 56
\nprecapprox (⪷̸) . . . . . . 54
\npreccurlyeq (ę) . . . . . 52
\npreccurlyeq ($) . . . . . 51
\npreccurlyeq (⋠) . . . . . 56
\npreccurlyeq (⋠) . . . . . 54
\npreccurlyeq (⋠) . . . . . 59
\npreceq (ł) . . . . . . . . . 52
\npreceq () . . . . . . . . . 51
\npreceq (Ž) . . . . . . . . . 57
\npreceq (⪯̸) . . . . . . . . . . 56
293
\npreceq (⪯̸) . . . . . . . . . . 54
\npreceq () . . . . . . . . . 59
\npreceqq (9) . . . . . . . . . 51
\npreceqq (⪳̸) . . . . . . . . . 56
\nprecsim (Â) . . . . . . . . 52
\nprecsim () . . . . . . . . . 51
\nprecsim (≾̸) . . . . . . . . . 56
\nprecsim (≾̸) . . . . . . . . . 54
\NR (
) . . . . . . . . . . . . . . 129
\nrcirclearrowdown (̸)
76
\nrcirclearrowleft (⟲̸)
76
\nrcirclearrowright (⤿̸) 76
\nrcirclearrowup (↺̸) . . 76
\nrcurvearrowdown (⤹̸) . . 76
\nrcurvearrowleft (↶̸) . . 76
\nrcurvearrowne (̸) . . . 76
\nrcurvearrownw (̸) . . . 76
\nrcurvearrowright (̸) . 76
\nrcurvearrowse (̸) . . . 76
\nrcurvearrowsw (̸) . . . 76
\nrcurvearrowup (̸) . . . . 76
\nRelbar (̸) . . . . . . . . . 54
\nrelbar (̸) . . . . . . . . . 54
\nrestriction (↾̸) . . . . . 82
\nrestriction (↾̸) . . . . . 77
\nrhookdownarrow (̸) . . . 76
\nrhookleftarrow (↩̸) . . 76
\nrhooknearrow (⤤̸) . . . . 76
\nrhooknwarrow (̸) . . . . 76
\nrhookrightarrow (̸) . . 76
\nrhooksearrow (̸) . . . . 76
\nrhookswarrow (⤦̸) . . . . 76
\nrhookuparrow (̸) . . . . . 76
\nRightarrow (œ) . . . . . . 73
\nRightarrow (;) . . . . . 72
\nRightarrow (¬) . . . . . . 83
\nRightarrow (⇏) . . . . . 80
\nRightarrow (⇏) . . . . . . 76
\nRightarrow (⇏) . . . . . . 86
\nrightarrow (Û) . . . . . . 73
\nrightarrow (9) . . . . . 72
\nrightarrow (©) . . . . . . 83
\nrightarrow (↛) . . . . . . 80
\nrightarrow (↛) . . . . . . 76
\nrightarrow (↛) . . . . . . 86
\nrightarrowtail (↣̸) . . 80
\nrightarrowtail (↣̸) . . 76
\nrightAssert (⊮) . . . . . 56
\nrightassert (⊦̸) . . . . . 56
\nrightbkarrow (⇢̸) . . . . 80
\nrightblackspoon (̸) . 89
\nrightcurvedarrow (↝̸) . 80
\nrightdowncurvedarrow (⤷̸)
. . . . . . . . 80
\nrightfilledspoon (̸) . 88
\nrightfootline (̸) . . . 56
\nrightfootline (̸) . . . 54
\nrightfree (̸) . . . . . . . 54
\nrightharpoonccw (⇀̸) . . 77
\nrightharpooncw (⇁̸) . . 77
\nrightharpoondown (⇁̸) . 82
\nrightharpoonup (⇀̸) . . 82
\nrightlcurvearrow (̸) . 80
\nrightleftarrows (⇄̸) . 80
\nrightleftarrows (⇄̸) . . 75
\nrightleftcurvearrow (̸) .
. . . . . . . . 80
\nrightleftharpoons (⇌̸) 82
\nrightleftharpoons (⇌̸) 77
\nrightleftsquigarrow (↭̸) .
. . . . . . . . 80
\nrightlsquigarrow (↝̸) . 80
\nrightlsquigarrow (↝̸) . 75
\nRightmapsto (⤇̸) . . . . . 80
\nrightmapsto (↦̸) . . . . . 80
\nrightmapsto (↦̸) . . . . . 75
\nrightModels (⊯) . . . . . 54
\nrightmodels (⊧̸) . . . . . 56
\nrightmodels (⊭) . . . . . 54
\nrightpitchfork (̸) . . 90
\nrightpitchfork (̸) . . 88
\nrightrcurvearrow (⤻̸) . 80
\nrightrightarrows (⇉̸) . 80
\nrightrightarrows (⇉̸) . 75
\nrightrsquigarrow (↝̸) . 80
\nrightrsquigarrow (̸) . 75
\nrightspoon (⊸̸) . . . . . . 89
\nrightspoon (⊸̸) . . . . . . 88
\nrightsquigarrow (↝̸) . 81
\nrightsquigarrow (↝̸) . . 77
\nrightupcurvedarrow (̸) 81
\nrightVDash (⊯) . . . . . 56
\nrightVdash (⊮) . . . . . 56
\nrightVdash (⊮) . . . . . . 54
\nrightvDash (⊭) . . . . . . 56
\nrightvdash (⊬) . . . . . . 56
\nrightvdash (⊬) . . . . . . 54
\nrightwavearrow (↝̸) . . 80
\nrisingdotseq (≓̸) . . . . 56
\nrisingdotseq (≓̸) . . . . . 54
\nRrightarrow (⇛̸) . . . . . 79
\nRrightarrow (⇛̸) . . . . . 75
\nsdtstile ( ) . . . . .
\nSearrow (⇘̸) . . . . . .
\nSearrow (⇘̸) . . . . . .
\nsearrow (↘̸) . . . . . .
\nsearrow (↘̸) . . . . . .
\nsearrowtail (̸) . . .
\nsearrowtail (̸) . . .
\nsebkarrow (̸) . . . .
\nsefilledspoon (̸) .
\nsefootline (̸) . . . .
\nsefree (̸) . . . . . . .
\nseharpoonccw (̸) . .
\nseharpooncw (̸) . . .
\nseharpoonne (̸) . . .
\nseharpoonsw (̸) . . .
\nselcurvearrow (⤵̸) .
\nselsquigarrow (̸) .
\nsemapsto (̸) . . . . .
\nseModels (̸) . . . . .
\nsemodels (̸) . . . . .
\nsenwarrows (̸) . . .
\nsenwarrows (̸) . . .
\nsenwcurvearrow (̸)
\nsenwharpoons (̸) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
60
79
75
79
75
79
76
79
88
54
54
77
77
82
82
81
76
76
54
54
79
76
81
82
\nsenwharpoons (̸) . .
\nsepitchfork (̸) . . .
\nsercurvearrow (⤷̸) .
\nsersquigarrow (̸) .
\nsesearrows (̸) . . .
\nsesearrows (̸) . . .
\nsespoon (̸) . . . . . .
\nseVdash (̸) . . . . . .
\nsevdash (̸) . . . . . .
\nshortdowntack (⫟̸) .
\nshortlefttack (⫞̸) . .
\nshortmid (.) . . . . . .
\nshortmid (®) . . . . . .
\nshortmid (∤) . . . . . .
\nshortmid (∤) . . . . . .
\nshortmid (∤) . . . . . .
\nshortparallel (/) . .
\nshortparallel (¯) . .
\nshortparallel (∦) .
\nshortparallel (∦) . .
\nshortparallel (∦) . .
\nshortrighttack (⊦̸) .
\nshortuptack (⫠̸) . . .
\nsim () . . . . . . . . . .
\nsim (/) . . . . . . . . . .
\nsim (˜) . . . . . . . . . .
\nsim (≁) . . . . . . . . . .
\nsim (≁) . . . . . . . . . .
\nsim (≁) . . . . . . . . . .
\nsime (≄) . . . . . . . . .
\nsime (≄) . . . . . . . . .
\nsimeq (fi) . . . . . . . .
\nsimeq (;) . . . . . . . .
\nsimeq (≄) . . . . . . . .
\nsimeq (≄) . . . . . . . . .
\nsimeq (≄) . . . . . . . .
\nsmile (⌣̸) . . . . . . . .
\nsmile (⌣̸) . . . . . . . . .
\nsmileeq (̸) . . . . . . .
\nsmileeq (̸) . . . . . . .
\nsmileeqfrown (̸) . . .
\nsmilefrown (≭) . . . .
\nsmilefrown (≭) . . . .
\nsmilefrowneq (̸) . . .
\nsqdoublefrown (̸) . .
\nsqdoublefrowneq (̸)
\nsqdoublesmile (̸) . .
\nsqdoublesmileeq (̸)
\nsqeqfrown (̸) . . . . .
\nsqeqsmile (̸) . . . . .
\nsqfrown (̸) . . . . . . .
\nsqfrowneq (̸) . . . . .
\nsqfrowneqsmile (̸) .
\nsqfrownsmile (̸) . . .
\nsqsmile (̸) . . . . . . .
\nsqsmileeq (̸) . . . . .
\nsqsmileeqfrown (̸) .
\nsqsmilefrown (̸) . . .
\nSqsubset (̸) . . . . . .
\nSqsubset (̸) . . . . . .
\nsqSubset (Ű) . . . . . .
\nsqsubset (Ć) . . . . . .
\nsqsubset (a) . . . . . .
294
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
56,
..
56,
..
..
56,
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
77
88
81
76
79
76
88
54
54
56
56
51
57
56
54
59
51
57
56
54
59
56
56
52
51
57
56
54
59
56
59
52
51
56
54
59
90
89
90
89
89
90
89
89
89
89
89
89
89
89
89
89
89
89
89
89
89
89
63
63
62
62
62
\nsqsubset (⊏̸) . . . . . . . . 63
\nsqsubset (⊏̸) . . . . . . . . 63
\nsqsubset () . . . . . . . . 64
\nsqsubseteq (Ę) . . . . . . 62
\nsqsubseteq (@) . . . . . . 62
\nsqsubseteq (⋢) . . . . . . 63
\nsqsubseteq (⋢) . . . . . . 63
\nsqsubseteq (⋢) . . . . . . 64
\nsqsubseteqq (Ő) . . . . . 62
\nsqsubseteqq (̸) . . . . . 63
\nsqsubseteqq (̸) . . . . . 63
\nSqsupset (̸) . . . . . . . . 63
\nSqsupset (̸) . . . . . . . . 63
\nsqSupset (Ů) . . . . . . . . 62
\nsqsupset (Č) . . . . . . . . 62
\nsqsupset (b) . . . . . . . . 62
\nsqsupset (⊐̸) . . . . . . . . 63
\nsqsupset (⊐̸) . . . . . . . . 63
\nsqsupset () . . . . . . . . 64
\nsqsupseteq (Ğ) . . . . . . 62
\nsqsupseteq (A) . . . . . . 62
\nsqsupseteq (⋣) . . . . . . 63
\nsqsupseteq (⋣) . . . . . . 63
\nsqsupseteq (⋣) . . . . . . 64
\nsqsupseteqq (Ŕ) . . . . . 62
\nsqsupseteqq (̸) . . . . . 63
\nsqsupseteqq (̸) . . . . . 63
\nsqtriplefrown (̸) . . . . 89
\nsqtriplesmile (̸) . . . . 89
\nsquigarrowdownup (̸)
76
\nsquigarrowleftright (̸) .
. . . . . . . . 76
\nsquigarrownesw (̸) . . 76
\nsquigarrownwse (̸) . . . 76
\nsquigarrowrightleft (̸) .
. . . . . . . . 76
\nsquigarrowsenw (̸) . . 76
\nsquigarrowswne (̸) . . 76
\nsquigarrowupdown (̸) . 76
\nsststile ( ) . . . . . . .
\nstareq (≛̸) . . . . . . . . . .
60
56
\nststile ( ) . . . . . . . .
60
\nsttstile ( )
\nSubset (Ű) . .
\nSubset (>) . .
\nSubset (⋐̸) . . .
\nSubset (⋐̸) . . .
\nsubset (Ć) . .
\nsubset (ž) . .
\nsubset (⊄) . . .
\nsubset (⊄) . . .
\nsubset (⊄) . .
\nsubseteq (Ę) .
\nsubseteq (*)
\nsubseteq (ª) .
\nsubseteq (⊈) .
\nsubseteq (⊈) .
\nsubseteq (⊈) .
\nsubseteqq (Ő)
\nsubseteqq (")
\nsubseteqq (¢)
\nsubseteqq (⫅̸)
60
62
62
63
63
62
63
63
63
64
62
62
63
63
63
64
62
62
63
63
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
\nsubseteqq (⫅̸) . . . .
\nsubseteqq () . . . .
\nsucc (č) . . . . . . . .
\nsucc () . . . . . . . .
\nsucc (‡) . . . . . . . .
\nsucc (⊁) . . . . . . . .
\nsucc (⊁) . . . . . . . .
\nsucc (⊁) . . . . . . . .
\nsuccapprox (É) . . .
\nsuccapprox (8) . . .
\nsuccapprox (⪸̸) . . .
\nsuccapprox (⪸̸) . . .
\nsucccurlyeq (ğ) . .
\nsucccurlyeq (%) . .
\nsucccurlyeq (⋡) . .
\nsucccurlyeq (⋡) . .
\nsucccurlyeq (⋡) . .
\nsucceq (ń) . . . . . .
\nsucceq () . . . . . .
\nsucceq () . . . . . .
\nsucceq (⪰̸) . . . . . . .
\nsucceq (⪰̸) . . . . . . .
\nsucceq () . . . . . .
\nsucceqq (:) . . . . . .
\nsucceqq (⪴̸) . . . . . .
\nsuccsim (Ã) . . . . .
\nsuccsim () . . . . . .
\nsuccsim (≿̸) . . . . . .
\nsuccsim (≿̸) . . . . . .
\nSupset (Ů) . . . . . .
\nSupset (?) . . . . . .
\nSupset (⋑̸) . . . . . . .
\nSupset (⋑̸) . . . . . . .
\nsupset (Č) . . . . . .
\nsupset (Ÿ) . . . . . .
\nsupset (⊅) . . . . . . .
\nsupset (⊅) . . . . . . .
\nsupset (⊅) . . . . . .
\nsupseteq (Ğ) . . . . .
\nsupseteq (+) . . . .
\nsupseteq («) . . . . .
\nsupseteq (⊉) . . . . .
\nsupseteq (⊉) . . . . .
\nsupseteq (⊉) . . . . .
\nsupseteqq (Ŕ) . . . .
\nsupseteqq (#) . . . .
\nsupseteqq (£) . . . .
\nsupseteqq (⫆̸) . . . .
\nsupseteqq (⫆̸) . . . .
\nsupseteqq () . . . .
\nSwarrow (⇙̸) . . . . .
\nSwarrow (⇙̸) . . . . .
\nswarrow (↙̸) . . . . .
\nswarrow (↙̸) . . . . .
\nswarrowtail (̸) . .
\nswarrowtail (̸) . .
\nswbkarrow (̸) . . .
\nswfilledspoon (̸)
\nswfootline (̸) . . .
\nswfree (̸) . . . . . .
\nswharpoonccw (̸) .
\nswharpooncw (̸) . .
\nswharpoonnw (̸) . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
63
64
52
51
57
56
54
59
52
51
56
54
52
51
56
54
59
52
51
57
56
54
59
51
56
52
51
56
54
62
62
63
63
62
63
63
63
64
62
62
63
63
63
64
62
62
63
63
63
64
80
76
79
76
80
76
80
88
54
54
77
77
82
\nswharpoonse (̸) . . .
\nswlcurvearrow (⤶̸) .
\nswlsquigarrow (̸) .
\nswmapsto (̸) . . . . .
\nswModels (̸) . . . . .
\nswmodels (̸) . . . . .
\nswnearrows (̸) . . .
\nswnearrows (̸) . . .
\nswnecurvearrow (̸)
\nswneharpoons (̸) .
\nswneharpoons (̸) . .
\nswpitchfork (̸) . . .
\nswrcurvearrow (̸) .
\nswrsquigarrow (̸) .
\nswspoon (̸) . . . . . .
\nswswarrows (̸) . . .
\nswswarrows (̸) . . .
\nswVdash (̸) . . . . . .
\nswvdash (̸) . . . . . .
\NT () . . . . . . . . . . . .
\ntdtstile (
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 82
. 81
. 76
. 76
. 54
. 54
. 80
. 76
. 81
. 82
. 77
. 88
. 81
. 76
. 88
. 80
. 76
. 54
. 54
. 129
) .......
60
ntheorem (package) . . . . . 118
\nthickapprox (5) . . . . . 51
\nto (↛) . . . . . . . . . . . . 81
\nto (↛) . . . . . . . . . . . . . 77
\ntriangleeq (≜̸) . . . . . . 71
\ntriangleeq (≜̸) . . . . . . 70
\ntriangleleft (Ž) . . . . 69
\ntriangleleft (6) . . . . 69
\ntriangleleft (¶) . . . . 71
\ntriangleleft (⋪) . . . . 71
\ntriangleleft (⋪) . . . 66, 70
\ntrianglelefteq (đ) . . 69
\ntrianglelefteq (5) . . 69
\ntrianglelefteq (µ) . . . 71
\ntrianglelefteq (⋬) . . . 71
\ntrianglelefteq (⋬) . 66, 70
\ntrianglelefteq (⋬) . . . 71
\ntrianglelefteqslant (R) 69
\ntriangleright (Ż) . . . 69
\ntriangleright (7) . . . 69
\ntriangleright (·) . . . 71
\ntriangleright (⋫) . . . . 71
\ntriangleright (⋫) . . 66, 70
\ntrianglerighteq (§) . . 69
\ntrianglerighteq (4) . 69
\ntrianglerighteq (´) . . 71
\ntrianglerighteq (⋭) . . 71
\ntrianglerighteq (⋭) 66, 70
\ntrianglerighteq (⋭) . . 71
\ntrianglerighteqslant (S)
. . . . . . . . 69
\ntriplefrown (̸) . . . . . 89
\ntriplesim (≋̸) . . . . . . . 56
\ntriplesim (≋̸) . . . . . . . 54
\ntriplesmile (̸) . . . . . 89
\ntststile (
) .......
60
\nttstile ( ) . . . . . . . .
60
\ntttstile (
) .......
60
\ntwoheaddownarrow (↡̸) .
\ntwoheaddownarrow (↡̸) .
80
76
295
\ntwoheadleftarrow (h) . 51
\ntwoheadleftarrow (↞̸)
80
\ntwoheadleftarrow (↞̸)
76
\ntwoheadnearrow (̸) . . 80
\ntwoheadnearrow (̸) . . 76
\ntwoheadnwarrow (̸) . . 80
\ntwoheadnwarrow (̸) . . 76
\ntwoheadrightarrow (g) 51
\ntwoheadrightarrow (↠̸) 80
\ntwoheadrightarrow (↠̸) 76
\ntwoheadsearrow (̸) . . 80
\ntwoheadsearrow (̸) . . 76
\ntwoheadswarrow (̸) . . 80
\ntwoheadswarrow (̸) . . 76
\ntwoheaduparrow (↟̸) . . . 80
\ntwoheaduparrow (↟̸) . . . 76
\Nu (N) . . . . . . . . . . . . . . 93
\nu (𝜈) . . . . . . . . . . . . . . 93
nuclear power plant see \SNPP
\nucleus (𝑒) . . . . . . . . . 133
) . . . . . . 191
\Nudelholz (
\NUL (␀) . . . . . . . . . . . . . 130
\NUL (␀) . . . . . . . . . . . . . 130
null infinity . . . see alphabets,
math
null set . . . . . . . . . . 117–120
number sets . . see alphabets,
math
number sign see \textnumero
numbers . . . . . . see numerals
numerals 27, 117, 125, 138, 175,
182, 183, 199–200, 217
circled 138, 182, 183, 217
Epi-Olmec . . . . . . . . 156
Isthmian . . . . . . . . . 156
LCD . . . . . . . . . . . . 125
Linear B . . . . . . . . . 152
Mayan . . . . . . . . . . . 117
old-style . . . . . . . . . . 27
segmented . . . . . . . . 125
\NumLock ( Num ) . . . . . . 129
\nUparrow (⇑̸) . . . . . . . . 80
\nUparrow (⇑̸) . . . . . . . . . 76
\nuparrow (↑̸) . . . . . . . . . 80
\nuparrow (↑̸) . . . . . . . . . 76
\nuparrowtail (̸) . . . . . 80
\nuparrowtail (̸) . . . . . 76
\nupAssert (⫨̸) . . . . . . . . 56
\nupassert (⫠̸) . . . . . . . . 56
\nupbkarrow (⇡̸) . . . . . . . 80
\nupblackspoon (̸) . . . . 89
\nUpdownarrow (⇕̸) . . . . . 80
\nUpdownarrow (⇕̸) . . . . . 76
\nupdownarrow (↕̸) . . . . . 80
\nupdownarrow (↕̸) . . . . . 76
\nupdownarrows (⇅̸) . . . . 80
\nupdownarrows (̸) . . . . 76
\nupdowncurvearrow (̸) . 81
\nupdownharpoonleftright
(⥍̸) . . . . . . . . . . . . . 82
\nupdownharpoonleftright
(̸) . . . . . . . . . . . . . 77
\nupdownharpoonrightleft
(⥌̸) . . . . . . . . . . . . . 82
\nupdownharpoonrightleft
(̸) . . . . . . . . . . . . . 77
\nupdownharpoons (⥮̸) . . 82
\nupdownharpoons (⥮̸) . . . 77
\nupdownharpoonsleftright
(⥮̸) . . . . . . . . . . . . 82
\nUpdownline (∦) . . . . . . 54
\nupdownline (∤) . . . . . . 54
\nupdownsquigarrow (̸) . 81
\nupdownwavearrow (̸) . . 80
\nupfilledspoon (̸) . . . . 88
\nupfootline (̸) . . . . . . 54
\nupfree (̸) . . . . . . . . . . 54
\nupharpoonccw (↿̸) . . . . . 77
\nupharpooncw (↾̸) . . . . . 77
\nupharpoonleft (↿̸) . . . 82
\nupharpoonright (↾̸) . . . 82
\nuplcurvearrow (̸) . . . 81
\nupleftcurvedarrow (̸) 81
\nuplsquigarrow (̸) . . . 81
\nuplsquigarrow (̸) . . . . 76
\nUpmapsto (̸) . . . . . . . . 80
\nupmapsto (↥̸) . . . . . . . . 80
\nupmapsto (↥̸) . . . . . . . . 76
\nupModels (̸) . . . . . . . 54
\nupmodels (̸) . . . . . . . . 56
\nupmodels (̸) . . . . . . . . 54
\nuppitchfork (⋔̸) . . . . . 90
\nuppitchfork (⋔̸) . . . . . 88
\nuprcurvearrow (̸) . . . 81
\nuprightcurvearrow (⤴̸) 81
\nuprsquigarrow (̸) . . . 81
\nuprsquigarrow (̸) . . . . 76
\nupspoon (⫯̸) . . . . . . . . . 89
\nupspoon (⫯̸) . . . . . . . . . 88
\nupuparrows (⇈̸) . . . . . . 80
\nupuparrows (⇈̸) . . . . . . 76
\nupVDash (̸) . . . . . . . . 56
\nupVdash (⍊̸) . . . . . . . . 56
\nupVdash (⍊̸) . . . . . . . . 54
\nupvDash (⫫̸) . . . . . . . . 56
\nupvdash (⊥̸) . . . . . . . . 56
\nupvdash (⊥̸) . . . . . . . . . 54
\nupwavearrow (̸) . . . . . 80
\Nursey ( ) . . . . . . . . . . 191
\nuup (ν) . . . . . . . . . . . . 94
\nUuparrow (⤊̸) . . . . . . . 80
\nvardownwavearrow (̸) . 80
\nvargeq (ń) . . . . . . . . . 65
\nvarhookdownarrow (̸) . 80
\nvarhookleftarrow (↩̸) . 80
\nvarhooknearrow (⤤̸) . . 80
\nvarhooknwarrow (⤣̸) . . 80
\nvarhookrightarrow (↪̸) 80
\nvarhooksearrow (⤥̸) . . 80
\nvarhookswarrow (⤦̸) . . 80
\nvarhookuparrow (̸) . . . 80
\nvarisinobar () . . . . . 59
\nvarleftrightwavearrow (↭̸)
. . . . . . . . 80
\nvarleftwavearrow (↜̸) . 80
\nvarleq (ł) . . . . . . . . . 65
\nvarniobar () . . . . . . . 59
\nvarparallel ( ) . . . . . 51
\nvarparallelinv ( ) . . . 51
\nvarrightwavearrow (↝̸) 80
\nvartriangleleft (⋪) . . 71
\nvartriangleright (⋫) . 71
\nvarupdownwavearrow (̸) 80
\nvarupwavearrow (̸) . . . 80
\nVbar (⫫̸) . . . . . . . . . . . 56
\nvBar (⫨̸) . . . . . . . . . . . 56
\nVDash (*) . . . . . . . . . . 52
\nVDash (3) . . . . . . . . . . 51
\nVDash (³) . . . . . . . . . . 57
\nVDash (⊯) . . . . . . . . . . 56
\nVDash (⊯) . . . . . . . . . . 54
\nVDash (⊯) . . . . . . . . . . 59
\nVdash (.) . . . . . . . . . . 52
\nVdash (1) . . . . . . . . . . 51
\nVdash (±) . . . . . . . . . . 57
\nVdash (⊮) . . . . . . . . . . 56
\nVdash (⊮) . . . . . . . . . . 54
\nVdash (⊮) . . . . . . . . . . 59
\nvDash (*) . . . . . . . . . . 52
\nvDash (2) . . . . . . . . . . 51
\nvDash (²) . . . . . . . . . . 57
\nvDash (⊭) . . . . . . . . . . 56
\nvDash (⊭) . . . . . . . . . . 54
\nvDash (⊭) . . . . . . . . . . 59
\nvdash (&) . . . . . . . . . . 52
\nvdash (0) . . . . . . . . . . 51
\nvdash (°) . . . . . . . . . . 57
\nvdash (⊬) . . . . . . . . . . 56
\nvdash (⊬) . . . . . . . . . . 54
\nvdash (⊬) . . . . . . . . . . 59
\nvDdash (⫢̸) . . . . . . . . . 56
\nveeeq (≚̸) . . . . . . . . . . 56
\nvinfty (⧞) . . . . . . . . . 117
\nVleftarrow () . . . . . . 83
\nVleftarrow (⇺) . . . . . . 86
\nvLeftarrow (⤂) . . . . . . 86
\nvleftarrow (⇷) . . . . . . 86
\nVleftarrowtail (⬺) . . 86
\nvleftarrowtail (⬹) . . 86
\nVleftrightarrow (⇼) . 86
\nvLeftrightarrow (⤄) . 86
\nvleftrightarrow (⇹) . 86
\nvlongdash (⟝̸) . . . . . 56
\nVrightarrow () . . . . . 83
\nVrightarrow (⇻) . . . . . 86
\nvRightarrow (⤃) . . . . . 86
\nvrightarrow (⇸) . . . . . 86
\nVrightarrowtail (⤕) . 86
\nvrightarrowtail (⤔) . 86
\nVtwoheadleftarrow (⬵) 86
\nvtwoheadleftarrow (⬴) 86
\nVtwoheadleftarrowtail (⬽)
. . . . . . . . 86
\nvtwoheadleftarrowtail (⬼)
. . . . . . . . 86
\nVtwoheadrightarrow (⤁) 86
\nvtwoheadrightarrow (⤀) 86
296
\nVtwoheadrightarrowtail
(⤘) . . . . . . . . . . . . 86
\nvtwoheadrightarrowtail
(⤗) . . . . . . . . . . . . 86
\nVvash (.) . . . . . . . . . . 52
\nVvdash (⊪̸) . . . . . . . . . 56
\Nwarrow (v) . . . . . . . . . 73
\Nwarrow () . . . . . . . . . 82
\Nwarrow (⇖) . . . . . . . . . 78
\Nwarrow (⇖) . . . . . . . . . 74
\Nwarrow (⇖) . . . . . . . . . 84
\nwarrow (Ô) . . . . . . . . . 73
\nwarrow (↖) . . . . . 72, 226
\nwarrow (↖) . . . . . . . . . 78
\nwarrow (↖) . . . . . . . . . 74
\nwarrow (↖) . . . . . . . . . 87
\nwarrow (↖) . . . . . . . . . 84
\nwarrowcorner ( ) . . . . 82
\nwarrowtail (%) . . . . . . 78
\nwarrowtail (%) . . . . . . 74
\nwbkarrow (e) . . . . . . . 78
\nwedgeq (≙̸) . . . . . . . . . . 56
\nwfilledspoon (u) . . . . 88
\nwfootline (}) . . . . . . . 53
\nwfree ( ) . . . . . . . . . . 53
\nwharpoonccw (E) . . . . . 77
\nwharpooncw (M) . . . . . . 77
\nwharpoonne (M) . . . . . . 81
\nwharpoonsw (E) . . . . . . 81
\nwhiteblackspoon (⊶̸) . 89
\nwlcurvearrow (™) . . . . 79
\nwlsquigarrow (¥) . . . . 74
\nwmapsto (-) . . . . . . . . 74
\nwModels (õ) . . . . . . . . 53
\nwmodels (å) . . . . . . . . 53
\nwnwarrows (}) . . . . . . 78
\nwnwarrows (•) . . . . . . 74
\nwovnearrow (⤲) . . . . . . 84
\nwpitchfork () . . . . . . 88
\nwrcurvearrow (¡) . . . . 79
\nwrsquigarrow (­) . . . . 74
\Nwsearrow () . . . . . . . 78
\Nwsearrow () . . . . . . . 74
\nwsearrow (↖
↘) . . . . . . . 226
\nwsearrow (⤢) . . . . . . . 78
\nwsearrow (⤢) . . . . . . . 74
\nwsearrow (⤡) . . . . . . . 84
\nwsearrows (ƒ) . . . . . . 78
\nwsearrows (›) . . . . . . 74
\nwsebipropto (‹) . . . . . 32
\nwsecrossing (“) . . . . . 53
\nwsecurvearrow (©) . . . 79
\nwseharpoonnesw (S) . . 81
\nwseharpoonnesw (S) . . 77
\nwseharpoons (_) . . . . . 81
\nwseharpoons (_) . . . . . 77
\nwseharpoonswne (W) . . 81
\nwseharpoonswne (W) . . 77
\Nwseline (×) . . . . . . . . 53
\nwseline (Ó) . . . . . . . . 53
\nwspoon (m) . . . . . . . . . 88
\nwVdash (í) . . . . . . . . . 53
\nwvdash (Ý) . . . . . . . . . 53
O
\O (Ø) . . . . . . . . . . . . . . 15
\o (ø) . . . . . . . . . . . . . . . 15
o (𝑜) . . . . . . . . . . . . . . . 93
o (o) . . . . . . . . . . . . . . . 157
\oast (⊛) . . . . . . . . . . . . 36
\oast (⊛) . . . . . . . . . . . . 36
\oasterisk (f) . . . . . . . . 35
\obackslash (n) . . . . . . . 35
\obackslash (⦸) . . . . . . . 36
\obackslash (⦸) . . . . . . . 36
\obar (:) . . . . . . . . . . . . 30
\obar (•) . . . . . . . . . . . . 37
\obar (⌽) . . . . . . . . . . . . 38
\Obelus (
) . . . . . . . . . 183
\obelus ( ) . . . . . . . . . 183
\Obelus* ( ·· ) . . . . . . . . . 183
\obelus* ( ·· ) . . . . . . . . . 183
\oblong (@) . . . . . . . . . . 30
\oblong (:) . . . . . . . . . . 37
\obot (k) . . . . . . . . . . . . 35
\obot (’) . . . . . . . . . . . . 37
\obot (⦺) . . . . . . . . . . . . 38
\obrbrak (⏠) . . . . . . . . . 121
\obslash (;) . . . . . . . . . 30
\obslash () . . . . . . . . . 37
\obslash (⦸) . . . . . . . . . 37
\obslash (⦸) . . . . . . . . . 38
\oc () . . . . . . . . . . . . . . . 29
\ocirc (e) . . . . . . . . . . . 35
\ocirc (⊚) . . . . . . . . . . . 36
\ocirc (⊚) . . . . . . . . . . . 36
\ocircle (#) . . . . . . . . . 31
\ocoasterisk (g) . . . . . . 35
\ocommatopright ( ̕ ) . . . . 106
\octagon (8) . . . . . . . . . 140
octonions (O) . see alphabets,
math
\Octosteel (‘) . . . . . . . . 131
\od (a) . . . . . . . . . . . . . . 23
˚ (⊝) . . . . . . . . . . . 36
\odash
\odiv (c) . . . . . . . . . . . . 35
\odiv (⨸) . . . . . . . . . . . . 38
\odot (d) . . . . . . . . . . . . 35
\odot (⊙) . . . . . . . . . . . 30
\odot (⊙) . . . . . . . . . . . . 36
\odot (⊙) . . . . . . . . . . . . 36
\odot (⊙) . . . . . . . . . . . . 38
\odotslashdot (⦼) . . . . . 38
\odplus ( ) . . . . . . . . . . 35
\OE (Œ) . . . . . . . . . . 15, 237
\oe (œ) . . . . . . . . . . . 15, 237
\oequal (⊜) . . . . . . . . . . 36
\Ofen ( ) . . . . . . . . . . . . 191
\officialeuro (e) . . . . . 26
\offinterlineskip . . . . . 224
ogonek (package) 24, 239, 240
ogonek ( ˛) . . . . . see accents
\ogreaterthan (=) . . . . . 30
\ogreaterthan (™) . . . . . 37
\ogreaterthan (⧁) . . . . . 38
{
\ohill (a)
. . . . . . . . . . . 23
ohm . . . . . . . . see \textohm
\ohm (Ω) . . . . . . . . . . . . .
\Ohne (a
/) . . . . . . . . . . . .
\OHORN (Ơ) . . . . . . . . . . .
\ohorn (ơ)) . . . . . . . . . . .
\oiiint (∰ ) . . . . . . . . .
\oiiint ( ) . . . . . . . . . .
\oiiint (∰) . . . . . . . . .
ˆ
\oiiint ( ) . . . . . . . . .
\oiiint (∰) . . . . .L
.....
\oiiintclockwise ( )D. .
\oiiintctrclockwise ( )
\oiiintsl (∰) . . . . . . . .
\oiiintup
ů (∰) . . . . . . . .
\oiint (v) . . . . . . . . . . .
\oiint () . . . . . . . . . . .
\oiint (∯ ) . . . . . . . . . . .
\oiint (‚) . . . . . . . . . . .
\oiint ( ) . . . . . . . . . . .
\oiint (∯) . . . . . . . . . . .
†
\oiint ( ) . . . . . . . . . . .
125
161
16
16
42
48
45
49
46
42
42
47
47
41
40
42
48
43
45
49
\oiint (∯) . . . . . . . . . . .
\oiint (∯) . . . . .H. . . . . .
\oiintclockwise ( ) @. . .
\oiintctrclockwise ( )
\oiintsl (∯) . . . . . . . . .
\oiintup
ű (∯) . . . . . . . . . .
\oint (u) . . . . . . . . . . . .
\oint (u) . . . . . . . . . . . .
\oint (∮︀ ) . . . . . . . . . . . .
\oint (∮ ) . . . . . . . . . . . .
\oint ( ) . . . . . . . . . . . .
\oint (∮) . . . . . . . . . . . .
\oint (∮) . . . . . . . . . . . .
\oint (∮) . . . . . . . . . . . .
\ointclockwise (∲ ) . . . .
\ointclockwise (ı) . . . . .
\ointclockwise ( ) . . . . .
\ointclockwise (∲) . . . .
„
\ointclockwise ( ) . . . . .
\ointctrclockwise (∳ ) . .
\ointctrclockwise () . .
\ointctrclockwise ( ) . .
\ointctrclockwise (∳) . .
‚
\ointctrclockwise ( ) . .
\ointctrclockwise (∳) . .
\ointctrclockwisesl (∳)
\ointctrclockwiseup (∳)
\ointsl (∮) . . . . . . . . . . .
\ointup (∮) . . . . . . . . . . .
\olcross (⦻) . . . . . . . . .
old-arrows (package) 87, 88,
old-style numerals . . . . . .
\olddWinkey ( ) . . . . . . .
44
46
42
42
47
47
41
40
40
40
48
45
44
46
42
48
43
45
49
42
48
43
45
49
46
47
47
47
47
38
239
27
191
g)
\oldGclef (
\oldIm (ℑ) . . .
\oldRe (ℜ) . . .
\oldstylenums
\oldWinkey ( )
297
\oleft (h) . . . . . . . . . . . 35
\oleft (“) . . . . . . . . . . . 37
\olessthan (<) . . . . . . . . 30
\olessthan (˜) . . . . . . . . 37
\olessthan (⧀) . . . . . . . . 38
Olschok, Marc . . . . . . . . . 222
\OM () . . . . . . . . . . . . . . 129
\Omega (Ω) . . . . . . . . . . . 93
\omega (𝜔) . . . . . . . . . . . 93
\omegaup (ω) . . . . . . . . . 94
\Omicron (O) . . . . . . . . . 93
\omicron (o) . . . . . . . . . . 93
\ominus (a) . . . . . . . . . . 35
\ominus (⊖) . . . . . . . . . . 30
\ominus () . . . . . . . . . . 37
\ominus (⊖) . . . . . . . . . . 36
\ominus (⊖) . . . . . . . . . . 36
\ominus (⊖) . . . . . . . . . . 38
\onlymove (F) . . . . . . . . 181
\oo (∘∘) . . . . . . . . . . . . . 183
\oo (@) . . . . . . . . . . . . . 19
\ooalign . . . . . . . . . . . . 224
\open (z) . . . . . . . . . . . . 24
open unit disk (D) . . . . . see
alphabets, math
\openJoin ([) . . . . . . . . . 51
\openo (c) . . . . . . . . . . . 19
\openo (=) . . . . . . . . . . . . 19
\openo (l) . . . . . . . . . . . 19
\opentimes (]) . . . . . . . . 51
OpenType . . . . . . . . . . . . 158
operators . . . . . 29–31, 34–36
binary . . . . . . . . . 30–38
logical . . . . . . see logical
operators
set . . . . see set operators
unary . . . . . . . . . . . 29
\operp (⦹) . . . . . . . . . . . 38
oplotsymbl (package) 144–146,
239, 240
\oplus (‘) . . . . . . . . . . . 35
\oplus (⊕) . . . . . 29, 30, 222
\oplus (€) . . . . . . . . . . . 37
\oplus (⊕) . . . . . . . . . . . 36
\oplus (⊕) . . . . . . . . . . . 36
\oplus (⊕) . . . . . . . . . . . 38
\opluslhrim (⨭) . . . . . . . 34
\oplusrhrim (⨮) . . . . . . . 34
\opposbishops (o) . . . . . 181
\Opposition (p) . . . . . . . 128
\opposition (W) . . . . . . 126
optical scaling . . . . . . . . . 229
options . . see package options
\OR () . . . . . . . . . . . . . . 129
or . . . . . . . . . . . . . . see \vee
OR gates . . . . . . . . . . . . 130
\orbit (𝐵) . . . . . . . . . . 133
. . . . . . . 160
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 92
. 92
. 27
. 191
\ORd (
) ..
\oright (i) . .
\oright (”) . .
\origof (⊶) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 130
. 35
. 37
. 89
\origof (⊶) . . . . . . . . . . 58
oriscus . . . . . . . see musixgre
\ORl (
) . . . . . . . . . 130
\OrnamentDiamondSolid (q) .
. . . . . . . 146
ornaments . . . . 139, 140, 146,
204–205, 207–210
\ORr (
) . . . . . . . . . 130
orthogonal to . . . . . see \bot
\ORu (
) . . . . . . . . . . 130
\oslash (m) . . . . . . . . . . 35
\oslash (⊘) . . . . . . . . . . 30
\oslash (–) . . . . . . . . . . 37
\oslash (⊘) . . . . . . . . . . 36
\oslash (⊘) . . . . . . . . . . 36
\oslash (⊘) . . . . . . . . . . 38
\ostar (⍟) . . . . . . . . . . . 36
\osum (⨊) . . . . . . . . . . . . 45
.otf files . . . . . . . . . . . . 158
\Otimes (⨷) . . . . . . . . . . 38
\otimes (b) . . . . . . . . . . 35
\otimes (⊗) . . . . . . . . . . 30
\otimes (‚) . . . . . . . . . . 37
\otimes (⊗) . . . . . . . . . . 36
\otimes (⊗) . . . . . . . . . . 36
\otimes (⊗) . . . . . . . . . . 38
\otimeshat (⨶) . . . . . . . . 38
\otimeslhrim (⨴) . . . . . . 34
\otimesrhrim (⨵) . . . . . . 34
\otop (j) . . . . . . . . . . . . 35
\otop (‘) . . . . . . . . . . . . 37
\otriangle (—) . . . . . . . . 37
\otriangle (d) . . . . . . 36, 70
\otriangleup (o) . . . . . . 35
\oturnedcomma ( ̒ ) . . . . . 106
outer joins . . . . . . . . . . . 121
ovals . 143, 169–173, 199–200,
205, 215–216
\ovee (>) . . . . . . . . . . . . 30
\ovee (š) . . . . . . . . . . . . 37
\Oven ( ) . . . . . . . . . . . . 191
\oven ( ) . . . . . . . . . . . . 191
⌢
\overarc (a
) . . . . . . . . . . 23
\overbat ( ) . . . . . . . . . . 106
\overbat* ( ) . . . . . . . . 106
hkkikkj
\overbrace (
) . . . . . 109
\overbrace (ÌÐÎ) . . . . . . . 108
©
\overbrace ( ) . . . . . . . . 108
⏞⏟
\overbrace (
) . . . . . . 109
⏞⏞⏞
\overbrace (
) . . . . 109
⏞⏟
\overbrace (
) . . . . . . 107
\overbracket ( ) . . . . . . 109
⎴
\overbracket (
) . . . . 109
\overbracket ”( ) . . . . . . 228
\overbridge (a) . . . . . . . 22
hkkkj
\overgroup (
) . . . . . . 109
\overgroup (ÌÎ) . . . . . . . . 108
³µ
\overgroup ( ) . . . . . . . 108
\overleftarrow (⃖⃖) . . . . . 109
−) 87, 107
\overleftarrow (←
<
−
\overleftbroom ( ) . . . . 113
\overleftflutteringbat (
)
. . . . . . . 114
\overleftharp (↼) . . . . . 87
\overleftharpdown (↽) . . 87
↽) . . . 108
\overleftharpoon (−
↼) . . . 108
\overleftharpoon (Ð
\overleftharpoon (⃐⃖) . . . 109
∈
−
\overleftpitchfork ( ) . 113
\overleftrightarrow (⃖⃗) 109
→) 87,
\overleftrightarrow (←
108
\overleftswishingghost ( )
. . . . . . . 114
\overring (x) . . . . . . . . 24
−
) ..
\overscriptleftarrow (←
. . . . . . . 112
\overscriptleftrightarrow
→
(←
) . . . . . . . . . . . 112
−
) .
\overscriptrightarrow (→
. . . . . . . 112
\overset . . . . . . . . . . . . 223
\overt (⦶) . . . . . . . . . . . 36
\overt (⦶) . . . . . . . . . . . 36
\ovhook ( ̉ ) . . . . . . . . . . . 106
\ovoid (l) . . . . . . . . . . . 35
\owedge (?) . . . . . . . . . . 30
\owedge (›) . . . . . . . . . . 37
\owns . . . . . . . . . . . . see \ni
\owns (Q) . . . . . . . . . . . . 96
\owns (∋) . . . . . . . . . . 55, 97
\owns (3) . . . . . . . . . . . . 97
\owns (∋) . . . . . . . . . . . . 96
\owns (∋) . . . . . . . . . . . . 59
\ownsbar (W) . . . . . . . . . . 96
−−−
<
\overleftwitchonbroom (
)
. . . . . . . 113
\overleftwitchonbroom*
−−<
−
(
) . . . . . . . . . . 113
\overleftwitchonpitchfork
−−∈
(
) . . . . . . . . . . 113
\overleftwitchonpitchfork*
−−∈
(
) . . . . . . . . . . 113
\overline ( ) . . 29, 105, 107
¬) . . 108
\overlinesegment (­
x
z
\overlinesegment ( ) . . . 108
⏜⏜
) . . . . 109
\overparen (
⏞
\overparenthesis ( ) . . 228
⇒) . . 107
\Overrightarrow (=
overrightarrow (package) . 107,
239
\overrightarrow (⃖⃗) . . . . 109
− ) 87, 107
\overrightarrow (→
−
>
\overrightbroom ( ) . . . 113
\overrightflutteringbat
(
) . . . . . . . . . . 114
\overrightharp (⇀) . . . . . 87
\overrightharpdown (⇁) . 87
−) . . 108
\overrightharpoon (⇀
⇀
\overrightharpoon (Ð) . . 108
\overrightharpoon (⃖⃑) . . 109
−
∋
\overrightpitchfork ( ) 113
\overrightswishingghost
( ) . . . . . . . . . . . 114
\overrightwitchonbroom
>−−
−
(
) . . . . . . . . . . 113
\overrightwitchonbroom*
>−−
−
(
) . . . . . . . . . . 113
\overrightwitchonpitchfork
∋−−
(
) . . . . . . . . . . 113
\overrightwitchonpitchfork*
∋−−
(
) ..........
298
113
P
P (P) . . . . . . . . . . . . . . . 157
\P (¶) . . . . . . . . . . . . 15, 236
\P (¶) . . . . . . . . . . . . . . . 15
\p (ă) . . . . . . . . . . . . . . 157
\p ( ) . . . . . . . . . . . . . . . 183
˙ . . . . . . . . . . . . . . . . 157
p (p)
\p@ . . . . . . . . . . . . . . . . . 227
package options
a (esvect) . . . . . . . . . 110
arrows (boisik) . . . . . 83
b (esvect) . . . . . . . . . 110
bbgreekl (mathbbol) . 124
boondox (emf) . . . . . 126
c (esvect) . . . . . . . . . 110
cal (emf) . . . . . . . . . 126
calligra (emf) . . . . . . 126
chorus (emf) . . . . . . . 126
cmr (emf) . . . . . . . . 126
crescent (fge) . . . . . . 106
d (esvect) . . . . . . . . . 110
e (esvect) . . . . . . . . . 110
f (esvect) . . . . . . . . . 110
fourier (emf) . . . . . . . 126
frcursive (emf) . . . . . 126
g (esvect) . . . . . . . . . 110
german (keystroke) . . 129
greek (babel) . 15, 93, 94,
154
h (esvect) . . . . . . . . . 110
heartctrbull (bullcntr) . 180
integrals (wasysym) . . 40
largectrbull (bullcntr) . 180
mathcal (euscript) . . . 123
mathscr (euscript) . . . 123
mathscr (urwchancal) . 123
miama (emf) . . . . . . 126
new (old-arrows) . . 87, 88
noeuro (wasysym) . . . 25
nointegrals (wasysym)
40
polutonikogreek (babel) 15,
93, 94
rsfs (emf) . . . . . . . . . 126
sans (dsfont) . . . . . . . 123
scaled (CountriesOfEurope)
. . . . . . . 190
scr (rsfso) . . . . . . . . . 123
smallctrbull (bullcntr) 180
smartctrbull (bullcntr) 180
upint (stix) . . . 39, 46, 48
utf8x (inputenc) . . . . 237
varg (txfonts/pxfonts)
95
packages
abraces . . . . 110, 239, 240
accents 105, 227, 239, 240
actuarialangle . . 111, 228,
239, 240
actuarialsymbol . . . . . 228
adforn 135, 139, 140, 146,
147, 239, 240
adfsymbols 134, 137, 139,
144, 239
allrunes . . . . . . 157, 239
𝒜ℳ𝒮 . . . . . . . 12, 15, 30,
40, 50, 51, 62, 64, 69, 72,
87, 91, 93, 95, 96, 98, 99,
105, 108, 111, 114, 117–
119, 124, 219, 220, 238
amsbsy . . . . . . . . . . . 233
amsfonts . . . . . 118, 123
amsmath 12, 49, 91, 105,
223, 232
amssymb . . 12, 105, 118,
123, 154, 239
amstext . . . . . . 224, 226
apl . . . . . . . . . . 129, 239
ar . . . . . . . 125, 239, 240
arcs . . . . . . 23, 239, 240
arev . . 135–138, 146, 158,
190, 239
ascii . . 130, 234, 239, 240
astrosym . . . . . 201, 239
babel . . . 15, 93, 94, 154
bartel-chess-fonts 217, 218,
239
bbding 134–137, 139, 143,
146, 220, 239
bbm . . . . . . . . . 123, 239
bbold . . . . . . . . 123, 239
bclogo 192, 193, 239, 240
begriff . . . . . . . 116, 239
bigints . . . . 43, 239, 240
bm . . . . . . 233, 239, 240
boisik . . . . . . . 33, 37, 45,
57, 63, 68, 71, 82, 83, 95,
97, 98, 106, 118, 120, 141,
145, 154, 158, 239, 240
braket . . . . . . . . . . . 99
bullcntr . . . 180, 239, 240
bullenum . . . . . . . . . 180
calligra . . . . 123, 239, 240
calrsfs . . . . . . . . . . . 123
cancel . . . . . . . . . . . 107
ccicons . . . . 27, 239, 240
cclicenses . . 27, 239, 240
centernot . . . . . . . . . 224
chancery . . . . . . . . . . 239
chemarr . . . 111, 239, 240
chemarrow . 87, 111, 239
ChinA2e . 26, 92, 124, 186,
187
china2e . . . 123, 239, 240
clock . . . . . 179, 239, 240
cmll 29, 35, 50, 61, 98, 239
cmupint . 48, 49, 239, 240
colonequals . . 29, 61, 239,
240
combelow . . 24, 239, 240
cookingsymbols . 191, 239,
240
countriesofeurope 188, 239,
240
cryst . . . . . . . . 215, 239
cypriot . . . . 153, 239, 240
dancers . . . . . . 211, 239
dblaccnt . . . . . . . . . . 227
dice . . . . . . . . . 216, 239
dictsym . . . 184, 239, 240
dingbat 136, 146, 207, 220,
239, 240
DotArrow . . 112, 239, 240
dozenal 117, 180, 239, 240
dsfont . . . . . . . 123, 239
dsserif . . . . . . . 123, 239
emf . . . . . . 126, 239, 240
endofproofwd . . 121, 239
epiolmec . . 154, 156, 239,
240
epsdice . . . . 179, 239, 240
esint . . . . . . . . . 43, 239
esrelation . . 88, 113, 239
esvect . . . . . . . 110, 239
euflag . . . . 190, 239, 240
eufrak . . . . . . . . . . . 123
eurosym . . . 26, 239, 240
euscript . . . . . . 123, 239
extarrows . . 112, 239, 240
extpfeil . . . . 112, 239, 240
extraipa . . . . . . . 22, 239
fc . . . . . . . . . . . . 16, 20
fclfont . . . . . . . . . . . 239
fdsymbol 32, 33, 36, 44, 45,
55, 56, 63, 67, 71, 78–82,
89, 90, 95, 97, 101, 102,
106, 108, 115, 118, 120,
141, 145, 158, 239, 240
feyn . . . . . . 132, 239, 240
fge . 87, 97, 106, 117, 122,
239, 240
fixmath . . . . . . . . . . 233
fontawesome . . . . . . . . . .
25, 26, 127, 131, 135–138,
140, 144, 194, 197, 239,
240
fontenc 12, 15, 16, 20, 235
fontspec . . . . . . 158, 238
299
fourier 26, 61, 94, 98, 104,
109, 137, 140, 177, 239
frege . . . . . 116, 239, 240
gensymb . . . . . . . . . . 125
go . . . . . . . . . . 183, 239
graphics . . . . . . . 87, 222
graphicx 24, 219, 222, 226
greenpoint . . . . 199, 239
halloweenmath 38, 90, 106,
112–114, 239, 240
hands . . . . . . . . 199, 239
harmony . . 160, 161, 239,
240
harpoon . . . 87, 239, 240
hhcount 179, 180, 239, 240
hieroglf . . . 149, 239, 240
holtpolt . . . . . . 114, 239
ifsym . 125, 143, 178, 220,
222, 239, 240
igo . . . . . . . . . . 182, 239
inputenc . . . . . . . . . . 237
isoent . . . . . . . . . . . . 235
junicode . . . . . . 238, 239
keystroke . . 129, 239, 240
knitting . . . 188, 239, 240
knot . . . . . . 207, 210, 239
latexsym . . 30, 50, 61, 72,
118, 219, 239
lilyglyphs
158, 161–169,
173–175
lilyglyphs . . . . . . . . . 239
linearA . . . . 149, 239, 240
linearb 152, 153, 239, 240
logic . . . . . . . . . . . . 130
longdiv . . . . . . . . . . . 107
magic . . . . . . . . 217, 239
manfnt . . . . . . . 176, 239
marvosym . . . . . . . . . . . .
. 25, 116, 117, 126, 129–
131, 135, 138, 177, 187,
220
mathabx . . . . . 29, 31, 35,
41, 52, 62, 65, 69, 73, 74,
91, 96, 98–100, 105, 109,
117, 119, 127, 181, 219,
220, 239, 240
mathbbol . . . . . 123, 124
mathcomp . . . . . . . . 116
mathdesign 25, 34, 49, 97,
103, 122, 239
mathdots . 105, 114, 115,
227, 239, 240
mathrsfs . . . . . . 123, 239
mathspec . . . . . . . . . 93
mathtools 29, 59, 87, 109,
111, 239, 240
mbboard . . . 123, 124, 239
mdwmath . . 110, 239, 240
metre . 23, 105, 183, 239,
240
milstd . . . . 130, 239, 240
mismath . . . . . . . 92, 239
MnSymbol . . . 29, 31, 32,
36, 44, 52–54, 63, 66, 70,
74–77, 88, 89, 95, 96, 100,
105, 107, 108, 115, 117,
119, 120, 140, 145, 158,
239, 240
moonphase . . . . 201, 239
musicography . . 160, 161,
239, 240
musixgre . . . . . . . . . . 160
musixlit . . . . . . . . . . 160
musixper . . . . . . . . . 160
musixtex . . . . . . 239, 240
nath . . . . . . 98, 104, 239
nicefrac . . . 121, 239, 240
niceframe . . 204–207, 210
nkarta . . . . . . . 199, 239
ntheorem . . . . . . . . . 118
ogonek . . . . 24, 239, 240
old-arrows . . . 87, 88, 239
oplotsymbl
144–146, 239,
240
overrightarrow . . 107, 239
phaistos . . . 148, 239, 240
phonetic . 19, 23, 222, 239
pict2e . . . . . . . . . . . 126
pifont . . 16, 134–139, 144,
146, 199, 204, 215, 222,
239
pigpen . . . . 186, 239, 240
pmboxdraw . 185, 239, 240
polynom . . . . . . . . . . 107
prodint . . . . . . . . 50, 239
protosem . . 148, 239, 240
psnfss . . . . . . . . . . . 138
PSTricks . . . . . . . . . 193
pxfonts . . . 29, 31, 42, 51,
62, 65, 73, 90, 94–96, 118,
119, 123, 145, 219, 234
realhats . . . 107, 239, 240
recycle . . . . . . . 187, 239
relsize . . . . . . . . . . . 23
rotating . . . . . . . 27, 129
rsfso . . . . . . . . 123, 239
rubikcube . . 198, 239, 240
sarabian . . . 154, 239, 240
savesym . . . . . . . . . . 219
scalerel . . . . . . . . . . . 226
scsnowman . 192, 239, 240
semaphor . . 213, 215, 239
semtrans 20, 24, 239, 240
shuffle . . . . 35, 239, 240
simplewick . . . . 228, 229
simpsons . . . . . 184, 239
skak . . 181, 182, 239, 240
skull . . . . . . 181, 239, 240
slashed . . . . . . . . . . . 224
soyombo . . . 187, 239, 240
stackengine . . . . . . . . 226
starfont . . . 128, 239, 240
staves . . . . . . . 185, 239
steinmetz . . 126, 239, 240
stix 34, 38, 39, 46, 47, 58,
59, 64, 68, 69, 71, 84–86,
91, 95–98, 102, 106, 109,
115, 117, 118, 121, 127,
128, 131, 141, 142, 146,
158, 179, 239, 240
stmaryrd . . 30, 40, 51, 62,
69, 73, 87, 90, 98, 99, 220,
224, 238, 239
svrsymbols . 132, 239, 240
t4phonet 20, 23, 239, 240
teubner 26, 116, 154, 184,
239, 240
textcomp . 12, 14, 15, 20,
24–27, 72, 104, 121, 125,
158, 176, 219, 234, 235,
239
textgreek 15, 94, 239, 240
tfrupee . . . . 26, 239, 240
Tik Z . . . . . 12, 145, 146,
191–193, 198
tikzsymbols 191, 192, 239,
240
timing . . . . . . . . . . . 125
tipa . . 17, 18, 20–23, 222,
239, 240
tipx . . . . . . 18, 239, 240
trfsigns . . 61, 97, 112, 239
trsym . . . . . 61, 239, 240
turnstile . . . 60, 239, 240
txfonts . . . . . . . . . . . 29,
31, 42, 51, 62, 65, 73, 90,
94–96, 118, 119, 123, 145,
219, 221, 234, 239, 240
type1cm . . . . . . . . . . 219
ucs . . . . . . . . . . . . . 237
ulsy . . . . 35, 90, 222, 239
umranda . . . . . . 205, 239
umrandb . . . . . . 206, 239
underscore . . . . . . . . 14
undertilde . . 110, 239, 240
units . . . . . . . . . . . . 121
universa 144, 177, 239, 240
upgreek . 15, 94, 239, 240
upquote . . . . . . . . . . 235
url . . . . . . . . . . . . . . 234
urwchancal . . . . 123, 239
ushort . . . . 110, 239, 240
vietnam . . . . . . . . . . 239
vntex . . . . . . . . . . 16, 20
wasysym 19, 25, 27, 31, 40,
51, 62, 65, 115, 118, 119,
125, 126, 128, 131, 138–
140, 158, 176, 220, 222,
239
webomints . . . . 204, 239
wsuipa . . 19, 22, 24, 220,
222, 227, 239, 240
xfakebold . . 233, 239, 240
xfrac . . . . . . . . . . . . 121
yfonts
123, 124, 239, 240
yhmath 106–108, 110, 116,
227, 239
300
\PackingWaste (ß) . . . . . 187
Pakin, Scott . 1, 225, 227, 238
\Pallas (:) . . . . . . . . . . 128
\pan ( ) . . . . . . . . . . . . 191
paperclip . . . . . . . . . 192–193
\PaperLandscape ( ) . . . 178
\PaperPortrait () . . . . . 178
par . . . . . see \bindnasrepma,
\invamp, and \parr
\Paragraph (M) . . . . . . . . 27
paragraph mark . . . . . . see \P
parallel . . . . . . . . . . . see also
“texttt“string“varparallel
\parallel (‖) . . . . . . 50, 101
\parallel (∥) . . . . . . . . . 55
\parallel (∥) . . . . . . . . . 53
\parallel (∥) . . . . . . . . . 58
\parallelogram (▱) . . . . 142
\parallelogramblack (▰) 142
parallelograms . . . . . 141–142,
215–216
\ParallelPort (Ñ) . . . . . 129
\parallelslant (Ë) . . . . . 61
\parr (`) . . . . . . . . . . . . 35
\parsim (⫳) . . . . . . . . . . 58
\partial (B) . . . . . . . . . . 96
\partial (𝜕) . . . . . . . . . 96
\partial (∂) . . . . . . . . . . 98
\partialmeetcontraction (⪣)
. . . . . . . . 69
\partialslash (C) . . . . . 96
\partialvardint (∫…∫) . . 120
\partialvardlanddownint (⨚)
. . . . . . . 120
\partialvardlandupint (⨙) .
. . . . . . . 120
\partialvardlcircleleftint
(∲) . . . . . . . . . . . 120
\partialvardlcircleleftint
(∲) . . . . . . . . . . . . 74
\partialvardlcirclerightint
(∲) . . . . . . . . . . . 120
\partialvardlcirclerightint
(∲) . . . . . . . . . . . . 74
\partialvardoiint (∯) . 120
\partialvardoint (∮) . . . 120
\partialvardrcircleleftint
(∳) . . . . . . . . . . . 120
\partialvardrcircleleftint
(∳) . . . . . . . . . . . . 74
\partialvardrcirclerightint
(∳) . . . . . . . . . . . 120
\partialvardrcirclerightint
(∳) . . . . . . . . . . . . 74
\partialvardstrokedint (⨏) .
. . . . . . . 120
\partialvardsumint (⨋) . 120
\partialvartint (∫…∫) . . . 120
\partialvartlanddownint (⨚)
. . . . . . . 120
\partialvartlandupint (⨙) .
. . . . . . . 120
\partialvartlcircleleftint
(∲) . . . . . . . . . . . 120
\partialvartlcircleleftint
(∲) . . . . . . . . . . . . 74
\partialvartlcirclerightint
(∲) . . . . . . . . . . . 120
\partialvartlcirclerightint
(∲) . . . . . . . . . . . . 74
\partialvartoiint (∯) . 120
\partialvartoint (∮) . . . 120
\partialvartrcircleleftint
(∳) . . . . . . . . . . . 120
\partialvartrcircleleftint
(∳) . . . . . . . . . . . . 74
\partialvartrcirclerightint
(∳) . . . . . . . . . . . 120
\partialvartrcirclerightint
(∳) . . . . . . . . . . . . 75
\partialvartstrokedint (⨏)
. . . . . . . 120
\partialvartsumint (⨋) . 120
particle-physics symbols . 132–
133
\partof (3) . . . . . . . . . . 222
parts per thousand . . . . . see
\textperthousand
\partvoice (a
–ˇ») . . . . . . . . 22
\partvoiceless
(a
– ») . . . . . 22
˚
\passedpawn (r) . . . . . . . 181
\PAUSe ( ) . . . . . . . . . . . . 159
\PAuse ( ) . . . . . . . . . . . . 159
\pause ( ) . . . . . . . . . . . 159
pawn . . . . . . . . 182, 217–218
\PD (
) . . . . . . . . . . . . . . 129
PDF . . . . . . . . . . . . . . . . 158
.pdf files . . . . . . . . . . . . 235
pdfLATEX . . . . . . . . . . . . . 238
\Peace () . . . . . . . . . . . 146
\PeaceDove (f) . . . . . . . . 177
\Ped () . . . . . . . . . . . . . . 159
\peeler ( ) . . . . . . . . . . . 191
\pencil (✎) . . . . . . . . . . 136
\PencilLeft () . . . . . . 136
\PencilLeftDown () . . . 136
\PencilLeftUp () . . . . . 136
\PencilRight () . . . . . 136
\PencilRightDown () . . 136
\PencilRightUp () . . . . 136
pencils . . . . . . . . . . . . . . 136
\pentago ( ) . . . . . . . . . 145
\pentagocross ( ) . . . . . 145
\pentagodot ( ) . . . . . . . 145
\pentagofill ( ) . . . . . . 145
\pentagofillha ( ) . . . . 145
\pentagofillhb ( ) . . . . 145
\pentagofillhl ( ) . . . . 145
\pentagofillhr ( ) . . . . 145
\pentagolineh ( ) . . . . . 145
\pentagolinev ( ) . . . . . 145
\pentagolinevh ( ) . . . . 145
\pentagon (⬠) . . . . . . . . 142
\pentagon (D) . . . . . . . . 140
#
;
:
=
\pentagonblack (⬟) . . . . 142
pentagons . . . . . . . . 144–145
\Pentagram (å) . . . . . . . . 128
\pentagram („) . . . . . . . . 36
\pentam (λθλθλ||λββλββλ)
. . . . . . . 184
\pentdot (=) . . . . . . . . . . 157
\penteye (@) . . . . . . . . . . 157
people . . . . . . . . . . . see faces
percent sign . . . . . . . . see \%
percussion . . . . . . . . . . . . 160
\permil (h) . . . . . . . . . . 27
\Perp (y) . . . . . . . . . . . . 51
\Perp (å) . . . . . . . . . . . . 57
\Perp (‚) . . . . . . . . . . . . 61
\perp (⊥) . . . . . . . . 50, 225
\perp (⊥) . . . . . . . . . . . . 55
\perp (⊥) . . . . . . . . . . . . 53
\perp (⟂) . . . . . . . . . . . . 58
\perps (⫡) . . . . . . . . . . . 121
\perthousand (‰) . . . . . 125
\Pfanne ( ) . . . . . . . . . 191
\Pfund (£) . . . . . . . . . . . 25
\PgDown ( Page ↓ ) . . . . . 129
\PgUp ( Page ↑ ) . . . . . . 129
phaistos (package) . . 148, 239,
240
Phaistos disk . . . . . . . . . . 148
pharmaceutical prescription see
\textrecipe
\PHarrow (J) . . . . . . . . . . 148
\phase ( ) . . . . . . . . . . . 126
phasor . . . . . . . . . . . . . . 126
\PHbee (h)
. . . . . . . . . . 148
\PHgrater (p)
. . . . . . . . 148
\PHhelmet (G) . . . . . . . . 148
\PHhide (a) . . . . . . . . . 148
\PHhorn (Z) . .
\Phi (Φ) . . . .
\phi (𝜑) . . . .
\phimeson (ã)
\phimesonnull
\phiup (φ) . .
....
....
....
....
(ä)
....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 148
. 93
. 93
. 133
. 133
. 94
\PHlid (Q) . . . . . . . . . . . 148
\PHlily (m)
. . . . . . . . . . 148
\PHmanacles (N)
. . . . . . 148
\PHmattock (O) . . . . . . . 148
\Phone () . . . . . . . . . . . 146
\phone () . . . . . . . . . . . 176
\PhoneHandset ( ) . . . . . 146
phonetic (package) 19, 23, 222,
239
phonetic symbols . . . . . 17–20
\phonon (𝑗) . . . . . . . . . . 133
\photon (::::) . . . . . . . 125
photons . . . . . . 125, 132–133
\PHoxBack (n) . . . . . . . . 148
\PHpapyrus (k) . . . . . . . . 148
\PHpedestrian (A) . . . . 148
\PHplaneTree (i) . . . . . . 148
\PHbeehive (X) . . . . . . 148
\PHplumedHead (B) . . . 148
\PHram (d) . . . . . . . . . . 148
\PHboomerang (R) . . . . . 148
\PHrosette (l) . . . . . . . 148
\PHbow (K) . . . . . . . . . . . . 148
\PHsaw (P) . . . . . . . . . . . 148
\PHbullLeg (b) . . . . . . . . 148
\PHshield (L) . . . . . . . . 148
\PHship (Y) . . . . . . . . . 148
\PHcaptive (D) . . . . . . . 148
\PHsling (V) . . . . . . . . . 148
\PHcarpentryPlane (S) . 148
\PHsmallAxe (r) . . . . . . 148
\PHcat (c) . . . . . . . . . . 148
\PHstrainer (q)
\PHchild (E) . . . . . . . . . 148
\PHtattooedHead (C) . . 148
\PHclub (M) . . . . . . . . . . . 148
\PHtiara (I) . . . . . . . . . 148
\PHtunny (g) . . . . . . . . 148
\PHcolumn (W) . . . . . . . . . 148
. . . . . 148
\PHvine (j) . . . . . . . . . . 148
\PHcomb (U) . . . . . . . . . . 148
\PHdolium (T) . . . . . . . . 148
\PHdove (f) . . . . . . . . . 148
\PHeagle (e) . . . . . . . . . 148
\PHflute (o)
. . . . . . . . . 148
\PHgaunlet (H) . . . . . . . 148
301
\PHwavyBand (s) . . . . . . . 148
\PHwoman (F) . .
physical symbols
\Pi (Π) . . . . . .
\pi (𝜋) . . . . . . .
\pi (π) . . . . . . .
“pi” fonts . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 148
. 125
. 93
. 93
. 94
. 222
piano ( ) . . . . . . . . 163, 175
\Pickup (A) . . . . . . . . . . 130
pict2e (package) . . . . . . . . 126
pifont (package) . 16, 134–139,
144, 146, 199, 204, 215,
222, 239
pigpen (package) 186, 239, 240
pigpen cipher . . . . . . . . . 186
{\pigpenfont A} (A) . . . 186
{\pigpenfont B} (B) . . . 186
{\pigpenfont C} (C) . . . 186
{\pigpenfont D} (D) . . . 186
{\pigpenfont E} (E) . . . 186
{\pigpenfont F} (F) . . . 186
{\pigpenfont G} (G) . . . 186
{\pigpenfont H} (H) . . . 186
{\pigpenfont I} (I) . . . 186
{\pigpenfont J} (J) . . . 186
{\pigpenfont K} (K) . . . 186
{\pigpenfont L} (L) . . . 186
{\pigpenfont M} (M) . . . 186
{\pigpenfont N} (N) . . . 186
{\pigpenfont O} (O) . . . 186
{\pigpenfont P} (P) . . . 186
{\pigpenfont Q} (Q) . . . 186
{\pigpenfont R} (R) . . . 186
{\pigpenfont S} (S) . . . 186
{\pigpenfont T} (T) . . . 186
{\pigpenfont U} (U) . . . 186
{\pigpenfont V} (V) . . . 186
{\pigpenfont W} (W) . . . 186
{\pigpenfont X} (X) . . . 186
{\pigpenfont Y} (Y) . . . 186
{\pigpenfont Z} (Z) . . . 186
pilcrow . . . . . . . . . . . . see \P
\pionminus (ë) . . . . . . . 133
\pionnull (ì) . . . . . . . . 133
\pionplus (ê) . . . . . . . . 133
pipe . . . . . . . . see \textpipe
\Pisces (ë) . . . . . . . . . . 126
\Pisces (M) . . . . . . . . . . 128
\Pisces (ë) . . . . . . . . . . 126
\pisces (f) . . . . . . . . . . 126
\Pisymbol . . . . . 199–218, 222
\Pisymbol{astrosym}{0} ( )
. . . . . . . 201
\Pisymbol{astrosym}{2} ()
. . . . . . . 201
\Pisymbol{astrosym}{3} ()
\Pisymbol{astrosym}{1} ( )
. . . . . . . 201
.......
201
\Pisymbol{astrosym}{5} () .
\Pisymbol{astrosym}{4} ( )
. . . . . . . 201
.......
201
\Pisymbol{astrosym}{7} ()
\Pisymbol{astrosym}{6} ( ) .
. . . . . . . 201
.......
201
\Pisymbol{astrosym}{8} (
. . . . . . . 201
)
\Pisymbol{astrosym}{9} ( )
. . . . . . . 201
\Pisymbol{astrosym}{10} ( )
. . . . . . . 201
\Pisymbol{astrosym}{11} ( )
. . . . . . . 201
\Pisymbol{astrosym}{12} ( )
. . . . . . . 201
\Pisymbol{astrosym}{13} ( )
. . . . . . . 201
\Pisymbol{astrosym}{14}
( ) . . . . . . . . . . . 201
\Pisymbol{astrosym}{15} ( )
. . . . . . . 201
\Pisymbol{astrosym}{16}
(
) . . . . . . . . . . 201
\Pisymbol{astrosym}{17} ( )
. . . . . . . 201
\Pisymbol{astrosym}{18}
( ) . . . . . . . . . . 201
\Pisymbol{astrosym}{20} ()
\Pisymbol{astrosym}{19} ( )
. . . . . . . 201
. . . . . . . 201
\Pisymbol{astrosym}{21}
( ) . . . . . . . . . . . 201
\Pisymbol{astrosym}{23} ()
\Pisymbol{astrosym}{22} ( )
. . . . . . . 201
. . . . . . . 201
\Pisymbol{astrosym}{24}
)
(
..........
201
)
\Pisymbol{astrosym}{26} ()
\Pisymbol{astrosym}{25} (
. . . . . . . 201
. . . . . . . 201
\Pisymbol{astrosym}{27}
( ) . . . . . . . . . . . 201
\Pisymbol{astrosym}{28}
( ) . . . . . . . . . . . 201
\Pisymbol{astrosym}{29} ( )
. . . . . . . 201
\Pisymbol{astrosym}{30}
)
(
...........
201
\Pisymbol{astrosym}{31} ( )
. . . . . . . 201
\Pisymbol{astrosym}{32}
( ) . . . . . . . . . . 201
!
\Pisymbol{astrosym}{33} ( )
. . . . . . . 202
302
\Pisymbol{astrosym}{34}
"
(#) . . . . . . . . . . .
\Pisymbol{astrosym}{36}
($) . . . . . . . . . . .
\Pisymbol{astrosym}{37}
(%) . . . . . . . . . . .
( ) . . . . . . . . . . 202
\Pisymbol{astrosym}{35}
202
202
202
&)
')
()
))
*)
+)
,)
-)
.)
/)
\Pisymbol{astrosym}{48} (0)
. . . . . . . 202
\Pisymbol{astrosym}{49} (1)
. . . . . . . 202
\Pisymbol{astrosym}{50} (2)
. . . . . . . 202
\Pisymbol{astrosym}{51} (3)
\Pisymbol{astrosym}{38} (
. . . . . . . 202
\Pisymbol{astrosym}{39} (
. . . . . . . 202
\Pisymbol{astrosym}{40} (
. . . . . . . 202
\Pisymbol{astrosym}{41} (
. . . . . . . 202
\Pisymbol{astrosym}{42} (
. . . . . . . 202
\Pisymbol{astrosym}{43} (
. . . . . . . 202
\Pisymbol{astrosym}{44} (
. . . . . . . 202
\Pisymbol{astrosym}{45} (
. . . . . . . 202
\Pisymbol{astrosym}{46} (
. . . . . . . 202
\Pisymbol{astrosym}{47} (
. . . . . . . 202
. . . . . . . 202
\Pisymbol{astrosym}{52}
( ) . . . . . . . . . . 202
4
5
6
\Pisymbol{astrosym}{53} ( )
. . . . . . . 202
\Pisymbol{astrosym}{54} ( )
. . . . . . . 202
7
\Pisymbol{astrosym}{56} (8)
\Pisymbol{astrosym}{55} ( )
. . . . . . . 202
. . . . . . . 202
\Pisymbol{astrosym}{57}
(
) . . . . . . . . . 202
\Pisymbol{astrosym}{58}
( ) . . . . . . . . . . . 202
\Pisymbol{astrosym}{59} ( )
. . . . . . . 202
\Pisymbol{astrosym}{60} ( )
. . . . . . . 202
\Pisymbol{astrosym}{61}
( ) . . . . . . . . . . 202
9
:
=
;
<
>
\Pisymbol{astrosym}{62} ( )
. . . . . . . 202
\Pisymbol{astrosym}{63}
( ) . . . . . . . . . . . 202
?
\Pisymbol{astrosym}{64} (
. . . . . . . 202
\Pisymbol{astrosym}{65} (
. . . . . . . 202
@)
A)
B
C
\Pisymbol{astrosym}{68} (D)
. . . . . . . 202
\Pisymbol{astrosym}{69} (E)
. . . . . . . 202
\Pisymbol{astrosym}{90} (Z)
. . . . . . . 202
\Pisymbol{astrosym}{91} ([)
. . . . . . . 202
\Pisymbol{astrosym}{92} (\)
. . . . . . . 202
\Pisymbol{astrosym}{93} (])
. . . . . . . 202
\Pisymbol{astrosym}{94} (^)
. . . . . . . 203
\Pisymbol{astrosym}{95} (_)
\Pisymbol{astrosym}{66} ( )
. . . . . . . 202
\Pisymbol{astrosym}{67} ( )
. . . . . . . 202
. . . . . . . 203
\Pisymbol{astrosym}{100}
( ) . . . . . . . . . . . 203
\Pisymbol{astrosym}{101}
d
(e) . . . . . . . . . . . 203
\Pisymbol{astrosym}{102}
(f) . . . . . . . . . . . 203
\Pisymbol{astrosym}{103}
(g) . . . . . . . . . . . 203
\Pisymbol{astrosym}{104}
(h) . . . . . . . . . . . 203
\Pisymbol{astrosym}{105}
(i) . . . . . . . . . . . . 203
\Pisymbol{astrosym}{106}
(j) . . . . . . . . . . . . 203
\Pisymbol{astrosym}{107}
(k) . . . . . . . . . . . 203
\Pisymbol{astrosym}{108}
(l) . . . . . . . . . . 203
\Pisymbol{astrosym}{109}
(m) . . . . . . . . . . . 203
\Pisymbol{astrosym}{110}
(n) . . . . . . . . . . . 203
\Pisymbol{astrosym}{111}
(o) . . . . . . . . . . . 203
\Pisymbol{astrosym}{112}
(p) . . . . . . . . . . . 203
\Pisymbol{astrosym}{113}
(q) . . . . . . . . . . . 203
\Pisymbol{astrosym}{114}
( ) . . . . . . . . . . . 203
\Pisymbol{astrosym}{115}
r
(s) . . . . . . . . . . . 203
\Pisymbol{astrosym}{116}
(t) . . . . . . . . . . 203
\Pisymbol{astrosym}{117}
(u) . . . . . . . . . . . 203
\Pisymbol{astrosym}{118}
(v) . . . . . . . . . . 203
\Pisymbol{astrosym}{119}
(w) . . . . . . . . . . . 203
\Pisymbol{astrosym}{120}
(x) . . . . . . . . . . . 203
\Pisymbol{astrosym}{121}
(y) . . . . . . . . . . . 203
\Pisymbol{astrosym}{122}
(z) . . . . . . . . . . . 203
\Pisymbol{astrosym}{123}
({) . . . . . . . . . . . . 203
\Pisymbol{astrosym}{124}
(|) . . . . . . . . . . 203
\Pisymbol{astrosym}{125}
(}) . . . . . . . . . . . 203
\Pisymbol{astrosym}{126}
(~) . . . . . . . . . . . 203
\Pisymbol{astrosym}{127}
() . . . . . . . . . . . 203
\Pisymbol{astrosym}{128}
(€) . . . . . . . . . . . 203
\Pisymbol{astrosym}{129}
() . . . . . . . . . . . 203
\Pisymbol{astrosym}{130}
‚
(ƒ) . . . . . . . . . . . 203
\Pisymbol{astrosym}{132}
(„) . . . . . . . . . . 201
( ) . . . . . . . . . . . 203
\Pisymbol{astrosym}{131}
\Pisymbol{astrosym}{133}
( ) . . . . . . . . . . . 201
\Pisymbol{astrosym}{134}
†
( ) . . . . . . . . . . 201
\Pisymbol{astrosym}{135}
‡
( ) . . . . . . . . . . . 201
\Pisymbol{astrosym}{136}
ˆ
‰
Š
‹
Œ

Ž
( ) . . . . . . . . . . . 201
\Pisymbol{astrosym}{137}
( ) . . . . . . . . . . . 201
\Pisymbol{astrosym}{138}
( ) . . . . . . . . . . . 201
\Pisymbol{astrosym}{139}
( ) . . . . . . . . . . . 201
\Pisymbol{astrosym}{140}
( ) . . . . . . . . . . . 201
\Pisymbol{astrosym}{141}
( ) . . . . . . . . . . . 201
\Pisymbol{astrosym}{142}
( ) . . . . . . . . . . . 201
303


‘
’
“
(”) . . . . . . . . . . . 201
\Pisymbol{astrosym}{149}
(•) . . . . . . . . . . . 201
\Pisymbol{astrosym}{150}
(–) . . . . . . . . . . . . 201
\Pisymbol{astrosym}{151}
(—) . . . . . . . . . . . 201
\Pisymbol{astrosym}{152}
(˜) . . . . . . . . . . 201
\Pisymbol{astrosym}{153}
(™) . . . . . . . . . . . 201
\Pisymbol{astrosym}{154}
(š) . . . . . . . . . . . 201
\Pisymbol{astrosym}{143}
( ) . . . . . . . . . . . 201
\Pisymbol{astrosym}{144}
( ) . . . . . . . . . . . . 201
\Pisymbol{astrosym}{145}
( ) . . . . . . . . . . . . 201
\Pisymbol{astrosym}{146}
( ) . . . . . . . . . . . . 201
\Pisymbol{astrosym}{147}
( ) . . . . . . . . . . . . 201
\Pisymbol{astrosym}{148}
\Pisymbol{astrosym}{155}
›
(œ) . . . . . . . . . . . 201
\Pisymbol{astrosym}{157}
() . . . . . . . . . 201
\Pisymbol{astrosym}{158}
(ž) . . . . . . . . . . . 201
\Pisymbol{astrosym}{159}
(Ÿ) . . . . . . . . . . . 201
( ) . . . . . . . . . . . 201
\Pisymbol{astrosym}{156}
\Pisymbol{astrosym}{160}
( ) . . . . . . . . . . . 201
\Pisymbol{astrosym}{161}
( ) . . . . . . . . . . . 201
\Pisymbol{astrosym}{162}
( ) . . . . . . . . . . . 201
\Pisymbol{astrosym}{163}
( ) . . . . . . . . . . . 201
\Pisymbol{astrosym}{164}
¡
¢
£
(¤) . . . . . . . . . . . 201
\Pisymbol{astrosym}{165}
(¥) . . . . . . . . . . . 202
\Pisymbol{astrosym}{166}
¦
§
¨
©
(²) . . . . . . . . . . . 202
\Pisymbol{astrosym}{179}
(³) . . . . . . . . . 202
( ) . . . . . . . . . . . 202
\Pisymbol{astrosym}{167}
( ) . . . . . . . . . . . 202
\Pisymbol{astrosym}{168}
( ) . . . . . . . . . . . 202
\Pisymbol{astrosym}{169}
( ) . . . . . . . . . . . 202
\Pisymbol{astrosym}{178}
\Pisymbol{astrosym}{180}
( ) . . . . . . . . . . . 202
\Pisymbol{astrosym}{181}
( ) . . . . . . . . . . . 202
\Pisymbol{astrosym}{182}
( ) . . . . . . . . . . . 202
\Pisymbol{astrosym}{183}
( ) . . . . . . . . . . . 202
\Pisymbol{astrosym}{184}
( ) . . . . . . . . . . . 202
\Pisymbol{astrosym}{185}
( ) . . . . . . . . . . . 202
\Pisymbol{astrosym}{186}
´
µ
¶
·
¸
¹
(º) . . . . . . . . . . . 202
\Pisymbol{astrosym}{187}
(») . . . . . . . . . . . 202
\Pisymbol{astrosym}{188}
¼
½
¾
¿
È
(É) . . . . . . . . . . . 202
\Pisymbol{astrosym}{202}
(Ê) . . . . . . . . . . . 202
\Pisymbol{astrosym}{203}
(Ë) . . . . . . . . . . . 202
\Pisymbol{astrosym}{204}
(Ì) . . . . . . . . . . . 202
\Pisymbol{astrosym}{205}
(Í) . . . . . . . . . . . . 202
\Pisymbol{astrosym}{206}
(Î) . . . . . . . . . . . . 202
\Pisymbol{astrosym}{207}
(Ï) . . . . . . . . . . . 202
\Pisymbol{astrosym}{208}
(Ð) . . . . . . . . . . 202
\Pisymbol{astrosym}{209}
(Ñ) . . . . . . . . . . . 202
\Pisymbol{astrosym}{210}
(Ò) . . . . . . . . . . . 202
\Pisymbol{astrosym}{211}
(Ó) . . . . . . . . . . . 202
\Pisymbol{astrosym}{212}
(Ô) . . . . . . . . . . . 202
\Pisymbol{astrosym}{213}
(Õ) . . . . . . . . . . . 202
\Pisymbol{astrosym}{214}
(Ö) . . . . . . . . . . . 202
\Pisymbol{astrosym}{215}
(×) . . . . . . . . . . . 202
\Pisymbol{astrosym}{216}
(Ø) . . . . . . . . . . 202
( ) . . . . . . . . . . . 202
\Pisymbol{astrosym}{189}
( ) . . . . . . . . . . . 202
\Pisymbol{astrosym}{190}
( ) . . . . . . . . . . . 202
\Pisymbol{astrosym}{191}
( ) . . . . . . . . . . . 202
\Pisymbol{astrosym}{200}
( ) . . . . . . . . . . . 202
\Pisymbol{astrosym}{201}
Ù
Ú
(Û) . . . . . . . . . . . 202
\Pisymbol{astrosym}{220}
(Ü) . . . . . . . . . . . 202
\Pisymbol{astrosym}{221}
(Ý) . . . . . . . . . . . 202
\Pisymbol{astrosym}{222}
(Þ) . . . . . . . . . . . 203
\Pisymbol{astrosym}{223}
(ß) . . . . . . . . . . . . 203
\Pisymbol{astrosym}{224}
(à) . . . . . . . . . . 203
\Pisymbol{astrosym}{225}
(á) . . . . . . . . . . . 203
\Pisymbol{astrosym}{226}
(â) . . . . . . . . . . . 203
\Pisymbol{astrosym}{227}
(ã) . . . . . . . . . . . 203
\Pisymbol{astrosym}{228}
(ä) . . . . . . . . . . . 203
\Pisymbol{astrosym}{229}
(å) . . . . . . . . . . . 203
\Pisymbol{astrosym}{230}
(æ) . . . . . . . . . . . 203
\Pisymbol{astrosym}{231}
(ç) . . . . . . . . . . . 203
\Pisymbol{astrosym}{232}
(è) . . . . . . . . . . 203
\Pisymbol{astrosym}{233}
(é) . . . . . . . . . . . 203
\Pisymbol{astrosym}{234}
(ê) . . . . . . . . . . 203
\Pisymbol{astrosym}{235}
(ë) . . . . . . . . . . . 203
\Pisymbol{astrosym}{236}
(ì) . . . . . . . . . . . 203
\Pisymbol{astrosym}{237}
(í) . . . . . . . . . . . 203
\Pisymbol{astrosym}{238}
(î) . . . . . . . . . . . 203
\Pisymbol{astrosym}{239}
(ï) . . . . . . . . . . . 203
\Pisymbol{astrosym}{240}
(ð) . . . . . . . . . . . 203
\Pisymbol{astrosym}{241}
(ñ) . . . . . . . . . . . 203
\Pisymbol{astrosym}{242}
(ò) . . . . . . . . . . . 203
\Pisymbol{astrosym}{243}
(ó) . . . . . . . . . . . 203
\Pisymbol{astrosym}{244}
(ô) . . . . . . . . . . . . 203
\Pisymbol{astrosym}{245}
(õ) . . . . . . . . . . . . 203
\Pisymbol{astrosym}{246}
(ö) . . . . . . . . . . . . 203
\Pisymbol{astrosym}{217}
( ) . . . . . . . . . . . 202
\Pisymbol{astrosym}{218}
( ) . . . . . . . . . . 202
\Pisymbol{astrosym}{219}
304
÷
(ø) . . . . . . . . . . . 203
\Pisymbol{astrosym}{249}
(ù) . . . . . . . . . . . 203
\Pisymbol{astrosym}{250}
(ú) . . . . . . . . . . . . 203
\Pisymbol{astrosym}{251}
(û) . . . . . . . . . . . 203
\Pisymbol{astrosym}{252}
(ü) . . . . . . . . . . 203
\Pisymbol{astrosym}{253}
(ý) . . . . . . . . . . . 203
\Pisymbol{astrosym}{254}
(þ) . . . . . . . . . . . 203
\Pisymbol{astrosym}{247}
( ) . . . . . . . . . . . . 203
\Pisymbol{astrosym}{248}
\Pisymbol{astrosym}{255}
ÿ
( ) . . . . . . . . . . . 203
\Pisymbol{cryst}{0} ( ) . 215
\Pisymbol{cryst}{2} () . 215
\Pisymbol{cryst}{3} () 215
\Pisymbol{cryst}{4} () 215
\Pisymbol{cryst}{5} () 215
\Pisymbol{cryst}{6} () 215
\Pisymbol{cryst}{7} () 215
\Pisymbol{cryst}{8} () 215
\Pisymbol{cryst}{9} ( ) 215
\Pisymbol{cryst}{10} ( ) 215
\Pisymbol{cryst}{12} ( ) 215
\Pisymbol{cryst}{15} () 215
\Pisymbol{cryst}{20} () 215
\Pisymbol{cryst}{21} () 215
\Pisymbol{cryst}{22} () 215
\Pisymbol{cryst}{24} () 215
\Pisymbol{cryst}{25} () 215
\Pisymbol{cryst}{27} () 215
\Pisymbol{cryst}{28} () 215
\Pisymbol{cryst}{29} () 215
\Pisymbol{cryst}{30} () 215
\Pisymbol{cryst}{31} () . .
. . . . . . . 215
\Pisymbol{cryst}{32} ( ) . .
. . . . . . . 215
\Pisymbol{cryst}{35} (#) 215
\Pisymbol{cryst}{36} ($) 215
\Pisymbol{cryst}{37} (%) 215
\Pisymbol{cryst}{38} (&) 215
\Pisymbol{cryst}{39} (') 215
\Pisymbol{cryst}{40} (() 215
\Pisymbol{cryst}{41} ()) . .
. . . . . . . 215
\Pisymbol{cryst}{42} (*) 215
\Pisymbol{cryst}{43} (+) . .
. . . . . . . 215
\Pisymbol{cryst}{44} (,) 216
\Pisymbol{cryst}{45} (-) 216
\Pisymbol{cryst}{47} (/) 216
\Pisymbol{cryst}{48} (0) 216
\Pisymbol{cryst}{49} (1) 216
\Pisymbol{cryst}{50} (2) 216
\Pisymbol{cryst}{55} (7) 216
\Pisymbol{cryst}{57} (9) 216
\Pisymbol{cryst}{58} (:) 216
\Pisymbol{cryst}{59} (;) 216
\Pisymbol{cryst}{60} (<) 216
\Pisymbol{cryst}{61} (=) . .
. . . . . . . 216
\Pisymbol{cryst}{62} (>) . .
. . . . . . . 216
\Pisymbol{cryst}{63} (?) 215
\Pisymbol{cryst}{64} (@) . .
. . . . . . . 215
\Pisymbol{cryst}{65} (A) . .
. . . . . . . 215
\Pisymbol{cryst}{66} (B) 215
\Pisymbol{cryst}{75} (K) 215
\Pisymbol{cryst}{77} (M) 215
\Pisymbol{cryst}{78} (N) 215
\Pisymbol{cryst}{79} (O) 215
\Pisymbol{cryst}{80} (P) . .
. . . . . . . 215
\Pisymbol{cryst}{81} (Q) . .
. . . . . . . 215
\Pisymbol{cryst}{82} (R) . .
. . . . . . . 215
\Pisymbol{cryst}{83} (S) . .
. . . . . . . 215
\Pisymbol{cryst}{84} (T) 215
\Pisymbol{cryst}{85} (U) 215
\Pisymbol{cryst}{87} (W) 215
\Pisymbol{cryst}{88} (X) 215
\Pisymbol{cryst}{89} (Y) 215
\Pisymbol{cryst}{95} (_) 215
\Pisymbol{cryst}{97} (a) 215
\Pisymbol{cryst}{98} (b) 215
\Pisymbol{cryst}{99} (c) 215
\Pisymbol{cryst}{102} (f) .
. . . . . . . 215
\Pisymbol{cryst}{103} (g) .
. . . . . . . 215
\Pisymbol{cryst}{104} (h) 215
\Pisymbol{cryst}{105} (i) .
. . . . . . . 215
\Pisymbol{cryst}{107} (k) .
. . . . . . . 215
\Pisymbol{cryst}{108} (l) .
. . . . . . . 215
\Pisymbol{cryst}{109} (m) .
. . . . . . . 215
\Pisymbol{cryst}{112} (p) .
. . . . . . . 215
\Pisymbol{cryst}{113} (q) .
. . . . . . . 215
\Pisymbol{cryst}{120} (x) .
. . . . . . . 215
\Pisymbol{cryst}{121} (y) .
. . . . . . . 215
\Pisymbol{cryst}{123} ({) .
. . . . . . . 216
\Pisymbol{cryst}{124} (|) 216
\Pisymbol{cryst}{125} (}) . .
. . . . . . . 216
\Pisymbol{cryst}{127} () .
. . . . . . . 216
\Pisymbol{cryst}{128} (€) . .
. . . . . . . 216
\Pisymbol{cryst}{129} () .
. . . . . . . 216
\Pisymbol{cryst}{130} (‚) .
. . . . . . . 216
\Pisymbol{cryst}{131} (ƒ) .
. . . . . . . 216
\Pisymbol{cryst}{132} („) .
. . . . . . . 216
\Pisymbol{cryst}{133} ( ) .
. . . . . . . 216
\Pisymbol{cryst}{135} (‡) . .
. . . . . . . 216
\Pisymbol{cryst}{136} (ˆ) .
. . . . . . . 216
\Pisymbol{cryst}{137} (‰) .
. . . . . . . 216
\Pisymbol{cryst}{138} (Š) . .
. . . . . . . 215
\Pisymbol{cryst}{139} (‹) .
. . . . . . . 215
\Pisymbol{cryst}{140} (Œ) . .
. . . . . . . 215
\Pisymbol{cryst}{141} () . .
. . . . . . . 215
\Pisymbol{cryst}{142} (Ž) .
. . . . . . . 215
\Pisymbol{cryst}{143} () . .
. . . . . . . 215
\Pisymbol{cryst}{145} (‘) 215
\Pisymbol{cryst}{147} (“) . .
. . . . . . . 215
\Pisymbol{cryst}{148} (”) 215
\Pisymbol{cryst}{149} (•) . .
. . . . . . . 215
\Pisymbol{cryst}{155} (›) . .
. . . . . . . 215
\Pisymbol{cryst}{157} () . .
. . . . . . . 215
\Pisymbol{cryst}{158} (ž) . .
. . . . . . . 215
\Pisymbol{cryst}{159} (Ÿ) . .
. . . . . . . 215
\Pisymbol{cryst}{175} (¯) . .
. . . . . . . 215
\Pisymbol{cryst}{177} (±) . .
. . . . . . . 215
\Pisymbol{cryst}{178} (²) 215
\Pisymbol{cryst}{179} (³) . .
. . . . . . . 215
\Pisymbol{cryst}{185} (¹) . .
. . . . . . . 215
\Pisymbol{cryst}{187} (») .
. . . . . . . 215
\Pisymbol{cryst}{188} (¼) . .
. . . . . . . 215
\Pisymbol{cryst}{189} (½) .
. . . . . . . 215
\Pisymbol{cryst}{195} (Ã) . .
. . . . . . . 215
\Pisymbol{cryst}{197} (Å) .
. . . . . . . 215
305
\Pisymbol{cryst}{198} (Æ) . .
. . . . . . . 215
\Pisymbol{cryst}{199} (Ç) .
. . . . . . . 215
\Pisymbol{cryst}{202} (Ê) .
. . . . . . . 215
\Pisymbol{cryst}{203} (Ë) .
. . . . . . . 215
\Pisymbol{cryst}{204} (Ì) .
. . . . . . . 215
\Pisymbol{cryst}{210} (Ò) . .
. . . . . . . 215
\Pisymbol{cryst}{212} (Ô) .
. . . . . . . 215
\Pisymbol{cryst}{213} (Õ) .
. . . . . . . 215
\Pisymbol{cryst}{220} (Ü) .
. . . . . . . 216
\Pisymbol{cryst}{221} (Ý) .
. . . . . . . 216
\Pisymbol{cryst}{223} (ß) .
. . . . . . . 216
\Pisymbol{cryst}{224} (à) .
. . . . . . . 216
\Pisymbol{cryst}{230} (æ) .
. . . . . . . 216
\Pisymbol{cryst}{231} (ç) .
. . . . . . . 216
\Pisymbol{cryst}{232} (è) .
. . . . . . . 216
\Pisymbol{cryst}{233} (é) .
. . . . . . . 216
\Pisymbol{cryst}{236} (ì) .
. . . . . . . 216
\Pisymbol{cryst}{240} (ð) .
. . . . . . . 216
\Pisymbol{cryst}{241} (ñ) .
. . . . . . . 216
\Pisymbol{cryst}{242} (ò) . .
. . . . . . . 216
\Pisymbol{cryst}{243} (ó)
. . . . . . . 216
\Pisymbol{dancers}{0} ( ) 211
\Pisymbol{dancers}{1} ( ) 211
\Pisymbol{dancers}{2} ( ) 211
\Pisymbol{dancers}{3} ( ) 211
\Pisymbol{dancers}{4} ( ) 211
\Pisymbol{dancers}{5} ( ) 211
\Pisymbol{dancers}{6} ( ) 211
\Pisymbol{dancers}{7} ( ) 211
\Pisymbol{dancers}{8} ( ) 211
\Pisymbol{dancers}{9} ( ) 211
\Pisymbol{dancers}{10} ( ) .
. . . . . . . 211
\Pisymbol{dancers}{11} ( ) .
. . . . . . . 211
\Pisymbol{dancers}{12} ( ) .
. . . . . . . 211
\Pisymbol{dancers}{13} ( ) .
. . . . . . . 211
\Pisymbol{dancers}{14} ( ) .
. . . . . . . 211
\Pisymbol{dancers}{15}
. . . . . . . 211
\Pisymbol{dancers}{16}
. . . . . . . 211
\Pisymbol{dancers}{17}
. . . . . . . 211
\Pisymbol{dancers}{18}
. . . . . . . 211
\Pisymbol{dancers}{19}
. . . . . . . 211
\Pisymbol{dancers}{20}
. . . . . . . 211
\Pisymbol{dancers}{21}
. . . . . . . 211
\Pisymbol{dancers}{22}
. . . . . . . 211
\Pisymbol{dancers}{23}
. . . . . . . 211
\Pisymbol{dancers}{24}
. . . . . . . 211
\Pisymbol{dancers}{25}
. . . . . . . 211
\Pisymbol{dancers}{26}
. . . . . . . 211
\Pisymbol{dancers}{27}
. . . . . . . 211
\Pisymbol{dancers}{28}
. . . . . . . 211
\Pisymbol{dancers}{29}
. . . . . . . 211
\Pisymbol{dancers}{30}
. . . . . . . 211
\Pisymbol{dancers}{31}
. . . . . . . 211
\Pisymbol{dancers}{32}
. . . . . . . 211
\Pisymbol{dancers}{33}
. . . . . . . 211
\Pisymbol{dancers}{34}
. . . . . . . 212
\Pisymbol{dancers}{35}
. . . . . . . 212
\Pisymbol{dancers}{36}
. . . . . . . 212
\Pisymbol{dancers}{37}
. . . . . . . 212
\Pisymbol{dancers}{38}
. . . . . . . 212
\Pisymbol{dancers}{39}
. . . . . . . 212
\Pisymbol{dancers}{40}
. . . . . . . 212
\Pisymbol{dancers}{41}
. . . . . . . 212
\Pisymbol{dancers}{42}
. . . . . . . 212
\Pisymbol{dancers}{43}
. . . . . . . 212
\Pisymbol{dancers}{44}
. . . . . . . 212
\Pisymbol{dancers}{45}
. . . . . . . 212
()
.
()
.
()
.
()
.
()
.
()
.
()
.
()
.
()
.
()
.
()
.
()
.
()
.
()
.
()
.
()
.
()
.
()
.
()
!
.
()
"
.
()
#
.
()
$
.
()
%
.
()
&
.
()
'
.
()
(
.
()
)
.
()
*
.
()
+
.
()
,
.
()
.
-
\Pisymbol{dancers}{46}
. . . . . . . 212
\Pisymbol{dancers}{47}
. . . . . . . 212
\Pisymbol{dancers}{48}
. . . . . . . 212
\Pisymbol{dancers}{49}
. . . . . . . 212
\Pisymbol{dancers}{50}
. . . . . . . 212
\Pisymbol{dancers}{51}
. . . . . . . 212
\Pisymbol{dancers}{52}
. . . . . . . 212
\Pisymbol{dancers}{53}
. . . . . . . 212
\Pisymbol{dancers}{54}
. . . . . . . 212
\Pisymbol{dancers}{55}
. . . . . . . 212
\Pisymbol{dancers}{56}
. . . . . . . 212
\Pisymbol{dancers}{57}
. . . . . . . 212
\Pisymbol{dancers}{58}
. . . . . . . 212
\Pisymbol{dancers}{59}
. . . . . . . 212
\Pisymbol{dancers}{60}
. . . . . . . 212
\Pisymbol{dancers}{61}
. . . . . . . 212
\Pisymbol{dancers}{62}
. . . . . . . 212
\Pisymbol{dancers}{63}
. . . . . . . 212
\Pisymbol{dancers}{64}
. . . . . . . 212
\Pisymbol{dancers}{65}
. . . . . . . 212
\Pisymbol{dancers}{66}
. . . . . . . 212
\Pisymbol{dancers}{67}
. . . . . . . 212
\Pisymbol{dancers}{68}
. . . . . . . 212
\Pisymbol{dancers}{69}
. . . . . . . 213
\Pisymbol{dancers}{70}
. . . . . . . 213
\Pisymbol{dancers}{71}
. . . . . . . 213
\Pisymbol{dancers}{72}
. . . . . . . 213
\Pisymbol{dancers}{73}
. . . . . . . 213
\Pisymbol{dancers}{74}
. . . . . . . 213
\Pisymbol{dancers}{75}
. . . . . . . 213
\Pisymbol{dancers}{76}
. . . . . . . 213
306
()
.
.
()
/
.
()
0
.
()
1
.
()
2
.
()
3
.
()
4
.
()
5
.
()
6
.
()
7
.
()
8
.
()
9
.
()
:
.
()
;
.
()
<
.
()
=
.
()
>
.
()
?
.
()
@
.
()
A
.
()
B
.
()
C
.
()
D
.
()
E
.
()
F
.
()
G
.
()
H
.
()
I
.
()
J
.
()
K
.
()
.
L
\Pisymbol{dancers}{77} ( )
. . . . . . . 213
\Pisymbol{dancers}{78} ( )
. . . . . . . 213
\Pisymbol{dancers}{79} ( )
. . . . . . . 213
\Pisymbol{dancers}{80} ( )
. . . . . . . 213
\Pisymbol{dancers}{81} ( )
. . . . . . . 213
\Pisymbol{dancers}{82} ( )
. . . . . . . 213
\Pisymbol{dancers}{83} ( )
. . . . . . . 213
\Pisymbol{dancers}{84} ( )
. . . . . . . 213
\Pisymbol{dancers}{85} ( )
. . . . . . . 213
\Pisymbol{dancers}{86} ( )
. . . . . . . 211
\Pisymbol{dancers}{87} ( )
. . . . . . . 211
\Pisymbol{dancers}{88} ( )
. . . . . . . 211
\Pisymbol{dancers}{89} ( )
. . . . . . . 211
\Pisymbol{dancers}{90} ( )
. . . . . . . 211
\Pisymbol{dancers}{91} ( )
. . . . . . . 211
\Pisymbol{dancers}{92} ( )
. . . . . . . 211
\Pisymbol{dancers}{93} ( )
. . . . . . . 211
\Pisymbol{dancers}{94} ( )
. . . . . . . 211
\Pisymbol{dancers}{95} ( )
. . . . . . . 211
\Pisymbol{dancers}{96} ( )
. . . . . . . 211
\Pisymbol{dancers}{97} ( )
. . . . . . . 211
\Pisymbol{dancers}{98} ( )
. . . . . . . 211
\Pisymbol{dancers}{99} ( )
. . . . . . . 211
\Pisymbol{dancers}{100} ( )
. . . . . . . 211
\Pisymbol{dancers}{101} ( )
. . . . . . . 211
\Pisymbol{dancers}{102} ( )
. . . . . . . 211
\Pisymbol{dancers}{103} ( )
. . . . . . . 211
\Pisymbol{dancers}{104} ( )
. . . . . . . 211
\Pisymbol{dancers}{105} ( )
. . . . . . . 211
\Pisymbol{dancers}{106} ( )
. . . . . . . 211
\Pisymbol{dancers}{107} ( )
. . . . . . . 211
M
.
N
.
O
.
P
.
Q
.
R
.
S
.
T
.
U
.
V
.
W
.
X
.
Y
.
Z
.
[
.
\
.
]
.
^
.
_
.
`
.
a
.
b
.
c
.
d
.
e
.
f
.
g
.
h
.
i
.
j
.
k
.
\Pisymbol{dancers}{108}
. . . . . . . 211
\Pisymbol{dancers}{109}
. . . . . . . 211
\Pisymbol{dancers}{110}
. . . . . . . 211
\Pisymbol{dancers}{111}
. . . . . . . 211
\Pisymbol{dancers}{112}
. . . . . . . 211
\Pisymbol{dancers}{113}
. . . . . . . 211
\Pisymbol{dancers}{114}
. . . . . . . 211
\Pisymbol{dancers}{115}
. . . . . . . 211
\Pisymbol{dancers}{116}
. . . . . . . 211
\Pisymbol{dancers}{117}
. . . . . . . 211
\Pisymbol{dancers}{118}
. . . . . . . 211
\Pisymbol{dancers}{119}
. . . . . . . 211
\Pisymbol{dancers}{120}
. . . . . . . 212
\Pisymbol{dancers}{121}
. . . . . . . 212
\Pisymbol{dancers}{122}
. . . . . . . 212
\Pisymbol{dancers}{123}
. . . . . . . 212
\Pisymbol{dancers}{124}
. . . . . . . 212
\Pisymbol{dancers}{125}
. . . . . . . 212
\Pisymbol{dancers}{126}
. . . . . . . 212
\Pisymbol{dancers}{127}
. . . . . . . 212
\Pisymbol{dancers}{128}
. . . . . . . 212
\Pisymbol{dancers}{129}
. . . . . . . 212
\Pisymbol{dancers}{130}
. . . . . . . 212
\Pisymbol{dancers}{131}
. . . . . . . 212
\Pisymbol{dancers}{132}
. . . . . . . 212
\Pisymbol{dancers}{133}
. . . . . . . 212
\Pisymbol{dancers}{134}
. . . . . . . 212
\Pisymbol{dancers}{135}
. . . . . . . 212
\Pisymbol{dancers}{136}
. . . . . . . 212
\Pisymbol{dancers}{137}
. . . . . . . 212
\Pisymbol{dancers}{138}
. . . . . . . 212
() .
l
() .
m
() .
n
() .
o
() .
p
() .
q
() .
r
() .
s
() .
t
() .
u
() .
v
() .
w
() .
x
() .
y
() .
z
() .
{
() .
|
() .
}
() .
~
() .

() .
€
() .

() .
‚
() .
ƒ
() .
„
() .
() .
†
() .
‡
() .
ˆ
() .
‰
() .
Š
\Pisymbol{dancers}{139}
. . . . . . . 212
\Pisymbol{dancers}{140}
. . . . . . . 212
\Pisymbol{dancers}{141}
. . . . . . . 212
\Pisymbol{dancers}{142}
. . . . . . . 212
\Pisymbol{dancers}{143}
. . . . . . . 212
\Pisymbol{dancers}{144}
. . . . . . . 212
\Pisymbol{dancers}{145}
. . . . . . . 212
\Pisymbol{dancers}{146}
. . . . . . . 212
\Pisymbol{dancers}{147}
. . . . . . . 212
\Pisymbol{dancers}{148}
. . . . . . . 212
\Pisymbol{dancers}{149}
. . . . . . . 212
\Pisymbol{dancers}{150}
. . . . . . . 212
\Pisymbol{dancers}{151}
. . . . . . . 212
\Pisymbol{dancers}{152}
. . . . . . . 212
\Pisymbol{dancers}{153}
. . . . . . . 212
\Pisymbol{dancers}{154}
. . . . . . . 212
\Pisymbol{dancers}{155}
. . . . . . . 213
\Pisymbol{dancers}{156}
. . . . . . . 213
\Pisymbol{dancers}{157}
. . . . . . . 213
\Pisymbol{dancers}{158}
. . . . . . . 213
\Pisymbol{dancers}{159}
. . . . . . . 213
\Pisymbol{dancers}{160}
. . . . . . . 213
\Pisymbol{dancers}{161}
. . . . . . . 213
\Pisymbol{dancers}{162}
. . . . . . . 213
\Pisymbol{dancers}{163}
. . . . . . . 213
\Pisymbol{dancers}{164}
. . . . . . . 213
\Pisymbol{dancers}{165}
. . . . . . . 213
\Pisymbol{dancers}{166}
. . . . . . . 213
\Pisymbol{dancers}{167}
. . . . . . . 213
\Pisymbol{dancers}{168}
. . . . . . . 213
\Pisymbol{dancers}{169}
. . . . . . . 213
307
() .
‹
() .
Œ
() .

() .
Ž
() .

() .

() .
‘
() .
’
() .
“
() .
”
() .
•
() .
–
() .
—
() .
˜
() .
™
() .
š
() .
›
() .
œ
() .

() .
ž
() .
Ÿ
() .
() .
¡
() .
¢
() .
£
() .
¤
() .
¥
() .
¦
() .
§
() .
¨
() .
©
\Pisymbol{dancers}{170}
. . . . . . . 213
\Pisymbol{dancers}{171}
. . . . . . . 213
\Pisymbol{dancers}{172}
. . . . . . . 211
\Pisymbol{dancers}{173}
. . . . . . . 211
\Pisymbol{dancers}{174}
. . . . . . . 211
\Pisymbol{dancers}{175}
. . . . . . . 211
\Pisymbol{dancers}{176}
. . . . . . . 211
\Pisymbol{dancers}{177}
. . . . . . . 211
\Pisymbol{dancers}{178}
. . . . . . . 211
\Pisymbol{dancers}{179}
. . . . . . . 211
\Pisymbol{dancers}{180}
. . . . . . . 211
\Pisymbol{dancers}{181}
. . . . . . . 211
\Pisymbol{dancers}{182}
. . . . . . . 211
\Pisymbol{dancers}{183}
. . . . . . . 211
\Pisymbol{dancers}{184}
. . . . . . . 211
\Pisymbol{dancers}{185}
. . . . . . . 211
\Pisymbol{dancers}{186}
. . . . . . . 211
\Pisymbol{dancers}{187}
. . . . . . . 211
\Pisymbol{dancers}{188}
. . . . . . . 211
\Pisymbol{dancers}{189}
. . . . . . . 211
\Pisymbol{dancers}{190}
. . . . . . . 211
\Pisymbol{dancers}{191}
. . . . . . . 211
\Pisymbol{dancers}{192}
. . . . . . . 211
\Pisymbol{dancers}{193}
. . . . . . . 211
\Pisymbol{dancers}{194}
. . . . . . . 211
\Pisymbol{dancers}{195}
. . . . . . . 211
\Pisymbol{dancers}{196}
. . . . . . . 211
\Pisymbol{dancers}{197}
. . . . . . . 211
\Pisymbol{dancers}{198}
. . . . . . . 211
\Pisymbol{dancers}{199}
. . . . . . . 211
\Pisymbol{dancers}{200}
. . . . . . . 211
() .
ª
() .
«
() .
¬
() .
­
() .
®
() .
¯
() .
°
() .
±
() .
²
() .
³
() .
´
() .
µ
() .
¶
() .
·
() .
¸
() .
¹
() .
º
() .
»
() .
¼
() .
½
() .
¾
() .
¿
() .
À
() .
Á
() .
Â
() .
Ã
() .
Ä
() .
Å
() .
Æ
() .
Ç
() .
È
\Pisymbol{dancers}{201}
. . . . . . . 211
\Pisymbol{dancers}{202}
. . . . . . . 211
\Pisymbol{dancers}{203}
. . . . . . . 211
\Pisymbol{dancers}{204}
. . . . . . . 211
\Pisymbol{dancers}{205}
. . . . . . . 211
\Pisymbol{dancers}{206}
. . . . . . . 212
\Pisymbol{dancers}{207}
. . . . . . . 212
\Pisymbol{dancers}{208}
. . . . . . . 212
\Pisymbol{dancers}{209}
. . . . . . . 212
\Pisymbol{dancers}{210}
. . . . . . . 212
\Pisymbol{dancers}{211}
. . . . . . . 212
\Pisymbol{dancers}{212}
. . . . . . . 212
\Pisymbol{dancers}{213}
. . . . . . . 212
\Pisymbol{dancers}{214}
. . . . . . . 212
\Pisymbol{dancers}{215}
. . . . . . . 212
\Pisymbol{dancers}{216}
. . . . . . . 212
\Pisymbol{dancers}{217}
. . . . . . . 212
\Pisymbol{dancers}{218}
. . . . . . . 212
\Pisymbol{dancers}{219}
. . . . . . . 212
\Pisymbol{dancers}{220}
. . . . . . . 212
\Pisymbol{dancers}{221}
. . . . . . . 212
\Pisymbol{dancers}{222}
. . . . . . . 212
\Pisymbol{dancers}{223}
. . . . . . . 212
\Pisymbol{dancers}{224}
. . . . . . . 212
\Pisymbol{dancers}{225}
. . . . . . . 212
\Pisymbol{dancers}{226}
. . . . . . . 212
\Pisymbol{dancers}{227}
. . . . . . . 212
\Pisymbol{dancers}{228}
. . . . . . . 212
\Pisymbol{dancers}{229}
. . . . . . . 212
\Pisymbol{dancers}{230}
. . . . . . . 212
\Pisymbol{dancers}{231}
. . . . . . . 212
() .
É
() .
Ê
() .
Ë
() .
Ì
() .
Í
() .
Î
() .
Ï
() .
Ð
() .
Ñ
() .
Ò
() .
Ó
() .
Ô
() .
Õ
() .
Ö
() .
×
() .
Ø
() .
Ù
() .
Ú
() .
Û
() .
Ü
() .
Ý
() .
Þ
() .
ß
() .
à
() .
á
() .
â
() .
ã
() .
ä
() .
å
() .
æ
() .
ç
\Pisymbol{dancers}{232}
. . . . . . . 212
\Pisymbol{dancers}{233}
. . . . . . . 212
\Pisymbol{dancers}{234}
. . . . . . . 212
\Pisymbol{dancers}{235}
. . . . . . . 212
\Pisymbol{dancers}{236}
. . . . . . . 212
\Pisymbol{dancers}{237}
. . . . . . . 212
\Pisymbol{dancers}{238}
. . . . . . . 212
\Pisymbol{dancers}{239}
. . . . . . . 212
\Pisymbol{dancers}{240}
. . . . . . . 212
\Pisymbol{dancers}{241}
. . . . . . . 213
\Pisymbol{dancers}{242}
. . . . . . . 213
\Pisymbol{dancers}{243}
. . . . . . . 213
\Pisymbol{dancers}{244}
. . . . . . . 213
\Pisymbol{dancers}{245}
. . . . . . . 213
\Pisymbol{dancers}{246}
. . . . . . . 213
\Pisymbol{dancers}{247}
. . . . . . . 213
\Pisymbol{dancers}{248}
. . . . . . . 213
\Pisymbol{dancers}{249}
. . . . . . . 213
\Pisymbol{dancers}{250}
. . . . . . . 213
\Pisymbol{dancers}{251}
. . . . . . . 213
\Pisymbol{dancers}{252}
. . . . . . . 213
\Pisymbol{dancers}{253}
. . . . . . . 213
\Pisymbol{dancers}{254}
. . . . . . . 213
\Pisymbol{dancers}{255}
. . . . . . . 213
\Pisymbol{dice3d}{49} (
. . . . . . . 216
\Pisymbol{dice3d}{50} (
. . . . . . . 216
\Pisymbol{dice3d}{51} (
. . . . . . . 216
\Pisymbol{dice3d}{52} (
. . . . . . . 216
\Pisymbol{dice3d}{53} (
. . . . . . . 216
\Pisymbol{dice3d}{54} (
. . . . . . . 216
() .
è
() .
é
() .
308
\Pisymbol{dice3d}{99} (
. . . . . . . 216
b)
.
c)
.
ê
() .
\Pisymbol{dice3d}{100} (
. . . . . . . 216
() .
\Pisymbol{dice3d}{101} (
. . . . . . . 216
() .
\Pisymbol{dice3d}{102} (
. . . . . . . 216
ë
ì
í
() .
\Pisymbol{dice3d}{103} (
. . . . . . . 216
() .
\Pisymbol{dice3d}{104} (
. . . . . . . 216
î
ï
() .
ð
() .
\Pisymbol{dice3d}{105} (
. . . . . . . 216
() .
\Pisymbol{dice3d}{106} (
. . . . . . . 216
() .
\Pisymbol{dice3d}{107} (
. . . . . . . 216
ñ
ò
ó
() .
\Pisymbol{dice3d}{108} (
. . . . . . . 216
() .
\Pisymbol{dice3d}{109} (
. . . . . . . 216
ô
õ
() .
ö
() .
\Pisymbol{dice3d}{110} (
. . . . . . . 216
() .
\Pisymbol{dice3d}{111} (
. . . . . . . 216
() .
\Pisymbol{dice3d}{112} (
. . . . . . . 216
÷
ø
ù
() .
\Pisymbol{dice3d}{113} (
. . . . . . . 216
() .
\Pisymbol{dice3d}{114} (
. . . . . . . 216
ú
û
() .
ü
() .
\Pisymbol{dice3d}{115} (
. . . . . . . 216
() .
\Pisymbol{dice3d}{116} (
. . . . . . . 216
() .
\Pisymbol{dice3d}{117} (
. . . . . . . 216
ý
þ
ÿ
1)
2)
3)
4)
5)
6)
\Pisymbol{dice3d}{97} (
. . . . . . . 216
\Pisymbol{dice3d}{98} (
. . . . . . . 216
a)
.
\Pisymbol{dice3d}{118} (
. . . . . . . 216
.
\Pisymbol{dice3d}{119} (
. . . . . . . 216
.
.
\Pisymbol{dice3d}{120} (
. . . . . . . 216
\Pisymbol{dingbat}{69}
d)
e)
f)
g)
h)
i)
j)
k)
l)
m)
n)
o)
p)
q)
r)
s)
t)
u)
v)
w)
x)
.
.
(E) . . .
\Pisymbol{dingbat}{70}
207
(F) . . .
207
.
\Pisymbol{fselch}{8} (
. . . . . . . 217
\Pisymbol{dingbat}{71}
(G) . . .
\Pisymbol{dingbat}{72}
207
(H) . . .
\Pisymbol{dingbat}{74}
207
(J) . . .
\Pisymbol{dingbat}{75}
207
(K) . . .
\Pisymbol{dingbat}{76}
207
(L) . . .
\Pisymbol{dingbat}{77}
207
(M) . . .
\Pisymbol{dingbat}{97}
207
(a) . . . . . . . . .
\Pisymbol{dingbat}{98}
207
(b) . . . . . . . . .
\Pisymbol{dingbat}{99}
207
(c) . . . . . . . . . 207
\Pisymbol{dingbat}{100}
(d) . . . . . . . . . 207
\Pisymbol{dingbat}{101}
(e) . . . . . . . . . 207
\Pisymbol{dingbat}{102}
(f) . . . . . . . . . 207
\Pisymbol{dingbat}{103}
(g) . . . . . . . . . 207
\Pisymbol{dingbat}{104}
(h)
.........
207
\Pisymbol{fselch}{0} (
. . . . . . . 217
) ..
\Pisymbol{fselch}{1} (
. . . . . . . 217
..
)
\Pisymbol{fselch}{2} ()
. . . . . . . 217
\Pisymbol{fselch}{3} ()
. . . . . . . 217
\Pisymbol{fselch}{4} ()
. . . . . . . 217
\Pisymbol{fselch}{5} ()
. . . . . . . 217
\Pisymbol{fselch}{6} ()
. . . . . . . 217
\Pisymbol{fselch}{7} ()
.......
217
..
..
)
..
\Pisymbol{fselch}{9} (
. . . . . . . 217
) ..
\Pisymbol{fselch}{10} (
. . . . . . . 217
) .
\Pisymbol{fselch}{11} (
. . . . . . . 217
) .
\Pisymbol{fselch}{12} (
. . . . . . . 217
) .
\Pisymbol{fselch}{13} (
. . . . . . . 217
) .
\Pisymbol{fselch}{14} (
. . . . . . . 217
.
)
\Pisymbol{fselch}{15} ()
. . . . . . . 217
\Pisymbol{fselch}{16} ()
. . . . . . . 217
\Pisymbol{fselch}{17} ()
. . . . . . . 217
\Pisymbol{fselch}{18} ()
. . . . . . . 217
\Pisymbol{fselch}{19} ()
. . . . . . . 217
\Pisymbol{fselch}{20} ()
. . . . . . . 218
\Pisymbol{fselch}{21} ()
. . . . . . . 218
\Pisymbol{fselch}{22} ()
. . . . . . . 218
\Pisymbol{fselch}{23} ()
. . . . . . . 218
\Pisymbol{fselch}{24} ()
. . . . . . . 218
\Pisymbol{fselch}{25} ()
. . . . . . . 218
\Pisymbol{fselch}{26} ()
. . . . . . . 218
\Pisymbol{fselch}{27} ()
. . . . . . . 218
\Pisymbol{fselch}{28} ()
. . . . . . . 218
\Pisymbol{fselch}{29} ()
. . . . . . . 218
\Pisymbol{fselch}{30} ()
. . . . . . . 218
\Pisymbol{fselch}{31} ()
.......
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
218
..
\Pisymbol{fselch}{32} (
. . . . . . . 218
) .
..
\Pisymbol{fselch}{33} (
. . . . . . . 218
.
..
..
!)
\Pisymbol{fselch}{34} (")
. . . . . . . 218
\Pisymbol{fselch}{35} (#)
.......
309
218
.
.
$)
\Pisymbol{fselch}{37} (%)
. . . . . . . 218
\Pisymbol{fselch}{38} (&)
. . . . . . . 218
\Pisymbol{fselch}{39} (')
. . . . . . . 218
\Pisymbol{fselch}{40} (()
. . . . . . . 218
\Pisymbol{fselch}{41} ())
. . . . . . . 218
\Pisymbol{fselch}{42} (*)
. . . . . . . 218
\Pisymbol{fselch}{43} (+)
. . . . . . . 218
\Pisymbol{fselch}{44} (,)
. . . . . . . 218
\Pisymbol{fselch}{45} (-)
. . . . . . . 218
\Pisymbol{fselch}{46} (.)
. . . . . . . 218
\Pisymbol{fselch}{47} (/)
. . . . . . . 218
\Pisymbol{fselch}{48} (0)
. . . . . . . 218
\Pisymbol{fselch}{49} (1)
. . . . . . . 218
\Pisymbol{fselch}{50} (2)
. . . . . . . 218
\Pisymbol{fselch}{51} (3)
. . . . . . . 218
\Pisymbol{fselch}{52} (4)
. . . . . . . 218
\Pisymbol{fselch}{53} (5)
. . . . . . . 218
\Pisymbol{fselch}{54} (6)
. . . . . . . 218
\Pisymbol{fselch}{55} (7)
. . . . . . . 217
\Pisymbol{fselch}{56} (8)
. . . . . . . 217
\Pisymbol{fselch}{57} (9)
. . . . . . . 217
\Pisymbol{fselch}{58} (:)
. . . . . . . 217
\Pisymbol{fselch}{59} (;)
. . . . . . . 217
\Pisymbol{fselch}{60} (<)
. . . . . . . 217
\Pisymbol{fselch}{61} (=)
. . . . . . . 217
\Pisymbol{fselch}{62} (>)
. . . . . . . 217
\Pisymbol{fselch}{63} (?)
\Pisymbol{fselch}{36} (
. . . . . . . 218
.......
217
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
@)
\Pisymbol{fselch}{65} (A)
. . . . . . . 217
\Pisymbol{fselch}{66} (B)
. . . . . . . 217
\Pisymbol{fselch}{67} (C)
. . . . . . . 217
\Pisymbol{fselch}{68} (D)
. . . . . . . 217
\Pisymbol{fselch}{69} (E)
. . . . . . . 217
\Pisymbol{fselch}{70} (F)
. . . . . . . 217
\Pisymbol{fselch}{71} (G)
. . . . . . . 217
\Pisymbol{fselch}{72} (H)
. . . . . . . 217
\Pisymbol{fselch}{73} (I)
. . . . . . . 217
\Pisymbol{fselch}{74} (J)
. . . . . . . 217
\Pisymbol{fselch}{75} (K)
. . . . . . . 218
\Pisymbol{fselch}{76} (L)
. . . . . . . 218
\Pisymbol{fselch}{77} (M)
. . . . . . . 218
\Pisymbol{fselch}{78} (N)
. . . . . . . 218
\Pisymbol{fselch}{79} (O)
. . . . . . . 218
\Pisymbol{fselch}{80} (P)
. . . . . . . 218
\Pisymbol{fselch}{81} (Q)
. . . . . . . 218
\Pisymbol{fselch}{82} (R)
. . . . . . . 218
\Pisymbol{fselch}{83} (S)
. . . . . . . 218
\Pisymbol{fselch}{84} (T)
. . . . . . . 218
\Pisymbol{fselch}{85} (U)
. . . . . . . 218
\Pisymbol{fselch}{86} (V)
. . . . . . . 218
\Pisymbol{fselch}{87} (W)
. . . . . . . 218
\Pisymbol{fselch}{88} (X)
. . . . . . . 218
\Pisymbol{fselch}{89} (Y)
. . . . . . . 218
\Pisymbol{fselch}{90} (Z)
. . . . . . . 218
\Pisymbol{fselch}{91} ([)
\Pisymbol{fselch}{64} (
. . . . . . . 217
.......
218
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
\) .
\Pisymbol{fselch}{93} (]) .
. . . . . . . 218
\Pisymbol{fselch}{94} (^) .
. . . . . . . 218
\Pisymbol{fselch}{95} (_) .
. . . . . . . 218
\Pisymbol{fselch}{96} (`) .
. . . . . . . 218
\Pisymbol{fselch}{97} (a) .
. . . . . . . 218
\Pisymbol{fselch}{98} (b) .
. . . . . . . 218
\Pisymbol{fselch}{99} (c) .
. . . . . . . 218
\Pisymbol{fselch}{100} (d)
. . . . . . . 218
\Pisymbol{fselch}{101} (e)
. . . . . . . 218
\Pisymbol{fselch}{102} (f)
. . . . . . . 218
\Pisymbol{fselch}{103} (g)
. . . . . . . 218
\Pisymbol{fselch}{104} (h)
. . . . . . . 218
\Pisymbol{fselch}{105} (i)
. . . . . . . 218
\Pisymbol{fselch}{106} (j)
. . . . . . . 218
\Pisymbol{fselch}{107} (k)
. . . . . . . 218
\Pisymbol{fselch}{108} (l)
. . . . . . . 218
\Pisymbol{fselch}{109} (m)
. . . . . . . 218
\Pisymbol{fselch}{110} (n)
. . . . . . . 217
\Pisymbol{fselch}{111} (o)
. . . . . . . 217
\Pisymbol{fselch}{112} (p)
. . . . . . . 217
\Pisymbol{fselch}{113} (q)
. . . . . . . 217
\Pisymbol{fselch}{114} (r)
. . . . . . . 217
\Pisymbol{fselch}{115} (s)
. . . . . . . 217
\Pisymbol{fselch}{116} (t)
. . . . . . . 217
\Pisymbol{fselch}{117} (u)
. . . . . . . 217
\Pisymbol{fselch}{118} (v)
. . . . . . . 217
\Pisymbol{fselch}{119} (w)
\Pisymbol{fselch}{92} (
. . . . . . . 218
.......
310
217
x)
\Pisymbol{fselch}{121} (y)
. . . . . . . 217
\Pisymbol{fselch}{122} (z)
. . . . . . . 217
\Pisymbol{fselch}{123} ({)
. . . . . . . 217
\Pisymbol{fselch}{124} (|)
. . . . . . . 217
\Pisymbol{fselch}{125} (})
. . . . . . . 217
\Pisymbol{fselch}{126} (~)
. . . . . . . 217
\Pisymbol{fselch}{127} ()
. . . . . . . 217
\Pisymbol{fselch}{128} (€)
. . . . . . . 217
\Pisymbol{fselch}{129} ()
. . . . . . . 217
\Pisymbol{fselch}{130} (‚)
. . . . . . . 218
\Pisymbol{fselch}{131} (ƒ)
. . . . . . . 218
\Pisymbol{fselch}{132} („)
\Pisymbol{fselch}{120} (
. . . . . . . 217
.......
218
\Pisymbol{fselch}{133} (
. . . . . . . 218
)
†)
\Pisymbol{fselch}{135} (‡)
. . . . . . . 218
\Pisymbol{fselch}{136} (ˆ)
. . . . . . . 218
\Pisymbol{fselch}{137} (‰)
. . . . . . . 218
\Pisymbol{fselch}{138} (Š)
. . . . . . . 218
\Pisymbol{fselch}{139} (‹)
. . . . . . . 218
\Pisymbol{fselch}{140} (Œ)
. . . . . . . 218
\Pisymbol{fselch}{141} ()
. . . . . . . 218
\Pisymbol{fselch}{142} (Ž)
. . . . . . . 218
\Pisymbol{fselch}{143} ()
. . . . . . . 218
\Pisymbol{fselch}{144} ()
. . . . . . . 218
\Pisymbol{fselch}{145} (‘)
. . . . . . . 218
\Pisymbol{fselch}{151} (—)
. . . . . . . 218
\Pisymbol{fselch}{157} ()
\Pisymbol{fselch}{134} (
. . . . . . . 218
.......
218
£)
\Pisymbol{fselch}{169} (©)
. . . . . . . 218
\Pisymbol{fselch}{175} (¯)
. . . . . . . 218
\Pisymbol{fselch}{180} (´)
. . . . . . . 218
\Pisymbol{fselch}{186} (º)
. . . . . . . 218
\Pisymbol{fselch}{192} (À)
. . . . . . . 218
\Pisymbol{fselch}{198} (Æ)
. . . . . . . 218
\Pisymbol{fselch}{204} (Ì)
. . . . . . . 218
\Pisymbol{fselch}{210} (Ò)
. . . . . . . 218
\Pisymbol{fselch}{216} (Ø)
. . . . . . . 218
\Pisymbol{fselch}{222} (Þ)
. . . . . . . 218
\Pisymbol{fselch}{228} (ä)
. . . . . . . 218
\Pisymbol{fselch}{234} (ê)
. . . . . . . 218
\Pisymbol{fselch}{240} (ð)
. . . . . . . 218
\Pisymbol{fselch}{246} (ö)
\Pisymbol{fselch}{163} (
. . . . . . . 218
. . . . . . . 218
\Pisymbol{greenpoint}{71}
(G) . . . . . . . . . . . 199
\Pisymbol{hands}{65} ( ) . .
. . . . . . . 199
\Pisymbol{hands}{66} ( ) . .
. . . . . . . 199
\Pisymbol{hands}{67} ( ) . .
. . . . . . . 199
\Pisymbol{hands}{68} ( ) . .
. . . . . . . 199
A
B
C
D
\Pisymbol{knot1}{48} (
. . . . . . . 207
\Pisymbol{knot1}{49} (
. . . . . . . 207
\Pisymbol{knot1}{50} (
. . . . . . . 207
\Pisymbol{knot1}{51} (
. . . . . . . 207
\Pisymbol{knot1}{52} (
. . . . . . . 207
\Pisymbol{knot1}{53} (
. . . . . . . 207
\Pisymbol{knot1}{58} (
. . . . . . . 207
\Pisymbol{knot1}{59} (
. . . . . . . 207
0
1
2
3
4
5
:
;
\Pisymbol{knot1}{60} (
. . . . . . . 207
\Pisymbol{knot1}{61} (
. . . . . . . 207
\Pisymbol{knot1}{62} (
. . . . . . . 208
\Pisymbol{knot1}{63} (
. . . . . . . 208
\Pisymbol{knot1}{64} (
. . . . . . . 208
\Pisymbol{knot1}{65} (
. . . . . . . 208
\Pisymbol{knot1}{66} (
. . . . . . . 208
\Pisymbol{knot1}{67} (
. . . . . . . 208
\Pisymbol{knot1}{68} (
. . . . . . . 207
\Pisymbol{knot1}{69} (
. . . . . . . 207
\Pisymbol{knot1}{70} (
. . . . . . . 207
\Pisymbol{knot1}{71} (
. . . . . . . 207
\Pisymbol{knot1}{72} (
. . . . . . . 207
\Pisymbol{knot1}{73} (
. . . . . . . 207
\Pisymbol{knot1}{74} (
. . . . . . . 207
\Pisymbol{knot1}{75} (
. . . . . . . 207
\Pisymbol{knot1}{76} (
. . . . . . . 207
) .
\Pisymbol{knot1}{77} (
. . . . . . . 207
) .
\Pisymbol{knot1}{78} (
. . . . . . . 208
) .
\Pisymbol{knot1}{79} (
. . . . . . . 208
) .
\Pisymbol{knot1}{80} (
. . . . . . . 208
) .
\Pisymbol{knot1}{81} (
. . . . . . . 208
) .
\Pisymbol{knot1}{82} (
. . . . . . . 208
) .
\Pisymbol{knot1}{83} (
. . . . . . . 208
) .
\Pisymbol{knot1}{84} (
. . . . . . . 207
311
<
=
>
?
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
`
a
b
c
d
e
f
g
h
i
0
1
2
3
4
5
:
;
<
=
>
) .
\Pisymbol{knot1}{85} (
. . . . . . . 207
) .
) .
\Pisymbol{knot1}{86} (
. . . . . . . 207
) .
\Pisymbol{knot1}{87} (
. . . . . . . 207
) .
\Pisymbol{knot1}{88} (
. . . . . . . 207
) .
\Pisymbol{knot1}{96} (
. . . . . . . 207
) .
\Pisymbol{knot1}{97} (
. . . . . . . 207
) .
\Pisymbol{knot1}{98} (
. . . . . . . 207
) .
\Pisymbol{knot1}{99} (
. . . . . . . 207
) .
\Pisymbol{knot1}{100} (
. . . . . . . 207
)
) .
\Pisymbol{knot1}{101} (
. . . . . . . 208
)
) .
\Pisymbol{knot1}{102} (
. . . . . . . 208
)
) .
\Pisymbol{knot1}{103} (
. . . . . . . 208
)
) .
\Pisymbol{knot1}{104} (
. . . . . . . 208
)
) .
\Pisymbol{knot1}{105} (
. . . . . . . 208
)
) .
\Pisymbol{knot2}{48} (
. . . . . . . 208
) .
) .
\Pisymbol{knot2}{49} (
. . . . . . . 208
) .
\Pisymbol{knot2}{50} (
. . . . . . . 208
) .
\Pisymbol{knot2}{51} (
. . . . . . . 208
) .
\Pisymbol{knot2}{52} (
. . . . . . . 208
) .
\Pisymbol{knot2}{53} (
. . . . . . . 208
) .
\Pisymbol{knot2}{58} (
. . . . . . . 208
) .
\Pisymbol{knot2}{59} (
. . . . . . . 208
) .
\Pisymbol{knot2}{60} (
. . . . . . . 208
) .
\Pisymbol{knot2}{61} (
. . . . . . . 208
) .
\Pisymbol{knot2}{62} (
. . . . . . . 208
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
?
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
`
a
b
c
d
e
f
g
h
i
0
1
2
3
4
5
:
;
<
=
>
?
@
A
\Pisymbol{knot2}{63} (
. . . . . . . 208
) .
\Pisymbol{knot2}{88} (
. . . . . . . 208
) .
\Pisymbol{knot3}{66} (
. . . . . . . 208
\Pisymbol{knot2}{64} (
. . . . . . . 208
) .
\Pisymbol{knot2}{96} (
. . . . . . . 208
) .
\Pisymbol{knot3}{67} (
. . . . . . . 209
\Pisymbol{knot2}{65} (
. . . . . . . 208
) .
\Pisymbol{knot2}{97} (
. . . . . . . 208
) .
\Pisymbol{knot3}{68} (
. . . . . . . 208
\Pisymbol{knot2}{66} (
. . . . . . . 208
) .
\Pisymbol{knot2}{98} (
. . . . . . . 208
) .
\Pisymbol{knot3}{69} (
. . . . . . . 208
\Pisymbol{knot2}{67} (
. . . . . . . 208
) .
\Pisymbol{knot2}{99} (
. . . . . . . 208
) .
\Pisymbol{knot3}{70} (
. . . . . . . 208
\Pisymbol{knot2}{68} (
. . . . . . . 208
) .
\Pisymbol{knot2}{100} (
. . . . . . . 208
)
\Pisymbol{knot3}{71} (
. . . . . . . 208
\Pisymbol{knot2}{69} (
. . . . . . . 208
) .
\Pisymbol{knot2}{101} (
. . . . . . . 208
)
\Pisymbol{knot3}{72} (
. . . . . . . 208
\Pisymbol{knot2}{70} (
. . . . . . . 208
) .
\Pisymbol{knot2}{102} (
. . . . . . . 208
)
\Pisymbol{knot3}{73} (
. . . . . . . 208
\Pisymbol{knot2}{71} (
. . . . . . . 208
) .
\Pisymbol{knot2}{103} (
. . . . . . . 208
)
\Pisymbol{knot3}{74} (
. . . . . . . 208
\Pisymbol{knot2}{72} (
. . . . . . . 208
) .
\Pisymbol{knot2}{104} (
. . . . . . . 208
)
\Pisymbol{knot3}{75} (
. . . . . . . 208
\Pisymbol{knot2}{73} (
. . . . . . . 208
) .
\Pisymbol{knot2}{105} (
. . . . . . . 208
)
\Pisymbol{knot3}{76} (
. . . . . . . 208
\Pisymbol{knot2}{74} (
. . . . . . . 208
) .
\Pisymbol{knot3}{48} (
. . . . . . . 208
) .
\Pisymbol{knot3}{77} (
. . . . . . . 208
\Pisymbol{knot2}{75} (
. . . . . . . 208
) .
\Pisymbol{knot3}{49} (
. . . . . . . 208
) .
\Pisymbol{knot3}{78} (
. . . . . . . 208
\Pisymbol{knot2}{76} (
. . . . . . . 208
) .
\Pisymbol{knot3}{50} (
. . . . . . . 208
) .
\Pisymbol{knot3}{79} (
. . . . . . . 208
\Pisymbol{knot2}{77} (
. . . . . . . 208
) .
\Pisymbol{knot3}{51} (
. . . . . . . 208
) .
\Pisymbol{knot3}{80} (
. . . . . . . 208
\Pisymbol{knot2}{78} (
. . . . . . . 208
) .
\Pisymbol{knot3}{52} (
. . . . . . . 208
) .
\Pisymbol{knot3}{81} (
. . . . . . . 208
\Pisymbol{knot2}{79} (
. . . . . . . 208
) .
\Pisymbol{knot3}{53} (
. . . . . . . 208
) .
\Pisymbol{knot3}{82} (
. . . . . . . 208
\Pisymbol{knot2}{80} (
. . . . . . . 208
) .
\Pisymbol{knot3}{58} (
. . . . . . . 208
) .
\Pisymbol{knot3}{83} (
. . . . . . . 209
\Pisymbol{knot2}{81} (
. . . . . . . 208
) .
\Pisymbol{knot3}{59} (
. . . . . . . 208
) .
\Pisymbol{knot3}{84} (
. . . . . . . 208
\Pisymbol{knot2}{82} (
. . . . . . . 208
) .
\Pisymbol{knot3}{60} (
. . . . . . . 208
) .
\Pisymbol{knot3}{85} (
. . . . . . . 208
\Pisymbol{knot2}{83} (
. . . . . . . 208
) .
\Pisymbol{knot3}{61} (
. . . . . . . 208
) .
\Pisymbol{knot3}{86} (
. . . . . . . 208
\Pisymbol{knot2}{84} (
. . . . . . . 208
) .
\Pisymbol{knot3}{62} (
. . . . . . . 208
) .
\Pisymbol{knot3}{87} (
. . . . . . . 208
\Pisymbol{knot2}{85} (
. . . . . . . 208
) .
\Pisymbol{knot3}{63} (
. . . . . . . 208
) .
\Pisymbol{knot3}{88} (
. . . . . . . 208
\Pisymbol{knot2}{86} (
. . . . . . . 208
) .
\Pisymbol{knot3}{64} (
. . . . . . . 208
) .
\Pisymbol{knot3}{96} (
. . . . . . . 208
\Pisymbol{knot2}{87} (
. . . . . . . 208
) .
\Pisymbol{knot3}{65} (
. . . . . . . 208
) .
\Pisymbol{knot3}{97} (
. . . . . . . 208
312
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
`
a
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
b
c
d
e
f
g
h
i
0
1
2
3
4
5
:
;
<
=
>
?
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
`
a
b
c
d
\Pisymbol{knot3}{98} (
. . . . . . . 208
) .
\Pisymbol{knot4}{69} (
. . . . . . . 209
\Pisymbol{knot3}{99} (
. . . . . . . 208
) .
\Pisymbol{knot4}{70} (
. . . . . . . 209
\Pisymbol{knot3}{100} (
. . . . . . . 208
)
\Pisymbol{knot4}{71} (
. . . . . . . 209
\Pisymbol{knot3}{101} (
. . . . . . . 208
)
\Pisymbol{knot4}{72} (
. . . . . . . 209
\Pisymbol{knot3}{102} (
. . . . . . . 208
)
\Pisymbol{knot4}{73} (
. . . . . . . 209
\Pisymbol{knot3}{103} (
. . . . . . . 208
)
\Pisymbol{knot4}{74} (
. . . . . . . 209
\Pisymbol{knot3}{104} (
. . . . . . . 208
)
\Pisymbol{knot4}{75} (
. . . . . . . 209
\Pisymbol{knot3}{105} (
. . . . . . . 208
)
\Pisymbol{knot4}{76} (
. . . . . . . 209
\Pisymbol{knot4}{48} (
. . . . . . . 209
) .
\Pisymbol{knot4}{77} (
. . . . . . . 209
\Pisymbol{knot4}{49} (
. . . . . . . 209
) .
\Pisymbol{knot4}{78} (
. . . . . . . 209
\Pisymbol{knot4}{50} (
. . . . . . . 209
) .
\Pisymbol{knot4}{79} (
. . . . . . . 209
\Pisymbol{knot4}{51} (
. . . . . . . 209
) .
\Pisymbol{knot4}{80} (
. . . . . . . 209
\Pisymbol{knot4}{52} (
. . . . . . . 209
) .
\Pisymbol{knot4}{81} (
. . . . . . . 209
\Pisymbol{knot4}{53} (
. . . . . . . 209
) .
\Pisymbol{knot4}{82} (
. . . . . . . 209
\Pisymbol{knot4}{58} (
. . . . . . . 209
) .
\Pisymbol{knot4}{83} (
. . . . . . . 209
\Pisymbol{knot4}{59} (
. . . . . . . 209
) .
\Pisymbol{knot4}{84} (
. . . . . . . 209
\Pisymbol{knot4}{60} (
. . . . . . . 209
) .
\Pisymbol{knot4}{85} (
. . . . . . . 209
\Pisymbol{knot4}{61} (
. . . . . . . 209
) .
\Pisymbol{knot4}{86} (
. . . . . . . 209
\Pisymbol{knot4}{62} (
. . . . . . . 209
) .
\Pisymbol{knot4}{87} (
. . . . . . . 209
\Pisymbol{knot4}{63} (
. . . . . . . 209
) .
\Pisymbol{knot4}{88} (
. . . . . . . 209
\Pisymbol{knot4}{64} (
. . . . . . . 209
) .
\Pisymbol{knot4}{96} (
. . . . . . . 209
\Pisymbol{knot4}{65} (
. . . . . . . 209
) .
\Pisymbol{knot4}{97} (
. . . . . . . 209
\Pisymbol{knot4}{66} (
. . . . . . . 209
) .
\Pisymbol{knot4}{98} (
. . . . . . . 209
\Pisymbol{knot4}{67} (
. . . . . . . 209
) .
\Pisymbol{knot4}{99} (
. . . . . . . 209
\Pisymbol{knot4}{68} (
. . . . . . . 209
) .
\Pisymbol{knot4}{100} (
. . . . . . . 209
313
e
f
g
h
i
0
1
2
3
4
5
:
;
<
=
>
?
@
A
B
C
D
E
F
G
) .
\Pisymbol{knot4}{101} (
. . . . . . . 209
)
) .
\Pisymbol{knot4}{102} (
. . . . . . . 209
)
) .
\Pisymbol{knot4}{103} (
. . . . . . . 209
)
) .
\Pisymbol{knot4}{104} (
. . . . . . . 209
)
) .
\Pisymbol{knot4}{105} (
. . . . . . . 209
)
) .
\Pisymbol{knot5}{48} (
. . . . . . . 209
) .
) .
\Pisymbol{knot5}{49} (
. . . . . . . 209
) .
\Pisymbol{knot5}{50} (
. . . . . . . 209
) .
\Pisymbol{knot5}{51} (
. . . . . . . 209
) .
\Pisymbol{knot5}{52} (
. . . . . . . 209
) .
\Pisymbol{knot5}{53} (
. . . . . . . 209
) .
\Pisymbol{knot5}{58} (
. . . . . . . 209
) .
\Pisymbol{knot5}{59} (
. . . . . . . 209
) .
\Pisymbol{knot5}{60} (
. . . . . . . 209
) .
\Pisymbol{knot5}{61} (
. . . . . . . 209
) .
\Pisymbol{knot5}{62} (
. . . . . . . 209
) .
\Pisymbol{knot5}{63} (
. . . . . . . 209
) .
\Pisymbol{knot5}{64} (
. . . . . . . 209
) .
\Pisymbol{knot5}{65} (
. . . . . . . 209
) .
\Pisymbol{knot5}{66} (
. . . . . . . 209
) .
\Pisymbol{knot5}{67} (
. . . . . . . 209
) .
\Pisymbol{knot5}{68} (
. . . . . . . 209
) .
\Pisymbol{knot5}{69} (
. . . . . . . 209
) .
\Pisymbol{knot5}{70} (
. . . . . . . 209
)
\Pisymbol{knot5}{71} (
. . . . . . . 209
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
`
a
b
c
d
e
f
g
h
i
0
1
2
3
4
5
:
;
<
=
>
?
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
`
a
b
c
d
e
f
g
h
i
0
\Pisymbol{knot5}{72} (
. . . . . . . 209
) .
\Pisymbol{knot5}{104} (
. . . . . . . 209
)
\Pisymbol{knot6}{75} (
. . . . . . . 210
\Pisymbol{knot5}{73} (
. . . . . . . 209
) .
\Pisymbol{knot5}{105} (
. . . . . . . 209
)
\Pisymbol{knot6}{76} (
. . . . . . . 210
\Pisymbol{knot5}{74} (
. . . . . . . 209
) .
\Pisymbol{knot6}{48} (
. . . . . . . 209
) .
\Pisymbol{knot6}{77} (
. . . . . . . 210
\Pisymbol{knot5}{75} (
. . . . . . . 209
) .
\Pisymbol{knot6}{49} (
. . . . . . . 209
) .
\Pisymbol{knot6}{78} (
. . . . . . . 210
\Pisymbol{knot5}{76} (
. . . . . . . 209
) .
\Pisymbol{knot6}{50} (
. . . . . . . 209
) .
\Pisymbol{knot6}{79} (
. . . . . . . 210
\Pisymbol{knot5}{77} (
. . . . . . . 209
) .
\Pisymbol{knot6}{51} (
. . . . . . . 209
) .
\Pisymbol{knot6}{80} (
. . . . . . . 210
\Pisymbol{knot5}{78} (
. . . . . . . 209
) .
\Pisymbol{knot6}{52} (
. . . . . . . 210
) .
\Pisymbol{knot6}{81} (
. . . . . . . 210
\Pisymbol{knot5}{79} (
. . . . . . . 209
) .
\Pisymbol{knot6}{53} (
. . . . . . . 210
) .
\Pisymbol{knot6}{82} (
. . . . . . . 210
\Pisymbol{knot5}{80} (
. . . . . . . 209
) .
\Pisymbol{knot6}{58} (
. . . . . . . 210
) .
\Pisymbol{knot6}{83} (
. . . . . . . 210
\Pisymbol{knot5}{81} (
. . . . . . . 209
) .
\Pisymbol{knot6}{59} (
. . . . . . . 210
) .
\Pisymbol{knot6}{84} (
. . . . . . . 209
\Pisymbol{knot5}{82} (
. . . . . . . 209
) .
\Pisymbol{knot6}{60} (
. . . . . . . 210
) .
\Pisymbol{knot6}{85} (
. . . . . . . 209
\Pisymbol{knot5}{83} (
. . . . . . . 209
) .
\Pisymbol{knot6}{61} (
. . . . . . . 210
) .
\Pisymbol{knot6}{86} (
. . . . . . . 209
\Pisymbol{knot5}{84} (
. . . . . . . 209
) .
\Pisymbol{knot6}{62} (
. . . . . . . 210
) .
\Pisymbol{knot6}{87} (
. . . . . . . 209
\Pisymbol{knot5}{85} (
. . . . . . . 209
) .
\Pisymbol{knot6}{63} (
. . . . . . . 210
) .
\Pisymbol{knot6}{88} (
. . . . . . . 210
\Pisymbol{knot5}{86} (
. . . . . . . 209
) .
\Pisymbol{knot6}{64} (
. . . . . . . 210
) .
\Pisymbol{knot6}{96} (
. . . . . . . 210
\Pisymbol{knot5}{87} (
. . . . . . . 209
) .
\Pisymbol{knot6}{65} (
. . . . . . . 210
) .
\Pisymbol{knot6}{97} (
. . . . . . . 210
\Pisymbol{knot5}{88} (
. . . . . . . 209
) .
\Pisymbol{knot6}{66} (
. . . . . . . 210
) .
\Pisymbol{knot6}{98} (
. . . . . . . 210
\Pisymbol{knot5}{96} (
. . . . . . . 209
) .
\Pisymbol{knot6}{67} (
. . . . . . . 210
) .
\Pisymbol{knot6}{99} (
. . . . . . . 210
\Pisymbol{knot5}{97} (
. . . . . . . 209
) .
\Pisymbol{knot6}{68} (
. . . . . . . 209
) .
\Pisymbol{knot6}{100} (
. . . . . . . 210
)
\Pisymbol{knot5}{98} (
. . . . . . . 209
) .
\Pisymbol{knot6}{69} (
. . . . . . . 209
) .
\Pisymbol{knot6}{101} (
. . . . . . . 210
)
\Pisymbol{knot5}{99} (
. . . . . . . 209
) .
\Pisymbol{knot6}{70} (
. . . . . . . 209
) .
\Pisymbol{knot6}{102} (
. . . . . . . 210
)
\Pisymbol{knot5}{100} (
. . . . . . . 209
)
\Pisymbol{knot6}{71} (
. . . . . . . 209
) .
\Pisymbol{knot6}{103} (
. . . . . . . 210
)
\Pisymbol{knot5}{101} (
. . . . . . . 209
)
\Pisymbol{knot6}{72} (
. . . . . . . 210
) .
\Pisymbol{knot6}{104} (
. . . . . . . 210
)
\Pisymbol{knot5}{102} (
. . . . . . . 209
)
\Pisymbol{knot6}{73} (
. . . . . . . 210
) .
\Pisymbol{knot6}{105} (
. . . . . . . 210
)
\Pisymbol{knot5}{103} (
. . . . . . . 209
)
\Pisymbol{knot6}{74} (
. . . . . . . 210
) .
\Pisymbol{knot7}{48} (
. . . . . . . 210
) .
314
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
) .
1
2
3
4
5
:
;
<
=
>
?
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
`
a
b
c
d
e
f
g
h
i
4
\Pisymbol{magic}{53} (5)
. . . . . . . 217
\Pisymbol{magic}{54} (6)
. . . . . . . 217
\Pisymbol{magic}{55} (7)
. . . . . . . 217
\Pisymbol{magic}{56} (8)
. . . . . . . 217
\Pisymbol{magic}{57} (9)
. . . . . . . 217
\Pisymbol{magic}{66} (B)
. . . . . . . 217
\Pisymbol{magic}{71} (G)
. . . . . . . 217
\Pisymbol{magic}{82} (R)
. . . . . . . 217
\Pisymbol{magic}{84} (T)
. . . . . . . 217
\Pisymbol{magic}{85} (U)
. . . . . . . 217
\Pisymbol{magic}{87} (W)
. . . . . . . 217
\Pisymbol{magic}{88} (X)
. . . . . . . 217
\Pisymbol{magic}{90} (Z)
\Pisymbol{magic}{52} ( ) . .
. . . . . . . 217
\Pisymbol{knot7}{49} (
. . . . . . . 210
) .
\Pisymbol{knot7}{78} (
. . . . . . . 210
) .
\Pisymbol{knot7}{50} (
. . . . . . . 210
) .
\Pisymbol{knot7}{79} (
. . . . . . . 210
) .
\Pisymbol{knot7}{51} (
. . . . . . . 210
) .
\Pisymbol{knot7}{80} (
. . . . . . . 210
) .
\Pisymbol{knot7}{52} (
. . . . . . . 210
) .
\Pisymbol{knot7}{81} (
. . . . . . . 210
) .
\Pisymbol{knot7}{53} (
. . . . . . . 210
) .
\Pisymbol{knot7}{82} (
. . . . . . . 210
) .
\Pisymbol{knot7}{58} (
. . . . . . . 210
) .
\Pisymbol{knot7}{83} (
. . . . . . . 210
) .
\Pisymbol{knot7}{59} (
. . . . . . . 210
) .
\Pisymbol{knot7}{84} (
. . . . . . . 210
) .
\Pisymbol{knot7}{60} (
. . . . . . . 210
) .
\Pisymbol{knot7}{85} (
. . . . . . . 210
) .
\Pisymbol{knot7}{61} (
. . . . . . . 210
) .
\Pisymbol{knot7}{86} (
. . . . . . . 210
) .
\Pisymbol{knot7}{62} (
. . . . . . . 210
) .
\Pisymbol{knot7}{87} (
. . . . . . . 210
) .
\Pisymbol{knot7}{63} (
. . . . . . . 210
) .
\Pisymbol{knot7}{88} (
. . . . . . . 210
) .
\Pisymbol{knot7}{64} (
. . . . . . . 210
) .
\Pisymbol{knot7}{96} (
. . . . . . . 210
) .
\Pisymbol{knot7}{97} (
. . . . . . . 210
) .
\Pisymbol{moonphase}{0} ( )
. . . . . . . 201
\Pisymbol{knot7}{98} (
. . . . . . . 210
) .
\Pisymbol{moonphase}{1} ( )
. . . . . . . 201
\Pisymbol{knot7}{99} (
. . . . . . . 210
) .
\Pisymbol{knot7}{100} (
. . . . . . . 210
)
\Pisymbol{knot7}{101} (
. . . . . . . 210
)
\Pisymbol{knot7}{102} (
. . . . . . . 210
)
\Pisymbol{knot7}{103} (
. . . . . . . 210
)
\Pisymbol{knot7}{104} (
. . . . . . . 210
)
\Pisymbol{knot7}{105} (
. . . . . . . 210
)
\Pisymbol{knot7}{65} (
. . . . . . . 210
) .
\Pisymbol{knot7}{66} (
. . . . . . . 210
) .
\Pisymbol{knot7}{67} (
. . . . . . . 210
) .
\Pisymbol{knot7}{68} (
. . . . . . . 210
) .
\Pisymbol{knot7}{69} (
. . . . . . . 210
) .
\Pisymbol{knot7}{70} (
. . . . . . . 210
) .
\Pisymbol{knot7}{71} (
. . . . . . . 210
) .
\Pisymbol{knot7}{72} (
. . . . . . . 210
) .
\Pisymbol{knot7}{73} (
. . . . . . . 210
) .
\Pisymbol{knot7}{74} (
. . . . . . . 210
) .
\Pisymbol{knot7}{75} (
. . . . . . . 210
) .
\Pisymbol{knot7}{76} (
. . . . . . . 210
) .
\Pisymbol{knot7}{77} (
. . . . . . . 210
) .
0
\Pisymbol{magic}{49} (1)
. . . . . . . 217
\Pisymbol{magic}{50} (2)
. . . . . . . 217
\Pisymbol{magic}{51} (3)
.......
\Pisymbol{magic}{48} ( ) . .
. . . . . . . 217
.......
315
217
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
217
\Pisymbol{moonphase}{2} ()
. . . . . . . 201
\Pisymbol{moonphase}{3} ()
. . . . . . . 201
\Pisymbol{nkarta}{33} (!) . .
. . . . . . . 199
\Pisymbol{nkarta}{34} (") . .
. . . . . . . 199
\Pisymbol{nkarta}{35} (#) . .
. . . . . . . 199
\Pisymbol{nkarta}{36} ($) . .
. . . . . . . 199
\Pisymbol{nkarta}{37} (%) . .
. . . . . . . 199
\Pisymbol{nkarta}{38} (&) .
. . . . . . . 199
\Pisymbol{nkarta}{39} (') . .
. . . . . . . 199
\Pisymbol{nkarta}{40} (() 199
\Pisymbol{nkarta}{41} ()) 199
\Pisymbol{nkarta}{42} (*)
. . . . . . . 199
\Pisymbol{nkarta}{43} (+) . .
. . . . . . . 199
\Pisymbol{nkarta}{44} (,) .
. . . . . . . 199
\Pisymbol{nkarta}{45} (-) .
. . . . . . . 199
\Pisymbol{nkarta}{46} (.) .
. . . . . . . 199
\Pisymbol{nkarta}{47} (/) . .
. . . . . . . 199
\Pisymbol{nkarta}{48} (0) 199
\Pisymbol{nkarta}{49} (1) 199
\Pisymbol{nkarta}{50} (2) 200
\Pisymbol{nkarta}{51} (3) 200
\Pisymbol{nkarta}{52} (4) 200
\Pisymbol{nkarta}{53} (5) 200
\Pisymbol{nkarta}{54} (6) 200
\Pisymbol{nkarta}{55} (7) 200
\Pisymbol{nkarta}{56} (8) 200
\Pisymbol{nkarta}{57} (9) 200
\Pisymbol{nkarta}{58} (:) . .
. . . . . . . 200
\Pisymbol{nkarta}{59} (;) . .
. . . . . . . 200
\Pisymbol{nkarta}{60} (<) .
. . . . . . . 200
\Pisymbol{nkarta}{61} (=) . .
. . . . . . . 200
\Pisymbol{nkarta}{62} (>) .
. . . . . . . 200
\Pisymbol{nkarta}{63} (?) . .
. . . . . . . 200
\Pisymbol{nkarta}{64} (@) . .
. . . . . . . 200
\Pisymbol{nkarta}{65} (A) .
. . . . . . . 200
\Pisymbol{nkarta}{66} (B) . .
. . . . . . . 200
\Pisymbol{nkarta}{67} (C) .
. . . . . . . 200
\Pisymbol{nkarta}{68} (D) .
. . . . . . . 200
\Pisymbol{nkarta}{69} (E) .
. . . . . . . 200
\Pisymbol{nkarta}{70} (F) .
. . . . . . . 200
\Pisymbol{nkarta}{71} (G) . .
. . . . . . . 200
\Pisymbol{nkarta}{72} (H) .
. . . . . . . 200
\Pisymbol{nkarta}{73} (I) .
. . . . . . . 200
\Pisymbol{nkarta}{74} (J) .
. . . . . . . 200
\Pisymbol{nkarta}{75} (K) 200
\Pisymbol{nkarta}{76} (L) .
. . . . . . . 200
\Pisymbol{nkarta}{77} (M) . .
. . . . . . . 200
\Pisymbol{nkarta}{78} (N) .
. . . . . . . 200
\Pisymbol{nkarta}{79} (O)
. . . . . . . 200
\Pisymbol{nkarta}{80} (P) .
. . . . . . . 200
\Pisymbol{nkarta}{81} (Q) .
. . . . . . . 200
\Pisymbol{nkarta}{82} (R) .
. . . . . . . 200
\Pisymbol{nkarta}{83} (S) .
. . . . . . . 200
\Pisymbol{nkarta}{84} (T) .
. . . . . . . 200
\Pisymbol{nkarta}{85} (U) .
. . . . . . . 200
\Pisymbol{nkarta}{86} (V) . .
. . . . . . . 200
\Pisymbol{nkarta}{87} (W) .
. . . . . . . 200
\Pisymbol{nkarta}{88} (X) .
. . . . . . . 200
\Pisymbol{nkarta}{89} (Y) .
. . . . . . . 200
\Pisymbol{nkarta}{90} (Z) 200
\Pisymbol{nkarta}{91} ([) . .
. . . . . . . 200
\Pisymbol{nkarta}{92} (\)
. . . . . . . 200
\Pisymbol{nkarta}{93} (]) 200
\Pisymbol{nkarta}{94} (^)
. . . . . . . 200
\Pisymbol{nkarta}{95} (_) .
. . . . . . . 200
\Pisymbol{nkarta}{96} (`) . .
. . . . . . . 199
\Pisymbol{nkarta}{97} (a) .
. . . . . . . 199
\Pisymbol{nkarta}{98} (b) . .
. . . . . . . 199
\Pisymbol{nkarta}{99} (c) .
. . . . . . . 199
\Pisymbol{nkarta}{100} (d)
. . . . . . . 199
\Pisymbol{nkarta}{101} (e) .
. . . . . . . 199
\Pisymbol{nkarta}{102} (f) .
. . . . . . . 199
\Pisymbol{nkarta}{103} (g) .
. . . . . . . 199
\Pisymbol{nkarta}{104} (h) .
. . . . . . . 199
\Pisymbol{nkarta}{105} (i)
. . . . . . . 199
\Pisymbol{nkarta}{106} (j) .
. . . . . . . 199
\Pisymbol{nkarta}{107} (k) .
. . . . . . . 199
\Pisymbol{nkarta}{108} (l)
. . . . . . . 199
\Pisymbol{nkarta}{109} (m) .
. . . . . . . 199
\Pisymbol{nkarta}{110} (n)
. . . . . . . 199
\Pisymbol{nkarta}{111} (o)
. . . . . . . 199
\Pisymbol{nkarta}{112} (p)
. . . . . . . 199
316
\Pisymbol{nkarta}{113} (q)
. . . . . . . 200
\Pisymbol{nkarta}{114} (r) .
. . . . . . . 200
\Pisymbol{nkarta}{115} (s)
. . . . . . . 200
\Pisymbol{nkarta}{116} (t) .
. . . . . . . 200
\Pisymbol{nkarta}{117} (u)
. . . . . . . 200
\Pisymbol{nkarta}{118} (v)
. . . . . . . 200
\Pisymbol{nkarta}{119} (w)
. . . . . . . 200
\Pisymbol{nkarta}{120} (x) .
. . . . . . . 200
\Pisymbol{nkarta}{121} (y) .
. . . . . . . 200
\Pisymbol{nkarta}{122} (z) .
. . . . . . . 200
\Pisymbol{nkarta}{123}
({) . . . . . . . . . . 200
\Pisymbol{nkarta}{124} (|)
. . . . . . . 200
\Pisymbol{nkarta}{125} (})
. . . . . . . 200
\Pisymbol{nkarta}{126} (~) .
. . . . . . . 200
\Pisymbol{nkarta}{161} (¡)
. . . . . . . 200
\Pisymbol{nkarta}{162} (¢) .
. . . . . . . 200
\Pisymbol{nkarta}{163} (£) .
. . . . . . . 200
\Pisymbol{nkarta}{164}
(¤) . . . . . . . . 200
\Pisymbol{nkarta}{165}
(¥) . . . . . . . . . . 200
\Pisymbol{nkarta}{166}
(¦) . . . . . . . . . . 200
\Pisymbol{nkarta}{167} (§)
. . . . . . . 200
\Pisymbol{nkarta}{168} (¨) .
. . . . . . . 200
\Pisymbol{nkarta}{169} (©) .
. . . . . . . 200
\Pisymbol{nkarta}{170} (ª) .
. . . . . . . 200
\Pisymbol{nkarta}{171} («) .
. . . . . . . 200
\Pisymbol{nkarta}{172} (¬)
. . . . . . . 200
\Pisymbol{nkarta}{173} (­) .
. . . . . . . 200
\Pisymbol{nkarta}{174} (®) .
. . . . . . . 200
\Pisymbol{nkarta}{175} (¯)
. . . . . . . 200
\Pisymbol{nkarta}{176} (°) .
. . . . . . . 200
\Pisymbol{nkarta}{177} (±) .
. . . . . . . 200
\Pisymbol{nkarta}{178}
. . . . . . . 200
\Pisymbol{nkarta}{179}
. . . . . . . 200
\Pisymbol{nkarta}{180}
. . . . . . . 200
\Pisymbol{nkarta}{181}
. . . . . . . 200
\Pisymbol{nkarta}{182}
. . . . . . . 200
\Pisymbol{nkarta}{183}
. . . . . . . 200
\Pisymbol{nkarta}{184}
. . . . . . . 200
\Pisymbol{nkarta}{185}
. . . . . . . 200
\Pisymbol{nkarta}{186}
. . . . . . . 200
\Pisymbol{nkarta}{187}
. . . . . . . 200
\Pisymbol{nkarta}{188}
. . . . . . . 200
\Pisymbol{nkarta}{189}
. . . . . . . 200
\Pisymbol{nkarta}{190}
. . . . . . . 200
\Pisymbol{nkarta}{191}
. . . . . . . 200
\Pisymbol{nkarta}{192}
. . . . . . . 200
\Pisymbol{nkarta}{193}
. . . . . . . 199
\Pisymbol{nkarta}{194}
. . . . . . . 199
\Pisymbol{nkarta}{195}
. . . . . . . 199
\Pisymbol{nkarta}{196}
. . . . . . . 199
\Pisymbol{nkarta}{197}
. . . . . . . 199
\Pisymbol{nkarta}{198}
. . . . . . . 199
\Pisymbol{nkarta}{199}
. . . . . . . 199
\Pisymbol{nkarta}{200}
. . . . . . . 199
\Pisymbol{nkarta}{201}
. . . . . . . 199
\Pisymbol{nkarta}{202}
. . . . . . . 199
\Pisymbol{nkarta}{203}
. . . . . . . 199
\Pisymbol{nkarta}{204}
. . . . . . . 199
\Pisymbol{nkarta}{205}
. . . . . . . 199
\Pisymbol{nkarta}{206}
. . . . . . . 199
\Pisymbol{nkarta}{207}
. . . . . . . 199
\Pisymbol{nkarta}{208}
. . . . . . . 199
(² ) .
(³) .
(´ ) .
(µ ) .
(¶)
(·) .
( ¸)
(¹)
(º) .
(»)
(¼) .
(½ ) .
(¾) .
(¿)
(À) .
(Á ) .
(Â )
(Ã) .
( Ä)
(Å) .
(Æ)
(Ç)
(È)
(É) .
(Ê )
(Ë)
(Ì)
(Í )
(Î ) .
(Ï) .
(Ð )
\Pisymbol{nkarta}{209}
. . . . . . . 199
\Pisymbol{nkarta}{210}
. . . . . . . 200
\Pisymbol{nkarta}{211}
. . . . . . . 200
\Pisymbol{nkarta}{212}
. . . . . . . 200
\Pisymbol{nkarta}{213}
. . . . . . . 200
\Pisymbol{nkarta}{214}
. . . . . . . 200
\Pisymbol{nkarta}{215}
. . . . . . . 200
\Pisymbol{nkarta}{216}
. . . . . . . 200
\Pisymbol{nkarta}{217}
. . . . . . . 200
\Pisymbol{nkarta}{218}
. . . . . . . 200
\Pisymbol{nkarta}{219}
. . . . . . . 200
\Pisymbol{nkarta}{220}
. . . . . . . 200
\Pisymbol{nkarta}{221}
. . . . . . . 200
\Pisymbol{nkarta}{222}
. . . . . . . 200
\Pisymbol{nkarta}{223}
. . . . . . . 200
\Pisymbol{nkarta}{224}
. . . . . . . 200
\Pisymbol{nkarta}{225}
. . . . . . . 200
\Pisymbol{nkarta}{226}
. . . . . . . 200
\Pisymbol{nkarta}{227}
. . . . . . . 200
\Pisymbol{nkarta}{228}
. . . . . . . 200
\Pisymbol{nkarta}{229}
. . . . . . . 200
\Pisymbol{nkarta}{230}
. . . . . . . 200
\Pisymbol{nkarta}{231}
. . . . . . . 200
\Pisymbol{nkarta}{232}
. . . . . . . 200
\Pisymbol{nkarta}{233}
. . . . . . . 200
\Pisymbol{nkarta}{234}
. . . . . . . 200
\Pisymbol{nkarta}{235}
. . . . . . . 200
\Pisymbol{nkarta}{236}
. . . . . . . 200
\Pisymbol{nkarta}{237}
. . . . . . . 200
\Pisymbol{nkarta}{238}
. . . . . . . 200
\Pisymbol{nkarta}{239}
. . . . . . . 200
317
(Ñ)
(Ò)
(Ó)
(Ô)
(Õ)
(Ö ) .
(×) .
(Ø)
(Ù )
(Ú) .
( Û)
(Ü )
(Ý )
(Þ)
(ß)
(à)
(á ) .
(â ) .
(ã) .
(ä) .
(å) .
(æ) .
(ç )
(è)
(é ) .
(ê ) .
(ë ) .
(ì) .
(í ) .
(î ) .
(ï ) .
\Pisymbol{nkarta}{240} (ð)
. . . . . . . 200
\Pisymbol{nkarta}{241} (ñ)
. . . . . . . 200
\Pisymbol{nkarta}{242} (ò) .
. . . . . . . 200
\Pisymbol{nkarta}{243} (ó)
. . . . . . . 200
\Pisymbol{nkarta}{244} (ô) .
. . . . . . . 200
\Pisymbol{nkarta}{245} (õ) .
. . . . . . . 200
\Pisymbol{nkarta}{246} (ö)
. . . . . . . 200
\Pisymbol{nkarta}{247} (÷) .
. . . . . . . 200
\Pisymbol{nkarta}{248} (ø)
. . . . . . . 200
\Pisymbol{nkarta}{249} (ù)
. . . . . . . 200
\Pisymbol{nkarta}{250} (ú)
. . . . . . . 200
\Pisymbol{nkarta}{251} (û)
. . . . . . . 200
\Pisymbol{nkarta}{252} (ü)
. . . . . . . 200
\Pisymbol{nkarta}{253} (ý)
. . . . . . . 200
\Pisymbol{nkarta}{254} (þ)
. . . . . . . 200
\Pisymbol{smfpr10}{34} () . .
. . . . . . . 213
\Pisymbol{smfpr10}{35} (#)
. . . . . . . 213
\Pisymbol{smfpr10}{36} ($)
. . . . . . . 213
\Pisymbol{smfpr10}{42} (*)
. . . . . . . 213
\Pisymbol{smfpr10}{46} (.)
. . . . . . . 213
\Pisymbol{smfpr10}{48}
($0#) . . . . . . . . . 213
\Pisymbol{smfpr10}{49}
($1#) . . . . . . . . . 213
\Pisymbol{smfpr10}{50}
($2#) . . . . . . . . . 213
\Pisymbol{smfpr10}{51}
($3#) . . . . . . . . . 213
\Pisymbol{smfpr10}{52}
($4#) . . . . . . . . . . 213
\Pisymbol{smfpr10}{53}
($5#) . . . . . . . . . 213
\Pisymbol{smfpr10}{54}
($6#) . . . . . . . . . 213
\Pisymbol{smfpr10}{55}
($7#) . . . . . . . . . 213
\Pisymbol{smfpr10}{56}
($8#) . . . . . . . . . 213
\Pisymbol{smfpr10}{57}
($9#) . . . . . . . . . 213
\Pisymbol{smfpr10}{65} (A) .
. . . . . . . 214
\Pisymbol{smfpr10}{66} (B) .
. . . . . . . 214
\Pisymbol{smfpr10}{67} (C) .
. . . . . . . 214
\Pisymbol{smfpr10}{68} (D) .
. . . . . . . 214
\Pisymbol{smfpr10}{69} (E) .
. . . . . . . 214
\Pisymbol{smfpr10}{70} (F) .
. . . . . . . 214
\Pisymbol{smfpr10}{71} (G) .
. . . . . . . 214
\Pisymbol{smfpr10}{72} (H) .
. . . . . . . 214
\Pisymbol{smfpr10}{73} (I) .
. . . . . . . 214
\Pisymbol{smfpr10}{74} (J)
. . . . . . . 214
\Pisymbol{smfpr10}{75} (K) .
. . . . . . . 214
\Pisymbol{smfpr10}{76} (L)
. . . . . . . 214
\Pisymbol{smfpr10}{77} (M)
. . . . . . . 214
\Pisymbol{smfpr10}{78} (N)
. . . . . . . 214
\Pisymbol{smfpr10}{79} (O) .
. . . . . . . 214
\Pisymbol{smfpr10}{80} (P) .
. . . . . . . 214
\Pisymbol{smfpr10}{81} (Q)
. . . . . . . 214
\Pisymbol{smfpr10}{82} (R)
. . . . . . . 214
\Pisymbol{smfpr10}{83} (S)
. . . . . . . 214
\Pisymbol{smfpr10}{84} (T) .
. . . . . . . 214
\Pisymbol{smfpr10}{85} (U)
. . . . . . . 214
\Pisymbol{smfpr10}{86} (V) .
. . . . . . . 214
\Pisymbol{smfpr10}{87} (W) .
. . . . . . . 214
\Pisymbol{smfpr10}{88} (X) .
. . . . . . . 214
\Pisymbol{smfpr10}{89} (Y)
. . . . . . . 214
\Pisymbol{smfpr10}{90} (Z) .
. . . . . . . 214
\Pisymbol{smfpr10}{97} (a) .
. . . . . . . 214
\Pisymbol{smfpr10}{98} (b) .
. . . . . . . 214
\Pisymbol{smfpr10}{99} (c) .
. . . . . . . 214
\Pisymbol{smfpr10}{100} (d)
. . . . . . . 214
\Pisymbol{smfpr10}{101} (e)
. . . . . . . 214
\Pisymbol{smfpr10}{102} (f)
. . . . . . . 214
\Pisymbol{smfpr10}{103} (g)
. . . . . . . 214
\Pisymbol{smfpr10}{104} (h)
. . . . . . . 214
\Pisymbol{smfpr10}{105} (i)
. . . . . . . 214
\Pisymbol{smfpr10}{106} (j)
. . . . . . . 214
\Pisymbol{smfpr10}{107} (k)
. . . . . . . 214
\Pisymbol{smfpr10}{108} (l)
. . . . . . . 214
\Pisymbol{smfpr10}{109} (m)
. . . . . . . 214
\Pisymbol{smfpr10}{110} (n)
. . . . . . . 214
\Pisymbol{smfpr10}{111} (o)
. . . . . . . 214
\Pisymbol{smfpr10}{112} (p)
. . . . . . . 214
\Pisymbol{smfpr10}{113} (q)
. . . . . . . 214
\Pisymbol{smfpr10}{114} (r)
. . . . . . . 214
\Pisymbol{smfpr10}{115} (s)
. . . . . . . 214
\Pisymbol{smfpr10}{116} (t)
. . . . . . . 213
\Pisymbol{smfpr10}{117} (u)
. . . . . . . 213
\Pisymbol{smfpr10}{118} (v)
. . . . . . . 213
\Pisymbol{smfpr10}{119} (w)
. . . . . . . 213
\Pisymbol{smfpr10}{120} (x)
. . . . . . . 213
\Pisymbol{smfpr10}{121} (y)
. . . . . . . 213
\Pisymbol{smfpr10}{122} (z)
. . . . . . . 213
\Pisymbol{smfpr10}{126} (˜)
. . . . . . . 213
\Pisymbol{smfpr10}{128} (Ă)
. . . . . . . 213
\Pisymbol{smfpr10}{129} (Ą)
. . . . . . . 213
\Pisymbol{smfpr10}{130} (Ć)
. . . . . . . 213
\Pisymbol{smfpr10}{131} (Č)
. . . . . . . 213
\Pisymbol{smfpr10}{132} (Ď)
. . . . . . . 213
\Pisymbol{smfpr10}{133} (Ě)
. . . . . . . 213
\Pisymbol{smfpr10}{134} (Ę)
. . . . . . . 213
\Pisymbol{smfpr10}{135} (Ğ)
. . . . . . . 214
\Pisymbol{smfpr10}{136} (Ĺ)
. . . . . . . 214
\Pisymbol{smfpr10}{137} (Ľ)
. . . . . . . 214
318
\Pisymbol{smfpr10}{138} (Ł)
. . . . . . . 214
\Pisymbol{smfpr10}{139} (Ń)
. . . . . . . 214
\Pisymbol{smfpr10}{140} (Ň)
. . . . . . . 214
\Pisymbol{smfpr10}{142} (Ő)
. . . . . . . 214
\Pisymbol{smfpr10}{143} (Ŕ)
. . . . . . . 214
\Pisymbol{smfpr10}{144} (Ř)
. . . . . . . 214
\Pisymbol{smfpr10}{145} (Ś)
. . . . . . . 214
\Pisymbol{smfpr10}{146} (Š)
. . . . . . . 214
\Pisymbol{smfpr10}{147} (Ş)
. . . . . . . 214
\Pisymbol{smfpr10}{148} (Ť)
. . . . . . . 214
\Pisymbol{smfpr10}{149} (Ţ)
. . . . . . . 214
\Pisymbol{smfpr10}{150} (Ű)
. . . . . . . 214
\Pisymbol{smfpr10}{151} (Ů)
. . . . . . . 214
\Pisymbol{smfpr10}{152} (Ÿ)
. . . . . . . 214
\Pisymbol{smfpr10}{153} (Ź)
. . . . . . . 214
\Pisymbol{smfpr10}{154} (Ž)
. . . . . . . 214
\Pisymbol{smfpr10}{155} (Ż)
. . . . . . . 214
\Pisymbol{smfpr10}{157} (İ)
. . . . . . . 214
\Pisymbol{smfpr10}{158} (đ)
. . . . . . . 214
\Pisymbol{smfpr10}{160} (ă)
. . . . . . . 214
\Pisymbol{smfpr10}{161} (ą)
. . . . . . . 214
\Pisymbol{smfpr10}{162} (ć)
. . . . . . . 214
\Pisymbol{smfpr10}{163} (č)
. . . . . . . 214
\Pisymbol{smfpr10}{164} (ď)
. . . . . . . 214
\Pisymbol{smfpr10}{165} (ě)
. . . . . . . 214
\Pisymbol{smfpr10}{166} (ę)
. . . . . . . 214
\Pisymbol{smfpr10}{167} (ğ)
. . . . . . . 214
\Pisymbol{smfpr10}{168} (ĺ)
. . . . . . . 214
\Pisymbol{smfpr10}{169} (ľ)
. . . . . . . 214
\Pisymbol{smfpr10}{170} (ł)
. . . . . . . 214
\Pisymbol{smfpr10}{171} (ń)
. . . . . . . 214
\Pisymbol{smfpr10}{172} (ň)
. . . . . . . 214
\Pisymbol{smfpr10}{174} (ő)
. . . . . . . 214
\Pisymbol{smfpr10}{175} (ŕ)
. . . . . . . 214
\Pisymbol{smfpr10}{176} (ř)
. . . . . . . 214
\Pisymbol{smfpr10}{177} (ś)
. . . . . . . 214
\Pisymbol{smfpr10}{178} (š)
. . . . . . . 214
\Pisymbol{smfpr10}{179} (ş)
. . . . . . . 214
\Pisymbol{smfpr10}{180} (ť)
. . . . . . . 214
\Pisymbol{smfpr10}{181} (ţ)
. . . . . . . 214
\Pisymbol{smfpr10}{182} (ű)
. . . . . . . 214
\Pisymbol{smfpr10}{183} (ů)
. . . . . . . 214
\Pisymbol{smfpr10}{184} (ÿ)
. . . . . . . 213
\Pisymbol{smfpr10}{185} (ź)
. . . . . . . 213
\Pisymbol{smfpr10}{186} (ž)
. . . . . . . 213
\Pisymbol{smfpr10}{187} (ż)
. . . . . . . 213
\Pisymbol{smfpr10}{192} (À)
. . . . . . . 213
\Pisymbol{smfpr10}{193} (Á)
. . . . . . . 213
\Pisymbol{smfpr10}{194} (Â)
. . . . . . . 213
\Pisymbol{smfpr10}{195} (Ã)
. . . . . . . 213
\Pisymbol{smfpr10}{196} (Ä)
. . . . . . . 213
\Pisymbol{smfpr10}{197} (Å)
. . . . . . . 213
\Pisymbol{smfpr10}{199} (Ç)
. . . . . . . 213
\Pisymbol{smfpr10}{200} (È)
. . . . . . . 213
\Pisymbol{smfpr10}{201} (É)
. . . . . . . 213
\Pisymbol{smfpr10}{202} (Ê)
. . . . . . . 213
\Pisymbol{smfpr10}{203} (Ë)
. . . . . . . 213
\Pisymbol{smfpr10}{204} (Ì)
. . . . . . . 214
\Pisymbol{smfpr10}{205} (Í)
. . . . . . . 214
\Pisymbol{smfpr10}{206} (Î)
. . . . . . . 214
\Pisymbol{smfpr10}{207} (Ï)
. . . . . . . 214
\Pisymbol{smfpr10}{209} (Ñ)
. . . . . . . 214
\Pisymbol{smfpr10}{210} (Ò)
. . . . . . . 214
\Pisymbol{smfpr10}{211} (Ó)
. . . . . . . 214
\Pisymbol{smfpr10}{212} (Ô)
. . . . . . . 214
\Pisymbol{smfpr10}{213} (Õ)
. . . . . . . 214
\Pisymbol{smfpr10}{214} (Ö)
. . . . . . . 214
\Pisymbol{smfpr10}{216} (Ø)
. . . . . . . 214
\Pisymbol{smfpr10}{217} (Ù)
. . . . . . . 214
\Pisymbol{smfpr10}{218} (Ú)
. . . . . . . 214
\Pisymbol{smfpr10}{219} (Û)
. . . . . . . 214
\Pisymbol{smfpr10}{220} (Ü)
. . . . . . . 214
\Pisymbol{smfpr10}{221} (Ý)
. . . . . . . 214
\Pisymbol{smfpr10}{224} (à)
. . . . . . . 214
\Pisymbol{smfpr10}{225} (á)
. . . . . . . 214
\Pisymbol{smfpr10}{226} (â)
. . . . . . . 214
\Pisymbol{smfpr10}{227} (ã)
. . . . . . . 214
\Pisymbol{smfpr10}{228} (ä)
. . . . . . . 214
\Pisymbol{smfpr10}{229} (å)
. . . . . . . 214
\Pisymbol{smfpr10}{231} (ç)
. . . . . . . 214
\Pisymbol{smfpr10}{232} (è)
. . . . . . . 214
\Pisymbol{smfpr10}{233} (é)
. . . . . . . 214
\Pisymbol{smfpr10}{234} (ê)
. . . . . . . 214
\Pisymbol{smfpr10}{235} (ë)
. . . . . . . 214
\Pisymbol{smfpr10}{236} (ì)
. . . . . . . 214
\Pisymbol{smfpr10}{237} (í)
. . . . . . . 214
\Pisymbol{smfpr10}{238} (î)
. . . . . . . 214
\Pisymbol{smfpr10}{239} (ï)
. . . . . . . 214
\Pisymbol{smfpr10}{241} (ñ)
. . . . . . . 214
\Pisymbol{smfpr10}{242} (ò)
. . . . . . . 214
\Pisymbol{smfpr10}{243} (ó)
. . . . . . . 214
\Pisymbol{smfpr10}{244} (ô)
. . . . . . . 214
\Pisymbol{smfpr10}{245} (õ)
. . . . . . . 214
319
\Pisymbol{smfpr10}{246} (ö)
. . . . . . . 214
\Pisymbol{smfpr10}{248} (ø)
. . . . . . . 214
\Pisymbol{smfpr10}{249} (ù)
. . . . . . . 214
\Pisymbol{smfpr10}{250} (ú)
. . . . . . . 214
\Pisymbol{smfpr10}{251} (û)
. . . . . . . 214
\Pisymbol{smfpr10}{252} (ü)
. . . . . . . 214
\Pisymbol{smfpr10}{253} (ý)
. . . . . . . 214
\Pisymbol{umranda}{0} ( ) .
. . . . . . . 205
\Pisymbol{umranda}{1} () .
. . . . . . . 205
\Pisymbol{umranda}{2} () .
. . . . . . . 205
\Pisymbol{umranda}{3} () .
. . . . . . . 205
\Pisymbol{umranda}{4} () .
. . . . . . . 205
\Pisymbol{umranda}{5} () .
. . . . . . . 205
\Pisymbol{umranda}{6} () .
. . . . . . . 205
\Pisymbol{umranda}{7} () .
. . . . . . . 205
\Pisymbol{umranda}{8} () .
. . . . . . . 205
\Pisymbol{umranda}{9} ( ) .
. . . . . . . 205
\Pisymbol{umranda}{10} ( )
. . . . . . . 205
\Pisymbol{umranda}{11} ( )
. . . . . . . 205
\Pisymbol{umranda}{12} ( )
. . . . . . . 205
\Pisymbol{umranda}{13} ( )
. . . . . . . 205
\Pisymbol{umranda}{14} ()
. . . . . . . 205
\Pisymbol{umranda}{15} ()
. . . . . . . 205
\Pisymbol{umranda}{16} ()
. . . . . . . 205
\Pisymbol{umranda}{17} ()
. . . . . . . 205
\Pisymbol{umranda}{18} ()
. . . . . . . 205
\Pisymbol{umranda}{19} ()
. . . . . . . 205
\Pisymbol{umranda}{20} ()
. . . . . . . 205
\Pisymbol{umranda}{21} ()
. . . . . . . 205
\Pisymbol{umranda}{22} ()
. . . . . . . 205
\Pisymbol{umranda}{49} (1)
. . . . . . . 205
\Pisymbol{umranda}{75} (K)
. . . . . . . 205
\Pisymbol{umranda}{23} ()
. . . . . . . 205
\Pisymbol{umranda}{50} (2)
. . . . . . . 205
\Pisymbol{umranda}{76} (L)
. . . . . . . 205
\Pisymbol{umranda}{24} ()
. . . . . . . 205
\Pisymbol{umranda}{25} ()
. . . . . . . 205
\Pisymbol{umranda}{26} ()
. . . . . . . 205
\Pisymbol{umranda}{27} ()
. . . . . . . 205
\Pisymbol{umranda}{28} ()
. . . . . . . 205
\Pisymbol{umranda}{29} ()
. . . . . . . 205
\Pisymbol{umranda}{30} ()
. . . . . . . 205
\Pisymbol{umranda}{31} ()
. . . . . . . 205
\Pisymbol{umranda}{32} ( )
. . . . . . . 205
\Pisymbol{umranda}{33} (!)
. . . . . . . 205
\Pisymbol{umranda}{34} (")
. . . . . . . 205
\Pisymbol{umranda}{35} (#)
. . . . . . . 205
\Pisymbol{umranda}{36} ($)
. . . . . . . 205
\Pisymbol{umranda}{37} (%)
. . . . . . . 205
\Pisymbol{umranda}{38} (&)
. . . . . . . 205
\Pisymbol{umranda}{39} (')
. . . . . . . 205
\Pisymbol{umranda}{40} (()
. . . . . . . 205
\Pisymbol{umranda}{41} ())
. . . . . . . 205
\Pisymbol{umranda}{42} (*)
. . . . . . . 205
\Pisymbol{umranda}{43} (+)
. . . . . . . 205
\Pisymbol{umranda}{44} (,)
. . . . . . . 205
\Pisymbol{umranda}{45} (-)
. . . . . . . 205
\Pisymbol{umranda}{46} (.)
. . . . . . . 205
\Pisymbol{umranda}{47} (/)
. . . . . . . 205
\Pisymbol{umranda}{48} (0)
. . . . . . . 205
\Pisymbol{umranda}{51} (3)
. . . . . . . 205
\Pisymbol{umranda}{52} (4)
. . . . . . . 205
\Pisymbol{umranda}{53}
(5) . . . . . . . . . 205
\Pisymbol{umranda}{54}
(6) . . . . . . . . . .
205
\Pisymbol{umranda}{55} (7)
. . . . . . . 205
\Pisymbol{umranda}{56}
(8) . . . . . . . . . .
205
\Pisymbol{umranda}{77} (M)
. . . . . . . 205
\Pisymbol{umranda}{78} (N)
. . . . . . . 205
\Pisymbol{umranda}{79} (O)
. . . . . . . 205
\Pisymbol{umranda}{80} (P)
. . . . . . . 205
\Pisymbol{umranda}{81} (Q)
. . . . . . . 205
\Pisymbol{umranda}{82} (R)
. . . . . . . 205
\Pisymbol{umranda}{83} (S)
. . . . . . . 205
\Pisymbol{umranda}{57} (9)
. . . . . . . 205
\Pisymbol{umranda}{84} (T)
. . . . . . . 205
\Pisymbol{umranda}{58} (:)
. . . . . . . 205
\Pisymbol{umranda}{85} (U)
. . . . . . . 205
\Pisymbol{umranda}{86}
(V) . . . . . . . . . 205
\Pisymbol{umranda}{87}
(W) . . . . . . . . . 205
\Pisymbol{umranda}{59} (;)
. . . . . . . 205
\Pisymbol{umranda}{60} (<)
. . . . . . . 205
\Pisymbol{umranda}{61} (=)
. . . . . . . 205
\Pisymbol{umranda}{62} (>)
. . . . . . . 205
\Pisymbol{umranda}{63} (?)
. . . . . . . 205
\Pisymbol{umranda}{64} (@)
. . . . . . . 205
\Pisymbol{umranda}{65}
(A) . . . . . . . . . 205
\Pisymbol{umranda}{66}
(B) . . . . . . . . . 205
\Pisymbol{umranda}{67} (C)
. . . . . . . 205
\Pisymbol{umranda}{68} (D)
. . . . . . . 205
\Pisymbol{umranda}{69}
(E) . . . . . . . . . 205
\Pisymbol{umranda}{70}
(F) . . . . . . . . . 205
\Pisymbol{umranda}{71} (G)
. . . . . . . 205
\Pisymbol{umranda}{72} (H)
. . . . . . . 205
\Pisymbol{umranda}{73}
(I) . . . . . . . . . 205
\Pisymbol{umranda}{74} (J)
. . . . . . . 205
320
\Pisymbol{umranda}{88} (X)
. . . . . . . 205
\Pisymbol{umranda}{89} (Y)
. . . . . . . 205
\Pisymbol{umranda}{90}
(Z) . . . . . . . . . 205
\Pisymbol{umranda}{91}
([) . . . . . . . . . 205
\Pisymbol{umranda}{92} (\)
. . . . . . . 205
\Pisymbol{umranda}{93} (])
. . . . . . . 205
\Pisymbol{umranda}{94} (^)
. . . . . . . 205
\Pisymbol{umranda}{95} (_)
. . . . . . . 205
\Pisymbol{umranda}{96} (`)
. . . . . . . 205
\Pisymbol{umranda}{97} (a)
. . . . . . . 205
\Pisymbol{umranda}{98} (b)
. . . . . . . 205
\Pisymbol{umranda}{99} (c)
. . . . . . . 205
\Pisymbol{umranda}{100} (d)
. . . . . . . 205
\Pisymbol{umranda}{101} (e)
. . . . . . . 205
\Pisymbol{umrandb}{0} ( ) .
. . . . . . . 206
\Pisymbol{umrandb}{28} ()
. . . . . . . 206
\Pisymbol{umrandb}{56} (8)
. . . . . . . 206
\Pisymbol{umrandb}{1} () .
. . . . . . . 206
\Pisymbol{umrandb}{29} ()
. . . . . . . 206
\Pisymbol{umrandb}{57} (9)
. . . . . . . 206
\Pisymbol{umrandb}{2} () .
. . . . . . . 206
\Pisymbol{umrandb}{30} ()
. . . . . . . 206
\Pisymbol{umrandb}{58} (:)
. . . . . . . 206
\Pisymbol{umrandb}{3} () .
. . . . . . . 206
\Pisymbol{umrandb}{31} ()
. . . . . . . 206
\Pisymbol{umrandb}{59} (;)
. . . . . . . 206
\Pisymbol{umrandb}{4} () .
. . . . . . . 206
\Pisymbol{umrandb}{32} ( )
. . . . . . . 206
\Pisymbol{umrandb}{60} (<)
. . . . . . . 206
\Pisymbol{umrandb}{5} () .
. . . . . . . 206
\Pisymbol{umrandb}{33} (!)
. . . . . . . 206
\Pisymbol{umrandb}{61} (=)
. . . . . . . 206
\Pisymbol{umrandb}{6} () .
. . . . . . . 206
\Pisymbol{umrandb}{34} (")
. . . . . . . 206
\Pisymbol{umrandb}{62} (>)
. . . . . . . 206
\Pisymbol{umrandb}{7} () .
. . . . . . . 206
\Pisymbol{umrandb}{35} (#)
. . . . . . . 206
\Pisymbol{umrandb}{63} (?)
. . . . . . . 206
\Pisymbol{umrandb}{8} () .
. . . . . . . 206
\Pisymbol{umrandb}{36} ($)
. . . . . . . 206
\Pisymbol{umrandb}{64} (@)
. . . . . . . 206
\Pisymbol{umrandb}{9} ( ) .
. . . . . . . 206
\Pisymbol{umrandb}{37} (%)
. . . . . . . 206
\Pisymbol{umrandb}{65} (A)
. . . . . . . 206
\Pisymbol{umrandb}{10} ( )
. . . . . . . 206
\Pisymbol{umrandb}{38} (&)
. . . . . . . 206
\Pisymbol{umrandb}{66} (B)
. . . . . . . 206
\Pisymbol{umrandb}{11} ( )
. . . . . . . 206
\Pisymbol{umrandb}{39} (')
. . . . . . . 206
\Pisymbol{umrandb}{67} (C)
. . . . . . . 206
\Pisymbol{umrandb}{12} ( )
. . . . . . . 206
\Pisymbol{umrandb}{40} (()
. . . . . . . 206
\Pisymbol{umrandb}{68} (D)
. . . . . . . 206
\Pisymbol{umrandb}{13} ( )
. . . . . . . 206
\Pisymbol{umrandb}{41} ())
. . . . . . . 206
\Pisymbol{umrandb}{69} (E)
. . . . . . . 206
\Pisymbol{umrandb}{14} ()
. . . . . . . 206
\Pisymbol{umrandb}{42} (*)
. . . . . . . 206
\Pisymbol{umrandb}{70} (F)
. . . . . . . 206
\Pisymbol{umrandb}{15} ()
. . . . . . . 206
\Pisymbol{umrandb}{43} (+)
. . . . . . . 206
\Pisymbol{umrandb}{71} (G)
. . . . . . . 206
\Pisymbol{umrandb}{16} ()
. . . . . . . 206
\Pisymbol{umrandb}{44} (,)
. . . . . . . 206
\Pisymbol{umrandb}{72} (H)
. . . . . . . 206
\Pisymbol{umrandb}{17} ()
. . . . . . . 206
\Pisymbol{umrandb}{45} (-)
. . . . . . . 206
\Pisymbol{umrandb}{73} (I)
. . . . . . . 206
\Pisymbol{umrandb}{18} ()
. . . . . . . 206
\Pisymbol{umrandb}{46} (.)
. . . . . . . 206
\Pisymbol{umrandb}{74} (J)
. . . . . . . 206
\Pisymbol{umrandb}{19} ()
. . . . . . . 206
\Pisymbol{umrandb}{47} (/)
. . . . . . . 206
\Pisymbol{umrandb}{75} (K)
. . . . . . . 206
\Pisymbol{umrandb}{20} ()
. . . . . . . 206
\Pisymbol{umrandb}{48} (0)
. . . . . . . 206
\Pisymbol{umrandb}{76} (L)
. . . . . . . 206
\Pisymbol{umrandb}{21} ()
. . . . . . . 206
\Pisymbol{umrandb}{49} (1)
. . . . . . . 206
\Pisymbol{umrandb}{77} (M)
. . . . . . . 206
\Pisymbol{umrandb}{22} ()
. . . . . . . 206
\Pisymbol{umrandb}{50} (2)
. . . . . . . 206
\Pisymbol{umrandb}{78} (N)
. . . . . . . 206
\Pisymbol{umrandb}{23} ()
. . . . . . . 206
\Pisymbol{umrandb}{51} (3)
. . . . . . . 206
\Pisymbol{umrandb}{79} (O)
. . . . . . . 206
\Pisymbol{umrandb}{24} ()
. . . . . . . 206
\Pisymbol{umrandb}{52} (4)
. . . . . . . 206
\Pisymbol{umrandb}{80} (P)
. . . . . . . 206
\Pisymbol{umrandb}{25} ()
. . . . . . . 206
\Pisymbol{umrandb}{53} (5)
. . . . . . . 206
\Pisymbol{umrandb}{81} (Q)
. . . . . . . 206
\Pisymbol{umrandb}{26} ()
. . . . . . . 206
\Pisymbol{umrandb}{54} (6)
. . . . . . . 206
\Pisymbol{umrandb}{82} (R)
. . . . . . . 206
\Pisymbol{umrandb}{27} ()
. . . . . . . 206
\Pisymbol{umrandb}{55} (7)
. . . . . . . 206
\Pisymbol{umrandb}{83} (S)
. . . . . . . 206
321
\Pisymbol{umrandb}{84} (T)
. . . . . . . 206
\Pisymbol{umrandb}{112} (p)
. . . . . . . 206
\Pisymbol{umrandb}{85} (U)
. . . . . . . 206
\Pisymbol{umrandb}{113} (q)
. . . . . . . 206
\Pisymbol{umrandb}{86} (V)
. . . . . . . 206
\Pisymbol{umrandb}{114} (r)
. . . . . . . 206
\Pisymbol{umrandb}{87} (W)
. . . . . . . 206
\Pisymbol{umrandb}{115} (s)
. . . . . . . 206
\Pisymbol{umrandb}{88} (X)
. . . . . . . 206
\Pisymbol{umrandb}{116} (t)
. . . . . . . 206
\Pisymbol{umrandb}{89} (Y)
. . . . . . . 206
\Pisymbol{umrandb}{117} (u)
. . . . . . . 206
\Pisymbol{umrandb}{90} (Z)
. . . . . . . 206
\Pisymbol{umrandb}{118} (v)
. . . . . . . 206
\Pisymbol{umrandb}{91} ([)
. . . . . . . 206
\Pisymbol{umrandb}{119} (w)
. . . . . . . 206
\Pisymbol{umrandb}{92} (\)
. . . . . . . 206
\Pisymbol{umrandb}{120} (x)
. . . . . . . 206
\Pisymbol{umrandb}{93} (])
. . . . . . . 206
\Pisymbol{umrandb}{121} (y)
. . . . . . . 206
\Pisymbol{umrandb}{94} (^)
. . . . . . . 206
\Pisymbol{umrandb}{122} (z)
. . . . . . . 206
\Pisymbol{umrandb}{95} (_)
. . . . . . . 206
\Pisymbol{umrandb}{123} ({)
. . . . . . . 206
\Pisymbol{WebOMintsGD}{47}
(/) . . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{48}
(0) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{49}
(1) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{50}
(2) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{51}
(3) . . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{52}
(4) . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{53}
(5) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{54}
(6) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{55}
(7) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{56}
(8) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{57}
(9) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{65}
(A) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{66}
(B) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{67}
(C) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{68}
(D) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{69}
(E) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{70}
(F) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{71}
(G) . . . . . . . . . . . 204
\Pisymbol{umrandb}{96} (`)
. . . . . . . 206
\Pisymbol{umrandb}{97} (a)
. . . . . . . 206
\Pisymbol{umrandb}{98} (b)
. . . . . . . 206
\Pisymbol{umrandb}{99} (c)
. . . . . . . 206
\Pisymbol{umrandb}{100} (d)
. . . . . . . 206
\Pisymbol{umrandb}{101} (e)
. . . . . . . 206
\Pisymbol{umrandb}{102} (f)
. . . . . . . 206
\Pisymbol{umrandb}{103} (g)
. . . . . . . 206
\Pisymbol{umrandb}{104} (h)
. . . . . . . 206
\Pisymbol{umrandb}{105} (i)
. . . . . . . 206
\Pisymbol{umrandb}{106} (j)
. . . . . . . 206
\Pisymbol{umrandb}{107} (k)
. . . . . . . 206
\Pisymbol{umrandb}{108} (l)
. . . . . . . 206
\Pisymbol{umrandb}{109} (m)
. . . . . . . 206
\Pisymbol{umrandb}{110} (n)
. . . . . . . 206
\Pisymbol{umrandb}{111} (o)
. . . . . . . 206
322
\Pisymbol{WebOMintsGD}{72}
(H) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{73}
(I) . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{74}
(J) . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{75}
(K) . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{76}
(L) . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{77}
(M) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{78}
(N) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{79}
(O) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{80}
(P) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{81}
(Q) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{82}
(R) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{83}
(S) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{84}
(T) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{85}
(U) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{86}
(V) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{87}
(W) . . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{88}
(X) . . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{89}
(Y) . . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{90}
(Z) . . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{91}
([) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{93}
(]) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{97}
(a) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{98}
(b) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{99}
(c) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{100}
(d) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{101}
(e) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{102}
(f) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{103}
(g) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{104}
(h) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{105}
(i) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{106}
(j) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{107}
(k) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{108}
(l) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{109}
(m) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{110}
(n) . . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{111}
(o) . . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{112}
(p) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{113}
(q) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{114}
(r) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{115}
(s) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{116}
(t) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{117}
(u) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{118}
(v) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{119}
(w) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{120}
(x) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{121}
(y) . . . . . . . . . . . 204
\Pisymbol{WebOMintsGD}{122}
(z) . . . . . . . . . . . 204
\pitchfork (&) . . . . . . . . 119
\pitchfork (t) . . . . . . . . 50
\pitchfork (ß) . . . . . . . . 57
\pitchfork (⋔) . . . . . . . . 90
\pitchfork (⋔) . . . . . . . . 88
\pitchfork (⋔) . . . . . . . . 58
pitchforks 50, 88, 90, 113, 119
Pitman’s base 12 symbols 117,
180
\piup (π) . . . . . . . . . . . . 94
\planck (h̄) . . . . . . . . . . 19
\Plane ( ) . . . . . . . . . . . 146
planets . . . 126–128, 201–203
\plasmon (𝑝) . . . . . . . . 133
playing cards . . . . . . 145, 146
Plimsoll line . . . 224, see also
“texttt“string“minuso
\Plus (') . . . . . . . . . . . . 137
\plus (+) . . . . . . . . . . . . 157
\plus (+) . . . . . . . . . . . . 32
\plus (+) . . . . . . . . . . . . 32
plus-or-minus sign . . . see \pm
\PlusCenterOpen (() . . . 137
\pluscirc (¯) . . . . . . . . 31
\pluscirc (è) . . . . . . . . . 33
\plusdot (⨥) . . . . . . . . . 33
\plusdot (⨥) . . . . . . . . . 34
\pluseqq (⩲) . . . . . . . . . 34
\plushat (⨣) . . . . . . . . . 34
\PlusOutline (&) . . . . . . 137
plusses . . . 137, 146, 199–200
\plussim (⨦) . . . . . . . . . 34
\plussubtwo (⨧) . . . . . . . 34
\PlusThinCenterOpen ()) 137
\plustrif (õ) . . . . . . . . . 33
\plustrif (⨨) . . . . . . . . . 34
\Pluto (I) . . . . . . . . . . . 127
\Pluto (É) . . . . . . . . . . . 126
\Pluto (J) . . . . . . . . . . . 128
\pluto (\) . . . . . . . . . . . 126
\pm (±) . . . . . . . . . . . . . 30
\pm (~) . . . . . . . . . . . . . . 33
\pm (±) . . . . . . . . . . . . . . 33
\pm (±) . . . . . . . . . . . . . . 32
\pm (±) . . . . . . . . . . . . . . 34
\pm ( ) . . . . . . . . . . . . . . 183
˙
\pmb ¯. . . . . . . . . . . . . . . . 233
pmboxdraw (package) 185, 239,
240
\pmod . . . . . . . . . . . . . . . 91
\pod . . . . . . . . . . . . . . . . 91
\pointer ( ) . . . . . . . . . . 176
pointing finger . . . . . see fists
\PointingHand
⨕ (Z) . . . . . 177
\pointint ( ) . . . . . . . . . 49
\pointint (⨕) . . . . . . . . . 46
\pointintsl (⨕) . . . . . . . 48
\pointintup (⨕) . . . . . . . 48
\pointright (☞) . . . . . . . 137
\Poland (ž) . . . . . . . . . . 189
\polariton (𝜙) . . . . . . . . 133
\polaron (𝑘) . . . . . . . . 133
\polishhook (~) . . . . . . . 24
) . . . . . . . . . 114
\polter (
polutonikogreek (babel package
option) . . . . . 15, 93, 94
polygons . . . . . . . . . . . . . . . .
. 140–142, 144–145, 169–
173, 199–200, 215–216
polynom (package) . . . . . . 107
polynomial division . . . . . 107
polytonic Greek . . . 15, 93, 94
\portato ( ) . . . . . . . . . . 164
\portatoDown ( ) . . . . . . . 164
\Portugal (Ÿ) . . . . . . . . . 189
\Poseidon (§) . . . . . . . . 128
\positron (𝑚) . . . . . . . . 133
\postalmark (〒) . . . . . . . 121
\Postbox ( ) . . . . . . . . . 187
PostScript . 94, 124, 134, 222,
232
PostScript fonts . . . . . . . . 134
\pot ( ) . . . . . . . . . . . . 191
\Pound ( ) . . . . . . . . . . . 26
\pounds . . . . . . . . . . . . . 15
\pounds (£) . . . . . . 235, 236
power set see alphabets, math
\powerset (℘) . . . . . . . . . 96
\Pp (˙) . . . . . . . . . . . . . . 183
\pp (˙˙ ) . . . . . . . . . . . . . 183
\ppm (˙ ) . . . . . . . . . . . . . 183
˙˙˙) . . . . . . . . . . . . . 183
\Ppp (¯
˙
\ppp (˙˙ ) . . . . . . . . . . . . 183
#
þ
˙˙
323
\Pppp (˙) . . . . . . . . . . . . . 183
˙
\pppp ( ˙ ) . . . . . . . . . . . 183
˙
\Ppppp (˙) . . . . . . . . . . . . 183
˙
\ppppp (˙˙ ) . . . . . . . . . . . 183
˙
\Pr (Pr) ˙ . . . . . . . . . . . . . 91
\Prec (⪻) . . . . . . . . . . . . 58
\prec (≺) . . . . . . . . . . . 50
\prec (≺) . . . . . . . . . . . . 55
\prec (≺) . . . . . . . . . . . . 53
\prec (≺) . . . . . . . . . . . . 58
\precapprox (Æ) . . . . . . . 52
\precapprox (w) . . . . . . . 50
\precapprox (¸) . . . . . . . 57
\precapprox (⪷) . . . . . . . 55
\precapprox (⪷) . . . . . . . 53
\precapprox (⪷) . . . . . . . 58
\preccurlyeq (ď) . . . . . . 52
\preccurlyeq (4) . . . . . . 50
\preccurlyeq (Î) . . . . . . 57
\preccurlyeq (≼) . . . . . . 55
\preccurlyeq (≼) . . . . . . 53
\preccurlyeq (≼) . . . . . . 58
\precdot (Ì) . . . . . . . . . 52
\preceq (⪯) . . . . . . . . . . 50
\preceq (⪯) . . . . . . . . . . 55
\preceq (⪯) . . . . . . . . . . . 53
\preceq (⪯) . . . . . . . . . . 58
\preceqq () . . . . . . . . . 51
\preceqq (⪳) . . . . . . . . . . 55
\preceqq (⪳) . . . . . . . . . 58
\precnapprox (Ê) . . . . . . 52
\precnapprox () . . . . . . 51
\precnapprox (œ) . . . . . . 57
\precnapprox (⪹) . . . . . . 55
\precnapprox (⪹) . . . . . . 54
\precnapprox (⪹) . . . . . . 58
\precneq (ň) . . . . . . . . . 52
\precneq (⪱) . . . . . . . . 55, 56
\precneq (⪱) . . . . . . . . . 58
\precneqq () . . . . . . . . 51
\precneqq (–) . . . . . . . . . 57
\precneqq (⪵) . . . . . . . 55, 56
\precneqq (⪵) . . . . . . . . . 58
\precnsim (Ä) . . . . . . . . 52
\precnsim () . . . . . . . . 51
\precnsim (”) . . . . . . . . . 57
\precnsim (⋨) . . . . . . . . . 55
\precnsim (⋨) . . . . . . . . . 54
\precnsim (⋨) . . . . . . . . . 58
\precsim (À) . . . . . . . . . 52
\precsim (-) . . . . . . . . . 50
\precsim (º) . . . . . . . . . 57
\precsim (≾) . . . . . . . . . . 55
\precsim (≾) . . . . . . . . . . 53
\precsim (≾) . . . . . . . . . 59
prescription . see \textrecipe
present-value symbols . . 111,
227–228
\prime (′) . . . . . . . . . . . . 118
\prime (′) . . . . . . . . . . . . 120
\prime (′) . . . . . . . . . . . . 119
\prime (′) . . . . . . . . . . . . 117
primes . . . . . . . . . . 117–120
\Printer (Ò) . . . . . . . . . 129
printer’s fist . . . . . . see fists
printer’s flowers . . see fleurons
and flowers
probabilistic independence 225
probability limit ( plim ) . see
𝑛→∞
\DeclareMathOperator
∏︀
\prod ( ) . . . . . . . . . . . . 40
\prod (∏) . . . . . . . . . . . 45
\prod (∏) . . . . . . . . . . . . 44
∏
\prod ( ) . . . . . . . . . . . . 46
\PRODI . . . . . . . . . . . . . . 50
\PRODI (T) . . . . . . . . .
\Prodi . . . . . . . . . . . . . .
50
50
\Prodi (R) . . . . . . . . . . 50
\prodi . . . . . . . . . . . . . . 50
\prodi (P) . . . . . . . . . . . 50
prodint (package) . . . . 50, 239
product integrals . . . . . . . 50
\profline (⌒) . . . . . . . . 121
\profsurf (⌓) . . . . . . . . 121
Project Gutenberg . . . . . . 222
projective space (P) . . . . see
alphabets, math
\projlim (proj lim) . . . . 91
pronunciation symbols . . . see
phonetic symbols
proof, end of . . . . . . 118, 121
proper subset/superset . . . see
\subsetneq/\supsetneq
proper vertices . . . . . . . . 132
\PropertyLine (⅊) . . . . . 121
\propfrom (›) . . . . . . . . 55
\propto (9) . . . . . . . . . . 119
\propto (∝) . . . . . . . . . . 50
\propto (∝) . . . . . . . . . . 55
\propto (∝) . . . . . . . . . . 53
\propto (∝) . . . . . . . . . . 59
\protein (Õ) . . . . . . . . . . 132
proto-Semitic symbols . . . 148
\proton (𝑑) . . . . . . . . . . 132
protosem (package) . 148, 239,
240
\ProvidesPackage . . . . . . 239
\PrtSc ( PrtSc ) . . . . . . . 129
\prurel (:) . . . . . . . . . . 57
\prurel (⊰) . . . . . . . . . . 59
\ps ( ) . . . . . . . . . . . . . 183
pseudographics . . . . . . . . 185
\Psi (Ψ) . . . . . . . . . . . . 93
\psi (𝜓) . . . . . . . . . . . . . 93
\psiup (ψ) . . . . . . . . . . . 94
psnfss (package) . . . . . . . . 138
PSTricks (package) . . . . . . 193
\Psyche (¿) . . . . . . . . . . 128
\Pu (‰ ) . . . . . . . . . . . . . . 160
\pullback (⟓) . . . . . . . . . 33
\pullback (⟓) . . . . . . . . . 59
pullback diagrams . . . . . . 226
pulse diagram symbols . . . 125
$
%
\PulseHigh ( ) . . . . . . . 125
\PulseLow ( ) . . . . . . . 125
\pumpkin ( ) . . . . . . . . . 38
pumpkins . . . . . . . . . . . . 38
punctuation . . . . . . . . . . 16
punctum . . . . . . see musixgre
\Purierstab ( ) . . . . . . . 191
\pushout (⟔) . . . . . . . . . 33
\pushout (⟔) . . . . . . . . . 59
pushout diagrams . . . . . . 226
\pwedge (U) . . . . . . . . . . 19
pxfonts (package) . . . . . . . 29,
31, 42, 51, 62, 65, 73, 90,
94–96, 118, 119, 123, 145,
219, 234
\Pxp (˙) . . . . . . . . . . . . . 183
˙
\pxp ( ˙ ) . . . . . . . . . . . . 183
˙
Q.E.D. . .
\QED (∎) .
\Qoppa (])
\qoppa (*)
\qoppa (ϟ)
Q
...
...
..
...
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
118,
...
...
...
...
121
121
154
154
154
>
\qp () . . . . . . . . . . . . . . . 159
\qprime (⁗) . . . . . . . . . . 117
\QQ ('
) . . . . . . . . . . . . . . 129
B
\qqs () . . . . . . . . . . . . . . 159
@
\qs () . . . . . . . . . . . . . . . 159
\qside (M) . . . . . . . . . . . 181
\quaddot (<) . . . . . . . . . . 157
\quadeye (?) . . . . . . . . . . 157
\Quadrad (]]) . . . . . . . . . . 105
\quadrad (]]) . . . . . . . . . . 105
\Quadras ([[) . . . . . . . . . . 105
\quadras ([[) . . . . . . . . . . 105
\quadrupole (Ô) . . . . . . . 132
\quark (𝑂) . . . . . . . . . . . . 132
\quarkb (𝑃) . . . . . . . . . . . 132
\quarkc (𝑄) . . . . . . . . . . . 132
\quarkd (𝑅) . . . . . . . . . . . 132
\quarks (𝑆) . . . . . . . . . . . 132
\quarkt (𝑇) . . . . . . . . . . . 132
\quarku (𝑈) . . . . . . . . . . . 132
quarter note . . . . see musical
symbols
\quarterNote ( C ) . . . . . . 161
\quarternote (♩) . . . . . . 158
\quarternote (♩) . . . . . . . 158
\quarternote (♩) . . . . . . . 158
\quarterNoteDotted ( u ) . 162
\quarterNoteDottedDouble
( u u ) . . . . . . . . . . . 162
\quarterNoteDottedDoubleDown
uu
( ) . . . . . . . . . . . 162
u
\quarterNoteDottedDown ( ) .
. . . . . . . 161
C
\quarterNoteDown ( ) . . . 161
324
quasi-quotation marks (p q) .
. . . . see \ulcorner and
\urcorner
quaternions (H) see alphabets,
math
quaver . see musical symbols
’
\quaver ( ) . . . . . . . . . . 162
’
\quaverDotted ( ) . . . . . 162
’
\quaverDottedDouble ( ) 162
\quaverDottedDoubleDown ( )
. . . . . . . 162
\quaverDottedDown ( ) . . 162
\quaverDown ( ) . . . . . . . 162
\quaverRest ( ) . . . . . . . 163
\quaverRestDotted ( ) . . 163
queen . . . . . . . . 182, 217–218
\questeq (≟) . . . . . . . . . 59
\Question (⁇) . . . . . . . . 121
quilisma . . . . . . see musixgre
\Quincunx (o) . . . . . . . . . 128
Quine corners (p q) . . . . see
\ulcorner and \urcorner
quotation marks . . 14, 16, 27,
190, 234, 237
\quotedblbase („) . . . 16, 237
\quotesinglbase (‚) . 16, 237
R
R (R) . . . . . . . . . . . . . . . 157
\R (Ž) . . . . . . . . . . . . . . 157
\R (∼) . . . . . . . . . . . . . . 183
\r (å) . . . . . . . . . . . . . . . 20
\r (∼) . . . . . . . . . . . . . . 183
r (r) . . . . . . . . . . . . . . . . 157
r (r) . . . . . . . . . . . . . . . . 123
\Radiation ( ) . . . . . . . 178
\radiation (☢) . . . . . . . . 190
radicals . see \sqrt and \surd
\Radioactivity (j) . . . . 131
\Radix ()) . . . . . . . . . . . 128
\Rain ( ) . . . . . . . . . . . . 178
\RainCloud ( ) . . . . . . . 178
raindrop . . . . . . . . . . . . . 217
raising . . . see \textraising
\RaisingEdge ( ) . . . . . . 125
\Rangle (>) . . . . . . . . . . 124
\rAngle (⟩⟩) . . . . . . . . . . . 104
\rAngle (⟫) . . . . . . . . . . 101
⟫
\rAngle (
)
. . . . . . . . . 103
\rangle (⟩) . . . . . . . . . 29, 99
\rangle (⟩) . . . . . . . . . . . 101
\rangle (⟩) . . . . . . . . . . . 100
⟩
\rangle ( ) . . . . . . . . . . 103
\ranglebar (s) . . . . . . . . 101
\rangledot (⦒) . . . . . . . . 101
\rangledot (⦒) . . . . . . . . 98
\rangledownzigzagarrow (⍼)
. . . . . . . 118
\rank (rank) . . . . . . . . . 92
\RArrow ( → ) . . . . . . . . 129
\rarrowfill . . . . . . . . . . 111
\ratio (:) . . . . . . . . . . . . 61
\RATIONAL ( ) . . . . . . . . . 92
\Rational ( ) . . . . . . . . . 92
rational numbers (Q) . . . . see
alphabets, math
rationalized Planck constant see
\hbar
Raw Font Tables . . . . 12, 123
\RB (}) . . . . . . . . . . . . . . 129
\Rbag (Q) . . . . . . . . . . . . 98
\rbag (O) . . . . . . . . . . . . 98
\rbag (ß) . . . . . . . . . . . . . 33
\rbag (⟆) . . . . . . . . . . . . 98
\rblackbowtie (í) . . . . . 33
\rblkbrbrak (⦘) . . . . . . . 98
⦄
½
Ñ
\rBrace (
\rbrace (})
)
. . . . . . . . . 103
. . . . . . . . . . 101
\rbrace (}) . . . . . . . . . . . 102
⎫
⎪
⎪
\rbrace ( ⎬) . . . . . . . . . 101
}⎪
⎭
\rbrace (
) . . . . . . . . . . 103
\Rbrack (]) . . . . . . . . . . . 124
\rBrack (]]) . . . . . . . . . . . 104
\rBrack (⟧)
. . . . . . . . . . 102
\rBrack (⟧) . . . . . . . . . . . 102
⟧
\rBrack ( ) . . . . . . . . . . 103
\rbrack (]) . . . . . . . . . . . 102
\rbrack (]) . . . . .
\rbracklrtick (⦎)
\rbrackubar (⦌) .
\rbrackurtick (⦐)
\Rbrbrak (⟭) . . . .
❳
\rbrbrak (
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 102
. 98
. 98
. 98
. 98
) . . . . . . . . . 103
\rc (a) . . . . . . . . . . . . . . 23
\rCeil (⌉⌉) . . . . . . . . . . . 104
\rceil (⌉) . . . . . . . . . . . 99
\rceil (⌉)
. . . . . . . . . . . 102
⎤⎥
\rceil ( ⎥⎥⎥) . . . . . . . . . . . 100
⌉⎥
\rceil ( ) . . . . . . . . . . . 102
\rcirclearrowdown (û) . 75
\rcirclearrowleft (⟲) . 75
\rcirclearrowright (⤿)
75
\rcirclearrowup (↺) . . . 75
\rcircleleftint (∳) . . . 45
\rcircleleftint (∳) . . . . 44
\rcirclerightint (∳) . . . 45
\rcirclerightint (∳) . . . 44
\rcorners (w) . . . . . . . . . 98
\rcurvearrowdown (⤹) . . . 75
\rcurvearrowleft (↶) . . 75
\rcurvearrowne (Ä) . . . . 75
\rcurvearrownw (Å) . . . . 75
\rcurvearrowright (À) . . 75
\rcurvearrowse (Ç) . . . . 75
\rcurvearrowsw (Æ) . . . . 75
\rcurvearrowup (Á) . . . . . 75
\rcurvyangle (⧽) . . . . . . 98
\rdbrack (w) . . . . . . . . . . 100
\rdiagovfdiag (⤫) . . . . . 121
\rdiagovsearrow (⤰) . . . 84
\Rdsh (↳) . . . . . . . . . . . . 78
\Rdsh (↳) . . . . . . . . . . . . 84
\Re (Re) . . . . . . . . . . . . . 92
\Re (ℜ) . . . . . . . . . . . 92, 96
\Re (ℜ) . . . . . . . . . . . . . 97
\REAL ( ) . . . . . . . . . . . . 92
\Real ( ) . . . . . . . . . . . . 92
real numbers (R) . . . . . . . see
alphabets, math
realhats (package) 107, 239, 240
recipe . . . . . see \textrecipe
\recorder () . . . . . . . . . 176
\Rectangle (u) . . . . . . . . 143
\RectangleBold (v) . . . . . 143
rectangles . 143, 144, 169–173,
199–200
\RectangleThin (t) . . . . . 143
\Rectpipe (˜) . . . . . . . . . 131
\Rectsteel (”) . . . . . . . . 131
recycle (package) . . . 187, 239
\recycle (♻) . . . . . . . . . 190
¾
Ò
A
\recycle (
) . . . . 187
\Recycling (Þ) . . . . . . . 187
recycling symbols . . 186, 187,
190, 192–197, 199
reduced quadrupole moment see
\rqm
\reference (𝑙) . . . . . . . . 132
\reflectbox . . . . . . . . . . 222
registered trademark . 14, 26,
236
\Reibe ( ) . . . . . . . . . . . . 191
relational database symbols 121
relational symbols . . . . . . 50
binary . 50–53, 55, 57–69,
88–90
negated binary . . 51, 52,
54–57, 59
triangle . . . . . . . . 69–71
325
\relationleftproject ( « »&) . .
. . . . . . . 113
\relationlifting ( $—##) . . 113
\relationrightproject ( $– #„) .
. . . . . . . 113
relations . . . . . . . . . . . . . 113
\Relbar (=) . . . . . . . 90, 223
\Relbar (Ô) . . . . . . . . . . 53
\Relbar (⇐) . . . . . . . . . . . 91
\relbar (−) . . . . . . . 90, 223
\relbar (Ð) . . . . . . . . . . 53
\relbar (←) . . . . . . . . . . . 91
relsize (package) . . . . . . . . 23
\Request ( ) . . . . . . . . . 187
\resistivity (𝛯) . . . . . . 132
\resizebox . . . . . . . . 87, 219
\Respondens (∼) . . . . . . 183
\respondens ( ∼) . . . . . . . 183
response ( ) . . . . . . . . . . 238
\restoresymbol . . . . . . . 219
\restrictbarb (‰) . . . . . . 88
\restrictbarbup ()) . . . . 88
\restriction (æ) . . . . . . 73
\restriction (↾) . . . . . . 81
\restriction (↾) . . . . . . 77
\restriction (↾) . . . . . . 86
restrictions
73, 77, 81, 82, 86,
88
\restrictmallet (”) . . . . 88
\restrictmalletup (*) . . 88
\restrictwand () . . . . . . 88
\restrictwandup (() . . . . 88
rests . . . see musical symbols
retracting . . . . . . . . . . . . see
\textretracting
\Retrograde (5) . . . . . . . 128
\Return ( ←˒ ) . . . . . . . 129
return . . . see carriage return
\revangle (⦣) . . . . . . . . . 118
\revangle (⦣) . . . . . . . . . 118
\revangleubar
(⦥) . . . . . 118
Ñ
Ñ
\revaw ( ÑÑ) . . . . . . . . . . . 103
¿
\revD () . . . . . . . . .
.
\revddots ( . . ) . . . . .
\reve () . . . . . . . . .
\reveject (f) . . . . . .
\revemptyset (⦰) . . .
\revemptyset (⦰) . . .
\revepsilon () . . . .
\revepsilon () . . . .
reverse solidus . . . . . .
\textbackslash
\reverseallabreve (
T
.
.
.
.
.
.
.
.
.
{)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
19
227
19
19
120
117
19
222
see
. 159
\reverseC (
) ......
reversed symbols . . . . . . .
\reversedvideodbend ( )
\reversemathcloud ( )
\reversemathwitch ( )
\reversemathwitch* (
)
\revglotstop (c) . . . . . .
159
222
176
38
38
38
19
\revmeasuredangle (⦛) .
\revnmid (⫮) . . . . . . . . .
\revsphericalangle (⦠)
\Rewind (¶) . . . . . . . . .
\RewindToIndex (´) . .
\RewindToStart (µ) . . .
\rfbowtie? (⧒) . . . . . . .
?
\rfilet (??) . . . . . . . . . .
.
.
.
.
.
.
.
118
59
118
177
177
177
59
. 100
\rFloor (⌋⌋) . . . . . . . . . . . 104
\rfloor (⌋) . . . . . . . . . . 99
\rfloor (⌋) . . . . . . . . . . . 102
⎥⎥
\rfloor ( ⎥⎥⎥) . . . . . . . . . . 100
⌋⎦
\rfloor ( ) . . . . . . . . . . 102
\rftimes ⎫
(⧕) . . . . . . . . . 59
⎭
\rgroup ( ) . . . . . . . . . . 99
⎫
⎪
⎪
⎪
\rgroup ( ⎪
⎭) . . . . . . . . . . 102
⎫
⎪
⎪
⎪
\rgroup ( ⎪
⎭) . . . . . . . . . 100
⎧
\rgroup ( ⎪) . . . . . . . . . 102
⎩
\RHD () . . . . . . . . . . . . . 31
\rhd (B) . . . . . . . . . . . 30, 31
\rhd (⊳) . . . . . . . . . . . . . 67
\rhd (⊳) . . . . . . . . . . . 66, 70
\rhd (⊳) . . . . . . . . . . 34, 142
\Rho (P) . . . . . . . . . . . . . 93
\rho (𝜌) . . . . . . . . . . . . . 93
\rho (ρ ) . . . . . . . . . . . . . 94
\rhombus ( ) . . . . . . . . . 145
\rhombuscross ( ) . . . . . 145
\rhombusdot ( ) . . . . . . . 145
rhombuses . . . . . . 30, 31, 36–
38, 73, 118, 119, 140–147,
169–173, 176, 178, 199–
200, 215–216
\rhombusfill ( ) . . . . . . 145
\rhombusfillha ( ) . . . . 144
\rhombusfillhb ( ) . . . . 144
\rhombusfillhl ( ) . . . . 144
\rhombusfillhr ( ) . . . . 144
\rhombuslineh ( ) . . . . . 144
\rhombuslinev ( ) . . . . . 144
\rhombuslinevh ( ) . . . . 144
\rhomesonminus (æ) . . . . 132
\rhomesonnull (ç) . . . . . 132
\rhomesonplus (å) . . . . . 132
\rhook () . . . . . . . . . . . . 91
\rhookdownarrow (;) . . . . 79
\rhookdownarrow (;) . . . . 75
\rhookleftarrow (↩) . . . 79
\rhookleftarrow (↩) . . . 75
\rhooknearrow (⤤) . . . . . 79
\rhooknearrow (⤤) . . . . . 75
\rhooknwarrow (⤣) . . . . . 79
\rhooknwarrow (=) . . . . . 75
\rhookrightarrow (↪) . . 79
\rhookrightarrow (8) . . 75
\rhooksearrow (⤥) . . . . . 79
\rhooksearrow (?) . . . . . 75
\rhookswarrow (⤦) . . . . . 79
\rhookswarrow (⤦) . . . . . 74
\rhookuparrow (9) . . . . . 79
\rhookuparrow (9) . . . . . . 74
\rhoup (ρ) . . . . . . . . . . . 94
\right
99, 103, 104, 219, 221
\rightangle (à) . . . . . . . 118
\rightangle (∟) . . . . . . . 118
\rightangle (∟) . . . . . . . 122
\rightangle (∟) . . . . . . . 118
\rightanglemdot (â) . . . . 118
\rightanglemdot (⦝) . . . 118
\rightanglemdot (⦝) . . . . 118
\rightanglesqr (ã) . . . . 118
\rightanglesqr (⦜) . . . . 118
\rightanglesqr (⦜) . . . . 118
\rightanglesquare (⦜) . . 118
\RIGHTarrow () . . . . . . . 176
\Rightarrow (⇒) . . . . 29, 72
\Rightarrow (⇒) . . . . . . 78
\Rightarrow (⇒) . . . . . . 74
\Rightarrow (⇒) . . . . . . . 84
\rightarrow (Ñ) . . . . . . 73
\rightarrow (→) . . . . . . 72
\rightarrow (→) . . . . . . . 78
\rightarrow (→) . . . . . . . 74
\rightarrow (→) . . . . . . 87
\rightarrow (→) . . . . . . . 84
\rightarrowapprox (⥵) . 84
\rightarrowbackapprox (⭈) .
. . . . . . . . 84
\rightarrowbar () . . . . 82
\rightarrowbar (⇥) . . . . 84
\rightarrowbsimilar (⭌) 84
\rightarrowcircle ( ) . 82
\rightarrowdiamond (⤞) . 84
\rightarrowgtr (⭃) . . . . 69
\rightarrowonoplus (⟴)
84
\rightarrowplus (⥅) . . . 84
\rightarrowshortleftarrow
(⥂) . . . . . . . . . . . . 84
\rightarrowsimilar (⥴) . 84
\rightarrowsupset (⭄) . 64
\rightarrowtail () . . . 72
\rightarrowtail (š) . . . 82
\rightarrowtail (↣) . . . 78
\rightarrowtail (↣) . . . 74
\rightarrowtail (↣) . . . 84
\rightarrowTriangle (û) 82
\rightarrowtriangle (_) 73
\rightarrowtriangle (þ) 82
\rightarrowtriangle (⇾) 84
\rightarrowx (⥇) . . . . . . 84
\rightAssert (⊩) . . . . . . 55
\rightassert (⊦) . . . . . . 55
\rightbarharpoon (Ý) . . 74
\rightbkarrow (⇢) . . . . . 78
\rightbkarrow (⤍) . . . . . 84
\rightblackarrow (.) . . 82
\rightblackspoon (l) . . 89
326
\rightbroom (−
>−−) . . . . . 90
\RIGHTCIRCLE (H) . . . . . . 140
\RIGHTcircle (H
#) . . . . . . 140
\Rightcircle (J) . . . . . . 140
\rightcurvedarrow (↝) . 79
\rightcurvedarrow (⤳) . 84
\rightdasharrow (!) . . . 82
\rightdasharrow (⇢) . . . 84
\rightdbltail (⤜) . . . . . 59
\RightDiamond ( ) . . . . . 143
\rightdotarrow (⤑) . . . . 84
\rightdowncurvedarrow (⤷) .
. . . . . . . . 79
\rightdowncurvedarrow
(⤷) 84
Ñ
Ñ
\rightevaw ( ÑÑ) . . . . . . . . 103
?
\rightfilledspoon (p) . 88
\rightfishtail (⥽) . . . . 58
\rightfootline (­) . . . . 55
\rightfootline (x) . . . . 53
\rightfree (€) . . . . . . . . 53
\righthalfcap (⌝) . . . . . 32
\righthalfcup (⌟) . . . . . 32
\righthand (U) . . . . . . . 137
\rightharpoonaccent (⃑) 106
\rightharpoonccw (⇀) . . 77
\rightharpooncw (⇁) . . . 77
\rightharpoondown (ã) . 74
\rightharpoondown (⇁) . 72
\rightharpoondown (‹) . . 83
\rightharpoondown (⇁) . 81
\rightharpoondown (⇁) . 86
\rightharpoondownbar (⥗) 86
\rightharpoonsupdown (⥤) 86
\rightharpoonup (á) . . . 74
\rightharpoonup (⇀) . . . 72
\rightharpoonup (Š) . . . 83
\rightharpoonup (⇀) . . . 81
\rightharpoonup (⇀) . . . 86
\rightharpoonupbar (⥓) . 86
\rightharpoonupdash (⥬) 86
\rightimply (⥰) . . . . . . . 58
\rightlcurvearrow (”) . 79
\rightleftarrows (Õ) . . 73
\rightleftarrows () . . 72
\rightleftarrows (‘) . . 82
\rightleftarrows (⇄) . . 78
\rightleftarrows (⇄) . . 74
\rightleftarrows (⇄) . . 84
\rightleftcurvearrow (¦) 79
\rightleftharpoon (á) . 74
\rightleftharpoons (é)
74
\rightleftharpoons ( )
72
\rightleftharpoons (⇀
72
↽)
\rightleftharpoons (’) . 83
\rightleftharpoons (⇌) . 81
\rightleftharpoons (⇌) . 77
\rightleftharpoons (⇌) . 86
\rightleftharpoonsdown (⥩)
. . . . . . . . 86
\rightleftharpoonsfill . 111
\rightleftharpoonsup (⥨) 86
\rightleftsquigarrow (↭) 79
\rightlsquigarrow (↝) .
\rightlsquigarrow (↝) . .
\Rightmapsto (⤇) . . . . .
\rightmapsto (↦) . . . . . .
\rightmapsto (↦) . . . . . .
\rightModels (⊫) . . . . . .
\rightmodels (⊧) . . . . . .
\rightmodels (⊧) . . . . . .
\rightmoon (L) . . . . . . . .
\rightmoon (☽) . . . . . . . .
\rightmoon (%) . . . . . . . .
\rightouterjoin (⟖) . . .
\rightp (w) . . . . . . . . . . .
\rightpentagon (⭔) . . . .
\rightpentagonblack (⭓)
\rightpitchfork (t) . . .
\rightpitchfork (ˆ) . . .
\rightpointleft (
) ..
L
79
74
78
79
74
53
55
53
127
127
126
121
24
142
142
90
88
136
\rightpointright (N) . 136
\rightpropto (Ž) . . . . . . 52
\rightrcurvearrow (⤻) . 79
\rightrightarrows (Ñ) . 73
\rightrightarrows (⇒) . 72
\rightrightarrows (•) . . 82
\rightrightarrows (⇉) . 78
\rightrightarrows (⇉) . . 74
\rightrightarrows (⇉) . 84
\rightrightharpoons (Ù) 74
\rightrsquigarrow (↝) . 79
\rightrsquigarrow (¨) . . 74
\RightScissors (S) . . . . 135
\rightslice (3) . . . . . . . 30
\rightslice (Ñ) . . . . . . . 33
\rightslice (⪧) . . . . . . . 52
\rightspoon (⊸) . . . . . . . 89
\rightspoon (⊸) . . . . . . 88
\rightsquigarrow (ù) . 73
\rightsquigarrow ( ) . . 72
\rightsquigarrow () . . 82
\rightsquigarrow (↝) . . 79
\rightsquigarrow (↝) . . 75
\rightsquigarrow (⇝) 84, 85
\rightt (o) . . . . . . . . . . . 24
\righttail (⤚) . . . . . . . 58
\righttherefore ( ) . . . 115
\righttherefore ( ) . 31, 115
\rightthreearrows () . . 82
\rightthreearrows (⇶) . 84
\rightthreetimes (%) . . 119
\rightthreetimes (i) . . 30
\rightthreetimes (Ô) . . . 33
\rightthreetimes (⋌) . . . 33
\rightthreetimes (⋌) . . . 31
\rightthreetimes (⋌) . . 34
\rightthumbsdown (
) . 136
\rightthumbsup (
) . . . 136
\righttoleftarrow (ý) . 73
\righttoleftarrow (æ) . . 82
\Righttorque (') . . . . . . 131
\rightturn (!) . . . . . . . 176
\rightupcurvedarrow (˜) 79
\rightVDash (⊫) . . . . . . 55
\rightVdash (⊩) . . . . . . 55
d
u
(⊩)
(⊨)
(⊢)
(⊢)
Ð
Ð
\rightwave ( ÐÐ) .
\rightVdash
\rightvDash
\rightvdash
\rightvdash
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
52
55
55
52
. . . . . . . 103
\rightwavearrow (↝) . . . 78
\rightwavearrow (↝) . . . 84
\rightwhitearrow (ã) . . 82
\rightwhitearrow (⇨) . . 84
\rightwhiteroundarrow (å) 82
\rightY (,) . . . . . . . . . . 33
\rightY (() . . . . . . . . . . 31
rinforzando () . . . . . . . . . 163
\ring (˚) . . . . . . . . . . . . 106
ring (å) . . . . . . . . see accents
ring equal to . . . see \circeq
ring in equal to . see \eqcirc
ring sum . . . . . . . see \oplus
\ringplus (⨢) . . . . . . . . . 34
\riota (}) . . . . . . . . . . . . 120
\riota ( ) . . . . . . . . . . . . 19
\rip (O) . . . . . . . . . . . . . 181
\risingdotseq («) . . . . . 52
\risingdotseq (:) . . . . . 50
\risingdotseq (Ü) . . . . . 57
\risingdotseq (≓) . . . . . 55
\risingdotseq (≓) . . . . . 52
\risingdotseq (≓) . . . . . 58
\rJoin (Y) . . . . . . . . . . . 51
\rJoin (⋊) . . . . . . . . . . . 33
\RK () . . . . . . . . . . . . . . 129
\rlap . . 24,⎫
25, 143, 225, 226
\rmoustache (⎩) . . . . . . . 99
⎫
⎪
⎪
⎪
\rmoustache ( ⎪
⎩) . . . . . . 102
⎫
⎪
⎪
⎪
\rmoustache ( ⎪
⎩) . . . . . . 100
⎫
\rmoustache ( ⎪) . . . . . . 102
⎩
\RO ( ) . . . . . . . . . . . . . . 129
rock/paper/scissors . . . . . 137
) . . . . . 191
\rollingpin (
Roman coins . . . . . . . . . . 26
\Romania ( ) . . . . . . . . . 189
Romanian comma-belo accent
(a, ) . . . . . . . see accents
rook . . . . . . . . . 182, 217–218
roots . . . . . . . . . . . see \sqrt
roshambo . . . . . . . . . . . . 137
#»
\rot (rot) . . . . . . . . . . . . 92
\rotatebox . . . . 24, 222, 226
rotated symbols 17–19, 24, 222
rotating (package) . . . 27, 129
\rotm (m) . . . . . . . . . . . . 19
\rotOmega ( ) . . . . . . . . . 19
\rotr (r) . . . . . . . . . . . . 19
\rotvara (A) . . . . . . . . . . 19
\rotw (w) . . . . . . . . . . . . 19
\roty (y) . . . . . . . . . . . . 19
\RoundedLsteel () . . . . . 131
\RoundedLsteel () . . . . . 131
327
\RoundedTsteel (Ÿ)
\RoundedTsteel (Ÿ)
\RoundedTTsteel (ž)
\roundz (O) . . . . . . .
\Rparen ()) . . . . . . .
⦆
\rParen (
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
131
131
131
19
124
) . . . . . . . . . . 102
\rparen ()) . . . . . . . . . . . 101
\rparen ()) . . . .
\rparengtr (⦔) .
\Rparenless⨒ (⦖)
\rppolint ( ) . .
\rppolint (⨒) . .
\rppolintsl (⨒)
\rppolintup (⨒)
- ......
\rqm (𝐼)
\RR (z) . . . . . . .
\rrangle (⟫)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 102
. 98
. 98
. 49
. 46
. 47
. 47
. 224
. 157
. . . . . . . . . 100
\rrangle (⦊) . . . . . . . . . .
\rrbracket () . . . . . . . .
98
99
Œ
\rrbracket ( ) . . . . . . . . 104
\rrceil (W) .
\RRelbar (⭅)
\Rrelbar (⇚)
\rrfloor (U)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
98
91
91
98
\rrhD (
) . . . . . . . . . . 198
\rrhDa (
) . . . . . . . . . 198
\rrhDap (
)
. . . . . . . . 198
\rrhDp (
) . . . . . . . . . 198
\rrhDs (
) . . . . . . . . . 198
\rrhDsp (
\rrhDw (
\rrhDwp (
)
. . . . . . . . 198
) . . . . . . . . . 198
)
. . . . . . . . 198
\rrhE (
) . . . . . . . . . . 198
\rrhEp (
) . . . . . . . . . 198
\rrhF (
) . . . . . . . . . . 198
\rrhFp (
) . . . . . . . . . 198
\rrhFw (
) . . . . . . . . . 198
\rrhFwp (
)
. . . . . . . . 198
\rrhL (
) . . . . . . . . . . 198
\rrhLa (
) . . . . . . . . . 198
\rrhLap (
)
. . . . . . . . 198
\rrhLp (
) . . . . . . . . . 198
\rrhLs (
) . . . . . . . . . 198
\rrhLsp (
\rrhLw (
\rrhLwp (
\rrhM (
)
. . . . . . . . 198
) . . . . . . . . . 198
)
. . . . . . . . 198
) . . . . . . . . . . 198
\rrhMp (
) . . . . . . . . . 198
\rrhR (
) . . . . . . . . . . 198
\rrhRa (
) . . . . . . . . . 198
)
\rrhRap (
. . . . . . . . 198
\rrhRp (
) . . . . . . . . . 198
\rrhRs (
) . . . . . . . . . 198
\rrhRsp (
)
\rrhRw (
. . . . . . . . 198
) . . . . . . . . . 198
)
\rrhRwp (
\rrhSd (
. . . . . . . . 198
) . . . . . . . . . 198
)
\rrhSdp (
. . . . . . . . 198
) . . . . . . . . . 198
\rrhSl (
\rrhSlp (
)
\rrhSr (
. . . . . . . . 198
) . . . . . . . . . 198
)
\rrhSrp (
\rrhSu (
. . . . . . . . 198
) . . . . . . . . . 198
\rrhSup (
)
. . . . . . . . 198
\rrhU (
) . . . . . . . . . . 198
\rrhUa (
) . . . . . . . . . 198
\rrhUap (
)
. . . . . . . . 198
\rrhUp (
) . . . . . . . . . 198
\rrhUs (
) . . . . . . . . . 198
\rrhUsp (
)
\rrhUw (
. . . . . . . . 198
) . . . . . . . . . 198
\rrhUwp (
)
. . . . . . . . 198
\RRightarrow (⭆) . . . . . . 84
\Rrightarrow (V) . . . . . 73
\Rrightarrow (¯) . . . . . . 82
\Rrightarrow (⇛) . . . . . 78
\Rrightarrow (⇛) . . . . . . 74
\Rrightarrow (⇛) . . . . . . 84
\rrparenthesis (M) . . . . . 98
\rrparenthesis (⦈) . . . . . 98
\RS (␞) . . . . . . . . . . . . . . 130
\rsem (⟧) . . . . . . . . . . . . 102
M
Q
\rsem ( Q
) . . . . . . . . . . . 100
Q
Q
O . . . see \rdbrack
\rsemantic
rsfs (emf package option) . 126
rsfso (package) . . . . . 123, 239
\Rsh (é) . . . . . . . . . . . . . 73
\Rsh () . . . . . . . . . . . . . 72
\Rsh (Ÿ) . . . . . . . . . . . . . 82
\Rsh (↱) . . . . . . . . . . . . . 78
\Rsh (↱) . . . . . . . . . . . . . 74
\Rsh (↱) . . . . . . . . . . . . . 85
\rsolbar (⧷) . . . . . . . . . . 34
\rsqhook (⫎) . . . . . . . . 58
\rsub (⩥) . . . . . . . . . . . 38
)
\rtborder (
. . . . . . . . 183
\rtbotcorner ( ) . . . . . 183
\rtimes (¸) . . . . . . . . . . 31
\rtimes (o) . . . .
\rtimes (Õ) . . . .
\rtimes (⋊) . . . .
\rtimes (⋊) . . . .
\rtimes (⋊) . . . .
\rtimesblack (ê)
\rtriltri (⧎) . .
\rtriple . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . 30
. . 33
32, 33
. . 31
. . 34
. . 33
. . 71
. . 104
\rttopcorner ( ) . . . . . 183
\RU () . . . . . . . . . . . . . . 129
Rubik’s Cube . . . . . . . . . 198
rubikcube (package) . 198, 239,
240
\ruledelayed (⧴) . . . . . . 58
runes . . . . . . . . . . . . . . . 157
Anglo-Frisian . . . . . . 157
Danish . see normal runes
Germanic . . . . . . . . . 157
Hälsinge . . see staveless
runes
long-branch . see normal
runes
medieval . . . . . . . . . 157
normal . . . . . . . . . . . 157
short-twig . . . . . . . . 157
staveless . . . . . . . . . 157
Swedo-Norwegian . . . see
short-twig runes
\rupee (|) . . . . . . . . . . . 26
\RV (|
) . . . . . . . . . . . . . . 129
\rVert (||) . . . . . . . . . . . . 104
\rVert (‖) . . . . . . . . . . . 99
∥
∥
∥
∥
\rVert ( ∥
∥) . . . . . . . . . . 101
\rvert (|) . . . . . . . . . . . . 99
∣∣
∣
\rvert ( ∣∣∣) . . . . . . . . . . . 101
Å
Å
Å
Å
Å
\rVvert ( Å) . . . . . . . . . 101
\Rvzigzag (⧛) . . . . . . . . . 98
\rvzigzag (⧙) . . . . . . . . . 98
\rWalley Ð( ) . . . . . . . . . 191
Ð
\rwave ( ÐÐ) . . . . . . . . . . . 103
_
_
\rWavy ( _
_
_) . . . . . . . . . . 100
^^_
\rwavy ( ^^^) . . . . . . . . . . . 100
^
S (S) .
\S (§)
\S (S)
\s (Ã)
s (s) .
–
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
\sA ( ) . .
\SAa (a) . .
\SAb (b) . .
\SAd (d) . .
\SAdb (D) .
\SAdd (B) .
\Sadey ( )
S
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
15,
...
...
...
157
236
15
157
157
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
187
154
154
154
154
154
191
.
.
.
.
.
.
.
328
.
.
.
.
.
.
.
.
.
.
.
.
.
.
\sadface (☹) . . . . . . . . . 190
\SAf (f) . . . . . . . . . . . . . 154
safety-related symbols . . . 131
\Saftpresse ( ) . . . . . . . 191
\SAg (g) . . . . . . . . . . . . . 154
\SAga (G) . . . . . . . . . . . . 154
\Sagittarius (V) . . . . . . 128
\Sagittarius (è) . . . . . . 126
\sagittarius (c) . . . . . . 126
\SAh (h) . . . . . . . . . . . . . 154
\SAhd (H) . . . . . . . . . . . . 154
\SAhu (I) . . . . . . . . . . . . 154
\SAk (k) . . . . . . . . . . . . . 154
\SAl (l) . . . . . . . . . . . . . 154
\SAlq (‘) . . . . . . . . . . . . 154
\SAm (m) . . . . . . . . . . . . . 154
\samebishops (s) . . . . . . 181
\Sampi (^) . . . . . . . . . . . 154
\Sampi (Ϡ) . . . . . . . . . . . 154
\sampi (+) . . . . . . . . . . . 154
\sampi (ϡ) . . . . . . . . . . . 154
\SAn (n) . . . . . . . . . . . . . 154
sans (dsfont package option) 123
\sansLmirrored (⅃) . . . . . 121
\sansLturned (⅂) . . . . . . 121
\SAo (o) . . . . . . . . . . . . . 154
\Sappho (˝) . . . . . . . . . . 128
\SAq (q) . . . . . . . . . . . . . 154
\SAr (r) . . . . . . . . . . . . . 154
\sarabfamily . . . . . . . . . 154
sarabian (package) . . 154, 239,
240
\SAs (s) . . . . . . . . . . . . . 154
\SAsa (X) . . . . . . . . . . . . 154
\SAsd (x) . . . . . . . . . . . . 154
\SAsv (S) . . . . . . . . . . . . 154
\SAt (t) . . . . . . . . . . . . . 154
\SAtb (J) . . . . . . . . . . . . 154
\SAtd (T) . . . . . . . . . . . . 154
\satellitedish (I) . . . . 146
satisfies . . . . . . . see \models
\Saturn (F) . . . . . . . . . . 127
\Saturn (S) . . . . . . . . . . 128
\Saturn (Æ) . . . . . . . . . . 126
\saturn (Y) . . . . . . . . . . 126
\SavedStyle . . . . . . . . . . 226
savesym (package) . . . . . . 219
\savesymbol . . . . . . . . . . 219
\SAw (w) . . . . . . . . . . . . . 154
\SAy (y) . . . . . . . . . . . . . 154
\SAz (z) . . . . . . . . . . . . . 154
\SAzd (Z) . . . . . . . . . . . . 154
\Sborder (S) . . . . . . . . . 146
\scalebox . . . . . . . . . . . . 219
scaled (CountriesOfEurope package option) . . . . . . 190
scalerel (package) . . . . . . . 226
scaling . . . . . . . . . . 229, 231
mechanical . . . . 229, 231
optical . . . . . . . . . . . 229
\scd () . . . . . . . . . . . . . 19
\scg () . . . . . . . . . . . . . 19
\Schaler ( ) . . . . . . . . . . 191
\Schneebesen ( ) . . . . . . . 191
\SchrodingersCat ( ) . . 191
\Schussel ( ) . . . . . . . . 191
\schwa (e) . . . . . . . . . . . 19
\schwa () . . . . . . . . . . . . 19
Schwartz distribution spaces see
alphabets, math
\sci (*) . . . . . . . . . . . . . 19
scientific symbols . . . 125–133,
215–216
\ScissorHollowLeft () 135
\ScissorHollowRight () 135
\ScissorLeft () . . . . . 135
\ScissorLeftBrokenBottom
() . . . . . . . . . . . 135
\ScissorLeftBrokenTop () .
. . . . . . . 135
\ScissorRight () . . . . . 135
\ScissorRightBrokenBottom
( ) . . . . . . . . . . . 135
\ScissorRightBrokenTop ()
. . . . . . . 135
scissors . . . . . . . 135, 194–197
\scn (:) . . . . . . . . . . . . . 19
\scoh (˝) . . . . . . . . . . . . 61
\Scorpio (C) . . . . . . . . . 128
\Scorpio (ç) . . . . . . . . . 126
\scorpio (b)
⨓ . . . . . . . . . 126
\scpolint ( ) . . . . . . . . . 49
\scpolint (⨓) . . . . . . . . . 46
\scpolintsl (⨓) . . . . . . . 47
\scpolintup (⨓) . . . . . . . 47
scr (rsfso package option) . 123
\scr (J) . . . . . . . . . . . . . 19
script letters . . see alphabets,
math
\scripta () . . . . . . . . . . 19
\scriptg () . . . . . . . . . . 19
\scriptscriptstyle . . . . 225
\scriptstyle . . . . . . . . . 225
\scriptv (Y) . . . . . . . . . . 19
\Scroll ( Scroll ) . . . . . . 129
\scross ( ) . . . . . . . . . . . 146
\scrossvh ( ) . . . . . . . . . 146
scsnowman (package) 192, 239,
240
\scsnowman ( ) . . . . . . . . 192
\scsnowman ( ) . . . . . . . . 192
\scu (W) . . . . . . . . . . . . . 19
\scurel (;) . . . . . . . . . . 57
\scurel (⊱) . . . . . . . . . . 58
\scy (]) . . . . . . . . . . . . . 19
\sddtstile ( ) . . . . . . . 60
\sDep () . . . . . . . . . . . . . 159
h
\sdststile (
) .......
60
\sdtstile (
) ........
60
\sdttstile ( ) . . . . . . . 60
seagull . . . see \textseagull
\Searrow (u) . . . . . . . . . 73
\Searrow () . . . . . . . . . 82
\Searrow (⇘) . . .
\Searrow (⇘) . . .
\Searrow (⇘) . . .
\searrow (Œ) . . .
\searrow (↘) . .
\searrow (↘) . . .
\searrow (↘) . . .
\searrow (↘) . . .
\searrow (↘) . . .
\searrowtail (')
\searrowtail (')
\sebkarrow (g) .
\sec (sec) . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
..
..
72,
...
...
...
...
...
...
...
...
78
74
85
73
226
78
74
87
85
78
74
78
91
\Sech (ˇ “) ) . . . . . . . . . . . . 160
\sech (sech)
== . . . . . . . . . . 92
==
=
\SechBl ( ˇ “ )
==
\SechBR ( ˇ “ ==)
=
\SechBr ( ˇ “ )
\SechBL (==ˇ “ )
. . . . . . . . . . 160
. . . . . . . . . . 160
. . . . . . . . . . 160
. . . . . . . . . . 160
\second (2) . . . . . . . . . . . 119
seconds, angular
see \second
\secstress (i) . . . . . . . . . 24
section mark . . . . . . . . see \S
\SectioningDiamond ( ) 178
\sector (⌔) . . . . . . . . . . 120
sedenions (S) . see alphabets,
math
\sefilledspoon (w) . . . . 88
\sefootline () . . . . . . . 52
\sefree (‡) . . . . . . . . . . 52
Segletes, Steven B. . . . . . 226
segmented numerals . . . . . 125
n) . . . . . . . . . . . 159
\Segno (
V
\segno () . . . . . . . . . . . . 159
\seharpoonccw (G) . . . . . 77
\seharpooncw (O) . . . . . . 77
\seharpoonne (G) . . . . . . 81
\seharpoonsw (O) . . . . . . 81
\seight (ô) . . . . . . . . . . . 157
\selcurvearrow (⤵) . . . . 79
\selectfont . . . . . . . . . . 12
\selsquigarrow (§) . . . . 74
semaf.fd (file) . . . . . . . . 215
semantic valuation 99, 100, 104
semaphor (package) . 213, 215,
239
semaphore symbols . 213–215
\semapsto (/) . . . . . . . . 74
semibreve see musical symbols
\semibreve ( ) . . . . . . . . 162
\semibreveDotted ( ) . . 162
semidirect products 30, 31, 119
semiquaver . . . . . see musical
symbols ©
\semiquaver ( ) . . . . . . . 162
©
\semiquaverDotted ( ) . 162
\semiquaverDottedDouble
©
( ) . . . . . . . . . . . 162
329
\semiquaverDottedDoubleDown
( ) . . . . . . . . . . . 162
\semiquaverDottedDown ( ) .
. . . . . . . 162
\semiquaverDown ( ) . . . . 162
\semiquaverRest ( ) . . . . 163
\semiquaverRestDotted ( ) .
. . . . . . . 163
\Semisextile (w) . . . . . . 128
\Semisquare (e) . . . . . . . 128
semitic transliteration . 20, 24
\seModels (÷) . . . . . . . . 52
\semodels (ç) . . . . . . . . 52
semtrans (package) 20, 24, 239,
240
\senwarrows (‡) . . . . . . 78
\senwarrows (Ÿ) . . . . . . 74
\senwcurvearrow («) . . . 79
\senwharpoons ([) . . . . . 81
\senwharpoons ([) . . . . . 77
\seovnearrow (⤭) . . . . . . 85
\SePa ( @ ) . . . . . . . . . . . . 160
\separated (•) . . . . . . . . 52
separation vector (r) . . . . 123
\sepitchfork () . . . . . . 88
\seppawns (q) . . . . . . . . 181
\Serbia (¡) . . . . . . . . . . . 189
\sercurvearrow (⤷) . . . . 79
\SerialInterface (Î) . . 129
\SerialPort (Ð) . . . . . . . 129
\sersquigarrow (¯) . . . . 74
\sesearrows () . . . . . . 78
\sesearrows (—) . . . . . . 74
\sespoon (o) . . . . . . . . . 88
\Sesquiquadrate (i) . . . . 128
set interior . . . see \mathring
set operators
intersection . . . see \cap
membership . . . . see \in
union . . . . . . . . see \cup
\setBold . . . . . . . . . . . . 233
\setminus (∖) . . . . . . . . . 30
\setminus (\) . . . . . . . . . 32
\setminus (∖) . . . . . . . . . 32
\setminus (⧵) . . . . . . . . . 34
\seVdash (ï) . . . . . . . . . 52
\sevdash (ß) . . . . . . . . . 53
\Sextile (r) . . . . . . . . . 128
\Sey ( ) . . . . . . . . . . . . . 191
\sfive (ó) . . . . . . . . . . . . 157
\sfour (ã) . . . . . . . . . . . . 157
SGML . . . . . . . . . . . . . . 235
\sgn (sgn) . . . . . . . . . . . 92
\sh ( ) . . . . . . . . . . . . . . 160
sha ( ) . . . . . . . . . . . . . 222
\Shake () . . . . . . . . . . . . 159
\shake () . . . . . . . . . . . . 159
\Shakel () . . . . . . . . . . . 159
\Shakene () . . . . . . . . . . . 159
\Shakenw () . . . . . . . . . . . 159
\Shakesw () . . . . . . . . . . . 159
\sharp (♯) . . . . . . . . . . . 158
\sharp (û) . . . . . . . . . . . . 158
X
\
W
X
j
l
k
m
\sharp (♯)
. . . . . . . . . . . 158
\sharp ( ) . . . . . . . . . . . . 163
\sharp (♯) . . . . . . . . . . . . 158
\sharp (♯) . . . . . . . . . . . . 158
\sharpArrowboth ( ) . . . . 163
\sharpArrowdown ( ) . . . . 163
\sharpArrowup ( ) . . . . . . 163
Sharpe, Michael . . . . . . . . 23
\sharpSlashslashslashStem
( ) . . . . . . . . . . . . 163
\sharpSlashslashslashStemstem
( ) . . . . . . . . . . . . 163
\sharpSlashslashStem ( ) 163
\sharpSlashslashStemstemstem
( ) . . . . . . . . . . . . 163
\shfermion () . . . . . . . . . 132
\Shift ( Shift ⇑ ) . . . . . . 129
\shift (˜) . . . . . . . . . . . 29
\Shilling (¡) . . . . . . . . . 25
\shneg (ˆ) . . . . . . . . . . . 29
short-twig runes . . . . . . . 157
\shortcastling (O-O) . . 181
\shortdownarrow () . . . . 73
\shortdowntack (⫟) . . . . 55
\shortdowntack (⫟) . . . . 58
\ShortFifty (×) . . . . . . 177
\ShortForty (Ù) . . . . . . 177
\shortleftarrow ( ) . . . 73
\shortlefttack (⫞) . . . . 55
\shortlefttack (⫞) . . . . . 58
\shortmid (p) . . . . . . . . . 50
\shortmid (¾) . . . . . . . . . 57
\shortmid (∣) . . . . . . . . . 55
\shortmid (∣) . . . . . . . . . 32
\shortmid (∣) . . . . . . . . . 58
\ShortNinetyFive (Ô) . . 177
\shortparallel (q) . . . . . 50
\shortparallel (¿) . . . . . 57
\shortparallel (∥) . . . . 55
\shortparallel (∥) . . . . 53
\shortparallel (∥) . . . . . 58
\ShortPulseHigh ( ) . . . 125
\ShortPulseLow ( ) . . . . 125
\shortrightarrow () . . 73
\shortrightarrowleftarrow
(⥄) . . . . . . . . . . . . 85
\shortrighttack (⊦) . . . . 55
\ShortSixty (Ö) . . . . . . 177
\ShortThirty (Û) . . . . . 177
\shortuparrow () . . . . . 73
\shortuptack (⫠) . . . . . . 55
\shortuptack (⫠) . . . . . . 58
\showclock . . . . . . . . . . . 178
\shpos (´) . . . . . . . . . . . 29
shuffle (package)
35, 239, 240
\shuffle (⧢) . . . . . . . . . 34
\shuffle ( ) . . . . . . . . . 35
shuffle product ( ) . . . . . 35
\SI (␏) . . . . . . . . . . . . . . 130
\Sieb ( ) . . . . . . . . . . . 191
↕
"
#
\sieve ( ) . . . . . . . . . .
\Sigma (Σ) . . . . . . . . . . .
\sigma (𝜎) . . . . . . . . . . .
\sigmaup (σ) . . . . . . . . . .
\sim (∼) . . 50, 224, 226,
\sim (∼) . . . . . . . . . . . . .
\sim (∼) . . . . . . . . . . . . .
\sim (∼) . . . . . . . . . . . . .
\simbot (‹) . . . . . . . . . .
\simcolon (∼:) . . . . . . . .
\simcoloncolon (∼::) . . .
\simeq (≃) . . . . . . . . . . .
\simeq (≃) . . . . . . . . . . .
\simeq (≃) . . . . . . . . . . .
\simeq (≃) . . . . . . . . . . .
\simgE (⪠) . . . . . . . . . . .
\simgtr (⪞) . . . . . . . . . .
\similarleftarrow (⭉) .
\similarrightarrow (⥲) .
\simlE (⪟) . . . . . . . . . . .
\simless (⪝) . . . . . . . . .
\simminussim (⩬) . . . . . .
\simneqq (≆) . . . . . . . . . .
\simneqq (≆) . . . . . . . . .
\simperp (‹) . . . . . . . . .
simplewick (package) 228,
\simplus (⨤) . . . . . . . . .
simpsons (package) . . 184,
Simpsons characters . . . . .
\simrdots (Š) . . . . . . . .
\simrdots (⩫) . . . . . . . . .
\sin (sin) . . . . . . . . . . . .
\sincoh (ˇ) . . . . . . . . . .
\sinewave (ñ) . . . . . . . .
\sinewave (∿) . . . . . . . . .
\sinh (sinh) . . . . . . . . . .
191
93
93
94
234
55
53
58
98
61
61
50
55
53
58
69
69
85
85
69
69
58
56
58
61
229
34
239
184
57
58
91
61
120
121
91
\SixFlowerAlternate (O) 139
\SixFlowerAltPetal (U)
139
\SixFlowerOpenCenter (M) . .
. . . . . . . 139
\SixFlowerPetalDotted (Q) .
. . . . . . . 139
\SixFlowerPetalRemoved (L)
. . . . . . . 139
\SixFlowerRemovedOpenPetal
([) . . . . . . . . . . . 139
\SixStar (G) . . . . . . . . . 139
\SixteenStarLight (K) . 139
sixteenth note . . . see musical
symbols
©
\sixteenthNote ( ) . . . . 161
\sixteenthnote (♬) . . . . 158
©
\sixteenthNoteDotted ( ) . .
. . . . . . . 161
\sixteenthNoteDottedDouble
©
( ) . . . . . . . . . . . 161
\sixteenthNoteDottedDoubleDown
( ) . . . . . . . . . . . 161
\sixteenthNoteDottedDown
( ) . . . . . . . . . . . . 161
\sixteenthNoteDown ( ) . 161
330
skak (package) . 181, 182, 239,
240
skull (package) . . 181, 239, 240
\skull ( ) . . . . . . . . . . . 38
\skull (☠) . . . . . . . . . . . 190
\skull ( ) . . . . . . . . . . . 181
skulls . . . . . 38, 181, 190, 217
\slash (/) . . . . . . . . . . . 234
\slashb () . . . . . . . . . . . 19
\slashc ( ) . . . . . . . . . . . 19
\slashd () . . . . . . . . . . . 19
\slashdiv () . . . . . . . . . 31
slashed (package) . . . . . . . 224
\slashed . . . . . . . . . . . . 224
slashed letters . . . . . . . . . 224
slashed.sty (file) . . . . . . 224
\slashu (U) . . . . . . . . . . . 19
\Sleepey ( ) . . . . . . . . . 191
\Sleet ( ) . . . . . . . . . . . 178
\sliding (ā) . . . . . . . . . . 22
\Slovakia (¢) . . . . . . . . . 189
\Slovenia (£) . . . . . . . . . 189
A
L)
\smallaltoclef (
\smallawint (⨑) .
\smallawintsl (⨑)
\smallawintup (⨑)
..
.....
....
.....
J
. 159
. 39
. 39
. 39
\smallbassclef (
) . . . 159
\smallblackcircle (•) . . 36
\smallblackdiamond (⬩) . 36
\smallblacklozenge (⬪) . 141
\smallblacksquare (▪) . . 36
\smallblackstar (⋆) . . . . 36
\smallblacktriangledown (▾)
. . . . . . 36, 71
\smallblacktriangleleft (◂)
. . . . . . 36, 71
\smallblacktriangleleft (◂)
. . . . . . . 142
\smallblacktriangleright
(▸) . . . . . . . . . . 36, 71
\smallblacktriangleright
(▸) . . . . . . . . . . . . 142
\smallblacktriangleup (▴) .
. . . . . . 36, 71
\smallbosonloop () . . . . . 132
\smallbosonloopA () . . . . 132
\smallbosonloopV () . . . . 132
\SmallCircle ( ) . . . . . . 143
\smallcircle (◦) . . . . . . 36
\smallcirfnint (⨐) . . . . . 39
\smallcirfnintsl (⨐) . . . 39
\smallcirfnintup (⨐) . . . 39
\SmallCross ( ) . . . . . . 143
smallctrbull (bullcntr package option) . . . . . . . . . . 180
\smallctrbull . . . . . . . . 180
\smalldiamond (⋄) . . . . . 36
\smalldiamond (◇) . . . . . 36
\SmallDiamondshape ( ) 143
\smalldivslash (∕) . . . . 33
♣
E
∩
≪
F
\smallfint (⨏) . . . . . . . . 39
\smallfintsl (⨏) . . . . . . 39
\smallfintup (⨏) . . . . . . 39
\smallfrown (a) . . . . . . . 50
\smallfrown (½) . . . . . . . 57
\smallfrown (⌢) . . . . . 55, 90
\smallfrown (⌢) . . . . . . . 89
\smallfrown (⌢) . . . . . . . 58
\SmallHBar ( ) . . . . . . . 143
\smalliiiint (⨌) . . . . . 39
\smalliiiintsl (⨌) . . . . 39
\smalliiiintup (⨌) . . . . 39
\smalliiint (∭) . . . . . . 39
\smalliiintsl (∭) . . . . . 39
\smalliiintup (∭) . . . . . 39
\smalliint (∬) . . . . . . . . 39
\smalliintsl (∬) . . . . . . 39
\smalliintup (∬) . . . . . . 39
\smallin ( ) . . . . . . . . . . 97
\smallin (∊) . . . . . . . . . . 58
\smallint (∫) . . . . . . . . . 120
\smallint (∫) . . . . . . . . . 119
\smallint (∫) . . . . . . . . . 39
\smallintBar (⨎) . . . . . . 39
\smallintbar (⨍) . . . . . . 39
\smallintBarsl (⨎) . . . . . 39
\smallintbarsl (⨍) . . . . . 39
\smallintBarup (⨎) . . . . . 39
\smallintbarup (⨍) . . . . . 39
\smallintcap (⨙) . . . . . . 39
\smallintcapsl (⨙) . . . . . 39
\smallintcapup (⨙) . . . . . 39
\smallintclockwise (∱) . 39
\smallintclockwisesl (∱) 39
\smallintclockwiseup (∱) 39
\smallintcup (⨚) . . . . . . 39
\smallintcupsl (⨚) . . . . . 39
\smallintcupup (⨚) . . . . . 39
\smallintlarhk (⨗) . . . . 39
\smallintlarhksl (⨗) . . . 39
\smallintlarhkup (⨗) . . . 39
\smallintsl (∫) . . . . . . . 39
\smallintup (∫) . . . . . . . 39
\smallintx (⨘) . . . . . . . . 39
\smallintxsl (⨘) . . . . . . 39
\smallintxup (⨘) . . . . . . 39
\SmallLowerDiamond ( ) 143
\smalllowint (⨜) . . . . . . 39
\smalllowintsl (⨜) . . . . . 39
\smalllowintup (⨜) . . . . . 39
\smalllozenge (⬫) . . . . . 141
\smalllozenge (◊) . . . . . . 140
\smallni (∍) . . . . . . . . . . 58
\smallnpolint (⨔) . . . . . 39
\smallnpolintsl (⨔) . . . . 39
\smallnpolintup (⨔) . . . . 39
\smalloiiint (∰) . . . . . . 39
\smalloiiintsl (∰) . . . . 39
\smalloiiintup (∰) . . . . 39
\smalloiint (∯) . . . . . . . 39
\smalloiintsl (∯) . . . . . 39
\smalloiintup (∯) . . . . . 39
\smalloint (∮) . . . . . . . . 39

\smallointctrclockwise (∳) .
. . . . . . . . 39
\smallointctrclockwisesl (∳)
. . . . . . . . 39
\smallointctrclockwiseup (∳)
. . . . . . . . 39
\smallointsl (∮) . . . . . . 39
\smallointup (∮) . . . . . . 39
\smallowns () . . . . . . . . 97
\smallpencil (
) . . . . 136
\smallpointint (⨕) . . . . . 39
\smallpointintsl (⨕) . . . 39
\smallpointintup (⨕) . . . 39
\smallprod (∏) . . . . . . . . 31
\SmallRightDiamond ( ) 143
\smallrppolint (⨒) . . . . . 39
\smallrppolintsl (⨒) . . . 39
\smallrppolintup (⨒) . . . 39
\smallscpolint (⨓) . . . . . 39
\smallscpolintsl (⨓) . . . 39
\smallscpolintup (⨓) . . . 39
\smallsetminus (r) . . . . 30
\smallsetminus (Ú) . . . . 33
\smallsetminus (∖) . . . . 33
\smallsetminus (∖) . . . . 32
\smallsetminus (∖) . . . . . 34
\smallsmile (`) . . . . . . . 50
\smallsmile (¼) . . . . . . . 57
\smallsmile (⌣) . . . . . 55, 90
\smallsmile (⌣) . . . . . . . 89
\smallsmile (⌣) . . . . . . . 58
\smallsqint (⨖) . . . . . . . 39
\smallsqintsl (⨖) . . . . . 39
\smallsqintup (⨖) . . . . . . 39
\SmallSquare ( ) . . . . . . 143
\smallsquare (▫) . . . . . . 36
\smallsquare (◽) . . . . . . 36
\smallstar (☆) . . . . . . . . 36
\smallsumint (⨋) . . . . . . 39
\smallsumintsl (⨋) . . . . . 39
\smallsumintup (⨋) . . . . . 39
P
O
@
\smalltrebleclef (
H)
C
. 159
\SmallTriangleDown ( ) 143
\smalltriangledown (Ź) . 35
\smalltriangledown (▿) . 36,
71
\smalltriangledown (▿) 36, 70
\SmallTriangleLeft ( ) 143
\smalltriangleleft (Ž) . 35
\smalltriangleleft (◃) . 36,
71
\smalltriangleleft (◃) 36, 70
\smalltriangleleft (◃) . 141
\SmallTriangleRight ( ) 143
\smalltriangleright (Ż)
35
\smalltriangleright (▹) 36,
71
\smalltriangleright (▹) 36,
70
\smalltriangleright (▹) 141
B
D
331
A
\SmallTriangleUp ( ) . . 143
\smalltriangleup (Ÿ) . . . 35
\smalltriangleup (▵) . 36, 71
\smalltriangleup (▵) . 36, 70
\smallupint (⨛) . . . . . . . 39
\smallupintsl (⨛) . . . . . . 39
\smallupintup (⨛) . . . . . . 39
\smallvarointclockwise (∲) .
. . . . . . . . 39
\smallvarointclockwisesl (∲)
. . . . . . . . 39
\smallvarointclockwiseup (∲)
. . . . . . . . 39
\SmallVBar ( ) . . . . . . . 143
\smallwhitestar (⭒) . . . 36
smartctrbull (bullcntr package option) . . . . . . . . . . 180
\smartctrbull . . . . . . . . 180
\smashtimes (ö) . . . . . . . 33
\smashtimes (⨳) . . . . . . . 34
\smblkcircle (•) . . . . . . 37
\smblkcircle (•) . . . . . . 38
\smblkdiamond (⬩) . . . . . 37
\smblkdiamond (⬩) . . . . . 141
\smblklozenge (⬪) . . . . . 141
\smblklozenge (⬪) . . . . . . 141
\smblksquare (▪) . . . . . . 37
\smblksquare (▪) . . . . . . 141
\smeparsl (⧤) . . . . . . . . . 58
\smile (⌣) . . . . . . . . . . 50
\smile (ü) . . . . . . . . . . . 57
\smile (⌣) . . . . . . . . . 55, 90
\smile (⌣) . . . . . . . . . . . 89
\smile (⌣) . . . . . . . . . . . 58
smile symbols . . . . . . . 89, 90
\smileeq () . . . . . . . . 55, 90
\smileeq ( ) . . . . . . . . . . 89
\smileeqfrown (&) . . . . . 89
\smileface (☺) . . . . . . . . 190
\smilefrown (≍) . . . . . 55, 90
\smilefrown (≍) . . . . . . . 89
\smilefrowneq (() . . . . . 89
\Smiley (©) . . . . . . 177, 191
\smiley (,) . . . . . . . . . . 176
smiley faces 121, 130, 176, 177,
186, 190–197, 201–203
\smt (⪪) . . . . . . . . . . . . . 69
\smte (⪬) . . . . . . . . . . . . 69
\smwhitestar (⭒) . . . . . . 37
\smwhitestar (⭒) . . . . . . 141