The Comprehensive LATEX Symbol List Scott Pakin <[email protected]>∗ 25 June 2020 Abstract This document lists 14599 symbols and the corresponding LATEX commands that produce them. Some of these symbols are guaranteed to be available in every LATEX 2𝜀 system; others require fonts and packages that may not accompany a given distribution and that therefore need to be installed. All of the fonts and packages used to prepare this document—as well as this document itself—are freely available from the Comprehensive TEX Archive Network (http://www.ctan.org/). Contents Contents 1 1 Introduction 12 1.1 Document Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2 Frequently Requested Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Body-text symbols Table 1: LATEX 2𝜀 Escapable “Special” Characters . . . . . . . . . . . . . . . . Table 2: Predefined LATEX 2𝜀 Text-mode Commands . . . . . . . . . . . . . . Table 3: LATEX 2𝜀 Commands Defined to Work in Both Math and Text Mode Table 4: 𝒜ℳ𝒮 Commands Defined to Work in Both Math and Text Mode . . Table 5: Non-ASCII Letters (Excluding Accented Letters) . . . . . . . . . . . Table 6: textgreek Upright Greek Letters . . . . . . . . . . . . . . . . . . . . . Table 7: Letters Used to Typeset African Languages . . . . . . . . . . . . . . Table 8: Letters Used to Typeset Vietnamese . . . . . . . . . . . . . . . . . . Table 9: Punctuation Marks Not Found in OT1 . . . . . . . . . . . . . . . . . Table 10: pifont Decorative Punctuation Marks . . . . . . . . . . . . . . . . . . Table 11: tipa Phonetic Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . Table 12: tipx Phonetic Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . Table 13: wsuipa Phonetic Symbols . . . . . . . . . . . . . . . . . . . . . . . . . Table 14: wasysym Phonetic Symbols . . . . . . . . . . . . . . . . . . . . . . . . Table 15: phonetic Phonetic Symbols . . . . . . . . . . . . . . . . . . . . . . . . Table 16: t4phonet Phonetic Symbols . . . . . . . . . . . . . . . . . . . . . . . . Table 17: semtrans Transliteration Symbols . . . . . . . . . . . . . . . . . . . . Table 18: Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 19: tipa Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . . . . Table 20: extraipa Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . . Table 21: wsuipa Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . . . Table 22: phonetic Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . . Table 23: metre Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . . . Table 24: t4phonet Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . . Table 25: arcs Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . . . . Table 26: semtrans Accents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 27: ogonek Accents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 14 14 15 15 15 15 16 16 16 16 17 18 19 19 19 20 20 20 21 22 22 23 23 23 23 24 24 ∗ The original version of this document was written by David Carlisle, with several additional tables provided by Alexander Holt. See Section 10.8 on page 238 for more information about who did what. 1 Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table 3 28: 29: 30: 31: 32: 33: 34: 35: 36: 37: 38: 39: 40: 41: 42: 43: 44: 45: 46: 47: combelow Accents . . . . . . . . . . . . . . . wsuipa Diacritics . . . . . . . . . . . . . . . textcomp Diacritics . . . . . . . . . . . . . . marvosym Diacritics . . . . . . . . . . . . . . textcomp Currency Symbols . . . . . . . . . marvosym Currency Symbols . . . . . . . . . fontawesome Currency Symbols . . . . . . . wasysym Currency Symbols . . . . . . . . . ChinA2e Currency Symbols . . . . . . . . . . teubner Currency Symbols . . . . . . . . . . tfrupee Currency Symbols . . . . . . . . . . eurosym Euro Signs . . . . . . . . . . . . . . fourier Euro Signs . . . . . . . . . . . . . . . textcomp Legal Symbols . . . . . . . . . . . fontawesome Legal Symbols . . . . . . . . . cclicenses Creative Commons License Icons . ccicons Creative Commons License Icons . . textcomp Old-style Numerals . . . . . . . . . Miscellaneous textcomp Symbols . . . . . . . Miscellaneous wasysym Text-mode Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 24 24 25 25 25 25 25 26 26 26 26 26 26 26 27 27 27 27 27 Mathematical symbols Table 48: Math-mode Versions of Text Symbols . . . . . . . . Table 49: cmll Unary Operators . . . . . . . . . . . . . . . . . Table 50: Binary Operators . . . . . . . . . . . . . . . . . . . Table 51: 𝒜ℳ𝒮 Binary Operators . . . . . . . . . . . . . . . Table 52: stmaryrd Binary Operators . . . . . . . . . . . . . . Table 53: wasysym Binary Operators . . . . . . . . . . . . . . Table 54: txfonts/pxfonts Binary Operators . . . . . . . . . . Table 55: mathabx Binary Operators . . . . . . . . . . . . . . Table 56: MnSymbol Binary Operators . . . . . . . . . . . . . Table 57: fdsymbol Binary Operators . . . . . . . . . . . . . . Table 58: boisik Binary Operators . . . . . . . . . . . . . . . Table 59: stix Binary Operators . . . . . . . . . . . . . . . . . Table 60: mathdesign Binary Operators . . . . . . . . . . . . Table 61: cmll Binary Operators . . . . . . . . . . . . . . . . Table 62: shuffle Binary Operators . . . . . . . . . . . . . . . Table 63: ulsy Geometric Binary Operators . . . . . . . . . . Table 64: mathabx Geometric Binary Operators . . . . . . . . Table 65: MnSymbol Geometric Binary Operators . . . . . . . Table 66: fdsymbol Geometric Binary Operators . . . . . . . Table 67: boisik Geometric Binary Operators . . . . . . . . . Table 68: stix Geometric Binary Operators . . . . . . . . . . Table 69: halloweenmath Halloween-Themed Math Operators Table 70: stix Small Integrals . . . . . . . . . . . . . . . . . . Table 71: stix Small Integrals with Explicit Slant . . . . . . . Table 72: Variable-sized Math Operators . . . . . . . . . . . Table 73: 𝒜ℳ𝒮 Variable-sized Math Operators . . . . . . . . Table 74: stmaryrd Variable-sized Math Operators . . . . . . Table 75: wasysym Variable-sized Math Operators . . . . . . Table 76: mathabx Variable-sized Math Operators . . . . . . Table 77: txfonts/pxfonts Variable-sized Math Operators . . . Table 78: esint Variable-sized Math Operators . . . . . . . . . Table 79: bigints Variable-sized Math Operators . . . . . . . . Table 80: MnSymbol Variable-sized Math Operators . . . . . Table 81: fdsymbol Variable-sized Math Operators . . . . . . Table 82: boisik Variable-sized Math Operators . . . . . . . . Table 83: stix Variable-sized Math Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 29 29 30 30 30 31 31 31 31 32 33 34 34 35 35 35 35 36 36 37 38 38 39 39 40 40 40 40 41 42 43 43 44 44 45 46 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table 84: 85: 86: 87: 88: 89: 90: 91: 92: 93: 94: 95: 96: 97: 98: 99: 100: 101: 102: 103: 104: 105: 106: 107: 108: 109: 110: 111: 112: 113: 114: 115: 116: 117: 118: 119: 120: 121: 122: 123: 124: 125: 126: 127: 128: 129: 130: 131: 132: 133: 134: 135: 136: 137: 138: 139: 140: 141: stix Integrals with Explicit Slant . . . . . . . . cmupint Variable-sized Upright Integrals . . . mathdesign Variable-sized Math Operators . . prodint Variable-sized Math Operators . . . . cmll Large Math Operators . . . . . . . . . . Binary Relations . . . . . . . . . . . . . . . . 𝒜ℳ𝒮 Binary Relations . . . . . . . . . . . . . 𝒜ℳ𝒮 Negated Binary Relations . . . . . . . . stmaryrd Binary Relations . . . . . . . . . . . wasysym Binary Relations . . . . . . . . . . . txfonts/pxfonts Binary Relations . . . . . . . . txfonts/pxfonts Negated Binary Relations . . . mathabx Binary Relations . . . . . . . . . . . mathabx Negated Binary Relations . . . . . . MnSymbol Binary Relations . . . . . . . . . . MnSymbol Negated Binary Relations . . . . . fdsymbol Binary Relations . . . . . . . . . . . fdsymbol Negated Binary Relations . . . . . . boisik Binary Relations . . . . . . . . . . . . . boisik Negated Binary Relations . . . . . . . . stix Binary Relations . . . . . . . . . . . . . . stix Negated Binary Relations . . . . . . . . . mathtools Binary Relations . . . . . . . . . . . turnstile Binary Relations . . . . . . . . . . . . trsym Binary Relations . . . . . . . . . . . . . trfsigns Binary Relations . . . . . . . . . . . . cmll Binary Relations . . . . . . . . . . . . . . colonequals Binary Relations . . . . . . . . . . fourier Binary Relations . . . . . . . . . . . . Subset and Superset Relations . . . . . . . . . 𝒜ℳ𝒮 Subset and Superset Relations . . . . . stmaryrd Subset and Superset Relations . . . . wasysym Subset and Superset Relations . . . . txfonts/pxfonts Subset and Superset Relations mathabx Subset and Superset Relations . . . . MnSymbol Subset and Superset Relations . . fdsymbol Subset and Superset Relations . . . boisik Subset and Superset Relations . . . . . stix Subset and Superset Relations . . . . . . Inequalities . . . . . . . . . . . . . . . . . . . 𝒜ℳ𝒮 Inequalities . . . . . . . . . . . . . . . . wasysym Inequalities . . . . . . . . . . . . . . txfonts/pxfonts Inequalities . . . . . . . . . . . mathabx Inequalities . . . . . . . . . . . . . . MnSymbol Inequalities . . . . . . . . . . . . . fdsymbol Inequalities . . . . . . . . . . . . . . boisik Inequalities . . . . . . . . . . . . . . . . stix Inequalities . . . . . . . . . . . . . . . . . 𝒜ℳ𝒮 Triangle Relations . . . . . . . . . . . . stmaryrd Triangle Relations . . . . . . . . . . mathabx Triangle Relations . . . . . . . . . . MnSymbol Triangle Relations . . . . . . . . . fdsymbol Triangle Relations . . . . . . . . . . boisik Triangle Relations . . . . . . . . . . . . stix Triangle Relations . . . . . . . . . . . . . Arrows . . . . . . . . . . . . . . . . . . . . . . Harpoons . . . . . . . . . . . . . . . . . . . . textcomp Text-mode Arrows . . . . . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 48 49 50 50 50 50 51 51 51 51 51 52 52 52 54 55 56 57 57 58 59 59 60 61 61 61 61 61 61 62 62 62 62 62 63 63 63 64 64 64 65 65 65 66 67 68 68 69 69 69 70 71 71 71 72 72 72 Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table 142: 143: 144: 145: 146: 147: 148: 149: 150: 151: 152: 153: 154: 155: 156: 157: 158: 159: 160: 161: 162: 163: 164: 165: 166: 167: 168: 169: 170: 171: 172: 173: 174: 175: 176: 177: 178: 179: 180: 181: 182: 183: 184: 185: 186: 187: 188: 189: 190: 191: 192: 193: 194: 195: 196: 197: 198: 199: 𝒜ℳ𝒮 Arrows . . . . . . . . . . . . . . 𝒜ℳ𝒮 Negated Arrows . . . . . . . . . 𝒜ℳ𝒮 Harpoons . . . . . . . . . . . . . stmaryrd Arrows . . . . . . . . . . . . . txfonts/pxfonts Arrows . . . . . . . . . mathabx Arrows . . . . . . . . . . . . . mathabx Negated Arrows . . . . . . . . mathabx Harpoons . . . . . . . . . . . MnSymbol Arrows . . . . . . . . . . . . MnSymbol Negated Arrows . . . . . . . MnSymbol Harpoons . . . . . . . . . . MnSymbol Negated Harpoons . . . . . fdsymbol Arrows . . . . . . . . . . . . . fdsymbol Negated Arrows . . . . . . . fdsymbol Harpoons . . . . . . . . . . . fdsymbol Negated Harpoons . . . . . . boisik Arrows . . . . . . . . . . . . . . boisik Negated Arrows . . . . . . . . . boisik Harpoons . . . . . . . . . . . . . stix Arrows . . . . . . . . . . . . . . . stix Negated Arrows . . . . . . . . . . stix Harpoons . . . . . . . . . . . . . . harpoon Extensible Harpoons . . . . . chemarrow Arrows . . . . . . . . . . . . fge Arrows . . . . . . . . . . . . . . . . old-arrows Arrows . . . . . . . . . . . . old-arrows Harpoons . . . . . . . . . . esrelation Restrictions . . . . . . . . . . MnSymbol Spoons . . . . . . . . . . . . MnSymbol Pitchforks . . . . . . . . . . MnSymbol Smiles and Frowns . . . . . fdsymbol Spoons . . . . . . . . . . . . . fdsymbol Pitchforks . . . . . . . . . . . fdsymbol Smiles and Frowns . . . . . . halloweenmath Brooms and Pitchforks ulsy Contradiction Symbols . . . . . . Extension Characters . . . . . . . . . . stmaryrd Extension Characters . . . . . txfonts/pxfonts Extension Characters . mathabx Extension Characters . . . . . stix Extension Characters . . . . . . . Log-like Symbols . . . . . . . . . . . . 𝒜ℳ𝒮 Log-like Symbols . . . . . . . . . mismath Log-like Symbols . . . . . . . mismath Asymptotic Notation . . . . . ChinA2e Number Sets . . . . . . . . . . Greek Letters . . . . . . . . . . . . . . 𝒜ℳ𝒮 Greek Letters . . . . . . . . . . . txfonts/pxfonts Upright Greek Letters . upgreek Upright Greek Letters . . . . . fourier Variant Greek Letters . . . . . . txfonts/pxfonts Variant Latin Letters . boisik Variant Greek Letters . . . . . . boisik Variant Latin Letters . . . . . . stix Variant Greek Letters . . . . . . . stix Transformed Greek Letters . . . . 𝒜ℳ𝒮 Hebrew Letters . . . . . . . . . . MnSymbol Hebrew Letters . . . . . . . 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 72 72 73 73 73 73 74 74 75 77 77 78 79 81 82 82 83 83 84 86 86 87 87 87 87 88 88 88 88 89 89 90 90 90 90 90 90 90 91 91 91 91 92 92 92 93 93 94 94 94 95 95 95 95 95 95 95 Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table 200: 201: 202: 203: 204: 205: 206: 207: 208: 209: 210: 211: 212: 213: 214: 215: 216: 217: 218: 219: 220: 221: 222: 223: 224: 225: 226: 227: 228: 229: 230: 231: 232: 233: 234: 235: 236: 237: 238: 239: 240: 241: 242: 243: 244: 245: 246: 247: 248: 249: 250: 251: 252: 253: 254: 255: 256: 257: fdsymbol Hebrew Letters . . . . . . . . . . . . boisik Hebrew Letters . . . . . . . . . . . . . . stix Hebrew Letters . . . . . . . . . . . . . . . Letter-like Symbols . . . . . . . . . . . . . . . 𝒜ℳ𝒮 Letter-like Symbols . . . . . . . . . . . txfonts/pxfonts Letter-like Symbols . . . . . . mathabx Letter-like Symbols . . . . . . . . . . MnSymbol Letter-like Symbols . . . . . . . . . fdsymbol Letter-like Symbols . . . . . . . . . . boisik Letter-like Symbols . . . . . . . . . . . stix Letter-like Symbols . . . . . . . . . . . . . trfsigns Letter-like Symbols . . . . . . . . . . . mathdesign Letter-like Symbols . . . . . . . . fge Letter-like Symbols . . . . . . . . . . . . . fourier Letter-like Symbols . . . . . . . . . . . cmll Letter-like Symbols . . . . . . . . . . . . 𝒜ℳ𝒮 Delimiters . . . . . . . . . . . . . . . . . stmaryrd Delimiters . . . . . . . . . . . . . . . mathabx Delimiters . . . . . . . . . . . . . . . boisik Delimiters . . . . . . . . . . . . . . . . stix Delimiters . . . . . . . . . . . . . . . . . . nath Delimiters . . . . . . . . . . . . . . . . . Variable-sized Delimiters . . . . . . . . . . . . Large, Variable-sized Delimiters . . . . . . . . 𝒜ℳ𝒮 Variable-sized Delimiters . . . . . . . . stmaryrd Variable-sized Delimiters . . . . . . . mathabx Variable-sized Delimiters . . . . . . . MnSymbol Variable-sized Delimiters . . . . . . fdsymbol Variable-sized Delimiters . . . . . . . stix Variable-sized Delimiters . . . . . . . . . mathdesign Variable-sized Delimiters . . . . . nath Variable-sized Delimiters (Double) . . . . nath Variable-sized Delimiters (Triple) . . . . fourier Variable-sized Delimiters . . . . . . . . textcomp Text-mode Delimiters . . . . . . . . metre Text-mode Delimiters . . . . . . . . . . Math-mode Accents . . . . . . . . . . . . . . 𝒜ℳ𝒮 Math-mode Accents . . . . . . . . . . . MnSymbol Math-mode Accents . . . . . . . . fdsymbol Math-mode Accents . . . . . . . . . boisik Math-mode Accents . . . . . . . . . . . stix Math-mode Accents . . . . . . . . . . . . fge Math-mode Accents . . . . . . . . . . . . yhmath Math-mode Accents . . . . . . . . . . halloweenmath Halloween-Themed Math-mode realhats Math-mode Hat Accents . . . . . . . Extensible Accents . . . . . . . . . . . . . . . overrightarrow Extensible Accents . . . . . . . yhmath Extensible Accents . . . . . . . . . . . 𝒜ℳ𝒮 Extensible Accents . . . . . . . . . . . . MnSymbol Extensible Accents . . . . . . . . . fdsymbol Extensible Accents . . . . . . . . . . stix Extensible Accents . . . . . . . . . . . . . mathtools Extensible Accents . . . . . . . . . mathabx Extensible Accents . . . . . . . . . . fourier Extensible Accents . . . . . . . . . . . esvect Extensible Accents . . . . . . . . . . . abraces Extensible Accents . . . . . . . . . . . 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Accents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 95 96 96 96 96 96 96 97 97 97 97 97 97 98 98 98 98 98 98 98 98 99 99 99 99 100 100 101 102 103 104 104 104 104 105 105 105 105 106 106 106 106 106 106 107 107 107 108 108 108 108 109 109 109 109 110 110 Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table 258: 259: 260: 261: 262: 263: 264: 265: 266: 267: 268: 269: 270: 271: 272: 273: 274: 275: 276: 277: 278: 279: 280: 281: 282: 283: 284: 285: 286: 287: 288: 289: 290: 291: 292: 293: 294: 295: 296: 297: 298: 299: 300: 301: 302: 303: 304: 305: 306: 307: 308: 309: 310: 311: 312: 313: 314: 315: undertilde Extensible Accents . . . . . . . . . . . ushort Extensible Accents . . . . . . . . . . . . . mdwmath Extensible Accents . . . . . . . . . . . actuarialangle Extensible Accents . . . . . . . . . 𝒜ℳ𝒮 Extensible Arrows . . . . . . . . . . . . . . mathtools Extensible Arrows . . . . . . . . . . . . chemarr Extensible Arrows . . . . . . . . . . . . . chemarrow Extensible Arrows . . . . . . . . . . . extarrows Extensible Arrows . . . . . . . . . . . . extpfeil Extensible Arrows . . . . . . . . . . . . . DotArrow Extensible Arrows . . . . . . . . . . . . halloweenmath Extensible Arrows . . . . . . . . . trfsigns Extensible Transform Symbols . . . . . . esrelation Extensible Relations . . . . . . . . . . . halloweenmath Extensible Brooms and Pitchforks halloweenmath Extensible Witches . . . . . . . . . halloweenmath Extensible Ghosts . . . . . . . . . halloweenmath Extensible Bats . . . . . . . . . . . holtpolt Non-commutative Division Symbols . . . Dots . . . . . . . . . . . . . . . . . . . . . . . . . 𝒜ℳ𝒮 Dots . . . . . . . . . . . . . . . . . . . . . . wasysym Dots . . . . . . . . . . . . . . . . . . . . MnSymbol Dots . . . . . . . . . . . . . . . . . . . fdsymbol Dots . . . . . . . . . . . . . . . . . . . . stix Dots . . . . . . . . . . . . . . . . . . . . . . . mathdots Dots . . . . . . . . . . . . . . . . . . . . yhmath Dots . . . . . . . . . . . . . . . . . . . . . teubner Dots . . . . . . . . . . . . . . . . . . . . . begriff Begriffsschrift Symbols . . . . . . . . . . . frege Begriffsschrift Symbols . . . . . . . . . . . . mathcomp Math Symbols . . . . . . . . . . . . . . marvosym Math Symbols . . . . . . . . . . . . . . marvosym Digits . . . . . . . . . . . . . . . . . . . fge Digits . . . . . . . . . . . . . . . . . . . . . . dozenal Base-12 Digits . . . . . . . . . . . . . . . mathabx Mayan Digits . . . . . . . . . . . . . . . stix Infinities . . . . . . . . . . . . . . . . . . . . . stix Primes . . . . . . . . . . . . . . . . . . . . . . stix Empty Sets . . . . . . . . . . . . . . . . . . . 𝒜ℳ𝒮 Angles . . . . . . . . . . . . . . . . . . . . . MnSymbol Angles . . . . . . . . . . . . . . . . . . fdsymbol Angles . . . . . . . . . . . . . . . . . . . boisik Angles . . . . . . . . . . . . . . . . . . . . . stix Angles . . . . . . . . . . . . . . . . . . . . . . Miscellaneous LATEX 2𝜀 Math Symbols . . . . . . Miscellaneous 𝒜ℳ𝒮 Math Symbols . . . . . . . . Miscellaneous wasysym Math Symbols . . . . . . Miscellaneous txfonts/pxfonts Math Symbols . . . Miscellaneous mathabx Math Symbols . . . . . . Miscellaneous MnSymbol Math Symbols . . . . . Miscellaneous Internal MnSymbol Math Symbols Miscellaneous fdsymbol Math Symbols . . . . . . Miscellaneous boisik Math Symbols . . . . . . . . Miscellaneous stix Math Symbols . . . . . . . . . endofproofwd End-of-Proof Symbols . . . . . . . . Miscellaneous textcomp Text-mode Math Symbols Miscellaneous fge Math Symbols . . . . . . . . . Miscellaneous mathdesign Math Symbols . . . . . 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 110 110 111 111 111 111 111 112 112 112 112 112 113 113 113 114 114 114 114 114 115 115 115 115 115 116 116 116 116 116 116 117 117 117 117 117 117 117 117 117 118 118 118 118 119 119 119 119 119 120 120 120 121 121 121 122 122 Table 316: Math Alphabets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4 5 Science and technology symbols Table 317: gensymb Symbols Defined to Work in Both Math and Text Table 318: wasysym Electrical and Physical Symbols . . . . . . . . . . Table 319: ifsym Pulse Diagram Symbols . . . . . . . . . . . . . . . . Table 320: ar Aspect Ratio Symbol . . . . . . . . . . . . . . . . . . . Table 321: textcomp Text-mode Science and Engineering Symbols . . Table 322: steinmetz Extensible Phasor Symbol . . . . . . . . . . . . Table 323: emf Electromotive Force Symbols . . . . . . . . . . . . . . Table 324: wasysym Astronomical Symbols . . . . . . . . . . . . . . . Table 325: marvosym Astronomical Symbols . . . . . . . . . . . . . . Table 326: fontawesome Astronomical Symbols . . . . . . . . . . . . . Table 327: mathabx Astronomical Symbols . . . . . . . . . . . . . . . Table 328: stix Astronomical Symbols . . . . . . . . . . . . . . . . . . Table 329: starfont Astronomical Symbols . . . . . . . . . . . . . . . . Table 330: wasysym APL Symbols . . . . . . . . . . . . . . . . . . . . Table 331: stix APL Symbols . . . . . . . . . . . . . . . . . . . . . . . Table 332: apl APL Symbols . . . . . . . . . . . . . . . . . . . . . . . Table 333: marvosym Computer Hardware Symbols . . . . . . . . . . Table 334: keystroke Computer Keys . . . . . . . . . . . . . . . . . . . Table 335: ascii Control Characters (CP437) . . . . . . . . . . . . . . Table 336: logic Logic Gates . . . . . . . . . . . . . . . . . . . . . . . Table 337: marvosym Communication Symbols . . . . . . . . . . . . . Table 338: marvosym Engineering Symbols . . . . . . . . . . . . . . . Table 339: wasysym Biological Symbols . . . . . . . . . . . . . . . . . Table 340: stix Biological Symbols . . . . . . . . . . . . . . . . . . . . Table 341: marvosym Biological Symbols . . . . . . . . . . . . . . . . Table 342: fontawesome Biological Symbols . . . . . . . . . . . . . . . Table 343: marvosym Safety-related Symbols . . . . . . . . . . . . . . Table 344: feyn Feynman Diagram Symbols . . . . . . . . . . . . . . . Table 345: svrsymbols Physics Ideograms . . . . . . . . . . . . . . . . Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 125 125 125 125 125 126 126 126 126 127 127 127 128 128 128 129 129 129 130 130 130 131 131 131 131 131 131 132 132 Dingbats Table 346: Table 347: Table 348: Table 349: Table 350: Table 351: Table 352: Table 353: Table 354: Table 355: Table 356: Table 357: Table 358: Table 359: Table 360: Table 361: Table 362: Table 363: Table 364: Table 365: Table 366: Table 367: Table 368: Table 369: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 134 134 134 135 135 135 135 135 135 135 136 136 136 136 136 136 136 136 137 137 137 137 137 137 bbding Arrows . . . . . . . . . . pifont Arrows . . . . . . . . . . adfsymbols Arrows . . . . . . . adforn Arrows . . . . . . . . . . arev Arrows . . . . . . . . . . . fontawesome Arrows . . . . . . fontawesome Chevrons . . . . . marvosym Scissors . . . . . . . . bbding Scissors . . . . . . . . . pifont Scissors . . . . . . . . . . dingbat Pencils . . . . . . . . . arev Pencils . . . . . . . . . . . fontawesome Pencils . . . . . . . bbding Pencils and Nibs . . . . pifont Pencils and Nibs . . . . . dingbat Fists . . . . . . . . . . . bbding Fists . . . . . . . . . . . pifont Fists . . . . . . . . . . . . fourier Fists . . . . . . . . . . . arev Fists . . . . . . . . . . . . fontawesome Fists . . . . . . . . bbding Crosses and Plusses . . . pifont Crosses and Plusses . . . adfsymbols Crosses and Plusses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table 6 370: 371: 372: 373: 374: 375: 376: 377: 378: 379: 380: 381: 382: 383: 384: 385: 386: 387: 388: 389: 390: 391: 392: 393: 394: 395: 396: 397: 398: 399: 400: 401: 402: 403: 404: 405: 406: 407: 408: 409: 410: arev Crosses . . . . . . . . . . . . . . . . . . . bbding Xs and Check Marks . . . . . . . . . . pifont Xs and Check Marks . . . . . . . . . . wasysym Xs and Check Marks . . . . . . . . . marvosym Xs and Check Marks . . . . . . . . arev Xs and Check Marks . . . . . . . . . . . fontawesome Xs and Check Marks . . . . . . . pifont Circled Numerals . . . . . . . . . . . . wasysym Stars . . . . . . . . . . . . . . . . . . bbding Stars, Flowers, and Similar Shapes . . pifont Stars, Flowers, and Similar Shapes . . . adfsymbols Stars, Flowers, and Similar Shapes adforn Stars . . . . . . . . . . . . . . . . . . . fontawesome Stars . . . . . . . . . . . . . . . . fourier Fleurons and Flowers . . . . . . . . . . adforn Fleurons and Flowers . . . . . . . . . . wasysym Geometric Shapes . . . . . . . . . . . MnSymbol Geometric Shapes . . . . . . . . . fdsymbol Geometric Shapes . . . . . . . . . . boisik Geometric Shapes . . . . . . . . . . . . stix Geometric Shapes . . . . . . . . . . . . . ifsym Geometric Shapes . . . . . . . . . . . . bbding Geometric Shapes . . . . . . . . . . . . pifont Geometric Shapes . . . . . . . . . . . . universa Geometric Shapes . . . . . . . . . . . adfsymbols Geometric Shapes . . . . . . . . . fontawesome Geometric Shapes . . . . . . . . oplotsymbl Geometric Shapes . . . . . . . . . LATEX 2𝜀 Playing-Card Suits . . . . . . . . . . txfonts/pxfonts Playing-Card Suits . . . . . . MnSymbol Playing-Card Suits . . . . . . . . . fdsymbol Playing-Card Suits . . . . . . . . . . boisik Playing-Card Suits . . . . . . . . . . . . stix Playing-Card Suits . . . . . . . . . . . . . arev Playing-Card Suits . . . . . . . . . . . . adforn Flourishes . . . . . . . . . . . . . . . . Miscellaneous oplotsymbl Symbols . . . . . . . Miscellaneous dingbat Dingbats . . . . . . . . Miscellaneous bbding Dingbats . . . . . . . . . Miscellaneous pifont Dingbats . . . . . . . . . Miscellaneous adforn Dingbats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 137 138 138 138 138 138 138 139 139 139 139 139 140 140 140 140 140 141 141 141 143 143 144 144 144 144 144 145 145 145 145 145 146 146 146 146 146 146 146 147 Ancient languages Table 411: phaistos Symbols from the Phaistos Disk . . . . . . Table 412: protosem Proto-Semitic Characters . . . . . . . . . Table 413: hieroglf Hieroglyphics . . . . . . . . . . . . . . . . . Table 414: linearA Linear A Script . . . . . . . . . . . . . . . . Table 415: linearb Linear B Basic and Optional Letters . . . . Table 416: linearb Linear B Numerals . . . . . . . . . . . . . . Table 417: linearb Linear B Weights and Measures . . . . . . . Table 418: linearb Linear B Ideograms . . . . . . . . . . . . . . Table 419: linearb Unidentified Linear B Symbols . . . . . . . Table 420: cypriot Cypriot Letters . . . . . . . . . . . . . . . . Table 421: sarabian South Arabian Letters . . . . . . . . . . . Table 422: teubner Archaic Greek Letters and Greek Numerals Table 423: boisik Archaic Greek Letters and Greek Numerals . Table 424: epiolmec Epi-Olmec Script . . . . . . . . . . . . . . Table 425: epiolmec Epi-Olmec Numerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 148 148 149 149 152 152 152 153 153 153 154 154 154 154 156 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 426: allrunes Runes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Table 427: allrunes Rune Separators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 7 Musical symbols Table 428: LATEX 2𝜀 Musical Symbols . . Table 429: textcomp Musical Symbols . . Table 430: wasysym Musical Symbols . . Table 431: MnSymbol Musical Symbols . Table 432: fdsymbol Musical Symbols . . Table 433: boisik Musical Symbols . . . . Table 434: stix Musical Symbols . . . . . Table 435: arev Musical Symbols . . . . . Table 436: MusiXTEX Musical Symbols . Table 437: MusiXTEX Alternative Clefs . Table 438: harmony Musical Symbols . . Table 439: musicography Musical Symbols Table 440: musicography Time Signatures Table 441: harmony Musical Accents . . . lilyglyphs Single Notes . . . . Table 442: lilyglyphs Beamed Notes . . . Table 443: Table 444: Table 445: Table 446: Table 447: Table 448: Table 449: Table 450: Table 451: Table 452: Table 453: Table 454: Table 455: Table 456: Table 457: Table 458: Table 459: Table 460: Table 461: Table 462: Table 463: Table 464: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 158 158 158 158 158 158 158 158 159 160 160 160 161 161 161 . . . lilyglyphs Clefs . . . . . . . . . . . lilyglyphs Time Signatures . . . . . lilyglyphs Accidentals . . . . . . . . lilyglyphs Rests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 lilyglyphs Dynamics Letters . . . . lilyglyphs Dynamics Symbols . . . . lilyglyphs Articulations . . . . . . . lilyglyphs Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 . . lilyglyphs Accordion Notation . . . . . lilyglyphs Named Time Signatures . . . lilyglyphs Named Scripts . . . . . . . . lilyglyphs Named Rests . . . . . . lilyglyphs Named Pedals . . . . . lilyglyphs Named Flags . . . . . . lilyglyphs Named Custodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 . . . . . . . . . . . . . . . . . . . . . . . . . 164 . . . . . . . . . . . . . . . . . . . . . . . . . 164 . . . . . . . . . . . . . . . . . . . . . . . . . 165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 . . lilyglyphs Named Clefs . . . . . . . . lilyglyphs Named Noteheads . . . . . lilyglyphs Named Accordion Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 167 . . . . . . . . . . . . . . . . . . . . . . . . . . 168 . . . . . . . . . . . . . . . . . . . . . . . . . . 169 . . . . . . . . lilyglyphs Named Accidentals . . . . . . . . . . . . lilyglyphs Named Arrowheads . . . . . . . . . . . . lilyglyphs Named Alphanumerics and Punctuation . Table 465: Miscellaneous 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 . . . . . . . . . . . . . . . . . . 174 . . . . . . . . . . . . . . . . . . 174 . . . . . . . . . . . . . . . . . . 175 lilyglyphs Named Musical Symbols . . . . . . . . . . . . . . . . . . . 175 Other symbols Table 466: textcomp Genealogical Symbols . Table 467: wasysym General Symbols . . . . Table 468: manfnt Dangerous Bend Symbols Table 469: Miscellaneous manfnt Symbols . . Table 470: marvosym Media Control Symbols Table 471: marvosym Laundry Symbols . . . Table 472: marvosym Information Symbols . . . . . . . . . . . . . . . 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 176 176 176 176 177 177 177 Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table 9 473: 474: 475: 476: 477: 478: 479: 480: 481: 482: 483: 484: 485: 486: 487: 488: 489: 490: 491: 492: 493: 494: 495: 496: 497: 498: 499: 500: 501: 502: 503: 504: 505: 506: 507: 508: 509: 510: 511: 512: 513: 514: 515: 516: 517: 518: 519: 520: Other marvosym Symbols . . . . . . . . . . Miscellaneous universa Symbols . . . . . . Miscellaneous fourier Symbols . . . . . . . ifsym Weather Symbols . . . . . . . . . . . ifsym Alpine Symbols . . . . . . . . . . . . ifsym Clocks . . . . . . . . . . . . . . . . . Other ifsym Symbols . . . . . . . . . . . . clock Clocks . . . . . . . . . . . . . . . . . epsdice Dice . . . . . . . . . . . . . . . . . hhcount Dice . . . . . . . . . . . . . . . . . stix Dice . . . . . . . . . . . . . . . . . . . bullcntr Tally Markers . . . . . . . . . . . hhcount Tally Markers . . . . . . . . . . . dozenal Tally Markers . . . . . . . . . . . skull Symbols . . . . . . . . . . . . . . . . Non-Mathematical mathabx Symbols . . . skak Chess Informator Symbols . . . . . . skak Chess Pieces and Chessboard Squares igo Go Symbols . . . . . . . . . . . . . . . go Go Symbols . . . . . . . . . . . . . . . metre Metrical Symbols . . . . . . . . . . metre Small and Large Metrical Symbols . teubner Metrical Symbols . . . . . . . . . . dictsym Dictionary Symbols . . . . . . . . simpsons Characters from The Simpsons . pmboxdraw Box-Drawing Symbols . . . . . staves Magical Staves . . . . . . . . . . . . pigpen Cipher Symbols . . . . . . . . . . . ChinA2e Phases of the Moon . . . . . . . . ChinA2e Recycling Symbols . . . . . . . . . marvosym Recycling Symbols . . . . . . . recycle Recycling Symbols . . . . . . . . . Other ChinA2e Symbols . . . . . . . . . . . soyombo Soyombo Symbols . . . . . . . . . knitting Knitting Symbols . . . . . . . . . countriesofeurope Country Maps . . . . . . euflag European Union flag . . . . . . . . Miscellaneous arev Symbols . . . . . . . . cookingsymbols Cooking Symbols . . . . . tikzsymbols Cooking Symbols . . . . . . . tikzsymbols Emoticons . . . . . . . . . . . tikzsymbols 3D Emoticons . . . . . . . . . tikzsymbols Trees . . . . . . . . . . . . . . Miscellaneous tikzsymbols Symbols . . . . scsnowman Snowmen . . . . . . . . . . . . Miscellaneous bclogo Symbols . . . . . . . fontawesome Web-Related Icons . . . . . . rubikcube Rubik’s Cube Rotations . . . . . Fonts with minimal LATEX support Table 521: hands Fists . . . . . . . . . . . . . Table 522: greenpoint Recycling Symbols . . Table 523: nkarta Map Symbols . . . . . . . Table 524: moonphase Astronomical Symbols Table 525: astrosym Astronomical Symbols . Table 526: webomints Decorative Borders . . Table 527: umranda Decorative Borders . . . Table 528: umrandb Decorative Borders . . . . . . . . . . . . . . . . . . . 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 177 177 178 178 178 178 179 179 179 179 180 180 180 181 181 181 182 182 183 183 183 184 184 184 185 185 186 186 186 187 187 187 187 188 188 190 190 191 191 191 191 192 192 192 192 194 198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 199 199 199 201 201 204 205 206 Table Table Table Table Table Table Table Table 529: 530: 531: 532: 533: 534: 535: 536: dingbat Decorative Borders . . . . . . . . . . . . . . . . knot Celtic Knots . . . . . . . . . . . . . . . . . . . . . dancers Dancing Men . . . . . . . . . . . . . . . . . . . semaphor Semaphore Alphabet . . . . . . . . . . . . . cryst Crystallography Symbols . . . . . . . . . . . . . . dice Dice . . . . . . . . . . . . . . . . . . . . . . . . . . magic Trading Card Symbols . . . . . . . . . . . . . . bartel-chess-fonts Chess Pieces and Chessboard Squares 10 Additional Information 10.1 Symbol Name Clashes . . . . . . . . 10.2 Resizing symbols . . . . . . . . . . . 10.3 Where can I find the symbol for . . . ? 10.4 Math-mode spacing . . . . . . . . . . 10.5 Bold mathematical symbols . . . . . 10.6 ASCII and Latin 1 quick reference . 10.7 Unicode characters . . . . . . . . . . 10.8 About this document . . . . . . . . . 10.9 Copyright and license . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 207 211 213 215 216 217 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 219 219 219 232 233 233 235 238 240 References 241 Index 242 11 1 Introduction Welcome to the Comprehensive LATEX Symbol List! This document strives to be your primary source of LATEX symbol information: font samples, LATEX commands, packages, usage details, caveats—everything needed to put thousands of different symbols at your disposal. All of the fonts covered herein meet the following criteria: 1. They are freely available from the Comprehensive TEX Archive Network (http://www.ctan.org/). 2. All of their symbols have LATEX 2𝜀 bindings. That is, a user should be able to access a symbol by name (e.g., \bigtriangleup) As of version 12 of the Comprehensive LATEX Symbol List, that second restriction has been relaxed with the inclusion of Section 9, which showcases fonts that provide, at a minimum, either TEX font-metric files (.tfm) or the METAFONT sources (.mf) that produce those font-metric files. Some of the Section 9 fonts do include LATEX font-definition files (.fd). However, what sets the fonts in Section 9 apart from the fonts in rest of the document is that they lack a LATEX style file (.sty) that individually names each of the glyphs. The restrictions listed above are not particularly limiting criteria; the Comprehensive LATEX Symbol List contains samples of 14599 symbols—quite a large number. Some of these symbols are guaranteed to be available in every LATEX 2𝜀 system; others require fonts and packages that may not accompany a given distribution and that therefore need to be installed. See http://www.tex.ac.uk/ FAQ-installthings.html for help with installing new fonts and packages. 1.1 Document Usage Each section of this document contains a number of font tables. Each table shows a set of symbols, with the corresponding LATEX command to the right of each symbol. A table’s caption indicates what package needs to be loaded in order to access that table’s symbols. For example, the symbols in Table 45, “textcomp Old-Style Numerals”, are made available by putting “\usepackage{textcomp}” in your document’s preamble. “𝒜ℳ𝒮” means to use the 𝒜ℳ𝒮 packages, viz. amssymb and/or amsmath. Notes below a table provide additional information about some or all the symbols in that table. One note that appears a few times in this document, particularly in Section 2, indicates that certain symbols do not exist in the OT1 font encoding (Donald Knuth’s original, 7-bit font encoding, which is the default font encoding for LATEX) and that you should use fontenc to select a different encoding, such as T1 (a common 8-bit font encoding). That means that you should put “\usepackage[⟨encoding⟩]{fontenc}” in your document’s preamble, where ⟨encoding⟩ is, e.g., T1 or LY1. To limit the change in font encoding to the current group, use “\fontencoding{⟨encoding⟩}\selectfont”. Section 10 contains some additional information about the symbols in this document. It discusses how certain mathematical symbols can vary in height, shows which symbol names are not unique across packages, gives examples of how to create new symbols out of existing symbols, explains how symbols are spaced in math mode, compares various schemes for boldfacing symbols, presents LATEX ASCII and Latin 1 tables, shows how to input and output Unicode characters, and provides some information about this document itself. The Comprehensive LATEX Symbol List ends with an index of all the symbols in the document and various additional useful terms. A companion document, Raw Font Tables, also presents a large number of symbols but with a very different structure from this document. Raw Font Tables includes only symbols produced via a font file, while this document also includes composite symbols (combinations of two or more glyphs) and symbols drawn as pictures (using, e.g., Tik Z). This document sorts symbols by category while Raw Font Tables sorts symbols by underlying font file. The two documents are intended to complement each other. It is usually easier to find a desired symbol in The Comprehensive LATEX Symbol List, but Raw Font Tables is helpful for identifying related symbols, for finding symbols that exist in some font but are not exposed to the user via a LATEX package (or that this document inadvertently overlooked), and for the font name and character position needed to typeset a single symbol in isolation. The last of those is especially important for math symbols. TEX imposes a limitation of at most 16 math alphabets per document, but symbols typeset with \font and \char are text symbols and do not consume a math alphabet. (They are less convenient to use within a mathematical expression, however.) 12 1.2 Frequently Requested Symbols There are a number of symbols that are requested over and over again on comp.text.tex. If you’re looking for such a symbol the following list will help you find it quickly. , as in “Spaces are significant.” ..... ı̄, ı̃, ı̋, ı̆, ı̌, etc. (versus ī, ĩ, i̋, ĭ, and ǐ) 14 .. . ........................... .. 20 ¢ ............................ 25 e ℒ, ℱ, etc. ........................... 25 N, Z, R, etc. ©, ®, and ™ ................... 26 ‰ ........................... 27 ........................... 42 ∴ ............................ 50 °, as in “180°” or “15℃” 115 ........... 121 ..................... 123 ................... 123 r ............................ 123 ∫︀ ............................ 225 − ´ā, `^e, etc. (i.e., several accents per character) 227 B and F ...................... 51 <, >, and | (instead of ¡, ¿, and —) . and & ...................... 64 ^ and ˜ (or ∼) 13 ... 233 .................. 234 2 Body-text symbols This section lists symbols that are intended for use in running text, such as punctuation marks, accents, ligatures, and currency symbols. Table 1: LATEX 2𝜀 Escapable “Special” Characters $ % \$ * \% \_ * } & \} \& # \# { The underscore package redefines “_” to produce an underscore in text mode (i.e., it makes it unnecessary to escape the underscore character). Table 2: Predefined LATEX 2𝜀 Text-mode Commands ^ ˜ * ∖ | ‖ ○ { } ∙ c ○ † ‡ $ ... — – ¡ > ∗ ‖ ○ • © † ‡ $ \textasciicircum* \textasciitilde* \textasteriskcentered \textbackslash \textbar \textbardbl \textbigcircle \textbraceleft† \textbraceright† \textbullet \textcopyright† \textdagger† \textdaggerdbl† \textdollar† \textellipsis† \textemdash \textendash \textexclamdown \textgreater < a o ¶ · % % ¿ “ ” ‘ ’ r ○ S $ TM ª º ¶ · ‱ ‰ ® § £ ™ \textless \textordfeminine \textordmasculine \textparagraph† \textperiodcentered \textpertenthousand \textperthousand \textquestiondown \textquotedblleft \textquotedblright \textquoteleft \textquoteright \textregistered \textsection† \textsterling† \texttrademark \textunderscore† \textvisiblespace The first symbol column represents the—sometimes “faked”—symbol that LATEX 2𝜀 provides by default. The second symbol column represents the symbol as redefined by textcomp (if textcomp redefines it). The textcomp package is generally required to typeset Table 2’s symbols in italic, and some symbols additionally require the T1 font encoding for italic. * \^{} and \~{} can be used instead of \textasciicircum \textasciitilde. See the discussion of “˜” on page 234. † It’s generally preferable to use the corresponding symbol from Table 3 on the following page because the symbols in that table work properly in both text mode and math mode. 14 and \{ Table 3: LATEX 2𝜀 Commands Defined to Work in Both Math and Text Mode { } $ $ \{ \} \$ c ○ † © † ‡ ... ¶ \_ \copyright \dag ‡ ¶ £ S \ddag \dots \P § \pounds \S The first symbol column represents the—sometimes “faked”—symbol that LATEX 2𝜀 provides by default. The second symbol column represents the symbol as redefined by textcomp (if textcomp redefines it). The textcomp package is generally required to typeset Table 3’s symbols in italic, and some symbols additionally require the T1 font encoding for italic. Table 4: 𝒜ℳ𝒮 Commands Defined to Work in Both Math and Text Mode X \checkmark r \circledR z \maltese Table 5: Non-ASCII Letters (Excluding Accented Letters) å Å Æ æ ð * \aa \AA \AE \ae \dh* Ð Ð đ IJ ij \DH* \DJ* \dj* \IJ \ij L l Ŋ ŋ Ø \L \l \NG* \ng* \O ø œ Œ ß SS þ Þ \o \oe \OE \ss \SS \th* \TH* Not available in the OT1 font encoding. Use the fontenc package to select an alternate font encoding, such as T1. Table 6: textgreek Upright Greek Letters α β γ δ ε ζ \textalpha \textbeta \textgamma \textdelta \textepsilon \textzeta η θ ι κ λ μ \texteta \texttheta \textiota \textkappa \textlambda \textmu* ν ξ ο π ρ σ \textnu \textxi \textomikron \textpi \textrho \textsigma τ υ φ χ ψ ω \texttau \textupsilon \textphi \textchi \textpsi \textomega Α Β Γ Δ Ε Ζ \textAlpha \textBeta \textGamma \textDelta \textEpsilon \textZeta Η Θ Ι Κ Λ Μ \textEta \textTheta \textIota \textKappa \textLambda \textMu Ν Ξ Ο Π Ρ Σ \textNu \textXi \textOmikron \textPi \textRho \textSigma Τ Υ Φ Χ Ψ Ω \textTau \textUpsilon \textPhi \textChi \textPsi \textOmega * Synonyms for \textmu include \textmicro and \textmugreek. textgreek tries to use a Greek font that matches the body text. As a result, the glyphs may appear slightly different from the above. Unlike upgreek (Table 191 on page 94), textgreek works in text mode. The symbols in this table are intended to be used sporadically throughout a document (e.g., in phrases such as “β-decay”). In contrast, Greek body text can be typeset using the babel package’s greek (or polutonikogreek) option— and, of course, a font that provides the glyphs for the Greek alphabet. 15 Ð § · \B{D} \B{d} \B{H} \B{h} \B{t} \B{T} \m{b} \m{B} \m{C} ° ð Ð ¡ ¢ £ Table 7: Letters Used to Typeset African Languages ¤ ¦ À à © \m{c} \m{D} \M{d} \M{D} \m{d} \m{E} \m{e} \M{E} \M{e} ¨ ­ ª ± ¬ \m{f} \m{F} \m{G} \m{g} \m{I} \m{i} \m{J} \m{j} \m{K} \m{k} \m{N} \m{n} \m{o} \m{O} \m{P} \m{p} \m{s} \m{S} » º ® ¯ ¶  â Å å \M{t} \M{T} \m{t} \m{T} \m{u}* \m{U}* \m{Y} \m{y} \m{z} \m{Z} \T{E} \T{e} \T{O} \T{o} These characters all need the T4 font encoding, which is provided by the fc package. * \m{v} and \m{V} are synonyms for \m{u} and \m{U}. Table 8: Letters Used to Typeset Vietnamese Ơ ơ \OHORN Ư \ohorn \UHORN ư \uhorn These characters all need the T5 font encoding, which is provided by the vntex package. Table 9: Punctuation Marks Not Found in OT1 « » \guillemetleft* \guillemetright* * ‹ › „ ‚ \guilsinglleft \guilsinglright \quotedblbase \quotesinglbase " \textquotedbl Older versions of LATEX misspelled these as \guillemotleft and \guillemotright. The older names are still retained for backward compatibility. To get these symbols, use the fontenc package to select an alternate font encoding, such as T1. Table 10: pifont Decorative Punctuation Marks { | \ding{123} \ding{124} } ~ \ding{125} \ding{126} ¡ ¢ 16 \ding{161} \ding{162} £ \ding{163} Table 11: tipa Phonetic Symbols È b c d é g Ü 1 ł 8 Ý 0 ì β ò χ Å Ñ Æ Þ ^ ă ą g è Û ň 2 C ć ćý š J ő ť ťC ÿ ý dý S } = / { Ş Ť à dz ε S R \textbabygamma \textbarb \textbarc \textbard \textbardotlessj \textbarg \textbarglotstop \textbari \textbarl \textbaro \textbarrevglotstop \textbaru \textbeltl \textbeta \textbullseye \textceltpal \textchi \textcloseepsilon \textcloseomega \textcloserevepsilon \textcommatailz \textcorner \textcrb \textcrd \textcrg \textcrh \textcrinvglotstop \textcrlambda \textcrtwo \textctc \textctd \textctdctzlig \textctesh \textctj \textctn \textctt \textcttctclig \textctyogh \textctz \textdctzlig \textdoublebaresh \textdoublebarpipe \textdoublebarslash \textdoublepipe \textdoublevertline \textdownstep \textdyoghlig \textdzlig \textepsilon \textesh \textfishhookr P ; ż # á ê Á â ä H Ê Î Ò Ó č É Ö ß Û K ι λ : ş ę ű Ô ¡ M ñ ë Ð Í ŋ ω _ O % φ | " ij ğ 7 \ 9 3 Q ź Ç Ä \textglotstop \texthalflength \texthardsign \texthooktop \texthtb \texthtbardotlessj \texthtc \texthtd \texthtg \texthth \texththeng \texthtk \texthtp \texthtq \texthtrtaild \texthtscg \texthtt \texthvlig \textinvglotstop \textinvscr \textiota \textlambda \textlengthmark \textlhookt \textlhtlongi \textlhtlongy \textlonglegr \textlptr \textltailm \textltailn \textltilde \textlyoghlig \textObardotlessj \textOlyoghlig \textomega \textopencorner \textopeno \textpalhook \textphi \textpipe \textprimstress \textraiseglotstop \textraisevibyi \textramshorns \textrevapostrophe \textreve \textrevepsilon \textrevglotstop \textrevyogh \textrhookrevepsilon \textrhookschwa ï ó ù ú ü $ À à ď å Ë @ I ĺ Ï ð Œ ś ö A g V Ú Y ­ ž  tC Ù θ þ £ ţ 5 ŕ 4 ľ Õ W î ô õ 6 Ø 2 û L υ Ţ Š ğ \textrtailn \textrtailr \textrtails \textrtailt \textrtailz \textrthook \textsca \textscb \textsce \textscg \textsch \textschwa \textsci \textscj \textscl \textscn \textscoelig \textscomega \textscr \textscripta \textscriptg \textscriptv \textscu \textscy \textsecstress \textsoftsign \textstretchc \texttctclig \textteshlig \texttheta \textthorn \texttoneletterstem \texttslig \textturna \textturncelig \textturnh \textturnk \textturnlonglegr \textturnm \textturnmrleg \textturnr \textturnrrtail \textturnscripta \textturnt \textturnv \textturnw \textturny \textupsilon \textupstep \textvertline \textvibyi (continued on next page) 17 (continued from previous page) ě γ Ů Ű ~ ¿ ã í \textg \textgamma \textglobfall \textglobrise \textrhoticity \textrptr \textrtaild \textrtaill ů ß Z \textvibyy \textwynn \textyogh tipa defines shortcut characters for many of the above. It also defines a command \tone for denoting tone letters (pitches). See the tipa documentation for more information. Table 12: tipx Phonetic Symbols " B . D 2 % & @ ) H G ˇ 7 5 ’ ( ? T U V , 0 4 \textaolig \textbenttailyogh \textbktailgamma \textctinvglotstop \textctjvar \textctstretchc \textctstretchcvar \textctturnt \textdblig \textdoublebarpipevar \textdoublepipevar \textdownfullarrow \textfemale \textfrbarn \textfrhookd \textfrhookdvar \textfrhookt \textfrtailgamma \textglotstopvari \textglotstopvarii \textglotstopvariii \textgrgamma \textheng \texthmlig 3 ; p ! I # < 1 > 6 9 ˆ ˜ F = ¨ ˚ v z * + : / \texthtbardotlessjvar \textinvomega \textinvsca \textinvscripta \textlfishhookrlig \textlhookfour \textlhookp \textlhti \textlooptoprevesh \textnrleg \textObullseye \textpalhooklong \textpalhookvar \textpipevar \textqplig \textrectangle \textretractingvar \textrevscl \textrevscr \textrhooka \textrhooke \textrhookepsilon \textrhookopeno \textrtailhth 18 ´ q r s t w x y ˝ $ ˙ ¯ P Q R S E u { C A 8 ˘ \textrthooklong \textscaolig \textscdelta \textscf \textsck \textscm \textscp \textscq \textspleftarrow \textstretchcvar \textsubdoublearrow \textsubrightarrow \textthornvari \textthornvarii \textthornvariii \textthornvariv \textturnglotstop \textturnsck \textturnscu \textturnthree \textturntwo \textuncrfemale \textupfullarrow Table 13: wsuipa Phonetic Symbols ! ' . < A + X T ; R ? # 3 N a ^ ( e 8 M D b $ % " \babygamma \barb \bard \bari \barl \baro \barp \barsci \barscu \baru \clickb \clickc \clickt \closedniomega \closedrevepsilon \crossb \crossd \crossh \crossnilambda \curlyc \curlyesh \curlyyogh \curlyz \dlbari \dz \ejective , d & I 5 G K Z \ \eng \er \esh \eth \flapr \glotstop \hookb \hookd \hookg \hookh \hookheng \hookrevepsilon \hv \inva \invf \invglotstop \invh \invlegr \invm \invr \invscr \invscripta \invv \invw \invy \ipagamma 4 / 6 E 1 [ ) 2 > C O S V 7 @ = f c \labdentalnas \latfric \legm \legr \lz \nialpha \nibeta \nichi \niepsilon \nigamma \niiota \nilambda \niomega \niphi \nisigma \nitheta \niupsilon \nj \oo \openo \reve \reveject \revepsilon \revglotstop \scd \scg * : J Y W ] U H 0 9 F L P _ Q B ` \schwa \sci \scn \scr \scripta \scriptg \scriptv \scu \scy \slashb \slashc \slashd \slashu \taild \tailinvr \taill \tailn \tailr \tails \tailt \tailz \tesh \thorn \tildel \yogh Table 14: wasysym Phonetic Symbols k D \dh \DH U l O Þ \inve \openo þ \roundz \Thorn \thorn Table 15: phonetic Phonetic Symbols j M n N " s d F \barj \barlambda \emgma \engma \enya \epsi \esh \eth \fj f ? B b D T k K D \flap \glottal \hausaB \hausab \hausad \hausaD \hausak \hausaK \hookd ī c h̄ U m r \ibar \openo \planck \pwedge \revD \riota \rotm \rotOmega \rotr 19 A w y e p u u a G \rotvara \rotw \roty \schwa \thorn \ubar \udesc \vara \varg i C v ˚ h x \vari \varomega \varopeno \vod \voicedh \yogh § ¢ ¬ ° Table 16: t4phonet Phonetic Symbols ¡ ¨ ± º à © ª \textcrd \textcrh \textepsilon \textesh \textfjlig \texthtb \texthtc \texthtd \texthtk \texthtp \texthtt \textiota \textltailn \textopeno | ð » ¡ ¬ ¶ \textpipe \textrtaild \textrtailt \textschwa \textscriptv \textteshlig \textyogh The idea behind the t4phonet package’s phonetic symbols is to provide an interface to some of the characters in the T4 font encoding (Table 7 on page 16) but using the same names as the tipa characters presented in Table 11 on page 17. Table 17: semtrans Transliteration Symbols ˒ Ää Áá Ȧȧ Āā ^a A^ Àà \"{A}\"{a} \’{A}\’{a} \.{A}\.{a} \={A}\={a} \^{A}\^{a} \‘{A}\‘{a} a A A¿ ¿a Ãã Aa ¯¯ A̧a̧ a A A . a. \Alif ˓ \Ayn Table 18: Text-mode Accents a \f{A}\f{a}¶ \|{A}\|{a}‡ A \~{A}\~{a} A a \G{A}\G{a}‡ \b{A}\b{a} Ảả \h{A}\h{a}S \c{A}\c{a} A̋a̋ \H{A}\H{a} \C{A}\C{a}¶ A˛a˛ \k{A}\k{a}† \d{A}\d{a} Åå \r{A}\r{a} \newtie{A}\newtie{a}* A○ a ○ a A Ăă A¼ ¼a a A Ǎǎ \t{A}\t{a} \u{A}\u{a} \U{A}\U{a}‡ \U{A}\U{a}¶ \v{A}\v{a} \textcircled{A}\textcircled{a} * Requires the textcomp package. † Not available in the OT1 font encoding. Use the fontenc package to select an alternate font encoding, such as T1. ‡ Requires the T4 font encoding, provided by the fc package. S Requires the T5 font encoding, provided by the vntex package. ¶ Requires one of the Cyrillic font encodings (T2A, T2B, T2C, or X2). Use the fontenc package to select an encoding. Also note the existence of \i and \j, which produce dotless versions of “i” and “j” (viz., “ı” and “ȷ”). These are useful when the accent is supposed to replace the dot in encodings that need to composite (i.e., combine) letters and accents. For example, “na\"{\i}ve” always produces a correct “naı̈ve”, while “na\"{i}ve” yields the rather odd-looking “naïve” when using the OT1 font encoding and older versions of LATEX. Font encodings other than OT1 and newer versions of LATEX properly typeset “na\"{i}ve” as “naı̈ve”. 20 Table 19: tipa Text-mode Accents ´´ Ā ā ´´ Ǎ ǎ \textacutemacron{A}\textacutemacron{a} A ffi affi A< a < ˘ Ā˘ ā Ża AŻ ˆˆ Ȧ ȧ \textadvancing{A}\textadvancing{a} §a A§ ˙ ă˙ Ă \textdotacute{A}\textdotacute{a} ‚a A‚ İa Aİ \textacutewedge{A}\textacutewedge{a} \textbottomtiebar{A}\textbottomtiebar{a} \textbrevemacron{A}\textbrevemacron{a} \textcircumacute{A}\textcircumacute{a} \textcircumdot{A}\textcircumdot{a} \textdotbreve{A}\textdotbreve{a} \textdoublegrave{A}\textdoublegrave{a} \textdoublevbaraccent{A}\textdoublevbaraccent{a} Ża AŻ Ža AŽ \textfallrise{A}\textfallrise{a} đa Ađ ` ā ` Ā Ź AŹ a \textgravedot{A}\textgravedot{a} Ÿa AŸ \texthighrise{A}\texthighrise{a} A „a „ \textinvsubbridge{A}\textinvsubbridge{a} A fl afl Ź AŹ a \textlowering{A}\textlowering{a} Ÿa AŸ ‰a A‰ —— Aa \textmidacute{A}\textmidacute{a} A ˛ a˛ A fi afi \textpolhook{A}\textpolhook{a} \textraising{A}\textraising{a} A ffl affl ˚ Ā˚ ā Ž AŽ a “a A“ \textretracting{A}\textretracting{a} A a \textseagull{A}\textseagull{a} Aa ›› Aa ““ Aa ¯¯ A ”a ” \textsubacute{A}\textsubacute{a} Aa ˆˆ Aa ˙˙ Aa ‹‹ A – a– A ff aff \textsubcircum{A}\textsubcircum{a} A » a» Aa ˚˚ \textsubrhalfring{A}\textsubrhalfring{a} \textgravecircum{A}\textgravecircum{a} \textgravemacron{A}\textgravemacron{a} \textgravemid{A}\textgravemid{a} \textlowrise{A}\textlowrise{a} \textovercross{A}\textovercross{a} \textoverw{A}\textoverw{a} \textringmacron{A}\textringmacron{a} \textrisefall{A}\textrisefall{a} \textroundcap{A}\textroundcap{a} \textsubarch{A}\textsubarch{a} \textsubbar{A}\textsubbar{a} \textsubbridge{A}\textsubbridge{a} \textsubdot{A}\textsubdot{a} \textsubgrave{A}\textsubgrave{a} \textsublhalfring{A}\textsublhalfring{a} \textsubplus{A}\textsubplus{a} \textsubring{A}\textsubring{a} (continued on next page) 21 (continued from previous page) A «a « \textsubsquare{A}\textsubsquare{a} Aa ˜˜ Aa ¨¨ A —a — \textsubtilde{A}\textsubtilde{a} Aa ˇˇ A a && Aa " ˜" ȧ ˜ Ȧ >> Aa \textsubwedge{A}\textsubwedge{a} IJa AIJ \textvbaraccent{A}\textvbaraccent{a} \textsubumlaut{A}\textsubumlaut{a} \textsubw{A}\textsubw{a} \textsuperimposetilde{A}\textsuperimposetilde{a} \textsyllabic{A}\textsyllabic{a} \texttildedot{A}\texttildedot{a} \texttoptiebar{A}\texttoptiebar{a} tipa defines shortcut sequences for many of the above. See the tipa documentation for more information. Table 20: extraipa Text-mode Accents ”” A ”a ” Ŕ Ŕ Ãã .. . Ãã. ˜˜ à ã A»a» ˇˇ A»a» ˚˚ a –A ˇ–ˇ a –A ”–˚ ” ˚ Aa a –A ˇ»–ˇ» \partvoiceless{A}\partvoiceless{a} \crtilde{A}\crtilde{a} –A»–a» ˚˚ Āā \dottedtilde{A}\dottedtilde{a} Ȧȧ \spreadlips{A}\spreadlips{a} \doubletilde{A}\doubletilde{a} Aa ^^ Aa ¯¯ Aa "" "" Aa ¡¡ Aa ¿¿ A a Ţ Ţ \subcorner{A}\subcorner{a} \bibridge{A}\bibridge{a} \finpartvoice{A}\finpartvoice{a} \finpartvoiceless{A}\finpartvoiceless{a} \inipartvoice{A}\inipartvoice{a} \inipartvoiceless{A}\inipartvoiceless{a} \overbridge{A}\overbridge{a} \sliding{A}\sliding{a} \subdoublebar{A}\subdoublebar{a} \subdoublevert{A}\subdoublevert{a} \sublptr{A}\sublptr{a} \subrptr{A}\subrptr{a} \whistle{A}\whistle{a} \partvoice{A}\partvoice{a} Table 21: wsuipa Text-mode Accents A g ag \dental{A}\dental{a} A a \underarch{A}\underarch{a} 22 Table 22: phonetic Text-mode Accents Aa \hill{A}\hill{a} Aa \rc{A}\rc{a} Aa ˚ {˚ A a{ \od{A}\od{a} Aa \syl{A}\syl{a} \ohill{A}\ohill{a} A a .. .. \td{A}\td{a} { { Aa ˜˜ \ut{A}\ut{a} The phonetic package provides a few additional macros for linguistic accents. \acbar and \acarc compose characters with multiple accents; for example, { \acbar{\’}{a} produces “´ ā” and \acarc{\"}{e} produces “¨e”. \labvel joins ⌢ two characters with an arc: \labvel{mn} → “mn”. \upbar is intended to go between characters as in “x\upbar{}y’’ → “x y”. Lastly, \uplett behaves like \textsuperscript but uses a smaller font. Contrast “p\uplett{h}’’ → “ph ” with “p\textsuperscript{h}’’ → “ph ”. Table 23: metre Text-mode Accents Áá Ăă Ãã Ää Àà Āā A a A¿ ¿a A¼ ¼a \acutus{A}\acutus{a} \breve{A}\breve{a} \circumflexus{A}\circumflexus{a} \diaeresis{A}\diaeresis{a} \gravis{A}\gravis{a} \macron{A}\macron{a} Table 24: t4phonet Text-mode Accents \textdoublegrave{A}\textdoublegrave{a} \textvbaraccent{A}\textvbaraccent{a} \textdoublevbaraccent{A}\textdoublevbaraccent{a} The idea behind the t4phonet package’s text-mode accents is to provide an interface to some of the accents in the T4 font encoding (accents marked with “‡” in Table 18 on page 20) but using the same names as the tipa accents presented in Table 19 on page 21. Table 25: arcs Text-mode Accents ⌢⌢ Aa \overarc{A}\overarc{a} Aa ⌣⌣ \underarc{A}\underarc{a} The accents shown above scale only to a few characters wide. An optional macro argument alters the effective width of the accented characters. See the arcs documentation for more information. At the time of this writing (2015/11/12), there exists an incompatibility between the arcs package and the relsize package, upon which arcs depends. As a workaround, one should apply the patch proposed by Michael Sharpe on the XETEX mailing list (Subject: “The arcs package”, dated 2013/08/25) to pre⌢ vent spurious text from being added to the document (as in, “5.0ptA” when ⌢ “A” is expected). 23 Table 26: semtrans Accents Aa ¨¨ Aa ˘˘ \D{A}\D{a} \U{A}\U{a} \T{A}\T{a}* aA \T is not actually an accent but a command that rotates its argument 180° using the graphicx package’s \rotatebox command. Table 27: ogonek Accents A˓ a˓ \k{A}\k{a} Table 28: combelow Accents A, a, \cb{A}\cb{a} \cb places a comma above letters with descenders. Hence, while “\cb{s}” produces “s, ”, “\cb{g}” produces “g‘ ”. Table 29: wsuipa Diacritics s k u m p \ain \corner \downp \downt \halflength v n q { z \leftp \leftt \length \midtilde \open x ~ w o i \overring \polishhook \rightp \rightt \secstress h j r y | \stress \syllabic \underdots } t l \underwedge \upp \upt \underring \undertilde The wsuipa package defines all of the above as ordinary characters, not as accents. However, it does provide \diatop and \diaunder commands, which are used to compose diacritics with other characters. For example, \diatop[\overring|a] produces “x a ”, and \diaunder[\underdots|a] produces “r a”. See the wsuipa documentation for more information. Table 30: textcomp Diacritics ˝ ´ ˘ \textacutedbl \textasciiacute \textasciibreve ˇ ¨ ` \textasciicaron \textasciidieresis \textasciigrave ¯ \textasciimacron \textgravedbl The textcomp package defines all of the above as ordinary characters, not as accents. You can use \llap or \rlap to combine them with other characters. See the discussion of \llap and \rlap on page 226 for more information. 24 Table 31: marvosym Diacritics p P g \arrowOver \ArrowOver G _ \barOver \BarOver \StrikingThrough The marvosym package defines all of the above as ordinary characters, not as accents. You can use \llap or \rlap to combine them with other characters. See the discussion of \llap and \rlap on page 226 for more information. Table 32: textcomp Currency Symbols ฿ ¢ ₡ ¤ \textbaht \textcent \textcentoldstyle \textcolonmonetary \textcurrency * \textdollar* \textdollaroldstyle \textdong \texteuro \textflorin $ ₫ € ƒ ₤ ₦ £ \textguarani \textlira \textnaira \textpeso \textsterling* ₩ ¥ It’s generally preferable to use the corresponding symbol from Table 3 on page 15 because the symbols in that table work properly in both text mode and math mode. Table 33: marvosym Currency Symbols ¢ e \Denarius \Ecommerce \EUR d D c \EURcr \EURdig \EURhv e ¦ í \EURtm \EyesDollar \Florin £ ¡ \Pfund \Shilling The different euro signs are meant to be visually compatible with different fonts—Courier (\EURcr), Helvetica (\EURhv), Times Roman (\EURtm), and the marvosym digits listed in Table 290 (\EURdig). The mathdesign package redefines \texteuro to be visually compatible with one of three additional fonts: Utopia (€), Charter (€), or Garamond (€). Table 34: fontawesome Currency Symbols S \faBtc \faEur \faGbp j £ \faIls \faInr \faJpy ¦ ù \faKrw \faRub \faTry f \faUsd \faViacoin fontawesome defines \faBitcoin as a synonym for \faBtc; \faCny, \faYen, and \faRmb as synonyms for \faJpy; \faDollar as a synonym for \faUsd; \faEuro as a synonym for \faEur; \faRouble and \faRuble as synonyms for \faRub; \faRupee as a synonym for \faInr; \faShekel and \faSheqel as synonyms for \faIls; \faTurkishLira as a synonym for \faTry; and \faWon as a synonym for \faKrw. Table 35: wasysym Currency Symbols * ¢ \cent ¤ \currency € \wasyeuro* \wasyeuro is also available as \euro unless you specify the noeuro package option. 25 \textwon \textyen Table 36: ChinA2e Currency Symbols ÿ þ \Euro \Pound Table 37: teubner Currency Symbols Ε Δ Α ῝ \denarius \dracma Β \hemiobelion \stater \tetartemorion Table 38: tfrupee Currency Symbols | \rupee Table 39: eurosym Euro Signs A C \geneuro B C C C \geneuronarrow \geneurowide e \officialeuro \euro is automatically mapped to one of the above—by default, \officialeuro—based on a eurosym package option. See the eurosym documentation for more information. The \geneuro. . . characters are generated from the current body font’s “C” character and therefore may not appear exactly as shown. Table 40: fourier Euro Signs ( \eurologo € \texteuro Table 41: textcomp Legal Symbols ℗ « \textcircledP \textcopyleft c ○ r ○ © ® \textcopyright \textregistered TM ℠ ™ \textservicemark \texttrademark The first symbol column represents the—sometimes “faked”—symbol that LATEX 2𝜀 provides by default. The second symbol column represents the symbol as redefined by textcomp. The textcomp package is generally required to typeset Table 41’s symbols in italic. See http://www.tex.ac.uk/FAQ-tradesyms.html for solutions to common r when you problems that occur when using these symbols (e.g., getting a “○” expected to get a “®”). Table 42: fontawesome Legal Symbols Z ³ \faCopyright \faCreativeCommons 26 ² ± \faRegistered \faTrademark Table 43: cclicenses Creative Commons License Icons * $ ○ = ○ ∖ \cc \ccby \ccnc* \ccnd \ccsa* ○ C CC ○ BY: ○ These symbols utilize the rotating package and therefore display improperly in some DVI viewers. Table 44: ccicons Creative Commons License Icons b © c d n e y p r m \ccAttribution \ccCopy \ccLogo \ccNoDerivatives \ccNonCommercial s a z \ccNonCommercialEU \ccNonCommercialJP \ccPublicDomain \ccRemix \ccSampling \ccShare \ccShareAlike \ccZero ccicons additionally defines a set of commands for typesetting many complete Creative Commons licenses (i.e., juxtapositions of two or more of the preceding icons). For example, the \ccbyncnd command typesets the “Attribution– Noncommercial–No Derivative Works” license (“c b n d”). See the ccicons documentation for more information. Table 45: textcomp Old-style Numerals \textzerooldstyle \textoneoldstyle \texttwooldstyle \textthreeoldstyle \textfouroldstyle \textfiveoldstyle \textsixoldstyle \textsevenoldstyle \texteightoldstyle \textnineoldstyle Rather than use the bulky \textoneoldstyle, \texttwooldstyle, etc. commands shown above, consider using \oldstylenums{. . .} to typeset an oldstyle number. Table 46: Miscellaneous textcomp Symbols ␢ ¦ ℮ ‽ № ◦ \textblank \textbrokenbar \textdblhyphen \textdblhyphenchar \textdiscount \textestimated \textinterrobang \textinterrobangdown \textnumero \textopenbullet ¶ ' ‚ „ ※ ~ \textpilcrow \textquotesingle \textquotestraightbase \textquotestraightdblbase \textrecipe \textreferencemark \textthreequartersemdash \texttildelow \texttwelveudash Table 47: Miscellaneous wasysym Text-mode Symbols * ſ \longs h \permil M \wasyparagraph* wasysym defines \Paragraph as a synonym for \wasyparagraph. 27 28 3 Mathematical symbols Most, but not all, of the symbols in this section are math-mode only. That is, they yield a “Missing $ inserted” error message if not used within $. . .$, \[. . .\], or another math-mode environment. Operators marked as “variable-sized” are taller in displayed formulas, shorter in in-text formulas, and possibly shorter still when used in various levels of superscripts or subscripts. Alphanumeric symbols (e.g., “ℒ ” and “”) are usually produced using one of the math alphabets in Table 316 rather than with an explicit symbol command. Look there first if you need a symbol for a transform, number set, or some other alphanumeric. Although there have been many requests on comp.text.tex for a contradiction symbol, the ensuing discussion invariably reveals innumerable ways to represent contradiction in a proof, including “ ” (\blitza), “⇒⇐” (\Rightarrow\Leftarrow), “⊥” (\bot), “=” (\nleftrightarrow), and “※” (\textreferencemark). Because of the lack of notational consensus, it is probably better to spell out “Contradiction!” than to use a symbol for this purpose. Similarly, discussions on comp.text.tex have revealed that there are a variety of ways to indicate the mathematical notion of “is defined as”. Common candidates include “,” (\triangleq), “≡” (\equiv), “B” (various 1 ), and def “ =” (\stackrel{\text{\tiny def}}{=}). See also the example of \equalsfill on page 227. Depend∐︀ · (\dotcup), ing upon the context, disjoint union may be represented as “ ” (\coprod), “⊔” (\sqcup), “∪” “⊕” (\oplus), or any of a number of other symbols.2 Finally, the average value of a variable 𝑥 is written by some people as “𝑥” (\overline{x}), by some people as “⟨𝑥⟩” (\langle x \rangle), and by some people as “𝑥” or “∅𝑥” (\diameter x or \varnothing x). The moral of the story is that you should be careful always to explain your notation to avoid confusing your readers. Table 48: Math-mode Versions of Text Symbols $ ... \mathdollar \mathellipsis ¶ S \mathparagraph \mathsection £ \mathsterling \mathunderscore It’s generally preferable to use the corresponding symbol from Table 3 on page 15 because the symbols in that table work properly in both text mode and math mode. Table 49: cmll Unary Operators ! ˜ * \oc* \shift ˆ ´ \shneg \shpos ? \wn* \oc and \wn differ from “!” and “?” in terms of their math-mode spacing: $A=!B$ produces “𝐴 =!𝐵”, for example, while $A=\oc B$ produces “𝐴 = !𝐵”. 1 In txfonts, pxfonts, and mathtools the symbol is called \coloneqq. In mathabx and MnSymbol it’s called \coloneq. In colonequals it’s called \colonequals. 2 Bob Tennent listed these and other disjoint-union symbol possibilities in a November 2007 post to comp.text.tex. 29 Table 50: Binary Operators ⨿ * ○ ▽ △ ∙ ∩ · ∘ * \amalg \ast \bigcirc \bigtriangledown \bigtriangleup \bullet \cap \cdot \circ ∪ † ‡ ◇ ÷ C ∓ ⊙ ⊖ \cup \dagger \ddagger \diamond \div \lhd* \mp \odot \ominus ⊕ ⊘ ⊗ ± B ∖ ⊓ ⊔ ⋆ \oplus \oslash \otimes \pm \rhd* \setminus \sqcap \sqcup \star × ▷ ◁ E D ⊎ ∨ ∧ ≀ \times \triangleleft \triangleright \unlhd* \unrhd* \uplus \vee \wedge \wr Not predefined by the LATEX 2𝜀 core. Use the latexsym package to expose this symbol. Table 51: 𝒜ℳ𝒮 Binary Operators Z e ~ * \barwedge \boxdot \boxminus \boxplus \boxtimes \Cap \centerdot \circledast } d g f > u [ \circledcirc \circleddash \Cup \curlyvee \curlywedge \divideontimes \dotplus \doublebarwedge | h n i o r Y \intercal* \leftthreetimes \ltimes \rightthreetimes \rtimes \smallsetminus \veebar Some people use a superscripted \intercal for matrix transpose: “A^\intercal” ↦→ “𝐴| ”. (See the May 2009 comp.text.tex thread, “raising math symbols”, for suggestions about altering the height of the superscript.) \top (Table 203 on page 96), T, and \mathsf{T} are other popular choices: “𝐴⊤ ”, “𝐴𝑇 ”, “𝐴T ”. Table 52: stmaryrd Binary Operators N O i k j l . / ' & ) # ( \baro \bbslash \binampersand \bindnasrepma \boxast \boxbar \boxbox \boxbslash \boxcircle \boxdot \boxempty \boxslash \curlyveedownarrow \curlyveeuparrow \curlywedgedownarrow \curlywedgeuparrow \fatbslash \fatsemi \fatslash 9 2 ! ` : @ ; = < > ? 3 8 , \interleave \leftslice \merge \minuso \moo \nplus \obar \oblong \obslash \ogreaterthan \olessthan \ovee \owedge \rightslice \sslash \talloblong \varbigcirc \varcurlyvee \varcurlywedge 30 5 4 6 7 " \varoast \varobar \varobslash \varocircle \varodot \varogreaterthan \varolessthan \varominus \varoplus \varoslash \varotimes \varovee \varowedge \vartimes \Ydown \Yleft \Yright \Yup Table 53: wasysym Binary Operators C \lhd \LHD # B \ocircle \rhd E \RHD \unlhd D \unrhd Table 54: txfonts/pxfonts Binary Operators V W U \circledbar \circledbslash \circledvee T M \circledwedge \invamp \medbullet \medcirc \sqcapplus \sqcupplus } | Table 55: mathabx Binary Operators ˚ ˚ X ‹ › ˛ X ˘ ˇ ˇ ˙ Y O \ast \Asterisk \barwedge \bigstar \bigvarstar \blackdiamond \cap \circplus \coasterisk \coAsterisk \convolution \cup \curlyvee N ˜ ¸ ´ ` ˆ Z \ ] ˙ ¯ ¸ ‚ \curlywedge \divdot \divideontimes \dotdiv \dotplus \dottimes \doublebarwedge \doublecap \doublecup \ltimes \pluscirc \rtimes \sqbullet [ \ ^ _ ˝ ] ¨ Z › _ Y [ ^ \sqcap \sqcup \sqdoublecap \sqdoublecup \square \squplus \udot \uplus \varstar \vee \veebar \veedoublebar \wedge Many of the preceding glyphs go by multiple names. \centerdot is equivalent to \sqbullet, and \ast is equivalent to *. \asterisk produces the same glyph as \ast, but as an ordinary symbol, not a binary operator. Similarly, \bigast produces a large-operator version of the \Asterisk binary operator, and \bigcoast produces a large-operator version of the \coAsterisk binary operator. Table 56: MnSymbol Binary Operators ∐ ∗ & ● ∩ ⩀ ? ⋅ ○ \amalg \ast \backslashdiv \bowtie \bullet \cap \capdot \capplus \cdot \circ ⩏ ⩔ ⩕ ∵ + " ⌜ \doublesqcup \doublevee \doublewedge \downtherefore \downY \dtimes \fivedots \hbipropto \hdotdot \lefthalfcap ⋌ ( ⋊ ∏ ⊓ E G ⊔ \righttherefore \rightthreetimes \rightY \rtimes \slashdiv \smallprod \sqcap \sqcapdot \sqcapplus \sqcup (continued on next page) 31 (continued from previous page) ¾ ¼ ∪ ⊍ ⊎ ⋎ 5 ⋏ 4 \closedcurlyvee \closedcurlywedge \cup \cupdot \cupplus \curlyvee \curlyveedot \curlywedge \curlywedgedot \ddotdot \diamonddots \div \dotmedvert \dotminus \doublecap \doublecup \doublecurlyvee \doublecurlywedge \doublesqcap ÷ ⋒ ⋓ 7 6 ⩎ ⌞ ⋋ * ⋉ ∖ ◯ ∕ ∣ − ∓ + ± ⌝ ⌟ \lefthalfcup \lefttherefore \leftthreetimes \leftY \ltimes \medbackslash \medcircle \medslash \medvert \medvertdot \minus \minusdot \mp \neswbipropto \nwsebipropto \plus \pm \righthalfcap \righthalfcup D F ∷ × ∴ ) $ ∶ ∨ / ⧖ ∧ . ≀ \sqcupdot \sqcupplus \squaredots \times \udotdot \uptherefore \upY \utimes \vbipropto \vdotdot \vee \veedot \vertbowtie \vertdiv \wedge \wedgedot \wreath MnSymbol defines \setminus and \smallsetminus as synonyms for \medbackslash; \Join as a synonym for \bowtie; \wr as a synonym for \wreath; \shortmid as a synonym for \medvert; \Cap as a synonym for \doublecap; \Cup as a synonym for \doublecup; and, \uplus as a synonym for \cupplus. Table 57: fdsymbol Binary Operators ⨿ ∗ ⊼ ∩ ⩀ C ⋅ ∪ ⊍ ⊎ ⋎ ⋏ ÷ ⋇ / ∸ ∔ \amalg \ast \barwedge \cap \capdot \capplus \cdot \centerdot \cup \cupdot \cupplus \curlyvee \curlywedge \ddotdot \div \divideontimes \divslash \dotminus \dotplus ⩖ ⩕ / ⨲ ⊺ ⨼ ⨽ ⋋ . ⋉ ∖ ∕ − ⨪ ⨫ ⨬ ∓ + \doublevee \doublewedge \downY \dtimes \hdotdot \intercal \intprod \intprodr \leftthreetimes \leftY \ltimes \medbackslash \medslash \minus \minusdot \minusfdots \minusrdots \mp \plus ⋊ \ ⊓ I K ⊔ H J × ⨱ ⧖ ( ⨿ ∶ ⋮ ∨ ⊻ \rtimes \setminus \sqcap \sqcapdot \sqcapplus \sqcup \sqcupdot \sqcupplus \times \timesbar \udotdot \upbowtie \upY \utimes \varamalg \vdotdot \vdots \vee \veebar (continued on next page) 32 (continued from previous page) ⨰ ⩞ ⋒ ⋓ ⩎ ⩏ \dottimes \doublebarwedge \doublecap \doublecup \doublesqcap \doublesqcup ⨥ ± ⟓ ⟔ ⋌ , \plusdot \pm \pullback \pushout \rightthreetimes \rightY ⟇ ⩣ ∧ ⟑ ≀ \veedot \veedoublebar \wedge \wedgedot \wreath fdsymbol defines \btimes as a synonym for \dtimes; \Cap as a synonym for \doublecap; \Cup as a synonym for \doublecup; \hookupminus as a synonym for \intprodr; \hourglass as a synonym for \upbowtie; \land as a synonym for \wedge; \lor as a synonym for \vee; \minushookup as a synonym for \intprod; \smalldivslash as a synonym for \medslash; \smallsetminus as a synonym for \medbackslash; \Sqcap as a synonym for \doublesqcap; \Sqcup as a synonym for \doublesqcup; \ttimes as a synonym for \utimes; \lJoin as a synonym for \ltimes; \rJoin as a synonym for \rtimes; \Join and \lrtimes as synonyms for \bowtie; \uplus as a synonym for \cupplus; \veeonvee as a synonym for \doublevee; \wedgeonwedge as a synonym for \doublewedge; and \wr as a synonym for \wreath). Table 58: boisik Binary Operators { ç Ñ = î ï ë è Ë y î ` @ Ê ¯ Ï Î ñ ò | Ã Þ \ast \baro \barwedge \bbslash \binampersand \bindnasrepma \blackbowtie \bowtie \cap \Cap \cdot \centerdot \circplus \coAsterisk \convolution \cup \Cup \cupleftarrow \curlyvee \curlywedge \dagger \ddagger \div \divideontimes \dotplus Ò ý Å þ Þ ì Ð Ó Ä Ô é é æ ÿ ¾ è õ ~ ß í Ñ Ô Õ \dottimes \doublebarwedge \fatsemi \gtrdot \intercal \lbag \lblackbowtie \leftslice \leftthreetimes \lessdot \ltimes \ltimesblack \merge \minuso \moo \mp \nplus \pluscirc \plustrif \pm \rbag \rblackbowtie \rightslice \rightthreetimes \rtimes 33 ê Ú ö ¿ < z ± ° ó ³ ² û Ð ü Ô Ö × Õ \rtimesblack \smallsetminus \smashtimes \squplus \sslash \times \uplus \varcap \varcup \varintercal \varsqcap \varsqcup \vartimes \vee \Vee \veebar \veeonvee \wedge \Wedge \Ydown \Yleft \Yright \Yup Table 59: stix Binary Operators ⨿ ∗ ⩃ ⩂ ⊽ ⊼ ⩗ ⩘ ⨲ ∩ ⋒ ⩉ ⩀ ⩇ ⩄ ⩍ ⩌ ⩐ ⨩ ∪ ⋓ ⩈ ⊍ ⊌ ⩆ ⩅ ⋎ ⋏ † ‡ ÷ ⋇ ∸ ∔ ⨰ ⩢ ⩞ ⧺ ⧶ ⩱ \amalg \ast \barcap \barcup \barvee \barwedge \bigslopedvee \bigslopedwedge \btimes \cap \Cap \capbarcup \capdot \capovercup \capwedge \closedvarcap \closedvarcup \closedvarcupsmashprod \commaminus \cup \Cup \cupbarcap \cupdot \cupleftarrow \cupovercap \cupvee \curlyvee \curlywedge \dagger \ddagger \div \divideontimes \dotminus \dotplus \dottimes \doublebarvee \doublebarwedge \doubleplus \dsol \eqqplus ⨾ ⁄ ⊺ ⫴ ⨼ ⨽ ∾ ⋋ ⊲ ⋉ ⩝ ⩜ ⨪ ⨫ ⨬ ∓ ⫵ ⨭ ⨮ ⨴ ⨵ ⨥ ⩲ ⨣ ⨦ ⨧ ⨨ ± ⊳ ⋌ ⨢ ⧷ ⋊ ⧵ ⧢ ⨤ ∖ ⨳ ⊓ ⩎ \fcmp \fracslash \intercal \interleave \intprod \intprodr \invlazys \leftthreetimes \lhd \ltimes \midbarvee \midbarwedge \minusdot \minusfdots \minusrdots \mp \nhVvert \opluslhrim \oplusrhrim \otimeslhrim \otimesrhrim \plusdot \pluseqq \plushat \plussim \plussubtwo \plustrif \pm \rhd \rightthreetimes \ringplus \rsolbar \rtimes \setminus \shuffle \simplus \smallsetminus \smashtimes \sqcap \Sqcap ⊔ ⩏ ⫽ ⫶ × ⨱ ⧿ ⧾ ⧻ ⫻ ⩋ ⩊ ⦂ ⩁ ⊴ ⊵ ⅋ ⊎ ⌅ ⌆ ⩡ ⨯ ⩔ ∨ ⊻ ⟇ ⩣ ⩛ ⩒ ⩖ ⩓ ∧ ⩟ ⟑ ⩠ ⩚ ⩑ ⩕ ≀ \sqcup \Sqcup \sslash \threedotcolon \times \timesbar \tminus \tplus \tripleplus \trslash \twocaps \twocups \typecolon \uminus \unlhd \unrhd \upand \uplus \varbarwedge \vardoublebarwedge \varveebar \vectimes \Vee \vee \veebar \veedot \veedoublebar \veemidvert \veeodot \veeonvee \Wedge \wedge \wedgebar \wedgedot \wedgedoublebar \wedgemidvert \wedgeodot \wedgeonwedge \wr stix defines \land as a synonym for \wedge, \lor as a synonym for \vee, \doublecap as a synonym for \Cap, and \doublecup as a synonym for \Cup. Table 60: mathdesign Binary Operators _ \dtimes ] \udtimes ^ \utimes The mathdesign package additionally provides versions of each of the binary operators shown in Table 51 on page 30. 34 Table 61: cmll Binary Operators ` \parr* & \with† * cmll defines \invamp as a synonym for \parr. † \with differs from \& in terms of its math-mode spacing: $A \& B$ produces “𝐴 & 𝐵”, for example, while $A \with B$ produces “𝐴 & 𝐵”. Table 62: shuffle Binary Operators \cshuffle \shuffle Table 63: ulsy Geometric Binary Operators \odplus Table 64: mathabx Geometric Binary Operators İ đ § IJ f n k e g c d h a ‘ \blacktriangledown \blacktriangleleft \blacktriangleright \blacktriangleup \boxasterisk \boxbackslash \boxbot \boxcirc \boxcoasterisk \boxdiv \boxdot \boxleft \boxminus \boxplus i m b j o l f n k e g c d h \boxright \boxslash \boxtimes \boxtop \boxtriangleup \boxvoid \oasterisk \obackslash \obot \ocirc \ocoasterisk \odiv \odot \oleft 35 a ‘ i m b j o l Ź Ž Ż Ÿ \ominus \oplus \oright \oslash \otimes \otop \otriangleup \ovoid \smalltriangledown \smalltriangleleft \smalltriangleright \smalltriangleup Table 65: MnSymbol Geometric Binary Operators ⧅ ⧈ ⊡ ⊟ ⊞ ⧄ ⊠ q { ⟐ x | z } y  ◆ ∎ \boxbackslash \boxbox \boxdot \boxminus \boxplus \boxslash \boxtimes \boxvert \diamondbackslash \diamonddiamond \diamonddot \diamondminus \diamondplus \diamondslash \diamondtimes \diamondvert \downslice \filleddiamond \filledmedsquare ▼ ◀ ▶ ▲ ◾ ★ ▾ ◂ ▸ ▴ ◇ ◻ ☆ ▽ ◁ ▷ △ ⊛ ⦸ \filledmedtriangledown \filledmedtriangleleft \filledmedtriangleright \filledmedtriangleup \filledsquare \filledstar \filledtriangledown \filledtriangleleft \filledtriangleright \filledtriangleup \meddiamond \medsquare \medstar \medtriangledown \medtriangleleft \medtriangleright \medtriangleup \oast \obackslash ⊚ ⊙ ⊖ ⊕ ⊘ ⍟ ⊗ d ⦶ ◇ ◽ ☆ ▿ ◃ ▹ ▵ ⋆ À \ocirc \odot \ominus \oplus \oslash \ostar \otimes \otriangle \overt \pentagram \smalldiamond \smallsquare \smallstar \smalltriangledown \smalltriangleleft \smalltriangleright \smalltriangleup \thinstar \upslice MnSymbol defines \blacksquare as a synonym for \filledmedsquare; \square and \Box as synonyms for \medsquare; \diamond as a synonym for \smalldiamond; \Diamond as a synonym for \meddiamond; \star as a synonym for \thinstar; \circledast as a synonym for \oast; \circledcirc as a synonym for \ocirc; and, \circleddash as a synonym for \ominus. Table 66: fdsymbol Geometric Binary Operators ⧅ ⧈ ⊡ ⊟ ⊞ ⧄ ⊠ ◫ ⟐ ● ◆ ■ ⭑ \boxbackslash \boxbox \boxdot \boxminus \boxplus \boxslash \boxtimes \boxvert \diamondbackslash \diamonddiamond \diamonddot \diamondminus \diamondplus \diamondslash \diamondtimes \diamondvert \medblackcircle \medblackdiamond \medblacksquare \medblackstar ▼ ◀ ▶ ▲ ○ ◇ ∕ □ ▽ ◁ ▷ △ ⭐ ⊛ ⦸ ⊚ ⊝ ⊙ ⊜ ⊖ \medblacktriangledown \medblacktriangleleft \medblacktriangleright \medblacktriangleup \medcircle \meddiamond \medslash \medsquare \medtriangledown \medtriangleleft \medtriangleright \medtriangleup \medwhitestar \oast \obackslash \ocirc \odash \odot \oequal \ominus ⊕ ⊘ ⊗ ⦶ • ⬩ ▪ ⋆ ▾ ◂ ▸ ▴ ◦ ⋄ ▫ ▿ ◃ ▹ ▵ ⭒ \oplus \oslash \otimes \overt \smallblackcircle \smallblackdiamond \smallblacksquare \smallblackstar \smallblacktriangledown \smallblacktriangleleft \smallblacktriangleright \smallblacktriangleup \smallcircle \smalldiamond \smallsquare \smalltriangledown \smalltriangleleft \smalltriangleright \smalltriangleup \smallwhitestar fdsymbol defines synonyms for most of the preceding symbols: 36 ⬩ ▲ ▼ ◀ ▶ □ ◫ ⧅ ⧄ • ◦ ⊛ ⊚ ⊝ ⊜ ⦶ \blackdiamond \blacktriangle \blacktriangledown \blacktriangleleft \blacktriangleright \Box \boxbar \boxbslash \boxdiag \bullet \circ \circledast \circledcirc \circleddash \circledequal \circledvert ⋄ ◇ ⟐ ◆ ■ ● ◆ ■ ○ ◇ □ ◇ □ ⭑ ⦸ \diamond \Diamond \diamondbslash \diamondcdot \mdblkdiamond \mdblksquare \mdlgblkcircle \mdlgblkdiamond \mdlgblksquare \mdlgwhtcircle \mdlgwhtdiamond \mdlgwhtsquare \mdwhtdiamond \mdwhtsquare \medstar \obslash • ⬩ ▪ ⭒ ◦ ⋄ ▫ □ ⋆ △ ▽ ◁ ▷ △ \smblkcircle \smblkdiamond \smblksquare \smwhitestar \smwhtcircle \smwhtdiamond \smwhtsquare \square \star \triangle \triangledown \triangleleft \triangleright \vartriangle Table 67: boisik Geometric Binary Operators ã ï ë è ê é ¤ ¡ § ¥ ¦ ô ñ ð \blacklozenge \blacksquare \blacktriangle \blacktriangledown \blacktriangleleft \blacktriangleright \boxast \boxbar \boxbot \boxbox \boxbslash \boxcircle \boxdivision \boxdot \boxleft \boxminus \boxplus \boxright ¢ \boxslash ò \boxtimes ö \circledast \circledcirc \circleddash \diamond \diamondbar \diamondcircle \diamondminus \diamondop \diamondplus \diamondtimes \diamondtriangle \obar \boxtop £ \boxtriangle õ ÷ } ª ® © ¨ ¬ « ­ 37 : ø ; \oblong \obot \obslash \ogreaterthan \oleft \olessthan \ominus \oplus \oright \oslash \otimes \otop \otriangle \ovee \owedge \star \talloblong Table 68: stix Geometric Binary Operators ⧗ ⧆ ◫ ⧈ ⧅ ⧇ ⧄ ⊡ ⊟ ⊞ ⊠ ⊛ ⊚ ⊝ ⊜ ⦷ ⦶ ⦵ ⟡ \blackhourglass \boxast \boxbar \boxbox \boxbslash \boxcircle \boxdiag \boxdot \boxminus \boxplus \boxtimes \circledast \circledcirc \circleddash \circledequal \circledparallel \circledvert \circlehbar \concavediamond ⟢ ⟣ ⋄ ⩤ ⧖ ⟠ ⧫ ○ ⌽ ⦺ ⦸ ⨸ ⊙ ⦼ ⧁ ⦻ ⧀ ⊖ ⦹ \concavediamondtickleft \concavediamondtickright \diamond \dsub \hourglass \lozengeminus \mdlgblklozenge \mdlgwhtcircle \obar \obot* \obslash \odiv \odot \odotslashdot* \ogreaterthan \olcross* \olessthan \ominus \operp ⊕ ⊘ ⊗ ⨷ ⨶ ⩥ • ⋆ ⫾ △ ⨺ ⨹ ⧍ ⨻ ∙ ∘ ⟤ ⟥ \oplus \oslash \otimes \Otimes \otimeshat \rsub \smblkcircle \star \talloblong \triangle \triangleminus \triangleplus \triangleserifs \triangletimes \vysmblkcircle† \vysmwhtcircle \whitesquaretickleft \whitesquaretickright * Defined as an ordinary character, not as a binary relation. However, these symbols more closely resemble the other symbols in this table than they do the geometric shapes presented in Table 390, which is why they are included here. † stix defines \bullet as a synonym for \vysmblkcircle. Table 69: halloweenmath Halloween-Themed Math Operators † \bigpumpkin‡ \mathleftghost \reversemathcloud \bigskull \mathrightbat \reversemathwitch† \mathbat \mathrightghost \reversemathwitch*† \mathcloud \mathwitch*† \skull \mathghost \mathwitch \mathleftbat \pumpkin † These symbols accept limits. \mathwitch*_{i=0}^{\infty} f(x) produces “ and ∞ 𝑓 (𝑥) 𝑖=0 in display mode. ‡ \greatpumpkin is a synonym for \bigpumpkin. 38 ∞ 𝑖=0 For example, 𝑓 (𝑥)” in text mode Table 70: stix Small Integrals ⨑ ⨐ ⨏ ⨌ ∭ ∬ ∫ ⨍ ⨎ \smallawint \smallcirfnint \smallfint \smalliiiint \smalliiint \smalliint \smallint \smallintbar \smallintBar ⨙ ∱ ⨚ ⨗ ⨘ ⨜ ⨔ ∰ ∯ \smallintcap \smallintclockwise \smallintcup \smallintlarhk \smallintx \smalllowint \smallnpolint \smalloiiint \smalloiint ∮ ∳ ⨕ ⨒ ⨓ ⨖ ⨋ ⨛ ∲ \smalloint \smallointctrclockwise \smallpointint \smallrppolint \smallscpolint \smallsqint \smallsumint \smallupint \smallvarointclockwise By default, each of the preceding commands points to a slanted version of the glyph, as shown. The upint package option typesets each integral instead as an upright version. Slanted and upright integrals can be mixed, however, by explicitly using the commands shown in Table 71. Table 71: stix Small Integrals with Explicit Slant ⨑ ⨐ ⨏ ⨌ ∭ ∬ ⨍ ⨎ ⨙ ∱ ⨚ ⨗ ∫ ⨘ ⨜ ⨔ ∰ ∯ ∳ ∮ ⨕ ⨒ ⨓ ⨖ ⨋ ⨛ ∲ ⨑ ⨐ ⨏ ⨌ ∭ ∬ ⨎ ⨍ ⨙ ∱ ⨚ ⨗ ∫ ⨘ ⨜ ⨔ ∰ ∯ ∳ ∮ ⨕ ⨒ ⨓ ⨖ ⨋ ⨛ ∲ \smallawintsl \smallcirfnintsl \smallfintsl \smalliiiintsl \smalliiintsl \smalliintsl \smallintbarsl \smallintBarsl \smallintcapsl \smallintclockwisesl \smallintcupsl \smallintlarhksl \smallintsl \smallintxsl \smalllowintsl \smallnpolintsl \smalloiiintsl \smalloiintsl \smallointctrclockwisesl \smallointsl \smallpointintsl \smallrppolintsl \smallscpolintsl \smallsqintsl \smallsumintsl \smallupintsl \smallvarointclockwisesl \smallawintup \smallcirfnintup \smallfintup \smalliiiintup \smalliiintup \smalliintup \smallintBarup \smallintbarup \smallintcapup \smallintclockwiseup \smallintcupup \smallintlarhkup \smallintup \smallintxup \smalllowintup \smallnpolintup \smalloiiintup \smalloiintup \smallointctrclockwiseup \smallointup \smallpointintup \smallrppolintup \smallscpolintup \smallsqintup \smallsumintup \smallupintup \smallvarointclockwiseup Instead of using the preceding symbols directly, it is generally preferable to use the symbols listed in Table 70 either with or without the upint package option. Specifying upint selects each integral’s upright (up) variant, while omitting upint selects each integral’s slanted (sl) variant. Use the symbols shown in Table 71 only when you need to include both upright and slanted variations of a symbol in the same document. 39 ⋂︀ ⋂︁ ⋃︀ ⋃︁ ⨀︀ ⨀︁ ⨁︀ ⨁︁ Table 72: Variable-sized Math Operators ⨂︀ ⨂︁ ⋀︀ ⋀︁ \bigcap \bigotimes \bigwedge ⨆︀ ⨆︁ ∐︀ ∐︁ \bigcup \bigsqcup \coprod ∫︁ ⨄︁ ∫︀ ⨄︀ \bigodot \biguplus \int ∮︁ ∮︀ ⋁︀ ⋁︁ \bigoplus \bigvee \oint ∏︀ ∏︁ \prod ∑︀ ∑︁ \sum Table 73: 𝒜ℳ𝒮 Variable-sized Math Operators ∫︁ ∫︁ ∫︁ ∫︁ ∫︁ ∫︀∫︀ ∫︀∫︀∫︀ \iint \iiint ∫︀∫︀∫︀∫︀ em bj ck ∫︁ ∫︁ ∫︁ ∫︁ \iiiint ∫︀ ··· ∫︀ ∫︁ ∫︁ ··· Table 74: stmaryrd Variable-sized Math g o \bigbox \biginterleave \bignplus \bigcurlyvee f n \bigcurlywedge \bigparallel \idotsint Operators \bigsqcap `h \bigtriangledown ai \bigtriangleup Table 75: wasysym Variable-sized Math Operators r w \int sx \iint uz \oint v{ \oiint ty \iiint If wasysym is loaded without package options then none of the preceding symbols are defined. However, \varint produces wasysym’s \int glyph, and \varoint produces wasysym’s \oint glyph. If wasysym is loaded with the integrals option then all of the preceding symbols are defined, but \varint and \varoint are left undefined. If wasysym is loaded with the nointegrals option then none of the preceding symbols, \varint, or \varoint are defined. 40 Table 76: mathabx Variable-sized Math Operators IJň \bigcurlyvee Ýý \bigboxslash Éé \bigoright Ű ę \bigsqcap Òò \bigboxtimes Íí \bigoslash Żń \bigcurlywedge Úú \bigboxtop Êê \bigotop Öö \bigboxasterisk ßß \bigboxtriangleup Ïï \bigotriangleup Þþ \bigboxbackslash Üü \bigboxvoid Ìì \bigovoid Ûû \bigboxbot Š ć \bigcomplementop Řă \bigplus Õõ \bigboxcirc Ææ \bigoasterisk Ÿ ĺ \bigsquplus Œœ \bigboxcoasterisk Îî \bigobackslash Śą \bigtimes Óó \bigboxdiv Ëë \bigobot ţ Ôô \bigboxdot Åå \bigocirc ť Øø \bigboxleft Çç \bigocoasterisk ş Ññ \bigboxminus Ãã \bigodiv ů Ðð \bigboxplus Èè \bigoleft ű Ùù \bigboxright Áá \bigominus ¡ \iiint ij \iint ż \int £ \oiint ¿ 41 \oint Table 77: txfonts/pxfonts Variable-sized Math Operators > ? \ointclockwise \bigsqcupplus \ointctrclockwise R S \fint ' ( % & # $ ! " L M D E ) * H I @ A \bigsqcapplus P Q \idotsint \iiiint \sqint N O \iint B C \oiiintclockwise J K \oiiintctrclockwise \oiiint \oiintclockwise - . + , \oiint 42 \varoiiintclockwise \varoiiintctrclockwise \varoiintclockwise \varoiintctrclockwise \varointclockwise \oiintctrclockwise \sqiint F G \iiint \sqiiint \varointctrclockwise \varprod Table 78: esint Variable-sized Math Operators ¯ ˙ \dotsint ffl ˇ ˝ ˜ % # ‚ ı \ointclockwise ‰ \fint ˘ \ointctrclockwise „ ” \iiiint ˚ \sqiint “ › \iiint ¨ \sqint " ! \iint & \landdownint $ \landupint \varoiint fi ff \varointclockwise ffi fl \varointctrclockwise ‹ \oiint Table 79: bigints Variable-sized Math Operators ∫︀ ∫︀ ∫︀ ∫︀ ∫︀ ∫︁ ∮︀ \bigint ∫︁ ∮︀ \bigints ∫︁ ∮︀ \bigintss ∫︁ ∮︀ \bigintsss ∫︁ ∮︀ \bigintssss 43 ∮︁ \bigoint ∮︁ \bigoints ∮︁ \bigointss ∮︁ \bigointsss ∮︁ \bigointssss Table 80: MnSymbol Variable-sized Math Operators ⋂ ⋂ \bigcap ⊖ ⊖ \bigominus ∁ ∁ \complement ⩀ ⩀ \bigcapdot ⊕ ⊕ \bigoplus ∐ ∐ \coprod $ % \bigcapplus ⊘ ⊘ \bigoslash ∫…∫ ∫…∫ \idotsint ◯ ◯ \bigcircle ⍟ ⍟ \bigostar ⨌ ⨌ \iiiint ⋃ ⋃ \bigcup ⊗ ⊗ \bigotimes ∭ ∭ \iiint ⊍ ⊍ \bigcupdot F G \bigotriangle ∬ ∬ \iint ⊎ ⊎ \bigcupplus* ⦶ ⦶ \bigovert ∫ ∫ \int ⋎ ⋎ \bigcurlyvee + + \bigplus ⨚ ⨚ \landdownint \bigcurlyveedot ⊓ ⊓ \bigsqcap ⨙ ⨙ \landupint ⋏ ⋏ \bigcurlywedge , - \bigsqcapdot ∲ ∲ \lcircleleftint \bigcurlywedgedot 0 1 \bigsqcapplus ∲ ∲ \lcirclerightint \bigdoublecurlyvee ⊔ ⊔ \bigsqcup ∯ ∯ \oiint \bigdoublecurlywedge . / \bigsqcupdot ∮ ∮ \oint ⩔ ⩔ \bigdoublevee 2 3 \bigsqcupplus ∏ ∏ \prod ⩕ ⩕ \bigdoublewedge ⨉ ⨉ \bigtimes ∳ ∳ \rcircleleftint ⊛ ⊛ \bigoast ⋁ ⋁ \bigvee ∳ ∳ \rcirclerightint ⦸ ⦸ \bigobackslash \bigveedot ⨏ ⨏ \strokedint ⊚ ⊚ \bigocirc ⋀ \bigwedge ∑ ∑ \sum ⊙ ⊙ \bigodot \bigwedgedot ⨋ ⨋ \sumint * ⋀ MnSymbol defines \biguplus as a synonym for \bigcupplus. Table 81: fdsymbol Variable-sized Math Operators ⋂ ⋂ \bigcap ⨆ ⨆ \bigsqcup ∱ ∱ \landupint \bigcapdot & ' \bigsqcupdot ∲ ∲ \lcircleleftint (continued on next page) 44 (continued from previous page) \bigcapplus * + \bigsqcupplus ∲ ∲ ⋃ ⋃ \bigcup ⨉ ⨉ \bigtimes ∰ ∰ \oiiint ⨃ ⨃ \bigcupdot ⋁ ⋁ \bigvee ∯ ∯ \oiint ⨄ ⨄ \bigcupplus \bigveedot ∮ ∮ \oint \bigcurlyvee ⋀ \bigwedge ⨊ ⨊ \osum \bigcurlywedge \bigwedgedot ∏ ∏ \prod ⨈ ⨈ \bigdoublevee ∐ ∐ \coprod ∳ ∳ \rcircleleftint ⨇ ⨇ \bigdoublewedge ⨏ ⨏ \fint ∳ ∳ \rcirclerightint 2 3 \bigoast ∫⋯∫ ∫⋯∫ \idotsint ∑ ∑ \sum ⨀ ⨀ \bigodot ⨌ ⨌ \iiiint ⨋ ⨋ \sumint ⨁ ⨁ \bigoplus ∭ ∭ \iiint ∐ ∐ \varcoprod ⨂ ⨂ \bigotimes ∬ ∬ \iint ⨊ ⨊ \varosum \bigplus ∫ ∫ \int ∏ ∏ \varprod ⨅ ⨅ \bigsqcap ⨍ ⨍ \intbar ∑ ∑ \varsum $ % \bigsqcapdot ⨎ ⨎ \intBar ⨋ ⨋ \varsumint ( ) \bigsqcapplus ⨑ ⨑ \landdownint * ⋀ \lcirclerightint fdsymbol defines \awint as a synonym for \landdownint, \biguplus as a synonym for \bigcupplus, \conjquant as a synonym for \bigdoublewedge, \disjquant as a synonym for \bigdoublevee, \dotsint as a synonym for \idotsint, \intclockwise as a synonym for \landupint, \intctrclockwise as a synonym for \landdownint, \modtwosum as a synonym for \osum, \ointclockwise as a synonym for \lcircleleftint, \ointctrclockwise as a synonym for \rcirclerightint, \varmodtwosum as a synonym for \varosum, \varointclockwise as a synonym for \lcirclerightint, and \varointctrclockwise as a synonym for \rcircleleftint. Table 82: boisik Variable-sized Math Operators \intup boisik additionally provides all of the symbols in Table 72. 45 Table 83: stix Variable-sized Math Operators ⨑ ⨑ ⅀ ⅀ ⋂ ⋃ ⨃ ⨀ ⨁ ⨂ ⨅ ⨆ ⫿ ⨉ ⨄ ⋁ ⋀ ⋂ ⋃ ⨃ ⨀ ⨁ ⨂ ⨅ ⨆ ⫿ ⨉ ⨄ ⋁ ⋀ ⨐ ⨐ ⨇ ⨇ \awint \Bbbsum ∐ ⨈ ∐ ⨈ \coprod ∰ ∰ \oiiint \disjquant ∯ ∯ \oiint \fint ∮ ∮ \oint \bigcap ⨏ ⨏ \bigcup ⨌ ⨌ \iiiint ∳ ∳ \ointctrclockwise \bigcupdot ∭ ∭ \iiint ⨕ ⨕ \pointint \bigodot ∬ ∏ ∏ ∬ \iint \bigoplus ∫ ∫ \int ⨒ ⨒ \rppolint \bigotimes ⨍ ⨍ \intbar ⨓ ⨓ \scpolint \bigsqcap ⨎ ⨎ \intBar ⨖ ⨖ \sqint \bigsqcup ⨙ \intcap ∑ ∑ ⨙ \bigtalloblong ∱ ∱ \intclockwise ⨋ ⨋ \sumint \bigtimes ⨚ ⨚ \intcup ⨛ ⨛ \upint \biguplus ⨗ ⨗ \intlarhk ∲ ∲ \varointclockwise \bigvee ⨘ \intx ⧹ ⧹ ⨘ \bigwedge ⨜ \lowint ⧸ ⧸ ⨜ ⨊ ⨊ ⨔ ⨔ \cirfnint \conjquant \prod \sum \xbsol \xsol \modtwosum \npolint By default, each of the integral-producing commands in Table 83 points to a slanted version of the glyph, as shown. The upint package option typesets each integral instead as an upright version. Slanted and upright integrals can be mixed, however, by explicitly using the commands shown in Table 84. 46 Table 84: stix Integrals with Explicit Slant ∫ ∫ \intsl ∫ ∫ \intup ∬ ∬ \iintsl ∬ ∬ \iintup ∭ ∭ \iiintsl ∭ ∭ \iiintup ∮ ∮ \ointsl ∮ ∮ \ointup ∯ ∯ \oiintsl ∯ ∯ \oiintup ∰ ∰ \oiiintsl ∰ ∰ \oiiintup ∱ ∱ \intclockwisesl ∱ ∱ \intclockwiseup ∲ ∲ \varointclockwisesl ∲ ∲ \varointclockwiseup ∳ ∳ \ointctrclockwisesl ∳ ∳ \ointctrclockwiseup ⨋ ⨋ \sumintsl ⨋ ⨋ \sumintup \iiiintsl ⨌ ⨌ \iiiintup ⨌ ⨌ ⨍ ⨍ \intbarsl ⨍ ⨍ \intbarup ⨎ ⨎ \intBarsl ⨎ ⨎ \intBarup ⨏ ⨏ \fintsl ⨏ ⨏ \fintup ⨐ ⨐ \cirfnintsl ⨐ ⨐ \cirfnintup ⨑ ⨑ \awintsl ⨑ ⨑ \awintup ⨒ ⨒ \rppolintsl ⨒ ⨒ \rppolintup ⨓ ⨓ \scpolintsl ⨓ ⨓ \scpolintup ⨔ ⨔ \npolintsl ⨔ ⨔ \npolintup (continued on next page) 47 (continued from previous page) ⨕ ⨕ \pointintsl ⨕ ⨕ \pointintup ⨖ ⨖ \sqintsl ⨖ ⨖ \sqintup ⨗ ⨗ \intlarhksl ⨗ ⨗ \intlarhkup ⨘ ⨘ \intxsl ⨘ ⨘ \intxup ⨙ ⨙ \intcapsl ⨙ ⨙ \intcapup ⨚ ⨚ \intcupsl ⨚ ⨚ \intcupup ⨛ ⨛ \upintsl ⨛ ⨛ \upintup ⨜ ⨜ \lowintsl ⨜ ⨜ \lowintup Instead of using the preceding symbols directly, it is generally preferable to use the symbols listed in Table 83 either with or without the upint package option. Specifying upint selects each integral’s upright (up) variant, while omitting upint selects each integral’s slanted (sl) variant. Use the symbols shown in Table 84 only when you need to include both upright and slanted variations of a symbol in the same document. Table 85: cmupint Variable-sized Upright Integrals ⨑ ⨍ ⨑ \awint ⨍ \barint ⨐ ⨐ ⨎ ⨎ ⨜ ⨜ ⨏ ⨏ \cirfnint \doublebarint \downint \fint ⨔ ∰ ⨔ \npolint ∰ \oiiint ∯ ∯ ∮ ∮ ∲ ∲ ∳ ∳ \oiint \oint \ointclockwise \ointctrclockwise (continued on next page) 48 (continued from previous page) ∫ ∫ ··· ⨌ ∭ ∬ ∫ ∫ ··· ⨌ \iiiint ∭ \iiint ∬ \iint ∫ ∫ ⨙ \idotsint* \int ⨙ \intcap ∱ ∱ \intclockwise ⨚ ⨚ ⨗ ⨗ ∫ ∫ ∫ ∫ \intcup \intlarhk \landdownint \landupint ⨕ ⨕ ⨒ ⨒ \pointint \rppolint ⨓ ⨓ \scpolint ⨖ ⨖ \sqiint ⨖ ⨖ \sqint ⨋ ⨋ \sumint ⨛ ⨛ \upint ∬ ∬ ∲ ∲ ∳ ∳ ⨘ ⨘ \varidotsint* \varointclockwise \varointctrclockwise \xint cmupint additionally provides \longint, \longiint, \longoint, and \longoiint commands that stretch arbitrarily tall. See the cmupint documentation for more information. * \varidotsint is always drawn as is. \idotsint is drawn identically to \varidotsint when amsmath is not loaded or with more space surrounding each dot when amsmath is loaded. Table 86: mathdesign Variable-sized Math Operators \intclockwise \oiiint \ointclockwise \ointctrclockwise \oiint The mathdesign package provides three versions of each integral—in fact, Rof R every symbol—to accompany different text fonts: Utopia ( ), Garamond ( ), R and Charter ( ). 49 Table 87: prodint Variable-sized Math Operators P \prodi R \Prodi T \PRODI prodint currently requires the author to manually specify \prodi for inlined expressions ($. . . $), \Prodi for displayed math (\[. . . \]), and \PRODI for displayed math involving tall integrands. The package does not define a product integral command that scales automatically akin to the symbols in Table 72. Table 88: cmll Large Math Operators ˙ * \bigparr* ˘ \bigwith cmll defines \biginvamp as a synonym for \bigparr. Table 89: Binary Relations ≈ ≍ ◁▷ ⊣ \approx \asymp \bowtie \cong \dashv \doteq ≡ ⌢ Z | |= ‖ \equiv \frown \Join* \mid† \models \parallel ⊥ ≺ ⪯ ∝ ∼ ≃ \perp \prec \preceq \propto \sim \simeq ⌣ ≻ ⪰ ⊢ \smile \succ \succeq \vdash * Not predefined by the LATEX 2𝜀 core. Use the latexsym package to expose this symbol. † The difference between \mid and | is that the former is a binary relation while the latter is a math ordinal. Consequently, LATEX typesets the two with different surrounding spacing. Contrast “P(A | B)” ↦→ “𝑃 (𝐴|𝐵)” with “P(A \mid B)” ↦→ “𝑃 (𝐴 | 𝐵)”. Table 90: 𝒜ℳ𝒮 Binary Relations u v w ∵ G m l $ 2 3 + \approxeq \backepsilon \backsim \backsimeq \because \between \Bumpeq \bumpeq \circeq \curlyeqprec \curlyeqsucc \doteqdot P ; ( t w 4 : p q a ` \eqcirc \fallingdotseq \multimap \pitchfork \precapprox \preccurlyeq \precsim \risingdotseq \shortmid \shortparallel \smallfrown \smallsmile 50 v < % ∴ ≈ ∼ ∝ \succapprox \succcurlyeq \succsim \therefore \thickapprox \thicksim \varpropto \Vdash \vDash \Vvdash Table 91: 𝒜ℳ𝒮 Negated Binary Relations ∦ ⊀ . \ncong \nmid \nparallel \nprec \npreceq \nshortmid / / 2 0 \nshortparallel \nsim \nsucc \nsucceq \nvDash \nvdash 3 \nVDash \precnapprox \precnsim \succnapprox \succnsim Table 92: stmaryrd Binary Relations A \inplus B \niplus Table 93: wasysym Binary Relations Z \invneg \Join { \leadsto \logof \wasypropto Table 94: txfonts/pxfonts Binary Relations S R D H F B I E C G h * \circledgtr \circledless \colonapprox \Colonapprox \coloneq \Coloneq \Coloneqq \coloneqq* \Colonsim \colonsim \Eqcolon \eqcolon \eqqcolon \Eqqcolon \eqsim X \ ( [ \lJoin \lrtimes \multimap \multimapboth \multimapbothvert \multimapdot \multimapdotboth \multimapdotbothA \multimapdotbothAvert \multimapdotbothB \multimapdotbothBvert \multimapdotbothvert \multimapdotinv \multimapinv \openJoin ] y Y K J L ∥ \opentimes \Perp \preceqq \precneqq \rJoin \strictfi \strictif \strictiff \succeqq \succneqq \varparallel \varparallelinv \VvDash As an alternative to using txfonts/pxfonts, a “:=” symbol can be constructed with “\mathrel{\mathop:}=”. Table 95: txfonts/pxfonts Negated Binary Relations 6 * + ( ) . 7 \napproxeq \nasymp \nbacksim \nbacksimeq \nbumpeq \nBumpeq \nequiv \nprecapprox $ 9 ; 8 % : \npreccurlyeq \npreceqq \nprecsim \nsimeq \nsuccapprox \nsucccurlyeq \nsucceqq \nsuccsim 51 5 h g 1 \nthickapprox \ntwoheadleftarrow \ntwoheadrightarrow \nvarparallel \nvarparallelinv \nVdash Table 96: mathabx Binary Relations \between \botdoteq \Bumpedeq \bumpedeq \circeq \coloneq \corresponds \curlyeqprec \curlyeqsucc \DashV \Dashv \dashVv ” ı – fl ű ů ) ) - „ ‰ ff — » Ï Î Æ ď Ì À \divides \dotseq \eqbumped \eqcirc \eqcolon \fallingdotseq \ggcurly \llcurly \precapprox \preccurlyeq \precdot \precsim « Ç ě Í Á 6 “ ( , ( , \risingdotseq \succapprox \succcurlyeq \succdot \succsim \therefore \topdoteq \vDash \Vdash \VDash \Vvdash Table 97: mathabx Negated Binary Relations ff fl ÿ ź + / ’ + / ‰ ffi ffl ı \napprox \ncong \ncurlyeqprec \ncurlyeqsucc \nDashv \ndashV \ndashv \nDashV \ndashVv \neq \notasymp \notdivides \notequiv M ć È ę ł  fi č É ğ ń à \notperp \nprec \nprecapprox \npreccurlyeq \npreceq \nprecsim \nsim \nsimeq \nsucc \nsuccapprox \nsucccurlyeq \nsucceq \nsuccsim * * . & . Ê ň Ä Ë ŋ Å \nvDash \nVDash \nVdash \nvdash \nVvash \precnapprox \precneq \precnsim \succnapprox \succneq \succnsim The \changenotsign command toggles the behavior of \not to produce either a vertical or a diagonal slash through a binary operator. Thus, “$a \not= b$” can be made to produce either “𝑎 ­= 𝑏” or “𝑎 ­= 𝑏”. Table 98: MnSymbol Binary Relations ≈ ≊ ≌ ∽ ⋍ ≏ \approx \approxeq \backapprox \backapproxeq \backcong \backeqsim \backsim \backsimeq \backtriplesim \between \bumpeq ≙ z â ò ∝ Ð Ô ⪦ ê \hateq \hcrossing \leftfootline \leftfree \leftmodels \leftModels \leftpropto \leftrightline \Leftrightline \leftslice \leftVdash ⪧ ⊩ ⊢ ≓ ÷ ç ï \rightpropto \rightslice \rightVdash \rightvdash \risingdotseq \sefootline \sefree \seModels \semodels \separated \seVdash (continued on next page) 52 (continued from previous page) ≎ ≗ Ü ½ » ∶= ≅ ⋞ ⋟ ≑ ≐ { ⫝ ã ó ⊤ ⍑ ≖ ⩦ ≂ = Ý ≡ Þ ≒ \Bumpeq \circeq \closedequal \closedprec \closedsucc \coloneq \cong \curlyeqprec \curlyeqsucc \Doteq \doteq \downfootline \downfree \downmodels \downModels \downpropto \downvdash \downVdash \eqbump \eqcirc \eqdot \eqsim \equal \equalclosed \equiv \equivclosed \fallingdotseq ⊣ | ô ä Ò Ö ì Ü } å õ × Ó Ý í ≺ ⪷ ≼ ⪯ ≾ x ⊧ ⊫ \leftvdash \nefootline \nefree \neModels \nemodels \neswline \Neswline \neVdash \nevdash \nwfootline \nwfree \nwmodels \nwModels \nwsecrossing \Nwseline \nwseline \nwvdash \nwVdash \prec \precapprox \preccurlyeq \preceq \precsim \rightfootline \rightfree \rightmodels \rightModels ß ∥ ∼ ≃ ≻ ⪸ ≽ ⪰ ≿ ~ ö æ î Þ ≋ ∣ ∥ y ñ á ⊥ ⍊ ⊪ \sevdash \shortparallel \sim \simeq \succ \succapprox \succcurlyeq \succeq \succsim \swfootline \swfree \swModels \swmodels \swVdash \swvdash \triplesim \updownline \Updownline \upfootline \upfree \upModels \upmodels \uppropto \upvdash \upVdash \vcrossing \Vvdash MnSymbol additionally defines synonyms for some of the preceding symbols: ⊣ Ó Ò Ò ≑ ⊧ ∥ ⊥ ∝ Ð Ô ∝ ⊧ ⊫ ⊢ ⊩ \dashv \diagdown \diagup \divides \doteqdot \models \parallel \perp \propto \relbar \Relbar \varpropto \vDash \VDash \vdash \Vdash (same (same (same (same (same (same (same (same (same (same (same (same (same (same (same (same 53 as as as as as as as as as as as as as as as as \leftvdash) \nwseline) \neswline) \updownline) \Doteq) \rightmodels) \Updownline) \upvdash) \leftpropto) \leftrightline) \Leftrightline) \leftpropto) \rightmodels) \rightModels) \rightvdash) \rightVdash) Table 99: MnSymbol Negated Binary Relations ≉ ≊̸ ̸ ̸ ≌̸ ̸ ∽̸ ⋍̸ ̸ ≏̸ ≎̸ ≗̸ ̸ ≇ ⋞̸ ⋟̸ ≐̸ ≑̸ ̸ ⫝̸ ̸ ̸ ⍑̸ ⊤̸ ̸ ≖̸ ⩦̸ ≂̸ ≠ ̸ ≢ ̸ ≒̸ ≙̸ \napprox \napproxeq \nbackapprox \nbackapproxeq \nbackcong \nbackeqsim \nbacksim \nbacksimeq \nbacktriplesim \nbumpeq \nBumpeq \ncirceq \nclosedequal \ncong \ncurlyeqprec \ncurlyeqsucc \ndoteq \nDoteq \ndownfootline \ndownfree \ndownModels \ndownmodels \ndownVdash \ndownvdash \neqbump \neqcirc \neqdot \neqsim \nequal \nequalclosed \nequiv \nequivclosed \neswcrossing \nfallingdotseq \nhateq ̸ ̸ ̸ ̸ ̸ ̸ ⊣̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ⊀ ⪷̸ ⋠ ⪯̸ ≾̸ ̸ ̸ ⊯ ⊭ ⊬ ⊮ \nleftfootline \nleftfree \nleftmodels \nleftModels \nleftrightline \nLeftrightline \nleftvdash \nleftVdash \nnefootline \nnefree \nnemodels \nneModels \nneswline \nNeswline \nneVdash \nnevdash \nnwfootline \nnwfree \nnwmodels \nnwModels \nNwseline \nnwseline \nnwvdash \nnwVdash \nprec \nprecapprox \npreccurlyeq \npreceq \nprecsim \nrightfootline \nrightfree \nrightModels \nrightmodels \nrightvdash \nrightVdash ≓̸ ̸ ̸ ̸ ̸ ̸ ̸ ∤ ∦ ≁ ≄ ⊁ ⪸̸ ⋡ ⪰̸ ≿̸ ̸ ̸ ̸ ̸ ̸ ̸ ≋̸ ∦ ∤ ̸ ̸ ̸ ̸ ⍊̸ ⊥̸ ⪹ ⋨ ⪺ ⋩ \nrisingdotseq \nsefootline \nsefree \nseModels \nsemodels \nsevdash \nseVdash \nshortmid \nshortparallel \nsim \nsimeq \nsucc \nsuccapprox \nsucccurlyeq \nsucceq \nsuccsim \nswfootline \nswfree \nswModels \nswmodels \nswvdash \nswVdash \ntriplesim \nUpdownline \nupdownline \nupfootline \nupfree \nupModels \nupmodels \nupVdash \nupvdash \precnapprox \precnsim \succnapprox \succnsim MnSymbol additionally defines synonyms for some of the preceding symbols: ⊣̸ ̸ ̸ ∤ ≠ ≠ ∤ ⊭ ∦ ⊥̸ ̸ ̸ ⊭ ⊬ ⊮ ⊯ \ndashv \ndiagdown \ndiagup \ndivides \ne \neq \nmid \nmodels \nparallel \nperp \nrelbar \nRelbar \nvDash \nvdash \nVdash \nVDash (same (same (same (same (same (same (same (same (same (same (same (same (same (same (same (same 54 as as as as as as as as as as as as as as as as \nleftvdash) \nnwseline) \nneswline) \nupdownline) \nequal) \nequal) \nupdownline) \nrightmodels) \nUpdownline) \nupvdash) \nleftrightline) \nLeftrightline) \nrightmodels) \nrightvdash) \nrightVdash) \nrightModels) Table 100: fdsymbol Binary Relations ≈ ≊ ≌ ∽ ⋍ ≬ ⋈ ≏ ≎ ⪮ ≗ ≔ ≅ ⋞ ⋟ ý ÿ ≅˙ ≐ ≑ ∺ ⫧ ⫟ ï ⫪ ⍑ ⊤ û ≖ ≕ ⩦ ≂ = \approx \approxeq \backcong \backpropto \backsim \backsimeq \between \bowtie \bumpeq \Bumpeq \bumpeqq \circeq \coloneq \cong \crossing \curlyeqprec \curlyeqsucc \dashVv \Ddashv \dotcong \doteq \Doteq \dotsminusdots \downAssert \downassert \downmodels \downvDash \downVdash \downvdash \downVDash \eqcirc \eqcolon \eqdot \eqsim \equal ≡ ≒ ⌢ ≘ ⁐ ∈ ⫞ ⫣ ¬ î ⊣ ⫤ ⫣ ⫥ ⟝ ⟽ ⟻ ⟞ ∣ ∋ ∥ ≺ ⪷ ≼ ⪯ ⪳ ⪹ ⪱ ⪵ ⋨ ≾ ∝ ⊦ ⊩ ­ \equiv \fallingdotseq \frown \frowneq \frownsmile \in \leftassert \leftAssert \leftfootline \leftmodels \leftvdash \leftvDash \leftVdash \leftVDash \longleftfootline \Longmapsfrom \longmapsfrom \longrightfootline \mid \owns \parallel \prec \precapprox \preccurlyeq \preceq \preceqq \precnapprox \precneq \precneqq \precnsim \precsim \propto \rightassert \rightAssert \rightfootline ⊧ ⊩ ⊫ ⊢ ⊨ ≓ ∣ ∥ ∼ ≃ ⌣ ≍ ≛ ≻ ⪸ ≽ ⪰ ⪴ ≿ ≈ ∼ ≋ ⫠ ⫨ í ⊥ ⫫ ⍊ ù ⫢ ≚ ⊪ ≙ \rightmodels \rightVdash \rightVDash \rightvdash \rightvDash \risingdotseq \shortmid \shortparallel \sim \simeq \smile \smileeq \smilefrown \stareq \succ \succapprox \succcurlyeq \succeq \succeqq \succsim \thickapprox \thicksim \triplesim \upassert \upAssert \upmodels \upvdash \upvDash \upVdash \upVDash \vDdash \veeeq \Vvdash \wedgeq fdsymbol defines synonyms for many of the preceding symbols: ≋ ≘ ⊩ ⊦ ≍ ⫧ ⫪ ⁐ ≔ ⊣ ⫥ ⫤ \approxident \arceq \Assert \assert \asymp \Barv \barV \closure \coloneqq \dashv \DashV \Dashv ⫣ ≑ ≕ ≙ ⋈ ⟞ ⊧ ∋ ⊥ ⫟ ⫞ \dashV \doteqdot \eqqcolon \hateq \Join \longdashv \models \ni \perp \propfrom \shortdowntack \shortlefttack 55 ⊦ ⫠ ⌢ ⌣ ∝ ⫨ ⫫ ⊨ ⊫ ⊩ ⊢ ⟝ \shortrighttack \shortuptack \smallfrown \smallsmile \varpropto \vBar \Vbar \vDash \VDash \Vdash \vdash \vlongdash Table 101: fdsymbol Negated Binary Relations Ó ≉ ≊̸ ≌̸ ∽̸ ⋍̸ ≏̸ ≎̸ ⪮̸ ≗̸ ≇ ⋞̸ ⋟̸ ̸ ̸ ≐̸ ≑̸ ⫟̸ ⫧̸ ̸ ⊤̸ ⍑̸ ̸ ⫪̸ ≖̸ ⩦̸ ≂̸ ≠ ≢ ≒̸ ⌢̸ ≘̸ ⁐̸ \backsimneqq \napprox \napproxeq \nbackcong \nbacksim \nbacksimeq \nbumpeq \nBumpeq \nbumpeqq \ncirceq \ncong \ncurlyeqprec \ncurlyeqsucc \ndashVv \nDdashv \ndoteq \nDoteq \ndownassert \ndownAssert \ndownmodels \ndownvdash \ndownVdash \ndownVDash \ndownvDash \neqcirc \neqdot \neqsim \nequal \nequiv \nfallingdotseq \nfrown \nfrowneq \nfrownsmile ∉ ⫣̸ ⫞̸ ̸ ̸ ⫤̸ ⊣̸ ⫣̸ ⫥̸ ⟝̸ ⟽̸ ⟻̸ ⟞̸ ∤ ∌ ∦ ⊀ ⪷̸ ⋠ ⪯̸ ⪳̸ ≾̸ ⊦̸ ⊮ ̸ ⊧̸ ⊬ ⊮ ⊭ ⊯ ≓̸ ∤ ∦ \nin \nleftAssert \nleftassert \nleftfootline \nleftmodels \nleftvDash \nleftvdash \nleftVdash \nleftVDash \nlongleftfootline \nLongmapsfrom \nlongmapsfrom \nlongrightfootline \nmid \nowns \nparallel \nprec \nprecapprox \npreccurlyeq \npreceq \npreceqq \nprecsim \nrightassert \nrightAssert \nrightfootline \nrightmodels \nrightvdash \nrightVdash \nrightvDash \nrightVDash \nrisingdotseq \nshortmid \nshortparallel ≁ ≄ ⌣̸ ̸ ≭ ≛̸ ⊁ ⪸̸ ⋡ ⪰̸ ⪴̸ ≿̸ ≋̸ ⫠̸ ⫨̸ ̸ ̸ ⫫̸ ⍊̸ ⊥̸ ⫢̸ ≚̸ ⊪̸ ≙̸ ⪱ ⪵ ≆ ⪺ ⪲ ⪶ ⋩ \nsim \nsimeq \nsmile \nsmileeq \nsmilefrown \nstareq \nsucc \nsuccapprox \nsucccurlyeq \nsucceq \nsucceqq \nsuccsim \ntriplesim \nupassert \nupAssert \nupmodels \nupVDash \nupvDash \nupVdash \nupvdash \nvDdash \nveeeq \nVvdash \nwedgeq \precneq \precneqq \simneqq \succnapprox \succneq \succneqq \succnsim fdsymbol defines synonyms for many of the preceding symbols: ≋̸ ≘̸ ⊮ ⊦̸ ≭ ⫧̸ ⫪̸ ⁐̸ ⫥̸ ⫤̸ ⊣̸ \napproxident \narceq \nAssert \nassert \nasymp \nBarv \nbarV \nclosure \nDashV \nDashv \ndashv ⫣̸ ≠ ≠ ≙̸ ⟞̸ ⊧̸ ∌ ∉ ⊥̸ ⫟̸ ⫞̸ \ndashV \ne \neq \nhateq \nlongdashv \nmodels \nni \notin \nperp \nshortdowntack \nshortlefttack 56 ⊦̸ ⫠̸ ≄ ⫨̸ ⫫̸ ⊮ ⊭ ⊯ ⊬ ⟝̸ \nshortrighttack \nshortuptack \nsime \nvBar \nVbar \nVdash \nvDash \nVDash \nvdash \nvlongdash Table 102: boisik Binary Relations ð Ý Ñ Ó ` ¶ · Æ Ç Ù æ Ì Í Û Ú Ø Ê Ë < Û Ú Ò ô Ý ? \ac \approxeq \arceq \backsim \backsimeq \bagmember \because \between \bumpeq \Bumpeq \circeq \CircledEq \cong \corresponds \curlyeqprec \curlyeqsucc \dashV \DashV \dashVv \dfourier \Dfourier \disin \doteq \doteqdot \dotminus \dotsim \eqbumped \eqcirc \eqsim \equalparallel \fallingdotseq \fatbslash > þ ý ë > ¶ ê ³ À Æ ´ Á Ã É Â È Ç Å Ä · = å ß ¸ Î º : Ü ; \fatslash \forkv \frown \ggcurly \hash \inplus \kernelcontraction \llcurly \multimap \multimapboth \multimapbothvert \multimapdot \multimapdotboth \multimapdotbothA \multimapdotbothAvert \multimapdotbothB \multimapdotbothBvert \multimapdotbothvert \multimapdotinv \multimapinv \niplus \nisd \Perp \pitchfork \precapprox \preccurlyeq \precnapprox \precneqq \precnsim \precsim \prurel \risingdotseq \scurel \shortmid \shortparallel \simrdots \smallfrown \smallsmile \smile \strictfi \strictif \succapprox \succcurlyeq \succnapprox \succneqq \succnsim \succsim \therefore \thickapprox \thicksim \topfork \triangleq \varhash \varisins \varnis \varpropto \Vdash \vDash \VDash \veeeq \Vvdash \ztransf \Ztransf ¾ ¿ ½ ¼ ü ì í ¹ Ï » µ  Рÿ Ø ? ¸ ¹ ß ¸ » º ¹ Ì Í Table 103: boisik Negated Binary Relations ä @ ­ ¬ \ncong \neq \nequiv \nmid \nparallel \nprec ® ¯ \npreceq \nshortmid \nshortparallel \nsim \nsucc \nsucceq 57 ³ ± ° ² \nVDash \nVdash \nvdash \nvDash Table 104: stix Binary Relations ≈ ≊ ⩰ ≋ ≘ ⊦ ⩮ ≍ ≌ ∽ ⋍ ⋿ ⫧ ⫪ ≬ ⫭ ⋈ ≎ ≏ ⪮ ⟟ ≗ ⫯ ⁐ ⩴ ≔ ≅ ⩭ ⋞ ⋟ ∹ ⊣ ⫣ ⫤ ⫥ ⟚ ⟛ ⩷ ⋲ ≑ ≐ ⩧ ⩪ ∺ ⥿ ⧟ ⧣ ≖ ≕ ≝ ⩦ \approx \approxeq \approxeqq \approxident \arceq \assert \asteq \asymp \backcong \backsim \backsimeq \bagmember \Barv \barV \between \bNot \bowtie \Bumpeq \bumpeq \bumpeqq \cirbot \circeq \cirmid \closure \Coloneq \coloneq \cong \congdot \curlyeqprec \curlyeqsucc \dashcolon \dashv \dashV \Dashv \DashV \DashVDash \dashVdash \ddotseq \disin \Doteq \doteq \dotequiv \dotsim \dotsminusdots \downfishtail \dualmap \eparsl \eqcirc \eqcolon \eqdef \eqdot ⧥ ≒ ⧓ ⫝ ⫙ ⌢ ⧦ ⩯ ⊷ ∈ ⋵ ⋹ ⋷ ⋴ ⋸ ∻ ⤛ ⥼ ⤙ ⧑ ⧔ ⟞ ⫍ ≞ ∣ ⫰ ⫛ ⊧ ⊸ ⟜ ∋ ⋾ ⋼ ⋺ ⫬ ̸ ⊶ ∥ ⫳ ⟂ ⋔ ≺ ⪻ ⪷ ≼ ⪯ ⪳ ⪹ ⪱ ⪵ ⋨ \eqvparsl \fallingdotseq \fbowtie \forksnot \forkv \frown \gleichstark \hatapprox \imageof \in \isindot \isinE \isinobar \isins \isinvb \kernelcontraction \leftdbltail \leftfishtail \lefttail \lfbowtie \lftimes \longdashv \lsqhook \measeq \mid \midcir \mlcp \models \multimap \multimapinv \ni \niobar \nis \nisd \Not \notchar \origof \parallel \parsim \perp \pitchfork \prec \Prec \precapprox \preccurlyeq \preceq \preceqq \precnapprox \precneq \precneqq \precnsim ⥽ ⥰ ⤚ ≓ ⫎ ⧴ ⊱ ⫟ ⫞ ∣ ∥ ⫠ ∼ ≃ ⩬ ≆ ⩫ ⌢ ∊ ∍ ⌣ ⧤ ⌣ ≛ ≻ ⪼ ⪸ ≽ ⪰ ⪴ ⪺ ⪲ ⪶ ⋩ ≿ ≈ ∼ ⫚ ⥾ ⟒ ⋶ ⋳ ⋽ ⋻ ∝ ⫦ ⫨ ⫫ ⫩ ⊩ ⊢ \rightfishtail \rightimply \righttail \risingdotseq \rsqhook \ruledelayed \scurel \shortdowntack \shortlefttack \shortmid \shortparallel \shortuptack \sim \simeq \simminussim \simneqq \simrdots \smallfrown \smallin \smallni \smallsmile \smeparsl \smile \stareq \succ \Succ \succapprox \succcurlyeq \succeq \succeqq \succnapprox \succneq \succneqq \succnsim \succsim \thickapprox \thicksim \topfork \upfishtail \upin \varisinobar \varisins \varniobar \varnis \varpropto \varVdash \vBar \Vbar \vBarv \Vdash \vdash (continued on next page) 58 (continued from previous page) ⩵ ⩶ ⩳ ≂ ⋕ ≡ ≣ ⩸ ⩨ ⩩ ≾ ∝ ⊰ ⟓ ⟔ ≟ ⫮ ⧒ ⧕ ⤜ \eqeq \eqeqeq \eqqsim \eqsim \equalparallel \equiv \Equiv \equivDD \equivVert \equivVvert ⊨ ⊫ ⫢ ⋮ ≚ ⩙ \precsim \propto \prurel \pullback \pushout \questeq \revnmid \rfbowtie \rftimes \rightdbltail ⃒ ⟝ ⊪ ≙ \vDash \VDash \vDdash \vdots \veeeq \veeonwedge \vertoverlay \vlongdash \Vvdash \wedgeq stix defines \owns as a synonym for \ni and \doteqdot as a synonym for \Doteq. Table 105: stix Negated Binary Relations ⫝̸ ≉ ≭ ≇ ≠ ≢ \forks \napprox \napproxeqq \nasymp \nBumpeq \nbumpeq \ncong \ncongdot \ne \neqsim \nequiv ⫲ ∤ ∌ ∉ ∦ ⊀ ⋠ ∤ ∦ ≁ \nhpar \nmid \nni \notin \nparallel \nprec \npreccurlyeq \npreceq \nshortmid \nshortparallel \nsim ≄ ⊁ ⋡ ⊭ ⊬ ⊯ ⊮ \nsime \nsucc \nsucccurlyeq \nsucceq \nvarisinobar \nvarniobar \nvDash \nvdash \nVDash \nVdash stix defines \neq as a synonym for \ne, \nsimeq as a synonym for \nsime, and \nforksnot as a synonym for \forks. Table 106: mathtools Binary Relations ::≈ :≈ := ::= ::− \Colonapprox \colonapprox \coloneqq \Coloneqq \Coloneq :− :∼ ::∼ :: −: \coloneq \colonsim \Colonsim \dblcolon \eqcolon −:: =: =:: \Eqcolon \eqqcolon \Eqqcolon Similar symbols can be defined using mathtools’s \vcentcolon, which produces a colon centered on the font’s math axis: =:= “=:=” =:= vs. “=\vcentcolon=” 59 Table 107: turnstile Binary Relations 𝑑𝑒𝑓 𝑑𝑒𝑓 \dddtstile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \nntstile{abc}{def} \ddststile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \nnttstile{abc}{def} \ddtstile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \nsdtstile{abc}{def} \ddttstile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \nsststile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \dndtstile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \nststile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \dnststile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \nsttstile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \dntstile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \dnttstile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \dsdtstile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \dsststile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \dststile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \dsttstile{abc}{def} 𝑎𝑏𝑐 𝑑𝑒𝑓 𝑎𝑏𝑐 𝑑𝑒𝑓 𝑎𝑏𝑐 𝑑𝑒𝑓 𝑎𝑏𝑐 𝑎𝑏𝑐 𝑑𝑒𝑓 𝑎𝑏𝑐 𝑑𝑒𝑓 𝑎𝑏𝑐 𝑎𝑏𝑐 𝑎𝑏𝑐 𝑎𝑏𝑐 𝑎𝑏𝑐 \tddtstile{abc}{def} 𝑎𝑏𝑐 \tdststile{abc}{def} 𝑎𝑏𝑐 \tdtstile{abc}{def} 𝑎𝑏𝑐 \tdttstile{abc}{def} \nttstile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \tndtstile{abc}{def} \ntttstile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \tnststile{abc}{def} \sddtstile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \tntstile{abc}{def} \sdststile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \tnttstile{abc}{def} \sdtstile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \tsdtstile{abc}{def} \sdttstile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \tsststile{abc}{def} 𝑑𝑒𝑓 \dtststile{abc}{def} \stttstile{abc}{def} 𝑑𝑒𝑓 \ntststile{abc}{def} 𝑑𝑒𝑓 \dtdtstile{abc}{def} 𝑎𝑏𝑐 \sttstile{abc}{def} 𝑑𝑒𝑓 \ntdtstile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 𝑎𝑏𝑐 𝑑𝑒𝑓 \stststile{abc}{def} 𝑑𝑒𝑓 𝑑𝑒𝑓 𝑑𝑒𝑓 𝑎𝑏𝑐 𝑑𝑒𝑓 𝑎𝑏𝑐 𝑑𝑒𝑓 𝑎𝑏𝑐 𝑑𝑒𝑓 \stdtstile{abc}{def} 𝑑𝑒𝑓 𝑑𝑒𝑓 𝑎𝑏𝑐 𝑑𝑒𝑓 𝑎𝑏𝑐 𝑑𝑒𝑓 \dttstile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \sndtstile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \tststile{abc}{def} \dtttstile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \snststile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \tsttstile{abc}{def} \nddtstile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \sntstile{abc}{def} \ndststile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \snttstile{abc}{def} \ndtstile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \ssdtstile{abc}{def} \ndttstile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \ssststile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \nndtstile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \sststile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \nnststile{abc}{def} 𝑑𝑒𝑓 𝑎𝑏𝑐 \ssttstile{abc}{def} 𝑎𝑏𝑐 𝑑𝑒𝑓 𝑎𝑏𝑐 𝑑𝑒𝑓 𝑎𝑏𝑐 𝑑𝑒𝑓 𝑎𝑏𝑐 𝑑𝑒𝑓 𝑎𝑏𝑐 𝑑𝑒𝑓 𝑎𝑏𝑐 𝑑𝑒𝑓 𝑎𝑏𝑐 𝑑𝑒𝑓 𝑎𝑏𝑐 𝑑𝑒𝑓 𝑎𝑏𝑐 𝑑𝑒𝑓 𝑎𝑏𝑐 \ttdtstile{abc}{def} \ttststile{abc}{def} \tttstile{abc}{def} \ttttstile{abc}{def} Each of the above takes an optional argument that controls the size of the upper and lower expressions. See the turnstile documentation for more information. 60 Table 108: trsym Binary Relations \InversTransformHoriz \InversTransformVert \TransformHoriz \TransformVert Table 109: trfsigns Binary Relations .... .... \dfourier \fourier \laplace \ztransf .... \Dfourier \Fourier \Laplace \Ztransf .... Table 110: cmll Binary Relations ¨ ˚ ‚ ˛ \coh \incoh \Perp \multimapboth ˝ ˇ ‹ \scoh \sincoh \simperp Table 111: colonequals Binary Relations ≈: ≈:: :≈ :: ::≈ ::= \approxcolon \approxcoloncolon \colonapprox \coloncolon \coloncolonapprox \coloncolonequals ::− ::∼ := :− :∼ =: =:: −: −:: : ∼: ∼:: \coloncolonminus \coloncolonsim \colonequals \colonminus \colonsim \equalscolon \equalscoloncolon \minuscolon \minuscoloncolon \ratio \simcolon \simcoloncolon Table 112: fourier Binary Relations Ô \nparallelslant Ë \parallelslant Table 113: Subset and Superset Relations @ ⊑ A * \sqsubset* \sqsubseteq \sqsupset* ⊒ ⊂ ⊆ \sqsupseteq \subset \subseteq ⊃ ⊇ \supset \supseteq Not predefined by the LATEX 2𝜀 core. Use the latexsym package to expose this symbol. 61 Table 114: 𝒜ℳ𝒮 Subset and Superset Relations \nsubseteq \nsupseteq \nsupseteqq \sqsubset \sqsupset \Subset * + # @ A b j ( $ c k ) \subseteqq \subsetneq \subsetneqq \Supset \supseteqq \supsetneq % & ! ' \supsetneqq \varsubsetneq \varsubsetneqq \varsupsetneq \varsupsetneqq Table 115: stmaryrd Subset and Superset Relations D F \subsetplus \subsetpluseq E G \supsetplus \supsetpluseq Table 116: wasysym Subset and Superset Relations @ A \sqsubset \sqsupset Table 117: txfonts/pxfonts Subset and Superset Relations a @ b \nsqsubset \nsqsubseteq \nsqsupset A > " \nsqsupseteq \nSubset \nsubseteqq ? \nSupset Table 118: mathabx Subset and Superset Relations Ć Ű Ę Ő Č Ů Ğ Ŕ Ć Ű Ę Ő \nsqsubset \nsqSubset \nsqsubseteq \nsqsubseteqq \nsqsupset \nsqSupset \nsqsupseteq \nsqsupseteqq \nsubset \nSubset \nsubseteq \nsubseteqq Č Ů Ğ Ŕ Ă Ť Ď Ň Ĺ Ř Ţ Ą \nsupset \nSupset \nsupseteq \nsupseteqq \sqsubset \sqSubset \sqsubseteq \sqsubseteqq \sqsubsetneq \sqsubsetneqq \sqSupset \sqsupset Ě Ŋ Ľ Ś Ă Ť Ď Ň Ĺ Ř Ą Ţ 62 \sqsupseteq \sqsupseteqq \sqsupsetneq \sqsupsetneqq \subset \Subset \subseteq \subseteqq \subsetneq \subsetneqq \supset \Supset Ě Ŋ Ľ Ś Ł Š Ń Ş Ł Š Ń Ş \supseteq \supseteqq \supsetneq \supsetneqq \varsqsubsetneq \varsqsubsetneqq \varsqsupsetneq \varsqsupsetneqq \varsubsetneq \varsubsetneqq \varsupsetneq \varsupsetneqq Table 119: MnSymbol Subset and Superset Relations ̸ ⊏̸ ⋢ ̸ ̸ ⊐̸ ⋣ ̸ ⋐̸ ⊄ ⊈ ⫅̸ ⋑̸ ⊅ ⊉ ⫆̸ ^ ⊏ ⊑ \ \nSqsubset \nsqsubset \nsqsubseteq \nsqsubseteqq \nSqsupset \nsqsupset \nsqsupseteq \nsqsupseteqq \nSubset \nsubset \nsubseteq \nsubseteqq \nSupset \nsupset \nsupseteq \nsupseteqq \Sqsubset \sqsubset \sqsubseteq \sqsubseteqq ⋤ ö _ ⊐ ⊒ ] ⋥ ÷ ⋐ ⊂ \sqsubsetneq \sqsubsetneqq \Sqsupset \sqsupset \sqsupseteq \sqsupseteqq \sqsupsetneq \sqsupsetneqq \Subset \subset ⊆ ⫅ ⊊ ⫋ ⋑ ⊃ ⊇ ⫆ ⊋ ⫌ \subseteq \subseteqq \subsetneq \subsetneqq \Supset \supset \supseteq \supseteqq \supsetneq \supsetneqq MnSymbol additionally defines \varsubsetneq as a synonym for \subsetneq, \varsubsetneqq as a synonym for \subsetneqq, \varsupsetneq as a synonym for \supsetneq, and \varsupsetneqq as a synonym for \supsetneqq. Table 120: fdsymbol Subset and Superset Relations ⊏̸ ̸ ⋢ ̸ ⊐̸ ̸ ⋣ ̸ ⊄ ⋐̸ \nsqsubset \nSqsubset \nsqsubseteq \nsqsubseteqq \nsqsupset \nSqsupset \nsqsupseteq \nsqsupseteqq \nsubset \nSubset ⊈ ⫅̸ ⊅ ⋑̸ ⊉ ⫆̸ ⊏ J ⊑ H \nsubseteq \nsubseteqq \nsupset \nSupset \nsupseteq \nsupseteqq \sqsubset \Sqsubset \sqsubseteq \sqsubseteqq ⋤ Þ ⊐ K ⊒ I ⋥ ß ⊂ ⋐ \sqsubsetneq \sqsubsetneqq \sqsupset \Sqsupset \sqsupseteq \sqsupseteqq \sqsupsetneq \sqsupsetneqq \subset \Subset ⊆ ⫅ ⊊ ⫋ ⊃ ⋑ ⊇ ⫆ ⊋ ⫌ \subseteq \subseteqq \subsetneq \subsetneqq \supset \Supset \supseteq \supseteqq \supsetneq \supsetneqq fdsymbol additionally defines \varsubsetneqq as a synonym for \subsetneqq, \varsubsetneq as a synonym for \subsetneq, \varsupsetneqq as a synonym for \supsetneqq, and \varsupsetneq as a synonym for \supsetneq. Table 121: boisik Subset and Superset Relations ª ¢ « £ à \nsubset \nsubseteq \nsubseteqq \nsupset \nsupseteq \nsupseteqq \sqsubset ´ \sqSubset µ \sqSupset á È Ì ¨ ¤ \sqsupset \Subset \subseteqq \subsetneq \subsetneqq º \subsetplus ½ \supsetpluseq ¼ \subsetpluseq \varsubsetneq É Í © ¥ » 63 \Supset \supseteqq \supsetneq \supsetneqq \supsetplus ¦ ¡ § \varsubsetneqq \varsupsetneq \varsupsetneqq Table 122: stix Subset and Superset Relations ⟈ ⫏ ⫑ ⫐ ⫒ ⥺ ⋢ ⋣ ⊄ ⊈ ⊅ ⊉ ⭄ ⊏ ⊑ ⋤ ⊐ * \bsolhsub \csub \csube \csup \csupe \leftarrowsubset \nsqsubset \nsqsubseteq \nsqsupset \nsqsupseteq \nsubset \nsubseteq \nsubseteqq \nsupset \nsupseteq \nsupseteqq \rightarrowsupset \sqsubset \sqsubseteq \sqsubsetneq \sqsupset ⊒ ⋥ ⫃ ⫁ ⥹ ⋐ ⊂ ⫉ ⟃ ⪽ ⊆ ⫅ ⊊ ⫋ ⪿ ⫇ ⫕ ⫓ ⫘ ⫄ ⟉ ⫗ ⥻ ⫂ ⋑ ⊃ ⫊ ⟄ ⪾ ⊇ ⫆ ⊋ ⫌ ⫀ ⫈ ⫔ ⫖ ⊊ ⫋ ⊋ ⫌ \sqsupseteq \sqsupsetneq \subedot \submult \subrarr \Subset \subset \subsetapprox \subsetcirc* \subsetdot \subseteq \subseteqq \subsetneq \subsetneqq \subsetplus \subsim \subsub \subsup \supdsub \supedot \suphsol \suphsub \suplarr \supmult \Supset \supset \supsetapprox \supsetcirc* \supsetdot \supseteq \supseteqq \supsetneq \supsetneqq \supsetplus \supsim \supsub \supsup \varsubsetneq \varsubsetneqq \varsupsetneq \varsupsetneqq Defined as an ordinary character, not as a binary relation. Table 123: Inequalities ≥ ≫ \geq \gg ≤ \leq ≪ \ll , \neq Table 124: 𝒜ℳ𝒮 Inequalities 1 \eqslantgtr m \gtrdot Q \lesseqgtr \ngeq 0 \eqslantless R \gtreqless S \lesseqqgtr \ngeqq = \geqq T \gtreqqless ≶ \lessgtr > \geqslant ≷ \gtrless . \lesssim ≯ \ngtr ≫ \ggg & \gtrsim ≪ \lll \nleq \gnapprox \gvertneqq \lnapprox \nleqq \gneq 5 \leqq \gneqq 6 \leqslant \lneqq \gnsim / \lessapprox \lnsim ' \gtrapprox l \lessdot \ngeqslant \lneq \lvertneqq 64 \nleqslant ≮ \nless Table 125: wasysym Inequalities ? > \apprge \apprle Table 126: txfonts/pxfonts Inequalities 4 # & \ngg \ngtrapprox \ngtrless ! " ' \ngtrsim \nlessapprox \nlessgtr 3 \nlesssim \nll Table 127: mathabx Inequalities ů \eqslantgtr ¡ \gtreqless À \lesssim č \ngtr ű \eqslantless £ \gtreqqless ! \ll É \ngtrapprox ě \geq ż \gtrless Î \lll à \ngtrsim ŕ \geqq Á \gtrsim Ê \lnapprox ę \nleq " \gg ţ \gvertneqq ň \lneq ř \nleqq Ï \ggg ď \leq š \lneqq ć \nless Ë \gnapprox ő \leqq Ä \lnsim È \nlessapprox ŋ \gneq Æ \lessapprox ť \lvertneqq  \nlesssim ş \gneqq Ì \lessdot ź \neqslantgtr ń \nvargeq Å \gnsim ij \lesseqgtr ÿ \neqslantless ł \nvarleq Ç \gtrapprox ¿ \lesseqqgtr ğ \ngeq ľ \vargeq Í \gtrdot ž \lessgtr ś \ngeqq ĺ \varleq mathabx defines \leqslant and \le as synonyms for \leq, \geqslant and \ge as synonyms for \geq, \nleqslant as a synonym for \nleq, and \ngeqslant as a synonym for \ngeq. 65 Table 128: MnSymbol Inequalities ⪖ \eqslantgtr ⪌ \gtreqqless ≲ \lesssim ⋛̸ \ngtreqless ⪕ \eqslantless ≷ \gtrless ≪ \ll ̸ \ngtreqlessslant ≥ \geq ó \gtrneqqless ⋘ \lll ⪌̸ \ngtreqqless ⊵ \geqclosed ≳ \gtrsim ⪉ \lnapprox ≹ \ngtrless u ≧ ⩾ ⪀ ≫ ⋙ ⪊ ≩ ≵ > ≤ \geqdot ⊴ \geqq t \geqslant \geqslantdot \gg ≦ ⩽ ⩿ \ggg < \gnapprox ⪅ \gneqq ⊲ \gnsim \gtr ⋖ ⪆ \gtrapprox ⊳ ⋗ ⋛ O ≨ \leq ≴ \leqclosed ⪖̸ \leqdot ⪕̸ \leqq ≱ \leqslant ⋭ \leqslantdot ̸ \less ≧̸ \lessapprox ≱ \lessclosed \lessdot ⪀̸ ⋚ \lesseqgtr \gtrclosed N \gtrdot ⪋ \gtreqless ≶ \gtreqlessslant ò \lneqq \lnsim \neqslantgtr \neqslantless \ngeq \ngeqclosed \ngeqdot \ngeqq \ngeqslant ≰ ⋬ ̸ ≦̸ ≰ ⩿̸ ≮ ⋪ ⋖̸ \nleq \nleqclosed \nleqdot \nleqq \nleqslant \nleqslantdot \nless \nlessclosed \nlessdot \ngeqslantdot ⋚̸ ≫̸ \ngg ̸ \nlesseqgtrslant \lesseqgtrslant ⋙̸ \nggg ⪋̸ \nlesseqqgtr \lesseqqgtr ≯ \ngtr ≸ \nlessgtr \lessgtr ⋫ \lessneqqgtr ⋗̸ \ngtrclosed ≪̸ \ngtrdot ⋘̸ \nlesseqgtr \nll \nlll MnSymbol additionally defines synonyms for some of the preceding symbols: ⋙ ≩ ⊲ ⋘ ≨ ⋬ ⋪ ⋭ ⋫ ⊳ ⊴ ⊵ ⊴ ⊵ ⊲ ⊳ \gggtr \gvertneqq \lhd \llless \lvertneqq \ntrianglelefteq \ntriangleleft \ntrianglerighteq \ntriangleright \rhd \trianglelefteq \trianglerighteq \unlhd \unrhd \vartriangleleft \vartriangleright (same (same (same (same (same (same (same (same (same (same (same (same (same (same (same (same as as as as as as as as as as as as as as as as 66 \ggg) \gneqq) \lessclosed) \lll) \lneqq) \nleqclosed) \nlessclosed) \ngeqclosed) \ngtrclosed) \gtrclosed) \leqclosed) \geqclosed) \leqclosed) \geqclosed) \lessclosed) \gtrclosed) Table 129: fdsymbol Inequalities ⪖ \eqslantgtr ⩿ \leqslantdot ⪆̸ \ngtrapprox ⪕ \eqslantless ⪨ \leqslcc ⪧̸ \ngtrcc ≥ \geq < \less ⋫ \ngtrclosed ⊵ \geqclosed ⪅ \lessapprox ⋗̸ \ngtrdot c \geqdot ⪦ \lesscc ⋛̸ \ngtreqless ≧ \geqq ⊲ \lessclosed ⪌̸ \ngtreqqless ⩾ \geqslant ⋖ \lessdot ⋛̸ \ngtreqslantless ⪀ \geqslantdot ⋚ \lesseqgtr ≹ \ngtrless ⪩ \geqslcc ⪋ \lesseqqgtr ≵ \ngtrsim ≫ \gg ⋚ \lesseqslantgtr ≰ \nleq ⋙ \ggg ≶ \lessgtr ⋬ \nleqclosed ⪊ \gnapprox ≲ \lesssim ̸ \nleqdot ⪈ ≩ \gneq \gneqq ≪ ⋘ \ll \lll ≦̸ ⩽̸ \nleqq \nleqslant ⋧ \gnsim ⪉ \lnapprox ⩿̸ \nleqslantdot > \gtr ⪇ \lneq ⪨̸ \nleqslcc ⪆ \gtrapprox ≨ \lneqq ≮ \nless ⪧ \gtrcc ⋦ \lnsim ⪅̸ \nlessapprox ⊳ \gtrclosed ⪖̸ \neqslantgtr ⪦̸ \nlesscc ⋗ \gtrdot ⪕̸ \neqslantless ⋪ \nlessclosed ⋛ \gtreqless ≱ \ngeq ⋖̸ \nlessdot ⪌ \gtreqqless ⋭ \ngeqclosed ⋚̸ \nlesseqgtr ⋛ \gtreqslantless ̸ \ngeqdot ⪋̸ \nlesseqqgtr ≷ \gtrless ≧̸ \ngeqq ⋚̸ \nlesseqslantgtr ≳ \gtrsim ⩾̸ \ngeqslant ≸ \nlessgtr ≤ \leq ⪀̸ \ngeqslantdot ≴ \nlesssim ⊴ \leqclosed ⪩̸ \ngeqslcc ≪̸ \nll b \leqdot ≫̸ \ngg ⋘̸ \nlll ≦ \leqq ⋙̸ \nggg ⩽ \leqslant ≯ \ngtr fdsymbol defines synonyms for some of the preceding symbols: ≥ \ge ⩿ \lesdot ⪧̸ \ngtcc ⪩ \gescc ⋚ \lesg ⋛̸ \ngtreqlessslant ⪀ \gesdot ⋚ \lesseqgtrslant ⪨̸ \nlescc ⋛ \gesl ⊲ \lhd ⩿̸ \nlesdot ⋙ \gggtr ⋘ \llless ⋚̸ \nlesg ⪧ \gtcc ⪦ \ltcc ⋚̸ \nlesseqgtrslant ⋛ \gtreqlessslant ≨ \lvertneqq ⪦̸ \nltcc ≩ \gvertneqq ⪩̸ \ngescc ⊳ \rhd (continued on next page) 67 (continued from previous page) ≤ \le ⪀̸ \ngesdot ⊴ \unlhd ⪨ \lescc ⋛̸ \ngesl ⊵ \unrhd Table 130: boisik Inequalities Ë \eqslantgtr Ê \eqslantless Á \geqq É \geqslant × \ggg ú \glj \gneq ¿ Å Ç Ã ½ À \gneqq È \gnapprox \gnsim Ï \Gt \gtreqless Æ Â ¼ \gtreqqless Ö ù \gtcir \gtrapprox \gtrless \gtrsim \gvertneqq \leqq \leqslant ¾ Ä \lessapprox Î ø \lesseqgtr \lesseqqgtr \lessgtr \lesssim \lll \ngeq \ngeqq \ngeqslant \ngtr \lnapprox \lneq \lneqq \lnsim \nleq \nleqq \nleqslant \nless \Lt \ltcir \lvertneqq Table 131: stix Inequalities ⪘ \egsdot ⩼ \gtquest ⋦ \lnsim ⪗ \elsdot ⪆ \gtrapprox ⪍ \lsime ⋝ \eqgtr ⥸ \gtrarr ⪏ \lsimg ⋜ \eqless ⋗ \gtrdot ⪡ \Lt ⪚ \eqqgtr ⋛ \gtreqless ⪦ \ltcc ⪙ \eqqless ⪌ \gtreqqless ⩹ \ltcir ⪜ \eqqslantgtr ≷ \gtrless ⥶ \ltlarr ⪛ \eqqslantless ≳ \gtrsim ⩻ \ltquest ⪖ \eqslantgtr ≩ \gvertneqq ≨ \lvertneqq ⪕ \eqslantless ⪫ \lat \neqslantgtr ≥ \geq ⪭ \late \neqslantless ≧ \geqq ⥷ \leftarrowless ≱ \ngeq ⫺ \geqqslant ≤ \leq \ngeqq ⩾ \geqslant ≦ \leqq \ngeqslant ⪩ \gescc ⫹ \leqqslant \ngg ⪀ \gesdot ⩽ \leqslant ≯ \ngtr ⪂ \gesdoto ⪨ \lescc ≹ \ngtrless ⪄ \gesdotol ⩿ \lesdot ≵ \ngtrsim (continued on next page) 68 (continued from previous page) ⪔ \gesles ⪁ \lesdoto ≰ \nleq ≫ \gg ⪃ \lesdotor \nleqq ⋙ \ggg ⪓ \lesges \nleqslant ⫸ \gggnest ⪅ \lessapprox ≮ \nless ⪥ \gla ⋖ \lessdot ≸ \nlessgtr ⪒ \glE ⋚ \lesseqgtr ≴ \nlesssim ⪤ \glj ⪋ \lesseqqgtr \nll ⪊ \gnapprox ≶ \lessgtr ⪣ \partialmeetcontraction ⪈ \gneq ≲ \lesssim ⭃ \rightarrowgtr ≩ \gneqq ⪑ \lgE ⪠ \simgE ⋧ \gnsim ≪ \ll ⪞ \simgtr ⪎ \gsime ⋘ \lll ⪟ \simlE ⪐ \gsiml ⫷ \lllnest ⪝ \simless ⪢ \Gt ⪉ \lnapprox ⪪ \smt ⪧ \gtcc ⪇ \lneq ⪬ \smte ⩺ \gtcir ≨ \lneqq stix defines \le as a synonym for \leq, \ge as a synonym for \geq, \llless as a synonym for \lll, \gggtr as a synonym for \ggg, \nle as a synonym for \nleq, and \nge as a synonym for \ngeq. Table 132: 𝒜ℳ𝒮 Triangle Relations J I 6 5 \blacktriangleleft \blacktriangleright \ntriangleleft \ntrianglelefteq 7 4 E , D C B \ntriangleright \ntrianglerighteq \trianglelefteq \triangleq \trianglerighteq \vartriangleleft \vartriangleright Table 133: stmaryrd Triangle Relations P R \trianglelefteqslant \ntrianglelefteqslant Q S \trianglerighteqslant \ntrianglerighteqslant Table 134: mathabx Triangle Relations Ž đ Ż § \ntriangleleft \ntrianglelefteq \ntriangleright \ntrianglerighteq Ÿ IJ Ź İ \triangleleft \trianglelefteq \triangleright \trianglerighteq 69 Ÿ Ź \vartriangleleft \vartriangleright Table 135: MnSymbol Triangle Relations ▼ ◀ ▶ ▲ ▾ ◂ ▸ ▴ ▽ ◁ ▷ \filledmedtriangledown \filledmedtriangleleft \filledmedtriangleright \filledmedtriangleup \filledtriangledown \filledtriangleleft \filledtriangleright \filledtriangleup \largetriangledown \largetriangleleft \largetriangleright △ ▽ ◁ ▷ △ ≜̸ ⋪ ⋬ ⋫ ⋭ d \largetriangleup \medtriangledown \medtriangleleft \medtriangleright \medtriangleup \ntriangleeq \ntriangleleft \ntrianglelefteq \ntriangleright \ntrianglerighteq \otriangle ▿ ◃ ▹ ▵ ≜ ⊴ ⊵ ⊲ ⊳ \smalltriangledown \smalltriangleleft \smalltriangleright \smalltriangleup \triangleeq \trianglelefteq \trianglerighteq \vartriangleleft \vartriangleright MnSymbol additionally defines synonyms for many of the preceding symbols: \triangleq is a synonym for \triangleeq; \lhd and \lessclosed are synonyms for \vartriangleleft; \rhd and \gtrclosed are synonyms for \vartriangleright; \unlhd and \leqclosed are synonyms for \trianglelefteq; \unrhd and \geqclosed are synonyms for \trianglerighteq; \blacktriangledown, \blacktriangleleft, \blacktriangleright, and \blacktriangle [sic] are synonyms for, respectively, \filledmedtriangledown, \filledmedtriangleleft, \filledmedtriangleright, and \filledmedtriangleup; \triangleright is a synonym for \medtriangleright; \triangle, \vartriangle, and \bigtriangleup are synonyms for \medtriangleup; \triangleleft is a synonym for \medtriangleleft; \triangledown and \bigtriangledown are synonyms for \medtriangledown; \nlessclosed is a synonym for \ntriangleleft; \ngtrclosed is a synonym for \ntriangleright; \nleqclosed is a synonym for \ntrianglelefteq; and \ngeqclosed is a synonym for \ntrianglerighteq. The title “Triangle Relations” is a bit of a misnomer here as only \triangleeq and \ntriangleeq are defined as TEX relations (class 3 symbols). The \largetriangle. . . symbols are defined as TEX “ordinary” characters (class 0) and all of the remaining characters are defined as TEX binary operators (class 2). 70 Table 136: fdsymbol Triangle Relations ⊵ ⊳ _ ^ ⊴ ⊲ ▼ ◀ ▶ ▲ \geqclosed \gtrclosed \largetriangledown \largetriangleup \leqclosed \lessclosed \medblacktriangledown \medblacktriangleleft \medblacktriangleright \medblacktriangleup \medtriangledown \medtriangleleft \medtriangleright \medtriangleup \ngeqclosed \ngtrclosed \nleqclosed \nlessclosed \ntriangleeq \smallblacktriangledown ▽ ◁ ▷ △ ⋭ ⋫ ⋬ ⋪ ≜̸ ▾ ◂ ▸ ▴ ▿ ◃ ▹ ▵ ≜ \smallblacktriangleleft \smallblacktriangleright \smallblacktriangleup \smalltriangledown \smalltriangleleft \smalltriangleright \smalltriangleup \triangleeq fdsymbol defines synonyms for almost all of the preceding symbols: _ ^ ▲ ▼ ◀ ▶ ⋪ \bigtriangledown \bigtriangleup \blacktriangle \blacktriangledown \blacktriangleleft \blacktriangleright \ntriangleleft ⋬ ⋫ ⋭ △ ▽ ◁ ⊴ \ntrianglelefteq \ntriangleright \ntrianglerighteq \triangle \triangledown \triangleleft \trianglelefteq ≜ ▷ ⊵ △ ⊲ ⊳ \triangleq \triangleright \trianglerighteq \vartriangle \vartriangleleft \vartriangleright The title “Triangle Relations” is a bit of a misnomer here as only \triangleeq and \ntriangleeq are defined as TEX relations (class 3 symbols). The \largetriangle. . . symbols are defined as TEX “ordinary” characters (class 0) and all of the remaining characters are defined as TEX binary operators (class 2). Table 137: boisik Triangle Relations ¶ µ · ´ ÿ \ntriangleleft \ntrianglelefteq \ntriangleright \ntrianglerighteq \triangleleft ä \trianglelefteq ç Ò \trianglelefteqslant þ ì \triangleright \trianglerighteq \trianglerighteqslant æ Ó å ä \varlrttriangle \vartriangle \vartriangleleft \vartriangleright Table 138: stix Triangle Relations ⧡ ⧏ ⋬ ⋭ ⋪ \lrtriangleeq \ltrivb \ntrianglelefteq \ntrianglerighteq \nvartriangleleft ⋫ ⧎ ⊴ ≜ ⊵ \nvartriangleright \rtriltri \trianglelefteq \triangleq \trianglerighteq 71 ▵ ⊲ ⊳ ⧐ \vartriangle \vartriangleleft \vartriangleright \vbrtri Table 139: Arrows ⇓ ↓ ←˒ ˓→ { ← ⇐ ⇔ ↔ ←− ⇐= ←→ ⇐⇒ ↦−→ =⇒ −→ ↦→ ↗ \Downarrow \downarrow \hookleftarrow \hookrightarrow \leadsto* \leftarrow \Leftarrow \Leftrightarrow \leftrightarrow ↖ ⇒ → ↘ ↘ ↑ ⇑ ↕ ⇕ \longleftarrow \Longleftarrow \longleftrightarrow \Longleftrightarrow \longmapsto \Longrightarrow \longrightarrow \mapsto \nearrow† \nwarrow \Rightarrow \rightarrow \searrow \swarrow \uparrow \Uparrow \updownarrow \Updownarrow * Not predefined by the LATEX 2𝜀 core. Use the latexsym package to expose this symbol. † See the note beneath Table 246 for information about how to put a diagonal *0 ⃗ arrow across a mathematical expression (as in “ ∇ · 𝐵 ”) . Table 140: Harpoons ↽ ↼ ⇁ ⇀ \leftharpoondown \leftharpoonup \rightharpoondown \rightharpoonup ⇀ ↽ \rightleftharpoons Table 141: textcomp Text-mode Arrows ↓ ← \textdownarrow \textleftarrow → ↑ \textrightarrow \textuparrow Table 142: 𝒜ℳ𝒮 Arrows x y c d ⇔ ! W " # \circlearrowleft \circlearrowright \curvearrowleft \curvearrowright \dashleftarrow \dashrightarrow \downdownarrows \leftarrowtail \leftleftarrows \leftrightarrows \leftrightsquigarrow \Lleftarrow \looparrowleft \looparrowright \Lsh \rightarrowtail ⇒ \rightleftarrows \rightrightarrows \rightsquigarrow \Rsh \twoheadleftarrow \twoheadrightarrow \upuparrows Table 143: 𝒜ℳ𝒮 Negated Arrows : 8 \nLeftarrow \nleftarrow < = \nLeftrightarrow \nleftrightarrow \nRightarrow \nrightarrow ; 9 Table 144: 𝒜ℳ𝒮 Harpoons \downharpoonleft \downharpoonright \leftrightharpoons \rightleftharpoons 72 \upharpoonleft \upharpoonright Table 145: stmaryrd Arrows ^ ] ⇐=\ ←−[ =⇒ \leftarrowtriangle \leftrightarroweq \leftrightarrowtriangle \lightning \Longmapsfrom \longmapsfrom \Longmapsto ⇐\ ←[ ⇒ 1 0 _ \Mapsfrom \mapsfrom \Mapsto \nnearrow \nnwarrow \rightarrowtriangle \shortdownarrow % $ \shortleftarrow \shortrightarrow \shortuparrow \ssearrow \sswarrow Table 146: txfonts/pxfonts Arrows \boxdotLeft \boxdotleft \boxdotright \boxdotRight \boxLeft \boxleft \boxright \boxRight \circleddotleft e \circleddotright \circleleft \circleright \dashleftrightarrow \DiamonddotLeft \Diamonddotleft \Diamonddotright \DiamonddotRight \DiamondLeft f t v V u w \Diamondleft \Diamondright \DiamondRight \leftsquigarrow \Nearrow \Nwarrow \Rrightarrow \Searrow \Swarrow Table 147: mathabx Arrows ö œ ó õ ô ð ò ñ ê Ó ß Œ ë \circlearrowleft \circlearrowright \curvearrowbotleft \curvearrowbotleftright \curvearrowbotright \curvearrowleft \curvearrowleftright \curvearrowright \dlsh \downdownarrows \downtouparrow \downuparrows \drsh Ð Ð Ø Ô ú ø ü î ï ì í è Õ \leftarrow \leftleftarrows \leftrightarrow \leftrightarrows \leftrightsquigarrow \leftsquigarrow \lefttorightarrow \looparrowdownleft \looparrowdownright \looparrowleft \looparrowright \Lsh \nearrow Ô æ Ñ Õ Ñ ù ý é Œ Ö Ö þ Ò \nwarrow \restriction \rightarrow \rightleftarrows \rightrightarrows \rightsquigarrow \righttoleftarrow \Rsh \searrow \swarrow \updownarrows \uptodownarrow \upuparrows Table 148: mathabx Negated Arrows ö Ú \nLeftarrow \nleftarrow Ü ø \nleftrightarrow \nLeftrightarrow 73 Û œ \nrightarrow \nRightarrow Table 149: mathabx Harpoons Þ ß Û å ç ë Ü â \barleftharpoon \barrightharpoon \downdownharpoons \downharpoonleft \downharpoonright \downupharpoons \leftbarharpoon \leftharpoondown à Ø à è Ý ã á á \leftharpoonup \leftleftharpoons \leftrightharpoon \leftrightharpoons \rightbarharpoon \rightharpoondown \rightharpoonup \rightleftharpoon é Ù ê ä æ Ú \rightleftharpoons \rightrightharpoons \updownharpoons \upharpoonleft \upharpoonright \upupharpoons Table 150: MnSymbol Arrows Ë È Ì Í Ê Ï Î É ⇣ ⇠ d e ⇢ g f ⇡ ⇓ ↓ # ⇊ £ ↧ « ÿ ⤾ ⟳ ↻ ⤸ º ¼ ½ ↷ ¿ ¾ ¹ ⇐ \curvearrowdownup \curvearrowleftright \curvearrownesw \curvearrownwse \curvearrowrightleft \curvearrowsenw \curvearrowswne \curvearrowupdown \dasheddownarrow \dashedleftarrow \dashednearrow \dashednwarrow \dashedrightarrow \dashedsearrow \dashedswarrow \dasheduparrow \Downarrow \downarrow \downarrowtail \downdownarrows \downlsquigarrow \downmapsto \downrsquigarrow \downuparrows \lcirclearrowdown \lcirclearrowleft \lcirclearrowright \lcirclearrowup \lcurvearrowdown \lcurvearrowleft \lcurvearrowne \lcurvearrownw \lcurvearrowright \lcurvearrowse \lcurvearrowsw \lcurvearrowup \Leftarrow ←Ð ⇐Ô ←→ ⇐⇒ z→ Ð→ Ô⇒ ↫ ↬ ↰ ↗ ⇗ $ ¤ , ¬ ⤡ ↖ ⇖ % ¥ ­ ⤢ ∲ ∲ ∳ ∳ ∲ ∲ ∳ \longleftarrow \Longleftarrow \longleftrightarrow \Longleftrightarrow \longmapsto \longrightarrow \Longrightarrow \looparrowleft \looparrowright \Lsh \nearrow \Nearrow \nearrowtail \nelsquigarrow \nemapsto \nenearrows \nersquigarrow \neswarrow \Neswarrow \neswarrows \nwarrow \Nwarrow \nwarrowtail \nwlsquigarrow \nwmapsto \nwnwarrows \nwrsquigarrow \nwsearrow \Nwsearrow \nwsearrows \partialvardlcircleleftint* \partialvardlcirclerightint* \partialvardrcircleleftint* \partialvardrcirclerightint* \partialvartlcircleleftint* \partialvartlcirclerightint* \partialvartrcircleleftint* ⤦ 9 → ⇒ ↣ ⇄ ↝ ↦ ⇉ ¨ ⇛ ↱ ↘ ⇘ ' § / ¯ ³ ↭ ´ µ ² · ¶ ± ↙ ⇙ & ¦ . ® ↡ \rhookswarrow \rhookuparrow \rightarrow \Rightarrow \rightarrowtail \rightleftarrows \rightlsquigarrow \rightmapsto \rightrightarrows \rightrsquigarrow \Rrightarrow \Rsh \searrow \Searrow \searrowtail \selsquigarrow \semapsto \senwarrows \sersquigarrow \sesearrows \squigarrowdownup \squigarrowleftright \squigarrownesw \squigarrownwse \squigarrowrightleft \squigarrowsenw \squigarrowswne \squigarrowupdown \swarrow \Swarrow \swarrowtail \swlsquigarrow \swmapsto \swnearrows \swrsquigarrow \swswarrows \twoheaddownarrow (continued on next page) 74 (continued from previous page) ← ↢ ⇇ ¢ ↤ ↔ ⇔ ⇆ ↜ 3 2 4 ⤣ ↪ ⤥ 6 1 ☇ ⇚ \leftarrow \leftarrowtail \leftleftarrows \leftlsquigarrow \leftmapsto \leftrightarrow \Leftrightarrow \leftrightarrows \leftrsquigarrow \lhookdownarrow \lhookleftarrow \lhooknearrow \lhooknwarrow \lhookrightarrow \lhooksearrow \lhookswarrow \lhookuparrow \lightning \Lleftarrow ∳ û ⟲ ⤿ ↺ ⤹ ↶ Ä Å À Ç Æ Á ; ↩ ⤤ = 8 ? \partialvartrcirclerightint* \rcirclearrowdown \rcirclearrowleft \rcirclearrowright \rcirclearrowup \rcurvearrowdown \rcurvearrowleft \rcurvearrowne \rcurvearrownw \rcurvearrowright \rcurvearrowse \rcurvearrowsw \rcurvearrowup \rhookdownarrow \rhookleftarrow \rhooknearrow \rhooknwarrow \rhookrightarrow \rhooksearrow ↞ ↠ ↟ ↑ ⇑ ! ↕ ⇕ ¡ ↥ © ⇈ \twoheadleftarrow \twoheadnearrow \twoheadnwarrow \twoheadrightarrow \twoheadsearrow \twoheadswarrow \twoheaduparrow \uparrow \Uparrow \uparrowtail \updownarrow \Updownarrow \updownarrows \uplsquigarrow \upmapsto \uprsquigarrow \upuparrows MnSymbol additionally defines synonyms for some of the preceding symbols: ↺ ↻ ↶ ↷ ⇠ ⇢ ↩ ↪ ↝ ↭ ↦ ↝ * \circlearrowleft \circlearrowright \curvearrowleft \curvearrowright \dashleftarrow \dashrightarrow \hookleftarrow \hookrightarrow \leadsto \leftrightsquigarrow \mapsto \rightsquigarrow (same (same (same (same (same (same (same (same (same (same (same (same as as as as as as as as as as as as \rcirclearrowup) \lcirclearrowup) \rcurvearrowleft) \lcurvearrowright) \dashedleftarrow) \dashedrightarrow) \rhookleftarrow) \lhookrightarrow) \rightlsquigarrow) \squigarrowleftright) \rightmapsto) \rightlsquigarrow) The \partialvar. . . int macros are intended to be used internally by MnSymbol to produce various types of integrals. Table 151: MnSymbol Negated Arrows ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ \ncurvearrowdownup \ncurvearrowleftright \ncurvearrownesw \ncurvearrownwse \ncurvearrowrightleft \ncurvearrowsenw \ncurvearrowswne \ncurvearrowupdown ⤣̸ ↪̸ ⤥̸ ̸ ̸ ⇚̸ ↗̸ ⇗̸ \nlhooknwarrow \nlhookrightarrow \nlhooksearrow \nlhookswarrow \nlhookuparrow \nLleftarrow \nnearrow \nNearrow ⇄̸ ↝̸ ↦̸ ⇉̸ ̸ ⇛̸ ⇘̸ ↘̸ \nrightleftarrows \nrightlsquigarrow \nrightmapsto \nrightrightarrows \nrightrsquigarrow \nRrightarrow \nSearrow \nsearrow (continued on next page) 75 (continued from previous page) ⇣̸ ⇠̸ ̸ ̸ ⇢̸ ̸ ̸ ⇡̸ ↓̸ ⇓̸ ̸ ⇊̸ ̸ ↧̸ ̸ ̸ ̸ ⤾̸ ⟳̸ ↻̸ ⤸̸ ̸ ̸ ̸ ↷̸ ̸ ̸ ̸ ⇍ ↚ ↢̸ ⇇̸ ̸ ↤̸ ↮ ⇎ ⇆̸ ↜̸ ̸ ̸ ̸ \ndasheddownarrow \ndashedleftarrow \ndashednearrow \ndashednwarrow \ndashedrightarrow \ndashedsearrow \ndashedswarrow \ndasheduparrow \ndownarrow \nDownarrow \ndownarrowtail \ndowndownarrows \ndownlsquigarrow \ndownmapsto \ndownrsquigarrow \ndownuparrows \nlcirclearrowdown \nlcirclearrowleft \nlcirclearrowright \nlcirclearrowup \nlcurvearrowdown \nlcurvearrowleft \nlcurvearrowne \nlcurvearrownw \nlcurvearrowright \nlcurvearrowse \nlcurvearrowsw \nlcurvearrowup \nLeftarrow \nleftarrow \nleftarrowtail \nleftleftarrows \nleftlsquigarrow \nleftmapsto \nleftrightarrow \nLeftrightarrow \nleftrightarrows \nleftrsquigarrow \nlhookdownarrow \nlhookleftarrow \nlhooknearrow ̸ ̸ ̸ ̸ ̸ ̸ ⤡̸ ̸ ⇖̸ ↖̸ ̸ ̸ ̸ ̸ ̸ ⤢̸ ̸ ̸ ̸ ⟲̸ ⤿̸ ↺̸ ⤹̸ ↶̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ↩̸ ⤤̸ ̸ ̸ ̸ ⤦̸ ̸ ↛ ⇏ ↣̸ \nnearrowtail \nnelsquigarrow \nnemapsto \nnenearrows \nnersquigarrow \nNeswarrow \nneswarrow \nneswarrows \nNwarrow \nnwarrow \nnwarrowtail \nnwlsquigarrow \nnwmapsto \nnwnwarrows \nnwrsquigarrow \nnwsearrow \nNwsearrow \nnwsearrows \nrcirclearrowdown \nrcirclearrowleft \nrcirclearrowright \nrcirclearrowup \nrcurvearrowdown \nrcurvearrowleft \nrcurvearrowne \nrcurvearrownw \nrcurvearrowright \nrcurvearrowse \nrcurvearrowsw \nrcurvearrowup \nrhookdownarrow \nrhookleftarrow \nrhooknearrow \nrhooknwarrow \nrhookrightarrow \nrhooksearrow \nrhookswarrow \nrhookuparrow \nrightarrow \nRightarrow \nrightarrowtail ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ↙̸ ⇙̸ ̸ ̸ ̸ ̸ ̸ ̸ ↡̸ ↞̸ ̸ ̸ ↠̸ ̸ ̸ ↟̸ ↑̸ ⇑̸ ̸ ↕̸ ⇕̸ ̸ ̸ ↥̸ ̸ ⇈̸ \nsearrowtail \nselsquigarrow \nsemapsto \nsenwarrows \nsersquigarrow \nsesearrows \nsquigarrowdownup \nsquigarrowleftright \nsquigarrownesw \nsquigarrownwse \nsquigarrowrightleft \nsquigarrowsenw \nsquigarrowswne \nsquigarrowupdown \nswarrow \nSwarrow \nswarrowtail \nswlsquigarrow \nswmapsto \nswnearrows \nswrsquigarrow \nswswarrows \ntwoheaddownarrow \ntwoheadleftarrow \ntwoheadnearrow \ntwoheadnwarrow \ntwoheadrightarrow \ntwoheadsearrow \ntwoheadswarrow \ntwoheaduparrow \nuparrow \nUparrow \nuparrowtail \nupdownarrow \nUpdownarrow \nupdownarrows \nuplsquigarrow \nupmapsto \nuprsquigarrow \nupuparrows MnSymbol additionally defines synonyms for some of the preceding symbols: 76 ↺̸ ↻̸ ↶̸ ↷̸ ⇢̸ ⇠̸ ⇢̸ ↚ ↩̸ ↪̸ ↝̸ ̸ ↦̸ ↝̸ ↛ \ncirclearrowleft \ncirclearrowright \ncurvearrowleft \ncurvearrowright \ndasharrow \ndashleftarrow \ndashrightarrow \ngets \nhookleftarrow \nhookrightarrow \nleadsto \nleftrightsquigarrow \nmapsto \nrightsquigarrow \nto (same (same (same (same (same (same (same (same (same (same (same (same (same (same (same as as as as as as as as as as as as as as as \nrcirclearrowup) \nlcirclearrowup) \nrcurvearrowleft) \nlcurvearrowright) \ndashedrightarrow) \ndashedleftarrow) \ndashedrightarrow) \nleftarrow) \nrhookleftarrow) \nlhookrightarrow) \nrightlsquigarrow) \nsquigarrowleftright) \nrightmapsto) \nrightlsquigarrow) \nrightarrow) Table 152: MnSymbol Harpoons ⇂ ⇃ ⥯ ↽ ↼ ⥊ ⇋ ⥋ D L R * \downharpoonccw \downharpooncw* \downupharpoons \leftharpoonccw* \leftharpooncw* \leftrightharpoondownup \leftrightharpoons \leftrightharpoonupdown \neharpoonccw \neharpooncw \neswharpoonnwse * Z V E M S _ W ⇀ ⇁ ⇌ G \neswharpoons \neswharpoonsenw \nwharpoonccw \nwharpooncw \nwseharpoonnesw \nwseharpoons \nwseharpoonswne \rightharpoonccw* \rightharpooncw* \rightleftharpoons \seharpoonccw O [ F N ^ Q U ⥮ ↿ ↾ \seharpooncw \senwharpoons \swharpoonccw \swharpooncw \swneharpoons \updownharpoonleftright \updownharpoonrightleft \updownharpoons \upharpoonccw* \upharpooncw* Where marked, the “ccw” suffix can be replaced with “up” and the “cw” suffix can be replaced with “down”. (In addition, \upharpooncw can be written as \restriction.) Table 153: MnSymbol Negated Harpoons ⇂̸ ⇃̸ ⥯̸ ↽̸ ↼̸ ⥊̸ ⇋̸ ⥋̸ ̸ ̸ ̸ \ndownharpoonccw* \ndownharpooncw* \ndownupharpoons \nleftharpoonccw* \nleftharpooncw* \nleftrightharpoondownup \nleftrightharpoons \nleftrightharpoonupdown \nneharpoonccw \nneharpooncw \nneswharpoonnwse * ̸ ̸ ̸ ̸ ̸ ̸ ̸ ⇀̸ ⇁̸ ⇌̸ ̸ \nneswharpoons \nneswharpoonsenw \nnwharpoonccw \nnwharpooncw \nnwseharpoonnesw \nnwseharpoons \nnwseharpoonswne \nrightharpoonccw* \nrightharpooncw* \nrightleftharpoons \nseharpoonccw ̸ ̸ ̸ ̸ ̸ ̸ ̸ ⥮̸ ↿̸ ↾̸ \nseharpooncw \nsenwharpoons \nswharpoonccw \nswharpooncw \nswneharpoons \nupdownharpoonleftright \nupdownharpoonrightleft \nupdownharpoons \nupharpoonccw* \nupharpooncw* Where marked, the “ccw” suffix can be replaced with “up” and the “cw” suffix can be replaced with “down”. (In addition, \nupharpooncw can be written as \nrestriction.) 77 Table 154: fdsymbol Arrows ⟲ ↺ ± ® ⤹ ¡ ¢ ⤺ ⤴ ⤷ ⤻ ¥ « ¨ ¤ § ª © ¦ ⟳ µ ↻ ´ ⤵ ⤸ ⤶ ⤋ ⇓ ↓ # ⇣ ⇊ / ↧ ⇵ ; ↩ ⤤ ⤣ ↪ ⤥ ⤦ 1 ↲ \acwcirclearrowdown \acwcirclearrowleft \acwcirclearrowright \acwcirclearrowup \acwleftarcarrow \acwnearcarrow \acwnwarcarrow \acwoverarcarrow \acwrightarcarrow \acwsearcarrow \acwswarcarrow \acwunderarcarrow \bdleftarcarrow \bdnearcarrow \bdnwarcarrow \bdoverarcarrow \bdrightarcarrow \bdsearcarrow \bdswarcarrow \bdunderarcarrow \cwcirclearrowdown \cwcirclearrowleft \cwcirclearrowright \cwcirclearrowup \cwleftarcarrow \cwnearcarrow \cwnwarcarrow \cwoverarcarrow \cwrightarcarrow \cwsearcarrow \cwswarcarrow \cwunderarcarrow \Ddownarrow \Downarrow \downarrow \downarrowtail \downbkarrow \downdownarrows \Downmapsto \downmapsto \downuparrows \downwavearrow \hookdownarrow \hookleftarrow \hooknearrow \hooknwarrow \hookrightarrow \hooksearrow \hookswarrow \hookuparrow \Ldsh ← ↢ ⇠ ⇇ ↤ ⤆ ⇔ ↔ ⇆ ↭ ↜ ↯ ⇚ ⟸ ⟵ ⟷ ⟺ ⬳ ⟽ ⟻ ⟾ ⟼ ⟶ ⟹ ⟿ ↫ ↬ ↰ ↗ ⇗ $ d | ⤡ ⇖ ↖ % e } ⤢ ↳ ⇒ → ↣ ⇢ ⇄ ⤇ \leftarrow \leftarrowtail \leftbkarrow \leftleftarrows \leftmapsto \Leftmapsto \Leftrightarrow \leftrightarrow \leftrightarrows \leftrightwavearrow \leftwavearrow \lightning \Lleftarrow \Longleftarrow \longleftarrow \longleftrightarrow \Longleftrightarrow \longleftwavearrow \Longmapsfrom \longmapsfrom \Longmapsto \longmapsto \longrightarrow \Longrightarrow \longrightwavearrow \looparrowleft \looparrowright \Lsh \nearrow \Nearrow \nearrowtail \nebkarrow \nenearrows \Neswarrow \neswarrow \neswarrows \Nwarrow \nwarrow \nwarrowtail \nwbkarrow \nwnwarrows \Nwsearrow \nwsearrow \nwsearrows \Rdsh \Rightarrow \rightarrow \rightarrowtail \rightbkarrow \rightleftarrows \Rightmapsto ⇉ ↝ ⇛ ↱ ↘ ⇘ ' g ⇙ ↙ & f ~ ↡ ↞ ↠ ↟ ↑ ⇑ ! ⇡ ⇕ ↕ ⇅ ↥ ⇈ ⤊ 3 ↩ ⤤ ⤣ ↪ ⤥ ⤦ 9 ↭ ↜ ↝ \rightrightarrows \rightwavearrow \Rrightarrow \Rsh \searrow \Searrow \searrowtail \sebkarrow \senwarrows \sesearrows \Swarrow \swarrow \swarrowtail \swbkarrow \swnearrows \swswarrows \twoheaddownarrow \twoheadleftarrow \twoheadnearrow \twoheadnwarrow \twoheadrightarrow \twoheadsearrow \twoheadswarrow \twoheaduparrow \uparrow \Uparrow \uparrowtail \upbkarrow \Updownarrow \updownarrow \updownarrows \updownwavearrow \upmapsto \Upmapsto \upuparrows \upwavearrow \Uuparrow \vardownwavearrow \varhookdownarrow \varhookleftarrow \varhooknearrow \varhooknwarrow \varhookrightarrow \varhooksearrow \varhookswarrow \varhookuparrow \varleftrightwavearrow \varleftwavearrow \varrightwavearrow \varupdownwavearrow \varupwavearrow (continued on next page) 78 (continued from previous page) ⇐ \Leftarrow ↦ \rightmapsto fdsymbol defines synonyms for most of the preceding symbols: ⟲ ↺ ↺ ↻ ⤺ ⟳ ↻ ⇢ ⇠ ⇢ ⤸ ¢ ⤹ ⤵ § ↯ ← ⤤ ⤣ ⤥ ⤦ ↝ ↜ ⤶ ↜ ⤺ ¤ \acwgapcirclearrow \acwopencirclearrow \circlearrowleft \circlearrowright \curvearrowleft \curvearrowright \cwgapcirclearrow \cwopencirclearrow \dasharrow \dashleftarrow \dashrightarrow \downlcurvearrow \downleftcurvedarrow \downlsquigarrow \downrcurvearrow \downrightcurvedarrow \downrsquigarrow \downupcurvearrow \downupsquigarrow \downzigzagarrow \gets \hknearrow \hknwarrow \hksearrow \hkswarrow \leadsto \leftcurvedarrow \leftdowncurvedarrow \leftlcurvearrow \leftlsquigarrow \leftrcurvearrow \leftrightcurvearrow ↭ ↜ ↜ ¡ 3 ↩ ⤤ ⤣ ↪ ⤥ ⤦ 1 ⟿ ⬳ ⟿ ↧ / ↤ ⤆ ↦ ⤇ ↥ ⤴ ¨ ¡ © ; ↩ ⤤ \leftrightsquigarrow \leftrsquigarrow \leftsquigarrow \leftupcurvedarrow \lhookdownarrow \lhookleftarrow \lhooknearrow \lhooknwarrow \lhookrightarrow \lhooksearrow \lhookswarrow \lhookuparrow \longleadsto \longleftsquigarrow \longrightsquigarrow \mapsdown \Mapsdown \mapsfrom \Mapsfrom \mapsto \Mapsto \mapsup \Mapsup \nelcurvearrow \nercurvearrow \neswcurvearrow \nwlcurvearrow \nwrcurvearrow \nwsecurvearrow \rhookdownarrow \rhookleftarrow \rhooknearrow ⤣ ↪ ⤥ ⤦ 9 ↝ ⤷ ¦ ↭ ↝ ⤻ ↝ ↝ ⤵ « ⤷ ⤶ ª ¢ → ¥ ⤴ \rhooknwarrow \rhookrightarrow \rhooksearrow \rhookswarrow \rhookuparrow \rightcurvedarrow \rightdowncurvedarrow \rightlcurvearrow \rightleftcurvearrow \rightleftsquigarrow \rightlsquigarrow \rightrcurvearrow \rightrsquigarrow \rightsquigarrow \rightupcurvedarrow \selcurvearrow \senwcurvearrow \sercurvearrow \swlcurvearrow \swnecurvearrow \swrcurvearrow \to \updowncurvearrow \updownsquigarrow \uplcurvearrow \upleftcurvedarrow \uplsquigarrow \uprcurvearrow \uprightcurvearrow \uprsquigarrow Table 155: fdsymbol Negated Arrows ⟲̸ ↺̸ ̸ ̸ ⤹̸ ̸ ̸ ⤺̸ \nacwcirclearrowdown \nacwcirclearrowleft \nacwcirclearrowright \nacwcirclearrowup \nacwleftarcarrow \nacwnearcarrow \nacwnwarcarrow \nacwoverarcarrow ↚ ⇍ ↢̸ ⇠̸ ⇇̸ ↤̸ ⤆̸ ↮ \nleftarrow \nLeftarrow \nleftarrowtail \nleftbkarrow \nleftleftarrows \nleftmapsto \nLeftmapsto \nleftrightarrow ⇛̸ ↘̸ ⇘̸ ̸ ̸ ̸ ̸ ↙̸ \nRrightarrow \nsearrow \nSearrow \nsearrowtail \nsebkarrow \nsenwarrows \nsesearrows \nswarrow (continued on next page) 79 (continued from previous page) ̸ ⤴̸ ⤷̸ ⤻̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ⟳̸ ̸ ↻̸ ̸ ̸ ⤵̸ ̸ ̸ ⤸̸ ⤶̸ ̸ ̸ ⤋̸ ↓̸ ⇓̸ ̸ ⇣̸ ⇊̸ ↧̸ ̸ ⇵̸ ̸ ̸ ↩̸ ⤤̸ ⤣̸ ↪̸ ⤥̸ ⤦̸ ̸ \nacwrightarcarrow \nacwsearcarrow \nacwswarcarrow \nacwunderarcarrow \nbdleftarcarrow \nbdnearcarrow \nbdnwarcarrow \nbdoverarcarrow \nbdrightarcarrow \nbdsearcarrow \nbdswarcarrow \nbdunderarcarrow \ncwcirclearrowdown \ncwcirclearrowleft \ncwcirclearrowright \ncwcirclearrowup \ncwleftarcarrow \ncwnearcarrow \ncwnwarcarrow \ncwoverarcarrow \ncwrightarcarrow \ncwsearcarrow \ncwswarcarrow \ncwunderarcarrow \nDdownarrow \ndownarrow \nDownarrow \ndownarrowtail \ndownbkarrow \ndowndownarrows \ndownmapsto \nDownmapsto \ndownuparrows \ndownwavearrow \nhookdownarrow \nhookleftarrow \nhooknearrow \nhooknwarrow \nhookrightarrow \nhooksearrow \nhookswarrow \nhookuparrow ⇎ ⇆̸ ↭̸ ↜̸ ⇚̸ ⟵̸ ⟸̸ ⟷̸ ⟺̸ ⬳̸ ⟻̸ ⟽̸ ⟼̸ ⟾̸ ⟶̸ ⟹̸ ⟿̸ ↗̸ ⇗̸ ̸ ̸ ̸ ⤡̸ ̸ ̸ ↖̸ ⇖̸ ̸ ̸ ̸ ⤢̸ ̸ ̸ ↛ ⇏ ↣̸ ⇢̸ ⇄̸ ↦̸ ⤇̸ ⇉̸ ↝̸ \nLeftrightarrow \nleftrightarrows \nleftrightwavearrow \nleftwavearrow \nLleftarrow \nlongleftarrow \nLongleftarrow \nlongleftrightarrow \nLongleftrightarrow \nlongleftwavearrow \nlongmapsfrom \nLongmapsfrom \nlongmapsto \nLongmapsto \nlongrightarrow \nLongrightarrow \nlongrightwavearrow \nnearrow \nNearrow \nnearrowtail \nnebkarrow \nnenearrows \nneswarrow \nNeswarrow \nneswarrows \nnwarrow \nNwarrow \nnwarrowtail \nnwbkarrow \nnwnwarrows \nnwsearrow \nNwsearrow \nnwsearrows \nrightarrow \nRightarrow \nrightarrowtail \nrightbkarrow \nrightleftarrows \nrightmapsto \nRightmapsto \nrightrightarrows \nrightwavearrow ⇙̸ ̸ ̸ ̸ ̸ ↡̸ ↞̸ ̸ ̸ ↠̸ ̸ ̸ ↟̸ ↑̸ ⇑̸ ̸ ⇡̸ ↕̸ ⇕̸ ⇅̸ ̸ ↥̸ ̸ ⇈̸ ̸ ⤊̸ ̸ ̸ ↩̸ ⤤̸ ⤣̸ ↪̸ ⤥̸ ⤦̸ ̸ ↭̸ ↜̸ ↝̸ ̸ ̸ \nSwarrow \nswarrowtail \nswbkarrow \nswnearrows \nswswarrows \ntwoheaddownarrow \ntwoheadleftarrow \ntwoheadnearrow \ntwoheadnwarrow \ntwoheadrightarrow \ntwoheadsearrow \ntwoheadswarrow \ntwoheaduparrow \nuparrow \nUparrow \nuparrowtail \nupbkarrow \nupdownarrow \nUpdownarrow \nupdownarrows \nupdownwavearrow \nupmapsto \nUpmapsto \nupuparrows \nupwavearrow \nUuparrow \nvardownwavearrow \nvarhookdownarrow \nvarhookleftarrow \nvarhooknearrow \nvarhooknwarrow \nvarhookrightarrow \nvarhooksearrow \nvarhookswarrow \nvarhookuparrow \nvarleftrightwavearrow \nvarleftwavearrow \nvarrightwavearrow \nvarupdownwavearrow \nvarupwavearrow fdsymbol defines synonyms for most of the preceding symbols: ⟲̸ ↺̸ ↺̸ ↻̸ ⤺̸ ̸ ⟳̸ ↻̸ \nacwgapcirclearrow \nacwopencirclearrow \ncirclearrowleft \ncirclearrowright \ncurvearrowleft \ncurvearrowright \ncwgapcirclearrow \ncwopencirclearrow ⤶̸ ̸ ↜̸ ⤺̸ ̸ ↭̸ ↜̸ ↜̸ \nleftdowncurvedarrow \nleftlcurvearrow \nleftlsquigarrow \nleftrcurvearrow \nleftrightcurvearrow \nleftrightsquigarrow \nleftrsquigarrow \nleftsquigarrow ↝̸ ⤷̸ ̸ ̸ ↭̸ ↝̸ ⤻̸ ↝̸ \nrightcurvedarrow \nrightdowncurvedarrow \nrightlcurvearrow \nrightleftcurvearrow \nrightleftsquigarrow \nrightlsquigarrow \nrightrcurvearrow \nrightrsquigarrow (continued on next page) 80 (continued from previous page) ⇢̸ ⇠̸ ⇢̸ ⤸̸ ̸ ̸ ⤹̸ ⤵̸ ̸ ̸ ̸ ↚ ⤤̸ ⤣̸ ⤥̸ ⤦̸ ↝̸ ↜̸ \ndasharrow \ndashleftarrow \ndashrightarrow \ndownlcurvearrow \ndownleftcurvedarrow \ndownlsquigarrow \ndownrcurvearrow \ndownrightcurvedarrow \ndownrsquigarrow \ndownupcurvearrow \ndownupsquigarrow \ngets \nhknearrow \nhknwarrow \nhksearrow \nhkswarrow \nleadsto \nleftcurvedarrow ̸ ⟿̸ ⬳̸ ⟿̸ ↧̸ ̸ ↤̸ ⤆̸ ↦̸ ⤇̸ ↥̸ ̸ ̸ ⤴̸ ̸ ̸ ̸ ̸ \nleftupcurvedarrow \nlongleadsto \nlongleftsquigarrow \nlongrightsquigarrow \nmapsdown \nMapsdown \nmapsfrom \nMapsfrom \nmapsto \nMapsto \nmapsup \nMapsup \nnelcurvearrow \nnercurvearrow \nneswcurvearrow \nnwlcurvearrow \nnwrcurvearrow \nnwsecurvearrow ↝̸ ̸ ⤵̸ ̸ ⤷̸ ⤶̸ ̸ ̸ ↛ ̸ ̸ ̸ ̸ ̸ ̸ ⤴̸ ̸ \nrightsquigarrow \nrightupcurvedarrow \nselcurvearrow \nsenwcurvearrow \nsercurvearrow \nswlcurvearrow \nswnecurvearrow \nswrcurvearrow \nto \nupdowncurvearrow \nupdownsquigarrow \nuplcurvearrow \nupleftcurvedarrow \nuplsquigarrow \nuprcurvearrow \nuprightcurvearrow \nuprsquigarrow Table 156: fdsymbol Harpoons ⇃ ⇂ ⥯ ↽ ↼ ⥊ ⇋ ⥋ D L R \downharpoonleft \downharpoonright \downupharpoons \leftharpoondown \leftharpoonup \leftrightharpoondownup \leftrightharpoons \leftrightharpoonupdown \neharpoonnw \neharpoonse \neswharpoonnwse Z V M E S _ W ⇁ ⇀ ⇌ G \neswharpoons \neswharpoonsenw \nwharpoonne \nwharpoonsw \nwseharpoonnesw \nwseharpoons \nwseharpoonswne \rightharpoondown \rightharpoonup \rightleftharpoons \seharpoonne O [ N F ^ ⥍ ⥌ ⥮ ↿ ↾ \seharpoonsw \senwharpoons \swharpoonnw \swharpoonse \swneharpoons \updownharpoonleftright \updownharpoonrightleft \updownharpoons \upharpoonleft \upharpoonright fdsymbol defines \restriction as a synonym for \upharpoonright, \updownharpoonsleftright as a synonym for \updownharpoons, and \downupharpoonsleftright as a synonym for \downupharpoons. 81 Table 157: fdsymbol Negated Harpoons ⇃̸ ⇂̸ ⥯̸ ↽̸ ↼̸ ⥊̸ ⇋̸ ⥋̸ ̸ ̸ ̸ \ndownharpoonleft \ndownharpoonright \ndownupharpoons \nleftharpoondown \nleftharpoonup \nleftrightharpoondownup \nleftrightharpoons \nleftrightharpoonupdown \nneharpoonnw \nneharpoonse \nneswharpoonnwse ̸ ̸ ̸ ̸ ̸ ̸ ̸ ⇁̸ ⇀̸ ⇌̸ ̸ \nneswharpoons \nneswharpoonsenw \nnwharpoonne \nnwharpoonsw \nnwseharpoonnesw \nnwseharpoons \nnwseharpoonswne \nrightharpoondown \nrightharpoonup \nrightleftharpoons \nseharpoonne ̸ ̸ ̸ ̸ ̸ ⥍̸ ⥌̸ ⥮̸ ↿̸ ↾̸ \nseharpoonsw \nsenwharpoons \nswharpoonnw \nswharpoonse \nswneharpoons \nupdownharpoonleftright \nupdownharpoonrightleft \nupdownharpoons \nupharpoonleft \nupharpoonright fdsymbol defines \nrestriction as a synonym for \nupharpoonright, \ndownupharpoonsleftright as a synonym for \ndownupharpoons, and \nupdownharpoonsleftright as a synonym for \nupdownharpoons. Table 158: boisik Arrows £ ¢ ¯ Ý Ü ß Þ ó õ ô ð ò ñ ø 0 # ë % ù ÷ ú \barleftarrow \barleftarrowrightarrowbar \barovernorthwestarrow \carriagereturn \circlearrowleft \circlearrowright \cupleftarrow \curlyveedownarrow \curlyveeuparrow \curlywedgedownarrow \curlywedgeuparrow \curvearrowbotleft \curvearrowbotleftright \curvearrowbotright \curvearrowleft \curvearrowleftright \curvearrowright \dlsh \downblackarrow \downdasharrow \downdownarrows \downtouparrow \downwhitearrow \downzigzagarrow \drsh \eqleftrightarrow \hookleftarrow \hookrightarrow \leftarrowtail \leftarrowTriangle à á ì î û þ . ! æ ã å ¯ \Lsh \mapsdown \Mapsfrom \mapsfrom \Mapsto \mapsto \mapsup \Nearrow \nearrowcorner \nnearrow \nnwarrow \Nwarrow \nwarrowcorner \rightarrowbar \rightarrowcircle \rightarrowtail \rightarrowTriangle \rightarrowtriangle \rightblackarrow \rightdasharrow \rightleftarrows \rightrightarrows \rightsquigarrow \rightthreearrows \righttoleftarrow \rightwhitearrow \rightwhiteroundarrow \Rrightarrow \Rsh \Searrow (continued on next page) 82 (continued from previous page) ý ö ü ÿ 1 ç â ä ® è é ¡ \leftarrowtriangle \leftblackarrow \leftdasharrow \leftleftarrows \leftrightarroweq \leftrightarrows \leftrightarrowTriangle \leftrightarrowtriangle \leftrightblackarrow \leftrightsquigarrow \leftsquigarrow \lefttorightarrow \leftwhitearrow \leftwhiteroundarrow \leftzigzagarrow \linefeed \Lleftarrow \looparrowdownleft \looparrowdownright \looparrowleft \looparrowright í ï * + / " 2 , ê $ & ' ( ) \ssearrow \sswarrow \Swarrow \twoheaddownarrow \twoheadleftarrow \twoheadrightarrow \twoheaduparrow \twoheadwhiteuparrow \twoheadwhiteuparrowpedestal \upblackarrow \updasharrow \updownarrowbar \updownblackarrow \updownwhitearrow \uptodownarrow \upuparrows \upwhitearrow \whitearrowupfrombar \whitearrowuppedestal \whitearrowuppedestalhbar \whitearrowuppedestalvbar Many of these symbols are defined only if the arrows package option is specified. Table 159: boisik Negated Arrows « ¨ \nHdownarrow \nHuparrow \nLeftarrow \nleftarrow ° ª ­ © \nLeftrightarroW \nleftrightarrow \nLeftrightarrow \nrightarrow \nRightarrow \nVleftarrow \nVrightarrow ¬ Many of these symbols are defined only if the arrows package option is specified. Table 160: boisik Harpoons \downharpoonleft \downharpoonright \leftharpoondown \leftharpoonup \leftrightharpoons \rightharpoondown \rightharpoonup \rightleftharpoons 83 \upharpoonleft \upharpoonright Table 161: stix Arrows ⥀ ⟲ ⤹ ⤺ ⤻ ⇤ ↹ ⤠ ⤒ ⭁ ⭇ ↵ ⤿ ↺ ↻ ⬰ ⇴ ↶ ⤽ ↷ ⤼ ⥁ ⟳ ⤸ ⤾ ⤏ ⟱ ⤋ ⤝ ⤟ ↓ ⇓ ⤓ ⤈ ⇣ ⇊ ⤵ ⇵ ⇩ ↯ ➛ ⤐ ⭀ ⥱ ⤯ ⤤ ⤣ ⤥ ⤦ ↩ ↪ ↲ \acwcirclearrow \acwgapcirclearrow \acwleftarcarrow \acwoverarcarrow \acwunderarcarrow \barleftarrow \barleftarrowrightarrowbar* \barrightarrowdiamond \baruparrow \bsimilarleftarrow \bsimilarrightarrow \carriagereturn* \ccwundercurvearrow \circlearrowleft \circlearrowright \circleonleftarrow \circleonrightarrow \curvearrowleft \curvearrowleftplus \curvearrowright \curvearrowrightminus \cwcirclearrow \cwgapcirclearrow \cwrightarcarrow \cwundercurvearrow \dbkarow \DDownarrow \Ddownarrow \diamondleftarrow \diamondleftarrowbar \downarrow \Downarrow \downarrowbar \downarrowbarred \downdasharrow* \downdownarrows \downrightcurvedarrow* \downuparrows \downwhitearrow* \downzigzagarrow \draftingarrow* \drbkarow \equalleftarrow \equalrightarrow \fdiagovnearrow* \hknearrow \hknwarrow \hksearow \hkswarow \hookleftarrow \hookrightarrow \Ldsh ⟼ ⟾ ⟶ ⟹ ⟿ ↫ ↬ ↰ ↧ ⤆ ↤ ↦ ⤇ ↥ ⇗ ↗ ⤱ ⤮ ⤢ ↖ ⇖ ⤲ ⤡ ⤰ ↳ ⇒ → ⥵ ⭈ ⇥ ⭌ ⤞ ⟴ ⥅ ⥂ ⥴ ↣ ⇾ ⥇ ⤍ ⤳ ⇢ ⤑ ⤷ ⇄ ⇉ ⇝ ⇶ ↝ ⇨ ⭆ ⇛ \longmapsto \Longmapsto \longrightarrow \Longrightarrow \longrightsquigarrow \looparrowleft \looparrowright \Lsh \mapsdown \Mapsfrom \mapsfrom \mapsto \Mapsto \mapsup \Nearrow \nearrow \neovnwarrow* \neovsearrow* \neswarrow \nwarrow \Nwarrow \nwovnearrow* \nwsearrow \rdiagovsearrow* \Rdsh \Rightarrow \rightarrow \rightarrowapprox \rightarrowbackapprox \rightarrowbar \rightarrowbsimilar \rightarrowdiamond \rightarrowonoplus \rightarrowplus \rightarrowshortleftarrow \rightarrowsimilar \rightarrowtail \rightarrowtriangle \rightarrowx \rightbkarrow \rightcurvedarrow \rightdasharrow* \rightdotarrow \rightdowncurvedarrow \rightleftarrows \rightrightarrows \rightsquigarrow \rightthreearrows \rightwavearrow \rightwhitearrow* \RRightarrow \Rrightarrow (continued on next page) 84 (continued from previous page) ← ⇐ ⭊ ⭂ ⭋ ⬲ ⥆ ⥃ ⥳ ↢ ⇽ ⬾ ⤌ ⬿ ⇠ ⤎ ⬸ ⤶ ⇇ ⇔ ↔ ⥈ ⇆ ⇿ ↭ ⇜ ⬱ ↜ ⇦ ↴ ⭅ ⇚ ⟵ ⟸ ⟺ ⟷ ⬳ ⟽ ⟻ * ↱ ↘ ⇘ ⤭ ⥄ ⭉ ⥲ ↙ ⇙ ⤨ ⤧ ⤩ ⤪ ↡ ↞ ⬻ ⬷ ⬶ ⤅ ↠ ⤖ ↟ ⥉ ↑ ⇑ ⤉ ⇡ ⇕ ↕ ↨ ⇅ ⤴ ⇈ ⇧ ⟰ ⤊ ⏎ ⇪ \leftarrow \Leftarrow \leftarrowapprox \leftarrowbackapprox \leftarrowbsimilar \leftarrowonoplus \leftarrowplus \leftarrowshortrightarrow \leftarrowsimilar \leftarrowtail \leftarrowtriangle \leftarrowx \leftbkarrow \leftcurvedarrow \leftdasharrow* \leftdbkarrow \leftdotarrow \leftdowncurvedarrow \leftleftarrows \Leftrightarrow \leftrightarrow \leftrightarrowcircle \leftrightarrows \leftrightarrowtriangle \leftrightsquigarrow \leftsquigarrow \leftthreearrows \leftwavearrow \leftwhitearrow* \linefeed* \LLeftarrow \Lleftarrow \longleftarrow \Longleftarrow \Longleftrightarrow \longleftrightarrow \longleftsquigarrow \Longmapsfrom \longmapsfrom \Rsh \searrow \Searrow \seovnearrow* \shortrightarrowleftarrow \similarleftarrow \similarrightarrow \swarrow \Swarrow \toea \tona \tosa \towa \twoheaddownarrow \twoheadleftarrow \twoheadleftarrowtail \twoheadleftdbkarrow \twoheadmapsfrom \twoheadmapsto \twoheadrightarrow \twoheadrightarrowtail \twoheaduparrow \twoheaduparrowcircle \uparrow \Uparrow \uparrowbarred \updasharrow* \Updownarrow \updownarrow \updownarrowbar* \updownarrows \uprightcurvearrow* \upuparrows \upwhitearrow* \UUparrow \Uuparrow \varcarriagereturn* \whitearrowupfrombar* Defined as an ordinary character, not as a binary relation. stix defines \acwopencirclearrow as a synonym for \circlearrowleft, \cwopencirclearrow as a synonym for \circlearrowright, \leadsto as a synonym for \rightsquigarrow, \dashleftarrow as a synonym for \leftdbkarrow, and \dashrightarrow and \dasharrow as synonyms for \dbkarow. 85 Table 162: stix Negated Arrows ⇟ ⇞ ↚ ⇍ ↮ ⇎ ⇏ ↛ ⇷ ⤂ ⇺ ⬺ ⬹ ⇹ ⇼ \nHdownarrow* \nHuparrow* \nleftarrow† \nLeftarrow \nleftrightarrow \nLeftrightarrow \nRightarrow \nrightarrow \nvleftarrow \nvLeftarrow \nVleftarrow \nVleftarrowtail \nvleftarrowtail \nvleftrightarrow \nVleftrightarrow ⤄ ⇻ ⤃ ⇸ ⤕ ⤔ ⬴ ⬵ ⬼ ⬽ ⤁ ⤀ ⤗ ⤘ \nvLeftrightarrow \nVrightarrow \nvRightarrow \nvrightarrow \nVrightarrowtail \nvrightarrowtail \nvtwoheadleftarrow \nVtwoheadleftarrow \nvtwoheadleftarrowtail \nVtwoheadleftarrowtail \nVtwoheadrightarrow \nvtwoheadrightarrow \nvtwoheadrightarrowtail \nVtwoheadrightarrowtail * Defined as an ordinary character, not as a binary relation. † stix defines \ngets as a synonym for \nleftarrow. Table 163: stix Harpoons ⥡ ⥝ ⥖ ⥒ ⥟ ⥛ ⥘ ⥔ ⥫ ⥭ ⇃ ⥙ ⇂ ⥕ ⥥ ⥯ ↽ ⥞ ⥢ ↼ ⥚ ⥪ ⥐ ⥋ * \bardownharpoonleft \bardownharpoonright \barleftharpoondown \barleftharpoonup \barrightharpoondown \barrightharpoonup \barupharpoonleft \barupharpoonright \dashleftharpoondown \dashrightharpoondown \downharpoonleft \downharpoonleftbar \downharpoonright \downharpoonrightbar \downharpoonsleftright \downupharpoonsleftright \leftharpoondown \leftharpoondownbar \leftharpoonsupdown \leftharpoonup \leftharpoonupbar \leftharpoonupdash \leftrightharpoondowndown \leftrightharpoondownup ⇋ ⥧ ⥦ ⥊ ⥎ ⇁ ⥗ ⥤ ⇀ ⥓ ⥬ ⇌ ⥩ ⥨ ⥑ ⥍ ⥌ ⥏ ⥮ ↿ ⥠ ↾ ⥜ ⥣ \leftrightharpoons \leftrightharpoonsdown \leftrightharpoonsup \leftrightharpoonupdown \leftrightharpoonupup \rightharpoondown \rightharpoondownbar \rightharpoonsupdown \rightharpoonup \rightharpoonupbar \rightharpoonupdash \rightleftharpoons \rightleftharpoonsdown \rightleftharpoonsup \updownharpoonleftleft \updownharpoonleftright \updownharpoonrightleft \updownharpoonrightright \updownharpoonsleftright \upharpoonleft \upharpoonleftbar \upharpoonright* \upharpoonrightbar \upharpoonsleftright stix defines \restriction as a synonym for \upharpoonright. 86 Table 164: harpoon Extensible Harpoons ↼ 𝑎𝑏𝑐 ↽ 𝑎𝑏𝑐 ⇀ 𝑎𝑏𝑐 \overleftharp{abc} ⇁ 𝑎𝑏𝑐 \overrightharpdown{abc} \overleftharpdown{abc} 𝑎𝑏𝑐 \underleftharp{abc} \overrightharp{abc} ↼ 𝑎𝑏𝑐 ↽ 𝑎𝑏𝑐 ⇀ 𝑎𝑏𝑐 ⇁ \underrightharp{abc} \underrightharpdown{abc} \underleftharpdown{abc} All of the harpoon symbols are implemented using the graphics package (specifically, graphics’s \resizebox command). Consequently, only TEX backends that support graphical transformations (e.g., not Xdvi) can properly display these symbols. Table 165: chemarrow Arrows A \chemarrow Table 166: fge Arrows ! \fgerightarrow " \fgeuparrow Table 167: old-arrows Arrows ↓ ←˒ ˓→ ← ↔ ˓−→ ←− \downarrow \hookleftarrow \hookrightarrow \leftarrow \leftrightarrow \longhookrightarrow \longleftarrow ←→ ←−[ ↦−→ −→ ←[ ↦→ ↗ \longleftrightarrow \longmapsfrom* \longmapsto \longrightarrow \mapsfrom* \mapsto \nearrow ↖ → ↘ ↘ ↑ ↕ \nwarrow \rightarrow \searrow \swarrow \uparrow \updownarrow The arrows provided by old-arrows represent Donald Knuth’s pre-1992 Computer Modern glyphs, which feature smaller arrowheads. Contrast the following: → vs. default → old-arrows In addition to the arrows shown above, old-arrows also reduces the arrowhead size for 𝒜ℳ𝒮’s \overleftarrow, \overrightarrow, \overleftrightarrow, \underleftarrow, \underrightarrow, \underleftrightarrow, \xleftarrow, \xrightarrow, \varinjlim, and \varprojlim symbols (Table 246 on page 107, Table 262 on page 111, and Table 184 on page 91) and mathtools’s \xleftrightarrow, \xhookleftarrow, \xhookrightarrow, and \xmapsto symbols (Table 263 on page 111). With the new package option, old-arrows prefixes all of the above with “var” (i.e., \vardownarrow, \varhookleftarrow, etc.) so both old and new glyphs can be used in the same document. See the old-arrows documentation for more information. * Requires stmaryrd. 87 Table 168: old-arrows Harpoons ↽− ↼− \longleftharpoondown \longleftharpoonup −⇁ −⇀ \longrightharpoondown \longrightharpoonup Unlike the symbols shown in Table 167 on the previous page, the new package option does not define a \var. . . version of the symbols in this table. Also unlike the symbols shown in Table 167, the harpoon arrowheads in this table are not reduced in size (i.e., relative to the size of those shown in Table 140 on page 72). Table 169: esrelation Restrictions ‰ ) \restrictbarb \restrictbarbup ” * \restrictmallet \restrictmalletup ( \restrictwand \restrictwandup Table 170: MnSymbol Spoons s ⫰ r ⟜ ̸ ⫰̸ t l ̸ ⟜̸ ̸ * \downfilledspoon \downspoon \leftfilledspoon \leftspoon \ndownfilledspoon \ndownspoon \nefilledspoon \nespoon \nleftfilledspoon \nleftspoon \nnefilledspoon ̸ ̸ ̸ ̸ ⊸̸ ̸ ̸ ̸ ̸ ̸ ⫯̸ \nnespoon \nnwfilledspoon \nnwspoon \nrightfilledspoon \nrightspoon* \nsefilledspoon \nsespoon \nswfilledspoon \nswspoon \nupfilledspoon \nupspoon u m p ⊸ w o v n q ⫯ \nwfilledspoon \nwspoon \rightfilledspoon \rightspoon* \sefilledspoon \sespoon \swfilledspoon \swspoon \upfilledspoon \upspoon MnSymbol defines \multimap as a synonym for \rightspoon and \nmultimap as a synonym for \nrightspoon. Table 171: MnSymbol Pitchforks ⫛ ⫛̸ ̸ ̸ * \downpitchfork \leftpitchfork \ndownpitchfork \nepitchfork \nleftpitchfork \nnepitchfork ̸ ̸ ̸ ̸ ⋔̸ \nnwpitchfork \nrightpitchfork \nsepitchfork \nswpitchfork \nuppitchfork \nwpitchfork ⋔ \rightpitchfork \sepitchfork \swpitchfork \uppitchfork MnSymbol defines \pitchfork as a synonym for \uppitchfork and \npitchfork as a synonym for \nuppitchfork. 88 Table 172: MnSymbol Smiles and Frowns % $ # " ⌢ ! ' ) ̸ ̸ ̸ ̸ ̸ ̸ ⌢̸ ̸ ̸ ̸ ̸ ⌣̸ * ̸ ̸ ≭ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ ⌣ \doublefrown \doublefrowneq \doublesmile \doublesmileeq \eqfrown \eqsmile \frown \frowneq \frowneqsmile \frownsmile \frownsmileeq \ndoublefrown \ndoublefrowneq \ndoublesmile \ndoublesmileeq \neqfrown \neqsmile \nfrown \nfrowneq \nfrowneqsmile \nfrownsmile \nfrownsmileeq \nsmile \nsmileeq \nsmileeqfrown \nsmilefrown \nsmilefrowneq \nsqdoublefrown \nsqdoublefrowneq \nsqdoublesmile \nsqdoublesmileeq \nsqeqfrown \nsqeqsmile \nsqfrown \nsqfrowneq \nsqfrowneqsmile \nsqfrownsmile \nsqsmile \nsqsmileeq \nsqsmileeqfrown \nsqsmilefrown \nsqtriplefrown \nsqtriplesmile \ntriplefrown \ntriplesmile \smile \smileeq \smileeqfrown \smilefrown \smilefrowneq \sqdoublefrown \sqdoublefrowneq \sqdoublesmile \sqdoublesmileeq \sqeqfrown \sqeqsmile \sqfrown \sqfrowneq \sqfrowneqsmile \sqfrownsmile \sqsmile \sqsmileeq \sqsmileeqfrown \sqsmilefrown \sqtriplefrown \sqtriplesmile \triplefrown \triplesmile & ≍ ( 7 , 6 5 4 + 3 9 1 * 2 8 0 / . MnSymbol defines \smallsmile as a synonym for \smile, \smallfrown as a synonym for \frown, \asymp as a synonym for \smilefrown, and \nasymp as a synonym for \nsmilefrown. Table 173: fdsymbol Spoons ⊷ o ⫰ n q ⧟ ⟜ ⊷̸ \blackwhitespoon \downblackspoon \downspoon \leftblackspoon \leftrightblackspoon \leftrightspoon \leftspoon \nblackwhitespoon ̸ ⫰̸ ̸ ̸ ⧟̸ ⟜̸ ̸ ⊸̸ \ndownblackspoon \ndownspoon \nleftblackspoon \nleftrightblackspoon \nleftrightspoon \nleftspoon \nrightblackspoon \nrightspoon ̸ ⫯̸ ⊶̸ l ⊸ m ⫯ ⊶ \nupblackspoon \nupspoon \nwhiteblackspoon \rightblackspoon \rightspoon \upblackspoon \upspoon \whiteblackspoon fdsymbol defines synonyms for many of the preceding symbols: ⫯ ⧟ ⊷ ⫰ ⊸ \cirmid \dualmap \imageof \midcir \multimap ⟜ ⫯̸ ⧟̸ ⊷̸ ⫰̸ \multimapinv \ncirmid \ndualmap \nimageof \nmidcir 89 ⊸̸ ⟜̸ ⊶̸ ⊶ \nmultimap \nmultimapinv \norigof \origof Table 174: fdsymbol Pitchforks \downpitchfork \leftpitchfork \ndownpitchfork w v ̸ \nleftpitchfork \nrightpitchfork \nuppitchfork ̸ ̸ ⋔̸ t ⋔ \rightpitchfork \uppitchfork fdsymbol defines \npitchfork as a synonym for \nuppitchfork and \pitchfork as a synonym for \uppitchfork. Table 175: fdsymbol Smiles and Frowns \frown \frowneq \frownsmile \nfrown ⌢ ≘ ⁐ ⌢̸ ≘̸ ⁐̸ ⌣̸ ̸ \nfrowneq \nfrownsmile \nsmile \nsmileeq \nsmilefrown \smile \smileeq \smilefrown ≭ ⌣ ≍ fdsymbol defines \arceq as a synonym for \frowneq, \asymp as a synonym for \smilefrown, \closure as a synonym for \frownsmile, \narceq as a synonym for \nfrowneq, \nasymp as a synonym for \nsmilefrown, \nclosure as a synonym for \nfrownsmile, \smallfrown as a synonym for \frown, and \smallsmile as a synonym for \smile. Table 176: halloweenmath Brooms and Pitchforks −−∈ ∋−− \hmleftpitchfork \hmrightpitchfork −−< − >−− − \leftbroom \rightbroom Table 177: ulsy Contradiction Symbols \blitza \blitzb \blitzc \blitzd \blitze Table 178: Extension Characters − = \relbar \Relbar Table 179: stmaryrd Extension Characters X Y \Arrownot \arrownot [ \Mapsfromchar \mapsfromchar \ \Mapstochar Table 180: txfonts/pxfonts Extension Characters \Mappedfromchar \mappedfromchar \Mmappedfromchar \mmappedfromchar 90 \Mmapstochar \mmapstochar Table 181: mathabx Extension Characters \mapsfromchar \Mapsfromchar ß û Þ ú \mapstochar \Mapstochar Table 182: stix Extension Characters : \lhook \mapsfromchar \mapstochar ← ⇐ \relbar \Relbar \rhook ⭅ ⇚ \RRelbar \Rrelbar Table 183: Log-like Symbols \arccos \arcsin \arctan \arg \cos \cosh \cot \coth \csc \deg \det \dim \exp \gcd \hom \inf \ker \lg \lim \liminf \limsup \ln \log \max \min \Pr \sec \sin \sinh \sup \tan \tanh Calling the above “symbols” may be a bit misleading.3 Each log-like symbol merely produces the eponymous textual equivalent, but with proper surrounding spacing. See Section 10.4 for more information about log-like symbols. As \bmod and \pmod are arguably not symbols we refer the reader to the Short Math Guide for LATEX [Dow00] for samples. Table 184: 𝒜ℳ𝒮 Log-like Symbols inj lim \injlim proj lim \projlim lim −→ lim \varinjlim lim \varlimsup \varliminf lim ←− \varprojlim Load the amsmath package to get these symbols. See Section 10.4 for some additional comments regarding log-like symbols. As \mod and \pod are arguably not symbols we refer the reader to the Short Math Guide for LATEX [Dow00] for samples. 3 Michael J. Downes prefers the more general term, “atomic math objects”. 91 Table 185: mismath Log-like Symbols * adj \adj Conv \Conv id \id sech \sech arccot \arccot Cov \Cov Id \Id sgn \sgn arcosh \arcosh cov \cov im \im span \spa arcoth \arcoth arcsch * \csch Im \Im tr \tr \arcsch csch # » curl \curl lb \lb Var \Var arsech \arsech div \divg lcm \lcm Z \Zu arsinh \arsinh End \End rank \rank artanh \artanh \erf \Aut Re #» rot \Re* Aut erf # » grad \grad \rot mismath renames LATEX’s \Re and \Im (Table 203) to \oldRe and \oldIm. Table 186: mismath Asymptotic Notation O à » \Complex \COMPLEX Ú ¿ \bigo O o \bigO \lito Table 187: ChinA2e Number Sets \Integer \INTEGER Î ¼ \Natural \NATURAL 92 Ñ ½ \Rational \RATIONAL Ò ¾ \Real \REAL Table 188: Greek Letters 𝛼 𝛽 𝛾 𝛿 𝜖 𝜀 𝜁 𝜂 \alpha \beta \gamma \delta \epsilon \varepsilon \zeta \eta 𝜃 𝜗 𝜄 𝜅 𝜆 𝜇 𝜈 𝜉 \theta \vartheta \iota \kappa \lambda \mu \nu \xi 𝑜 𝜋 𝜛 𝜌 𝜚 𝜎 𝜍 o \pi \varpi \rho \varrho \sigma \varsigma 𝜏 𝜐 𝜑 𝜙 𝜒 𝜓 𝜔 \tau \upsilon \phi \varphi \chi \psi \omega Γ Δ Θ \Gamma \Delta \Theta Λ Ξ Π \Lambda \Xi \Pi Σ ϒ Φ \Sigma \Upsilon \Phi Ψ Ω \Psi \Omega The remaining Greek majuscules can be produced with ordinary Latin letters. The symbol “M”, for instance, is used for both an uppercase “m” and an uppercase “𝜇”. To make available commands for all of the Greek majuscules, either use the mathspec package, which requires XELATEX, or copy mathspec.sty’s Greek-letter definitions to your document’s preamble: \DeclareMathSymbol{\Alpha}{\mathalpha}{operators}{"41} \DeclareMathSymbol{\Beta}{\mathalpha}{operators}{"42} \DeclareMathSymbol{\Epsilon}{\mathalpha}{operators}{"45} \DeclareMathSymbol{\Zeta}{\mathalpha}{operators}{"5A} \DeclareMathSymbol{\Eta}{\mathalpha}{operators}{"48} \DeclareMathSymbol{\Iota}{\mathalpha}{operators}{"49} \DeclareMathSymbol{\Kappa}{\mathalpha}{operators}{"4B} \DeclareMathSymbol{\Mu}{\mathalpha}{operators}{"4D} \DeclareMathSymbol{\Nu}{\mathalpha}{operators}{"4E} \DeclareMathSymbol{\Omicron}{\mathalpha}{operators}{"4F} \DeclareMathSymbol{\Rho}{\mathalpha}{operators}{"50} \DeclareMathSymbol{\Tau}{\mathalpha}{operators}{"54} \DeclareMathSymbol{\Chi}{\mathalpha}{operators}{"58} \DeclareMathSymbol{\omicron}{\mathord}{letters}{"6F} See Section 10.5 for examples of how to produce bold Greek letters. The symbols in this table are intended to be used in mathematical typesetting. Greek body text can be typeset using the babel package’s greek (or polutonikogreek) option—and, of course, a font that provides the glyphs for the Greek alphabet. Table 189: 𝒜ℳ𝒮 Greek Letters z \digamma κ 93 \varkappa Table 190: txfonts/pxfonts Upright Greek Letters α β γ δ ε ζ η \alphaup \betaup \gammaup \deltaup \epsilonup \varepsilonup \zetaup \etaup θ ϑ ι κ λ µ ν ξ π $ ρ % σ ς τ υ \thetaup \varthetaup \iotaup \kappaup \lambdaup \muup \nuup \xiup \piup \varpiup \rhoup \varrhoup \sigmaup \varsigmaup \tauup \upsilonup φ ϕ χ ψ ω \phiup \varphiup \chiup \psiup \omegaup The symbols in this table are intended to be used sporadically throughout a document (e.g., to represent mathematical units or numerical quantities— “π ≈ 3.14159”). In contrast, Greek body text can be typeset using the babel package’s greek (or polutonikogreek) option—and, of course, a font that provides the glyphs for the Greek alphabet. Table 191: upgreek Upright Greek Letters α β γ δ ε ζ η \upalpha \upbeta \upgamma \updelta \upepsilon \upvarepsilon \upzeta \upeta θ ϑ ι κ λ µ ν ξ \uptheta \upvartheta \upiota \upkappa \uplambda \upmu \upnu \upxi π $ ρ ρ σ σ τ υ \uppi \upvarpi \uprho \upvarrho \upsigma \upvarsigma \uptau \upupsilon φ ϕ χ ψ ω \upphi \upvarphi \upchi \uppsi \upomega Γ ∆ Θ \Upgamma \Updelta \Uptheta Λ Ξ Π \Uplambda \Upxi \Uppi Σ Υ Φ \Upsigma \Upupsilon \Upphi Ψ Ω \Uppsi \Upomega upgreek utilizes upright Greek characters from either Euler Roman (depicted above) or the PostScript Symbol font. As a result, the glyphs may appear slightly different from the above. Contrast, for example, “Γ∆Θαβγ” (Euler) with “Γ∆Θαβγ” (Symbol). Also note that the \var. . . forms do not always produce a distinct glyph. Unlike textgreek (Table 6 on page 15), upgreek works in math mode. The symbols in this table are intended to be used sporadically throughout a document (e.g., to represent mathematical units or numerical quantities— “π ≈ 3.14159”). In contrast, Greek body text can be typeset using the babel package’s greek (or polutonikogreek) option—and, of course, a font that provides the glyphs for the Greek alphabet. Table 192: fourier Variant Greek Letters π $ È \pi \varpi \varvarpi ρ % Æ 94 \rho \varrho \varvarrho Table 193: txfonts/pxfonts Variant Latin Letters 1 3 \varg 4 \varv 2 \varw \vary Pass the varg option to txfonts/pxfonts to replace g, v, w, and y with 1, 3, 4, and 2 in every mathematical expression in your document. Table 194: boisik Variant Greek Letters / " . ' \varbeta \varepsilon $ % \varkappa \varphi \varpi \varrho & # \varsigma \vartheta 𝜗 \vartheta Table 195: boisik Variant Latin Letters \varg Table 196: stix Variant Greek Letters 𝜀 𝜘 𝜑 𝜛 \varepsilon \varkappa 𝜚 𝜍 \varphi \varpi \varrho \varsigma Table 197: stix Transformed Greek Letters ϶ ℧ ℩ ϶ \backepsilon \mho \turnediota \upbackepsilon Table 198: 𝒜ℳ𝒮 Hebrew Letters \beth i ג \gimel k \daleth \aleph (ℵ) appears in Table 302 on page 118. Table 199: MnSymbol Hebrew Letters ℵ \aleph ℶ \beth ℷ ℸ \gimel \daleth Table 200: fdsymbol Hebrew Letters ℵ \aleph ℶ \beth ℷ \gimel ℸ \daleth Table 201: boisik Hebrew Letters ø \beth ù \gimel 95 ú \daleth Table 202: stix Hebrew Letters ℵ ℶ \aleph \beth ℷ ℸ \gimel \daleth Table 203: Letter-like Symbols ⊥ ℓ ∃ \bot \ell \exists ∀ ~ ℑ \forall \hbar \Im 𝚤 ∈ 𝚥 ∋ 𝜕 ℜ \imath \in \jmath ⊤ ℘ \ni \partial \Re \top \wp Table 204: 𝒜ℳ𝒮 Letter-like Symbols k r s \Bbbk \circledR \circledS { ` a \complement \Finv \Game ~ } @ \hbar \hslash \nexists Table 205: txfonts/pxfonts Letter-like Symbols ¢ * \mathcent \mathsterling* £ < \notin = \notni It’s generally preferable to use the corresponding symbol from Table 3 on page 15 because the symbols in that table work properly in both text mode and math mode. Table 206: mathabx Letter-like Symbols V A D F G \barin \complement \exists \Finv \Game P E M R S \in \nexists \notbot \notin \notowner L Q W B C \nottop \owns \ownsbar \partial \partialslash T U \varnotin \varnotowner Table 207: MnSymbol Letter-like Symbols ∃ ∀ * \bot \exists \forall ∈ ∄ ∉ \in \nexists \nin* ∌ ∋ ℘ \nowns* \owns \powerset ⊺ ℘ \top \wp MnSymbol provides synonyms \notin for \nin, \ni for \owns, and \intercal for \top. 96 Table 208: fdsymbol Letter-like Symbols ⊥ ∁ ∃ Ⅎ \bot \complement \exists \Finv ∀ ⅁ h̵ h̷ \forall \Game \hbar \hslash ∈ ∄ ∉ ∌ \in \nexists \nin \nowns ∋ ⊤ ℘ \owns \top \wp fdsymbol provides synonyms \notin for \nin, \ni for \owns, and \nni for \nowns. Table 209: boisik Letter-like Symbols k ý û \Bbbk \complement \Finv \Game \hbar \hslash ü { þ | \imath \intercal \jmath â \nexists \wp Table 210: stix Letter-like Symbols Å 𝕜 ⊥ Ⓡ Ⓢ ∁ ϝ 𝓁 \Angstrom \Bbbk \bot \circledR \circledS \complement \digamma \ell ℇ ∃ Ⅎ ∀ ⅁ ℏ ℏ ℑ \Eulerconst \exists \Finv \forall \Game \hbar \hslash \Im 𝚤 ⊺ 𝚥 $ ¶ £ ∄ ℜ \imath \intercal \jmath \mathdollar \mathparagraph \mathsterling \nexists \Re ⊤ ⌶ ℘ ⅄ Ƶ \top \topbot \wp \Yup \Zbar Table 211: trfsigns Letter-like Symbols e j \e \im Table 212: mathdesign Letter-like Symbols ∈ 6 ∈ \in \notin \notsmallin \notsmallowns 3 \owns \smallin \smallowns The mathdesign package additionally provides versions of each of the letter-like symbols shown in Table 204 on the previous page. Table 213: fge Letter-like Symbols A c p e * \fgeA \fgec \fged \fgee ı F f ” D C B s \fgeeszett \fgeF \fgef \fgelb* \fgeleftB \fgeleftC \fgerightB \fges U \fgeU The fge package defines \fgeeta, \fgeN, and \fgeoverU as synonyms for \fgelb. 97 Table 214: fourier Letter-like Symbols ∂ \partial Ç \varpartialdiff Table 215: cmll Letter-like Symbols ‚ \Bot ‹ \simbot Table 216: 𝒜ℳ𝒮 Delimiters p x q y \ulcorner \llcorner \urcorner \lrcorner Table 217: stmaryrd Delimiters P V L \Lbag \llceil \llparenthesis Q W M \Rbag \rrceil \rrparenthesis N T \lbag \llfloor O U \rbag \rrfloor Table 218: mathabx Delimiters v \lcorners w \rcorners x z \ulcorner \llcorner y { \urcorner \lrcorner Ø à Table 219: boisik Delimiters Ù á \ulcorner \llcorner \urcorner \lrcorner Table 220: stix Delimiters ⦑ ⟅ ⦗ ⦏ ⦋ ⦍ ⟬ ⧼ \langledot \lbag \lblkbrbrak \lbracklltick \lbrackubar \lbrackultick \Lbrbrak \lcurvyangle ⦒ ⟆ ⦘ ⦐ ⦌ ⦎ ⟭ ⧽ ⦉ ⌞ ⦇ ⦕ ⦓ ⧘ ⧚ ⌜ \rangledot \rbag \rblkbrbrak \rbrackurtick \rbrackubar \rbracklrtick \Rbrbrak \rcurvyangle \llangle \llcorner \llparenthesis \Lparengtr \lparenless \lvzigzag \Lvzigzag \ulcorner Table 221: nath Delimiters \niv \vin 98 ⦊ ⌟ ⦈ ⦖ ⦔ ⧙ ⧛ ⌝ \rrangle \lrcorner \rrparenthesis \Rparenless \rparengtr \rvzigzag \Rvzigzag \urcorner Table 222: Variable-sized Delimiters ↓ ⟨ ⎮ ⎮ ⌄ ⟨ ⌈ ⌈︁ ⌊ ⌊︁ ( (︁ / ⧸︁ \downarrow \langle \lceil \lfloor ( / ⇓ ⟩ ⃦ ⃦ ⇓ ⟩ ⌉ ⌉︁ ⌋ ⌋︁ ) )︁ ∖ ⃥︁ [ [︁ \rangle | \rceil ↑ \rfloor ↕ ) { ⃒ ⃒ ⃒ ⌃ ⎮ ⎮ ⌃ ⎮ ⌄ {︁ \Downarrow ] ]︁ | ‖ \uparrow ⇑ \updownarrow ⇕ \{ } ⃦ ⃦ ⃦ ⇑ ⃦ ⃦ ⇑ ⃦ ⇓ }︁ [ ] \| \Uparrow \Updownarrow \} \backslash When used with \left and \right, these symbols expand to the height of the enclosed math expression. Note that \vert is a synonym for |, and \Vert is a synonym for \|. 𝜀-TEX provides a \middle analogue to \left and \right. \middle can be used, for example, to make an internal “|” expand to the height of the surrounding \left and \right symbols. (This capability is commonly needed when typesetting adjacent bras and kets in Dirac notation: “⟨𝜑|𝜓⟩”). A similar effect can be achieved in conventional LATEX using the braket package. ⎧ ⎭ ⎮ ⎮ ⎧ ⎪ ⎪ ⎪ ⎪ ⎭ ⎮ ⎮ ⎮ ⎮ ⎮ \lmoustache \arrowvert Table 223: Large, Variable-sized Delimiters ⎧ ⎫ ⎧ ⎪ ⎫ ⎪ ⎪ ⎪ ⎩ ⎪ ⎩ ⎪ ⎪ ⎪ ⎩ \lgroup ⎩ \rmoustache ⎪ ⃦ ⎪ ⎪ ⎪ ⃦ ⃦ ⎪ ⎪ ⃦ ⎪ ⎪ ⃦ ⃦ \Arrowvert \bracevert ⎪ ⎪ ⎪ ⎪ ⎪ ⃦ ⎪ ⎫ ⎭ ⎫ ⎪ ⎪ ⎪ ⎪ ⎭ These symbols must be used with \left and \right. The mathabx package, however, redefines \lgroup and \rgroup so that those symbols can work without \left and \right. Table 224: 𝒜ℳ𝒮 Variable-sized Delimiters | ⃒ ⃒ ⃒ \lvert | ⃒ ⃒ ⃒ \rvert ‖ ⃦ ⃦ ⃦ \lVert ‖ ⃦ ⃦ ⃦ \rVert According to the amsmath documentation [AMS99], the preceding symbols are intended to be used as delimiters (e.g., as in “|−𝑧|”) while the \vert and \Vert symbols (Table 222) are intended to be used as operators (e.g., as in “𝑝|𝑞”). Table 225: stmaryrd Variable-sized Delimiters ~ \llbracket \rrbracket 99 \rgroup Table 226: mathabx Variable-sized Delimiters 1 9 \ldbrack v \rdbrack w 7 7 7 7 7 \lfilet ~ ffl ffl ffl \thickvert ? ? ? ? ? \rfilet ~ \vvvert Table 227: MnSymbol Variable-sized Delimiters X X X X X X X X X \Arrowvert { RR R RR RR RR \arrowvert ⌈ / / \backslash ⌊ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ \bracevert ⎪ ⎪ ⎪ ⎡⎢ ⎢⎢ ⎢⎣ ⎤⎥ ⎥⎥ ⎥⎦ [ ] ⎧ ⎪ ⎪ ⎨ ⎪ ⎩ ⎡⎢ ⎢⎢ ⎢⎢ ⎢⎢ ⎢⎢ ⎢⎣ ⎧ ⎪ ⎪ ⎪ ⎪ ⎩ ⎧ ⎪ ⎩ \lfloor ⎫ ⎪ ⎭ ⎤⎥ ⎥⎥ ⎥⎥ ⎥⎥ ⎥⎥ ⎥⎦ ⎫ ⎪ ⎪ ⎪ ⎪ ⎭ \lgroup ⎫ ⎪ ⎩ ⎫ ⎪ ⎪ ⎪ ⎪ ⎩ \lbrace ⌉ \lceil ⌋ [ ⟪ ⟪ \llangle ⟫ ] ⌞ ⌞ \llcorner ⟧ ⎧ ⎪ ⎪ ⎪ ⎪ ⎭ ⎧ ⎪ ⎭ ( ( ( ) ) ) ⌟ / / / ⟦ ⟨ ⟨ < ^^ ^ ⟩ ⟩ > _ _ _ ∣ RR RR RR | ⟩ ⌟ L P P P P N ^^ ^^ ^^ _ _ _ _ _ _ ⟩ ⟫ \lmoustache _ _ _ \lrcorner ^^ ^ M Q Q Q Q O _ _ _ _ _ _ ^^ ^^ ^^ \rceil \rfloor \rgroup \rmoustache \rrangle \rsem \rWavy \rwavy \lsem ⌜ ⌜ \ulcorner \lwavy 3 6 \ullcorner \lWavy 8 ; \ulrcorner \rangle ⌝ ⌝ \urcorner (continued on next page) 100 (continued from previous page) ⟨ ⟨ \langle p k n \langlebar } s \ranglebar ⎫ ⎪ ⎪ ⎬ ⎪ ⎭ X X X X X X ∥ \| \rbrace \vert is a synonym for |. \Vert is a synonym for \|. \mid and \mvert produce the same symbol as \vert but designated as math relations instead of ordinals. \divides produces the same symbol as \vert but designated as a binary operator instead of an ordinal. \parallel and \mVert produce the same symbol as \Vert but designated as math relations instead of ordinals. Table 228: fdsymbol Variable-sized Delimiters \ \ ↓ È È È È È ↓ ⇓ Ë Ë Ë Ë Ë ⇓ \backslash \downarrow ⌟ ⌟ ∣ ∣∣ ∣∣ ∣∣ \Downarrow ∥ \lrcorner ∥ ∥ ∥ ∥ ∥ ∥ Å Å Å Å Å Å \lvert ) ) ∣ ∣∣ ∣∣ ∣∣ \lVert ∥ \lVvert ⦀ \rparen ∥ ∥ ∥ ∥ ∥ ∥ Å Å Å Å Å Å \rvert \rVert ⟪ ⟪ \lAngle ⦀ ⟨ ⟨ \langle / / \mathslash ⌜ ⌜ \ulcorner ⦑ ⦑ \langledot ⟩ ⟩ \rangle N S \ullcorner { { \lbrace ⟫ ⟫ \rAngle T Y \ulrcorner [ [ \lbrack ⦒ ⦒ \rangledot ↑ ↑ È È È È È \uparrow ⇑ ⇑ Ë Ë Ë Ë Ë \Uparrow ⟦ ⟦ \lBrack } } \rbrace \rVvert (continued on next page) 101 (continued from previous page) ⌈ ⌈ ⌊ ⌊ ⎧ ⎪ ⎪ ⎪ ⎪ ⎩ ⎧ ⎪ ⎩ ⌞ ⌞ ( ( ⟧ \rBrack ↕ \updownarrow ⇑ Ë Ë Ë Ë ⇓ \Updownarrow \lfloor ] ] \rbrack ⇕ \lgroup ⌉ ⌉ \rceil ⌝ ⌝ ∣ ∣∣ ∣∣ ∣∣ \llcorner ⎧ ⎪ ⎪ ⎪ ⎪ ⎭ ⎧ ⎪ ⎭ ⟧ \lceil ↑ È È È È ↓ ⌋ ⌋ \rfloor \lmoustache ⎫ ⎪ ⎭ ⎫ ⎪ ⎪ ⎪ ⎪ ⎭ \rgroup ∥ \lparen ⎫ ⎪ ⎩ ⎫ ⎪ ⎪ ⎪ ⎪ ⎩ \rmoustache ⦀ \urcorner ∥ ∥ ∥ ∥ ∥ ∥ Å Å Å Å Å Å \vert \Vert \Vvert fdsymbol defines “(” as a synonym for \lparen, “)” as a synonym for \rparen, “[” as a synonym for \lbrack, “]” as a synonym for \rbrack, “{” as a synonym for \lbrace, “}” as a synonym for \rbrace, “/” as a synonym for \mathslash, “|” as a synonym for \vert, “\|” as a synonym for \Vert, \lsem as a synonym for \lBrack, and \rsem as a synonym for \rBrack. Table 229: stix Variable-sized Delimiters ⇑ ⏐ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ⏐ \ ∖ ⟪ \Arrowvert ⟪ ⌉ \lAngle ⌉ { \arrowvert { ⌋ \lbrace ⌋ \lBrace ⟯ \lBrack ⎱ \lbrbrak ⦆ ⦃ \backslash ⦃ ⟦ ⤋ ⤊ ⤊ ⤊ ⤊ ⤊ ⤊ ⤊ ⤊ ⤊ ⤋ \Ddownarrow ⟱ ⟰ ⟰ ⟰ ⟰ ⟰ ⟰ ⟰ ⟰ ⟰ ⟱ \DDownarrow ⟦ ❲ ❲ \rceil \rfloor ⎧ ⎪ ⎩ ⎫ ⎪ ⎩ ⦆ \rgroup \rmoustache \rParen (continued on next page) 102 (continued from previous page) ⌈ ↓ ⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ↓ \downarrow ⇓ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇓ \Downarrow ⌊ [ ⟮ ] ⎰ ( ⦅ [ [ ⌈ ( ( ) ) ⟨ \lfloor ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ \Uparrow \lgroup ⇕ \lmoustache ↕ \lParen ⤊ \rAngle ⟰ \rangle ‖ \rbrace | || || || \vert \rBrace ⦀ ⦀ ⦀ ⦀ ⦀ ⦀ ⦀ \Vvert } } < ⟩ | ⎧ ⎪ ⎭ ⦅ ⟩ ⟨ ⦄ ⦄ > || || || ⟨ \uparrow ⟩ / ⟩ ⎫ ⎪ ⎭ ⟫ / ⟨ ↑ ⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ⟫ ) ∕ ↑ ⌊ ] ] \lceil ⟧ ⟧ | ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇓ ↑ ⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ↓ ⤊ ⤊ ⤊ ⤊ ⤊ ⤊ ⤊ ⤊ ⤊ ⤊ ⟰ ⟰ ⟰ ⟰ ⟰ ⟰ ⟰ ⟰ ⟰ ⟰ ‖ ‖ ‖ ‖ ‖ ‖ \Updownarrow \updownarrow \Uuparrow \UUparrow \Vert \rBrack ❳ ❳ \langle \rbrbrak Table 230: mathdesign Variable-sized Delimiters Ð Ñ Ð Ð Ð Ð Ñ Ñ Ñ Ñ \leftwave Ð \leftevaw Ñ Ð Ð Ð Ð Ñ Ñ Ñ Ñ \rightwave \rightevaw The definitions of these symbols include a preceding \left or \right. It is therefore an error to specify \left or \right explicitly. The internal, “primitive” versions of these symbols are called \lwave, \rwave, \levaw, and \revaw. 103 Table 231: nath Variable-sized Delimiters (Double) * ⟨⟨ ⟨⟨ [[ [︁[︁ ⌈⌈ ⌈︁⌈︁ ⌊⌊ ⌊︁⌊︁ || ⃒⃒ ⃒⃒ ⃒⃒ \lAngle ⟩⟩ ⟩⟩ \lBrack ]] ]︁]︁ \lCeil ⌉⌉ ⌉︁⌉︁ \lFloor ⌋⌋ ⌋︁⌋︁ \lVert* || ⃒⃒ ⃒⃒ ⃒⃒ \rAngle \rBrack \rCeil \rFloor \rVert* nath redefines all of the above to include implicit \left and \right commands. Hence, separate \lVert and \rVert commands are needed to disambiguate whether “|” is a left or right delimiter. All of the symbols in Table 231 can also be expressed using the \double macro. See the nath documentation for examples and additional information. Table 232: nath Variable-sized Delimiters (Triple) * ⟨⟨⟨ ⟨⟨⟨ [[[ [︁[︁[︁ ||| ⃒⃒⃒ ⃒⃒⃒ ⃒⃒⃒ \triple< ⟩⟩⟩ ⟩⟩⟩ \triple[ ]]] ]︁]︁]︁ \ltriple|* ||| ⃒⃒⃒ ⃒⃒⃒ ⃒⃒⃒ \triple> \triple] \rtriple|* Similar to \lVert and \rVert in Table 231, \ltriple and \rtriple must be used instead of \triple to disambiguate whether “|” is a left or right delimiter. Note that \triple—and the corresponding \double—is actually a macro that takes a delimiter as an argument. Table 233: fourier Variable-sized Delimiters \llbracket \rrbracket \VERT Table 234: textcomp Text-mode Delimiters 〈 〚 ⁅ \textlangle \textlbrackdbl \textlquill 〉 〛 ⁆ 104 \textrangle \textrbrackdbl \textrquill Table 235: metre Text-mode Delimiters } { ⟩ ⟨ \alad \alas \angud \angus } \Alad { \Alas ⟩ ⟨ † ]] \Angud \Angus [[ \crux \quadrad \quadras † ]] [[ \Crux \Quadrad \Quadras Table 236: Math-mode Accents 𝑎 ´ 𝑎 ¯ 𝑎 ˘ \acute{a} \bar{a}* \breve{a} 𝑎 ˇ 𝑎 ¨ 𝑎˙ \check{a} \ddot{a} \dot{a} 𝑎 ` 𝑎 ^ ˚ 𝑎 \grave{a} \hat{a} \mathring{a} 𝑎 ˜ ⃗𝑎 \tilde{a} \vec{a} Note also the existence of \imath and \jmath, which produce dotless versions of “i ” and “j ”. (See Table 302 on page 118.) These are useful when the accent is supposed to replace the dot. For example, “\hat{\imath}” produces a correct “ ^𝚤 ”, while “\hat{i}” would yield the rather odd-looking “ ^𝑖 ”. * The \overline command (Table 246 on page 107) produces a wider accent ¯ However, unlike adjacent \bars, adjacent \overlines than \bar: “𝐴” vs. “𝐴”. ¯ If wider bars than run together, which is often not desired: “𝐴𝐵” vs. “𝐴¯𝐵”. \bar are needed, the following code from Enrico Gregorio can be used to add the requisite inter-symbol spacing [Gre09]: \newcommand{\closure}[2][3]{% {}\mkern#1mu\overline{\mkern-#1mu#2}} With that definition, “\closure{A}\closure{B}” produces “𝐴𝐵”, with a visible gap between the two accents. The optional argument can be used to fine-tune the spacing. Table 237: 𝒜ℳ𝒮 Math-mode Accents ... .... 𝑎 \dddot{a} 𝑎 \ddddot{a} These accents are also provided by the mathabx and accents packages and are redefined by the mathdots package if the amsmath and amssymb packages have previously been loaded. All of the variations except for the original 𝒜ℳ𝒮 ones ... tighten the space between the dots (from 𝑎 to ˙˙˙ 𝑎). The mathabx and mathdots 𝑎 versions also function properly within subscripts and superscripts (𝑥˙˙˙ instead ... 𝑎 of 𝑥 ) . Table 238: MnSymbol Math-mode Accents ⃗a \vec{a} 105 Table 239: fdsymbol Math-mode Accents a̵ a̷ \middlebar{a} a ̸ \middleslash{a} a⃗ \strokethrough{a} \vec{a} \middlebar and \middleslash are applied here to “𝑎” for consistency with the rest of the document, but they generally look better when applied to taller lowercase characters. Table 240: boisik Math-mode Accents a \vec{a} Table 241: stix Math-mode Accents á ⃧ a a⃰ ā ă a̐ ǎ ⃜ a ⃛a ä ȧ a̚ à \acute{a} \annuity{a} \asteraccent{a} \bar{a} \breve{a} \candra{a} \check{a} \ddddot{a} \dddot{a} \ddot{a} \dot{a} \droang{a} \grave{a} â a⃖ a⃐ a ⃡ å a̕ a̒ ả a⃑ ã a⃗ ⃩ a \hat{a} \leftarrowaccent{a} \leftharpoonaccent{a} \leftrightarrowaccent{a} \mathring{a} \ocommatopright{a} \oturnedcomma{a} \ovhook{a} \rightharpoonaccent{a} \tilde{a} \vec{a} \widebridgeabove{a} Table 242: fge Math-mode Accents – A– a * \spirituslenis{A}\spirituslenis{a}* When fge is passed the crescent option, \spirituslenis instead uses a crescent accent as in “ —a ”. Table 243: yhmath Math-mode Accents ˚ 𝑎 \ring{a} This symbol is largely obsolete, as standard LATEX 2𝜀 has supported \mathring (Table 236 on the previous page) since June 1998 [LAT98]. Table 244: halloweenmath Halloween-Themed Math-mode Accents 𝑎 \overbat{a} 𝑎 \underbat{a} 𝑎 \overbat*{a} 𝑎 \underbat*{a} 106 Table 245: realhats Math-mode Hat Accents 𝑎 𝑎 𝑎 𝑎 D 𝑎 \hat[ash]{a} \hat[beret]{a} \hat[cowboy]{a} \hat[crown]{a} 𝑎 𝑎 𝑎 𝑎 \hat[fez]{a} \hat[santa]{a} \hat[sombrero]{a} \hat[tophat]{a} \hat[dunce]{a} 𝑎 \hat[witch]{a} These hats are drawn by scaling a graphic image and placing it at an appropriate location. If \hat is used with no argument, it selects a hat at random. Alternatively, a hat type can be passed as an option to realhats to specify the default hat. See the realhats documentation for more information. Table 246: Extensible Accents ̃︁ 𝑎𝑏𝑐 ←− 𝑎𝑏𝑐 \widetilde{abc}* \widehat{abc}* \overleftarrow{abc}† ̂︁ 𝑎𝑏𝑐 −→ 𝑎𝑏𝑐 𝑎𝑏𝑐 ⏞⏟ 𝑎𝑏𝑐 √ 𝑎𝑏𝑐 \overline{abc} 𝑎𝑏𝑐 \underline{abc} \overbrace{abc} ⏟𝑎𝑏𝑐 ⏞ \underbrace{abc} \overrightarrow{abc}† \sqrt{abc}‡ As demonstrated in a 1997 TUGboat article about typesetting long-division problems [Gib97], an extensible long-division sign (“ )𝑎𝑏𝑐 ”) can be faked by putting a “\big)” in a tabular environment with an \hline or \cline in the preceding row. The article also presents a piece of code (uploaded to CTAN as longdiv.tex) that automatically solves and typesets—by putting an \overline atop “\big)” and the desired text—long-division problems. More recently, the STIX fonts include a true long-division sign. See \longdivision in Table 252 for a sample of this symbol. See also the polynom package, which automatically solves and typesets polynomial-division problems in a similar manner. * These symbols are made more extensible by the MnSymbol package (Table 250 on the following page). and even more extensible by the yhmath package (Table 248 on the following page). † If you’re looking for an extensible diagonal line or arrow to be used for canceling 5 : or “ −𝑥” or reducing mathematical subexpressions (e.g., “ 𝑥+ 3+ 2 ”) then consider using the cancel package. ‡ With an optional argument, For example, √ \sqrt typesets nth roots. √ “\sqrt[3]{abc}” produces “ 3 𝑎𝑏𝑐 ” and “\sqrt[n]{abc}” produces “ 𝑛 𝑎𝑏𝑐 ”. Table 247: overrightarrow Extensible Accents =⇒ 𝑎𝑏𝑐 \Overrightarrow{abc} 107 Table 248: yhmath Extensible Accents ” 𝑎𝑏𝑐 ˆ 𝑎𝑏𝑐 ˚ ˆ 𝑎𝑏𝑐 \widehat{abc} › 𝑎𝑏𝑐 \widetilde{abc} \wideparen{abc} È 𝑎𝑏𝑐 \widetriangle{abc} \widering{abc} Table 249: 𝒜ℳ𝒮 Extensible Accents ← → 𝑎𝑏𝑐 \overleftrightarrow{abc} 𝑎𝑏𝑐 ←− \underleftarrow{abc} « abc ³¹¹ ¹ ¹µ 𝑎𝑏𝑐 ↼Ð 𝑎𝑏𝑐 zx 𝑎𝑏𝑐 Ð⇀ 𝑎𝑏𝑐 abc ° 𝑎𝑏𝑐 ← → 𝑎𝑏𝑐 −→ \underleftrightarrow{abc} \underrightarrow{abc} Table 250: MnSymbol Extensible Accents \overbrace{abc} 𝑎𝑏𝑐 ´¹¹ ¹ ¹¶ \undergroup{abc} \overgroup{abc} \underlinesegment{abc} \overleftharpoon{abc} 𝑎𝑏𝑐 zx ̂ abc \widehat{abc} \overlinesegment{abc} Í abc \wideparen{abc} \overrightharpoon{abc} ̃ abc \widetilde{abc} \underbrace{abc} Table 251: fdsymbol Extensible Accents ÌÒÒ ÐÒ ÒÎ 𝑎𝑏𝑐 ÌÒÒ Ò Ò Ò Ò Ò ÒÎ 𝑎𝑏𝑐 ↽−− 𝑎𝑏𝑐 ¬­ 𝑎𝑏𝑐 −−⇀ 𝑎𝑏𝑐 𝑎𝑏𝑐 ÍÒÒ ÑÒ ÒÏ \overleftharpoon{abc} 𝑎𝑏𝑐 ÍÒÒ Ò Ò Ò Ò Ò ÒÏ 𝑎𝑏𝑐 ¬­ ̂ abc \widehat{abc} \overlinesegment{abc} ̑ abc \wideparen{abc} \overrightharpoon{abc} ̃ abc \widetilde{abc} \overbrace{abc} \overgroup{abc} \underbrace{abc} 108 \undergroup{abc} \underlinesegment{abc} Table 252: stix Extensible Accents ⟌ ⃖⃖⃖⃖⃖⃖⃖ 𝑎𝑏𝑐 ⏞⏞⏞ 𝑎𝑏𝑐 ⎴ 𝑎𝑏𝑐 \overbracket{abc} ⃖⃖⃖⃖⃖⃖ 𝑎𝑏𝑐 \overleftarrow{abc} ⃐⃖⃖⃖⃖⃖ 𝑎𝑏𝑐 \overleftharpoon{abc} ⃖⃖⃖⃖⃖ 𝑎𝑏𝑐⃗ ⏜⏜ 𝑎𝑏𝑐 \overleftrightarrow{abc} ⃖⃖⃖⃖⃖⃗ 𝑎𝑏𝑐 \longdivision{abc} 𝑎𝑏𝑐 ⎵ \underbracket{abc} \overbrace{abc} 𝑎𝑏𝑐 ⃖⃖⃖⃖⃖⃖ 𝑎𝑏𝑐 ⃐⃖⃖⃖⃖⃖ 𝑎𝑏𝑐 ⃖⃖⃖⃖⃖⃗ 𝑎𝑏𝑐 ⏝⏝ \underleftarrow{abc} \underrightarrow{abc} \overrightarrow{abc} 𝑎𝑏𝑐 ⃖⃖⃖⃖⃖⃗ 𝑎𝑏𝑐 ⃖⃖⃖⃖⃖⃑ ̌ abc ⃖⃖⃖⃖⃖⃑ 𝑎𝑏𝑐 √ ⃖⃖⃖⃖⃖⃖⃖ 𝑎𝑏𝑐 \overrightharpoon{abc} ̂ abc \widehat{abc} \sqrt{abc} ̃ abc \widetilde{abc} 𝑎𝑏𝑐 ⏟⏟⏟ \underbrace{abc} \overparen{abc} \underleftharpoon{abc} \underleftrightarrow{abc} \underparen{abc} \underrightharpoon{abc} \widecheck{abc} Table 253: mathtools Extensible Accents ⏞⏟ 𝑎𝑏𝑐 𝑎𝑏𝑐 * \overbrace{abc} * \overbracket{abc} ⏟𝑎𝑏𝑐 ⏞ 𝑎𝑏𝑐 \underbrace{abc} \underbracket{abc}* \overbracket and \underbracket accept optional arguments that specify the bracket height and thickness. See the mathtools documentation for more information. Table 254: mathabx Extensible Accents hkkikkj Ď \widebar{abc} 𝑎𝑏𝑐 \overbrace{abc} 𝑎𝑏𝑐 hkkk j | \widecheck{abc} 𝑎𝑏𝑐 \overgroup{abc} 𝑎𝑏𝑐 loo𝑎𝑏𝑐 moon \underbrace{abc} Ň 𝑎𝑏𝑐 \wideparen{abc} 𝑎𝑏𝑐 lo oo n \undergroup{abc} Ň̊ 𝑎𝑏𝑐 \widering{abc} Ĺ 𝑎𝑏𝑐 \widearrow{abc} The braces shown for \overbrace and \underbrace appear in their minimum size. They can expand arbitrarily wide, however. Table 255: fourier Extensible Accents Ù 𝑎𝑏𝑐 \widearc{abc} 𝑎𝑏𝑐 \wideparen{abc} å 𝑎𝑏𝑐 \wideOarc{abc} ˚ 𝑎𝑏𝑐 \widering{abc} 109 Table 256: esvect Extensible Accents #” 𝑎𝑏𝑐 \vv{abc} with package option a #„ 𝑎𝑏𝑐 \vv{abc} with package option b #« 𝑎𝑏𝑐 \vv{abc} with package option c #» 𝑎𝑏𝑐 \vv{abc} with package option d #– 𝑎𝑏𝑐 \vv{abc} with package option e #— 𝑎𝑏𝑐 \vv{abc} with package option f # 𝑎𝑏𝑐 \vv{abc} with package option g #‰ 𝑎𝑏𝑐 \vv{abc} with package option h esvect also defines a \vv* macro which is used to typeset arrows over vector variables with subscripts. See the esvect documentation for more information. Table 257: abraces Extensible Accents ⏞ ⏟ 𝑎𝑏𝑐 \aoverbrace{abc} ⏟𝑎𝑏𝑐 ⏞ \aunderbrace{abc} \aoverbrace and \aunderbrace accept optional arguments that provide a great deal of control over the braces’ appearance. For example, these commands can produce braces with asymmetric endpoints, braces that span lines, dashed braces, and multicolored braces. See the abraces documentation for more information. Table 258: undertilde Extensible Accents 𝑎𝑏𝑐 ̃︁ \utilde{abc} Because \utilde is based on \widetilde it is also made more extensible by the yhmath package (Table 248 on page 108). Table 259: ushort Extensible Accents 𝑎𝑏𝑐 \ushortdw{abc} 𝑎𝑏𝑐 \ushortw{abc} \ushortw and \ushortdw are intended to be used with multi-character arguments (“words”) while \ushortand \ushortd are intended to be used with single-character arguments. The underlines produced by the ushort commands are shorter than those produced by the \underline command. Consider the output from the expression “\ushort{x}\ushort{y}\underline{x}\underline{y}”, which looks like “𝑥𝑦𝑥𝑦”. Table 260: mdwmath Extensible Accents √ 𝑎𝑏𝑐 \sqrt*{abc} 110 Table 261: actuarialangle Extensible Accents 𝑎𝑏𝑐 \actuarialangle{abc} The actuarialangle package additionally defines \angl as \actuarialangle with a small amount of extra space to the right of the accented expression under the , \angln as \angl{n}, and \anglr as \angl{r}. Table 262: 𝒜ℳ𝒮 Extensible Arrows 𝑎𝑏𝑐 ←−− 𝑎𝑏𝑐 −−→ \xleftarrow{abc} \xrightarrow{abc} Table 263: mathtools Extensible Arrows 𝑎𝑏𝑐 ←−−˒ 𝑎𝑏𝑐 ˓−−→ 𝑎𝑏𝑐 ⇐== 𝑎𝑏𝑐 ↽−− 𝑎𝑏𝑐 ↼−− 𝑎𝑏𝑐 ←−→ 𝑎𝑏𝑐 ⇐=⇒ 𝑎𝑏𝑐 \xhookleftarrow{abc} ↼ − − −− ⇁ \xhookrightarrow{abc} ↦−−→ 𝑎𝑏𝑐 𝑎𝑏𝑐 ==⇒ \xLeftarrow{abc} 𝑎𝑏𝑐 \xleftharpoondown{abc} −−⇁ \xleftharpoonup{abc} −−⇀ 𝑎𝑏𝑐 𝑎𝑏𝑐 − − ⇀ ↽ − − \xleftrightarrow{abc} \xleftrightharpoons{abc} \xmapsto{abc} \xRightarrow{abc} \xrightharpoondown{abc} \xrightharpoonup{abc} \xrightleftharpoons{abc} \xLeftrightarrow{abc} Table 264: chemarr Extensible Arrows 𝑎𝑏𝑐 −− ⇀ ↽ − − \xrightleftharpoons{abc} Table 265: chemarrow Extensible Arrows abc DGGGGGGG def \autoleftarrow{abc}{def} abc GGGGGGGA def \autorightarrow{abc}{def} abc E GG GGGGGGGC def \autoleftrightharpoons{abc}{def} abc GGGGGGGB F GG def \autorightleftharpoons{abc}{def} In addition to the symbols shown above, chemarrow also provides \larrowfill, \rarrowfill, \leftrightharpoonsfill, and \rightleftharpoonsfill macros. Each of these takes a length argument and produces an arrow of the specified length. 111 Table 266: extarrows Extensible Arrows 𝑎𝑏𝑐 ⇐=⇒ 𝑎𝑏𝑐 ←−→ 𝑎𝑏𝑐 ==== 𝑎𝑏𝑐 ⇐== 𝑎𝑏𝑐 ←−− \xLeftrightarrow{abc} \xleftrightarrow{abc} 𝑎𝑏𝑐 ⇐= =⇒ 𝑎𝑏𝑐 ←− −→ 𝑎𝑏𝑐 ==⇒ \xlongequal{abc} \xLongleftarrow{abc} 𝑎𝑏𝑐 −−→ \xLongleftrightarrow{abc} \xlongleftrightarrow{abc} \xLongrightarrow{abc} \xlongrightarrow{abc} \xlongleftarrow{abc} Table 267: extpfeil Extensible Arrows 𝑎𝑏𝑐 ==== 𝑎𝑏𝑐 ↦−−→ 𝑎𝑏𝑐 −===− \xlongequal{abc} 𝑎𝑏𝑐 −−−− 𝑎𝑏𝑐 −−−− \xmapsto{abc} \xtwoheadleftarrow{abc} \xtwoheadrightarrow{abc} \xtofrom{abc} The extpfeil package also provides a \newextarrow command to help you define your own extensible arrow symbols. See the extpfeil documentation for more information. Table 268: DotArrow Extensible Arrows 𝑎 ≻ \dotarrow{a} The DotArrow package provides mechanisms for lengthening the arrow, adjusting the distance between the arrow and its symbol, and altering the arrowhead. See the DotArrow documentation for more information. Table 269: halloweenmath Extensible Arrows ←−− 𝑎𝑏𝑐 ←→ 𝑎𝑏𝑐 −−→ 𝑎𝑏𝑐 \overscriptleftarrow{abc} 𝑎𝑏𝑐 ←−− \underscriptleftarrow{abc} \overscriptleftrightarrow{abc} 𝑎𝑏𝑐 ←→ \underscriptleftrightarrow{abc} \overscriptrightarrow{abc} 𝑎𝑏𝑐 −−→ \underscriptrightarrow{abc} These commands always typeset the arrow in script (small) style, hence the “script” in their names. Contrast the size of the arrowheads in the following examples: −→ 𝑎𝑏𝑐 −−→ 𝑎𝑏𝑐 vs. \overrightarrow{abc} \overscriptrightarrow{abc} Table 270: trfsigns Extensible Transform Symbols 𝑎𝑏𝑐 \dft{abc} 𝑎𝑏𝑐 112 \DFT{abc} « ###»& 𝑎𝑏𝑐& $$𝑎𝑏𝑐 — ### # Table 271: esrelation Extensible Relations –$ #####„ \relationleftproject{abc} $𝑎𝑏𝑐 \relationrightproject{abc} \relationlifting{abc} Table 272: halloweenmath Extensible Brooms and Pitchforks −−− < 𝑎𝑏𝑐 \overleftbroom{abc} 𝑎𝑏𝑐 >−− − \underrightbroom{abc} −−∈ 𝑎𝑏𝑐 \overleftpitchfork{abc} 𝑎𝑏𝑐 ∋−− \underrightpitchfork{abc} −−− > 𝑎𝑏𝑐 \overrightbroom{abc} −−< − ∋−− 𝑎𝑏𝑐 \overrightpitchfork{abc} −−−∈ 𝑎𝑏𝑐 −−− < \underleftbroom{abc} >−− − 𝑎𝑏𝑐 −−∈ \underleftpitchfork{abc} ∋−−− 𝑎𝑏𝑐 𝑎𝑏𝑐 \xleftbroom{abc} \xleftpitchfork{abc} 𝑎𝑏𝑐 𝑎𝑏𝑐 \xrightbroom{abc} \xrightpitchfork{abc} Table 273: halloweenmath Extensible Witches −−− < 𝑎𝑏𝑐 𝑎𝑏𝑐 \overleftwitchonbroom{abc} \underrightwitchonbroom{abc} >−− − −−− < 𝑎𝑏𝑐 𝑎𝑏𝑐 \overleftwitchonbroom*{abc} \underrightwitchonbroom*{abc} >−− − −−∈ 𝑎𝑏𝑐 𝑎𝑏𝑐 \overleftwitchonpitchfork*{abc} \underrightwitchonpitchfork*{abc} ∋−− −−∈ 𝑎𝑏𝑐 𝑎𝑏𝑐 \overleftwitchonpitchfork{abc} >−− − 𝑎𝑏𝑐 −−< − \overrightwitchonbroom*{abc} \overrightwitchonbroom{abc} −−< − \overrightwitchonpitchfork*{abc} −−−∈ \xleftwitchonpitchfork*{abc} 𝑎𝑏𝑐 ∋−− 𝑎𝑏𝑐 \xleftwitchonbroom{abc} 𝑎𝑏𝑐 ∋−− 𝑎𝑏𝑐 \xleftwitchonbroom*{abc} 𝑎𝑏𝑐 >−− − 𝑎𝑏𝑐 \underrightwitchonpitchfork{abc} ∋−− 𝑎𝑏𝑐 −−−∈ \overrightwitchonpitchfork{abc} \xleftwitchonpitchfork{abc} 𝑎𝑏𝑐 𝑎𝑏𝑐 \underleftwitchonbroom{abc} >−− − \underleftwitchonbroom*{abc} >−− − \xrightwitchonbroom{abc} −−− < 𝑎𝑏𝑐 𝑎𝑏𝑐 \xrightwitchonbroom*{abc} −−− < 𝑎𝑏𝑐 𝑎𝑏𝑐 \underleftwitchonpitchfork*{abc} ∋−−− \underleftwitchonpitchfork{abc} ∋−−− \xrightwitchonpitchfork{abc} −−∈ 𝑎𝑏𝑐 𝑎𝑏𝑐 −−∈ 113 \xrightwitchonpitchfork*{abc} Table 274: halloweenmath Extensible Ghosts 𝑎𝑏𝑐 \overleftswishingghost{abc} 𝑎𝑏𝑐 \overrightswishingghost{abc} 𝑎𝑏𝑐 \underleftswishingghost{abc} 𝑎𝑏𝑐 \underrightswishingghost{abc} 𝑎𝑏𝑐 𝑎𝑏𝑐 \xleftswishingghost{abc} \xrightswishingghost{abc} Table 275: halloweenmath Extensible Bats 𝑎𝑏𝑐 \overleftflutteringbat{abc} 𝑎𝑏𝑐 \overrightflutteringbat{abc} 𝑎𝑏𝑐 \underleftflutteringbat{abc} 𝑎𝑏𝑐 \underrightflutteringbat{abc} 𝑎𝑏𝑐 𝑎𝑏𝑐 \xleftflutteringbat{abc} \xrightflutteringbat{abc} Table 276: holtpolt Non-commutative Division Symbols 𝑎𝑏𝑐 𝑑𝑒𝑓 𝑎𝑏𝑐 𝑑𝑒𝑓 \holter{abc}{def} \polter{abc}{def} Table 277: Dots · \cdotp ··· \cdots : .. . \colon* . \ldotp \ddots† ... \ldots .. . \vdots† * While “:” is valid in math mode, \colon uses different surrounding spacing. See Section 10.4 and the Short Math Guide for LATEX [Dow00] for more information on math-mode spacing. † The mathdots package redefines \ddots and \vdots (Table 283) to make them scale properly with font size. (They normally scale horizontally but not vertically.) \fixedddots and \fixedvdots provide the original, fixed-height functionality of LATEX 2𝜀 ’s \ddots and \vdots macros. Table 278: 𝒜ℳ𝒮 Dots ∵ ··· ... * \because* \dotsb \dotsc ··· ··· ... \dotsi \dotsm \dotso ∴ \therefore* \because and \therefore are defined as binary relations and therefore also appear in Table 90 on page 50. The 𝒜ℳ𝒮 \dots symbols are named according to their intended usage: \dotsb between pairs of binary operators/relations, \dotsc between pairs of commas, \dotsi between pairs of integrals, \dotsm between pairs of multiplication signs, and \dotso between other symbol pairs. 114 Table 279: wasysym Dots ∴ \wasytherefore Table 280: MnSymbol Dots ⋅ ⋱ ⋯ \cdot \ddotdot \ddots \diamonddots \downtherefore \fivedots ∵ ∷ ⋰ ∴ ∶ ⋮ \hdotdot \hdots \lefttherefore \righttherefore \squaredots \udotdot \udots \uptherefore \vdotdot \vdots MnSymbol defines \therefore as \uptherefore and \because as \downtherefore. Furthermore, \cdotp and \colon produce the same glyphs as \cdot and \vdotdot respectively but serve as TEX math punctuation (class 6 symbols) instead of TEX binary operators (class 2). All of the above except \hdots and \vdots are defined as binary operators and therefore also appear in Table 56 on page 31. Table 281: fdsymbol Dots \cdot \ddotdot \ddots \downtherefore \hdotdot ⋅ ⋱ ∵ ⋯ ∷ \hdots \lefttherefore \righttherefore \squaredots \udotdot ⋰ ∴ ∶ \udots \uptherefore \vdotdot fdsymbol defines \adots as a synonym for \udots; \because as a synonym for \downtherefore; \cdotp as a synonym for \cdot; \cdots as a synonym for \hdots; \Colon as a synonym for \squaredots; \colon, \mathcolon, and \mathratio as synonyms for \vdotdot; and \therefore as a synonym for \uptherefore. (Some of these serve different mathematical roles, such as relations versus binary operators.) Table 282: stix Dots ⋰ ∵ ⋅ · ⋯ ∷ ⋱ ‥ \adots \because \cdot \cdotp \cdots \Colon \ddots \enleadertwodots ⦙ . … ∴ \fourvdots \ldotp \mathellipsis \therefore stix defines \centerdot as a synonym for \cdotp and \dotsb and \dotsm as synonyms for \cdots. .. . Table 283: mathdots Dots . . \ddots . . \iddots .. \vdots Unlike the default definitions of the above (Table 277), mathdots’s commands are designed to scale properly with the surrounding font size. 115 Table 284: yhmath Dots .. .. . \adots Table 285: teubner Dots .. .. .. .. \antilabe .. \? . \; \: Table 286: begriff Begriffsschrift Symbols \BGassert 𝑏 𝑎 \BGcontent \BGconditional{a}{b} a \BGnot \BGquant{a} The begriff package contains additional commands for typesetting Frege’s Begriffsschrift notation for second-order logic. See the begriff documentation for more information. Table 287: frege Begriffsschrift Symbols \Facontent \Fancontent a a a a a a \Fanncontent \Fcontent a a a a a a \Fannquant{a} \Fannquantn{a} \Fannquantnn{a} \Fanquant{a} \Fanquantn{a} \Fanquantnn{a} \Fncontent \Fnncontent a a a a a \Faquant{a} \Faquantn{a} \Faquantnn{a} \Fnnquant{a} \Fnnquantn{a} \Fnnquantnn{a} \Fnquant{a} \Fnquantn{a} \Fnquantnn{a} \Fquantn{a} \Fquantnn{a} The frege package contains additional commands for typesetting Frege’s Begriffsschrift notation for second-order logic. See the frege documentation for more information. Table 288: mathcomp Math Symbols ℃ µ Ω ‱ \tccentigrade \tcmu ‰ \tcohm \tcpertenthousand \tcperthousand Table 289: marvosym Math Symbols W ; ] = [ \ ? \AngleSign \Conclusion \Congruent \Corresponds \Divides \DividesNot \Equivalence > < ÷ , / ( - \LargerOrEqual \LessOrEqual \MultiplicationDot \MVComma \MVDivision \MVLeftBracket \MVMinus 116 * . + : ) ^ \MVMultiplication \MVPeriod \MVPlus \MVRightArrow \MVRightBracket \NotCongruent Table 290: marvosym Digits 0 1 \MVZero \MVOne 2 3 4 5 \MVTwo \MVThree 6 7 \MVFour \MVFive \MVSix \MVSeven 8 9 \MVEight \MVNine Table 291: fge Digits 0 1 \fgestruckzero \fgestruckone Table 292: dozenal Base-12 Digits X E \x \e Table 293: mathabx Mayan Digits 0 1 \maya{0} \maya{1} 2 3 \maya{2} \maya{3} \maya{4} \maya{5} 4 5 Table 294: stix Infinities ♾ ⧜ ∞ ⧞ \acidfree \iinfin ⧝ \infty \nvinfty \tieinfty Table 295: stix Primes ′ ″ ‴ ⁗ \prime \dprime \trprime \qprime ‵ ‶ ‷ \backprime \backdprime \backtrprime Table 296: stix Empty Sets ∅ ⦳ ⦴ \emptyset \emptysetoarr \emptysetoarrl ⦱ ⦲ ⦰ ∅ \emptysetobar \emptysetocirc \revemptyset \varnothing Table 297: 𝒜ℳ𝒮 Angles ∠ \angle ] \measuredangle ^ \sphericalangle Table 298: MnSymbol Angles ∠ \angle ∡ \measuredangle 117 ∢ \sphericalangle Table 299: fdsymbol Angles ∠ ∡ ⊾ ⦝ \angle \measuredangle \measuredrightangle \measuredrightangledot ⦣ ⦛ ∟ ⦜ \revangle \revmeasuredangle \rightangle \rightanglesquare ∢ § ⦠ ⦡ \sphericalangle \sphericalangledown \sphericalangleleft \sphericalangleup fdsymbol defines \measuredangleleft as a synonym for \revmeasuredangle; \revsphericalangle and \gtlpar as synonyms for \sphericalangleleft; \rightanglesqr as a synonym for \rightanglesquare; and \rightanglemdot as a synonym for \measuredrightangledot. Table 300: boisik Angles Õ Ö á \angle \measuredangle \measuredrightangle à \rightangle × \sphericalangle â \rightanglemdot ã \rightanglesqr Table 301: stix Angles ⦟ ∠ ⦞ ⦤ ⦠ ⦯ ⦮ ⦫ ⦩ ⦪ \angdnr \angle \angles \angleubar \gtlpar \measangledltosw \measangledrtose \measangleldtosw \measanglelutonw \measanglerdtose ⦨ ⦭ ⦬ ∡ ⦛ ⊾ ⍼ ⦣ ⦥ ∟ \measanglerutone \measangleultonw \measangleurtone \measuredangle \measuredangleleft \measuredrightangle \rangledownzigzagarrow \revangle \revangleubar \rightangle ⦝ ⦜ ∢ ⦡ ⟀ ⦢ ⦦ ⦧ \rightanglemdot \rightanglesqr \sphericalangle \sphericalangleup \threedangle \turnangle \wideangledown \wideangleup Table 302: Miscellaneous LATEX 2𝜀 Math Symbols ℵ ∅ ̸ ∖ \aleph \emptyset‡ \angle \backslash ^ ∞ f \Box*,† \Diamond* \infty \mho* ∇ ¬ ′‘ \nabla \neg \prime \surd △ \triangle * Not predefined in LATEX 2𝜀 . Use one of the packages latexsym, amsfonts, amssymb, txfonts, pxfonts, or wasysym. Note, however, that amsfonts and amssymb define \Diamond to produce the same glyph as \lozenge (“♦”); the other packages produce a squarer \Diamond as depicted above. † To use \Box—or any other symbol—as an end-of-proof (Q.E.D.) marker, consider using the ntheorem package, which properly juxtaposes a symbol with the end of the proof text. ‡ Many people prefer the look of 𝒜ℳ𝒮’s \varnothing (“∅”, Table 303) to that of LATEX’s \emptyset. 118 Table 303: Miscellaneous 𝒜ℳ𝒮 Math Symbols 8 F N \backprime \bigstar \blacklozenge \blacksquare \blacktriangle H ð ♦ \blacktriangledown \diagdown \diagup \eth \lozenge f O ∅ M \mho \square \triangledown \varnothing \vartriangle Table 304: Miscellaneous wasysym Math Symbols * 2 \Box 3 \Diamond \mho* f \varangle wasysym also defines an \agemO symbol, which is the same glyph as \mho but is intended for use in text mode. Table 305: Miscellaneous txfonts/pxfonts Math Symbols _ \Diamondblack \Diamonddot o n \lambdabar \lambdaslash Table 306: Miscellaneous mathabx Math Symbols 0 å ä I \degree \diagdown \diagup \diameter 4 # 8 $ \fourth \hash \infty \leftthreetimes > & 9 % \measuredangle \pitchfork \propto \rightthreetimes 2 ? 3 # \second \sphericalangle \third \varhash Table 307: Miscellaneous MnSymbol Math Symbols ⌐ ‵ ✓ \backneg \backprime \checkmark ∅ ∞ ⨽ \diameter \infty \invbackneg ⨼ ✠ ∇ \invneg \maltese \nabla ¬ ′ ∫ \neg \prime \smallint MnSymbol defines \emptyset and \varnothing as synonyms for \diameter; \lnot and \minushookdown as synonyms for \neg; \minushookup as a synonym for \invneg; \hookdownminus as a synonym for \backneg; and, \hookupminus as a synonym for \invbackneg. 119 Table 308: Miscellaneous Internal MnSymbol Math Symbols ∫…∫ ⨚ ⨙ ∲ ∲ ∯ ∮ ∳ ∳ ⨏ ⨋ \partialvardint \partialvardlanddownint \partialvardlandupint \partialvardlcircleleftint \partialvardlcirclerightint \partialvardoiint \partialvardoint \partialvardrcircleleftint \partialvardrcirclerightint \partialvardstrokedint \partialvardsumint ∫…∫ ⨚ ⨙ ∲ ∲ ∯ ∮ ∳ ∳ ⨏ ⨋ \partialvartint \partialvartlanddownint \partialvartlandupint \partialvartlcircleleftint \partialvartlcirclerightint \partialvartoiint \partialvartoint \partialvartrcircleleftint \partialvartrcirclerightint \partialvartstrokedint \partialvartsumint These symbols are intended to be used internally by MnSymbol to construct the integrals appearing in Table 80 on page 44 but can nevertheless be used in isolation. Table 309: Miscellaneous fdsymbol Math Symbols ⌐ ‵ ✓ ∅ \backneg \backprime \checkmark \emptyset ∞ ⌐ ✠ ¬ \infty \invneg \maltese \neg ′ ⦰ ⌔ ∫ \prime \revemptyset \sector \smallint fdsymbol defines \hookdownminus as a synonym for \backneg; \invneg and \invnot as synonyms for \backneg; \lnot and \minushookdown as synonyms for \neg; \turnedbackneg as a synonym for \intprodr; \turnedneg as a synonym for \intprod; and \diameter and \varnothing as synonyms for \emptyset. Table 310: Miscellaneous boisik Math Symbols ~ À ï å Ü Û \backepsilon \backprime \checkmark \dalambert \diagdown \diagup ò \hermitmatrix Ý \notbot ÷ \iinfin Ü \nottop \invnot } \riota \lambdabar ñ \sinewave î \lambdaslash \maltese 120 Á \varnothing Table 311: Miscellaneous stix Math Symbols ⏦ ∖ ⎶ ⟘ ⫼ ⟙ ☻ ⎪ ‸ ✓ ⌲ ☡ ⟍ ⟋ ⌀ ✽ ⏧ ð ‼ ⤬ ⟗ * \accurrent \backslash \bbrktbrk \bigbot \biginterleave \bigtop \blacksmiley \bracevert \caretinsert \checkmark \conictaper \danger \diagdown \diagup \diameter \dingasterisk \elinters \eth \Exclam \fdiagovrdiag \fullouterjoin ⊹ ⁃ 〰 ∆ ◘ ⌐ ⨝ ⧠ ⟕ ◟ ◞ ✠ § ␣ ∇ ¬ ⏠ ⫡ 〒 ⌒ ⌓ \hermitmatrix \hyphenbullet \hzigzag \increment \inversebullet \invnot \Join \laplac \leftouterjoin \llarc \lrarc \maltese \mathsection \mathvisiblespace \nabla \neg* \obrbrak \perps \postalmark \profline \profsurf ⅊ ∎ ⁇ ⤫ ⟖ ⅃ ⅂ ∿ ⏤ ⧧ ⫱ ⌙ ⏡ ◜ ◝ ⌗ ⦚ ¥ ⨟ ⨠ ⨡ \PropertyLine \QED \Question \rdiagovfdiag \rightouterjoin \sansLmirrored \sansLturned \sinewave \strns \thermod \topcir \turnednot \ubrbrak \ularc \urarc \viewdata \vzigzag \yen \zcmp \zpipe \zproject stix defines \lnot as a synonym for \neg. Table 312: endofproofwd End-of-Proof Symbols \wasserdicht \wasserdicht is implemented as an external PDF graphic. The command in fact typesets the symbol flush right on the page to signify the end of proof. To use the command in inline text, simply load the underlying graphic file directly: \includegraphics[width=10pt]{endofproofwd.pdf} Table 313: Miscellaneous textcomp Text-mode Math Symbols \textdegree* \textdiv \textfractionsolidus \textlnot \textminus ° ÷ ⁄ ¬ − ½ ¼ ¹ ± √ \textonehalf† \textonequarter† \textonesuperior \textpm \textsurd ¾ ³ × ² \textthreequarters† \textthreesuperior \texttimes \texttwosuperior * If you prefer a larger degree symbol you might consider defining one as “\ensuremath{^\circ}” (“∘ ”). † nicefrac (part of the units package) or the newer xfrac package can be used to construct vulgar fractions like “1/2”, “1/4”, “3/4”, and even “c/o”. 121 Table 314: Miscellaneous fge Math Symbols K M O \fgebackslash \fgebaracute \fgebarcap S Q N \fgecap \fgecapbar \fgecup R P i \fgecupacute \fgecupbar \fgeinfty h L Table 315: Miscellaneous mathdesign Math Symbols ∟ \rightangle 122 \fgelangle \fgeupbracket Table 316: Math Alphabets Font sample Generating command ABCdef123 ABCdef123 𝐴𝐵𝐶𝑑𝑒𝑓 123 𝒜ℬ𝒞 𝒜ℬ𝒞 or ABC or AB C or ABC or ABC ABCdef123 \mathrm{ABCdef123} \mathit{ABCdef123} \mathnormal{ABCdef123} \mathcal{ABC} \mathscr{ABC} \mathcal{ABC} \mathcal{ABC} \mathscr{ABC} \mathcal{ABC} \mathscr{ABC} \mathcal{ABC} \mathscr{ABC} \mathbb{ABC} \varmathbb{ABC} \mathbb{ABCdef123} \mathbb{ABCdef123} \mathbbm{ABCdef12} \mathbbmss{ABCdef12} \mathbbmtt{ABCdef12} \mathds{ABC1} \mathds{ABC1} \mathbb{ABCdef123} \mathbbb{ABCdef123} \symA\symB\symC \mathfrak{ABCdef123} \textfrak{ABCdef123} \textswab{ABCdef123} \textgoth{ABCdef123} ABCdef123 ABCdef12 ABCdef12 ABCdef12 ABC1 ABC1 ABCdef123 ABCdef123 ÁÂà ABCdef123 ABCdef123 ABCdef123 ABCˇf123 TEX font cmr10 cmmi10 cmmi10 cmsy10 rsfs10 rsfs10 eusm10 eusm10 rsfso10 rsfso10 urwchancal urwchancal msbm10 txmia bbold10 mbb10 bbm10 bbmss10 bbmtt10 dsrom10 dsss10 DSSerif DSSerif-Bold china10 eufm10 yfrak yswab ygoth Required package none none none none mathrsfs calrsfs euscript with the mathcal option euscript with the mathscr option rsfso rsfso with the scr option urwchancal* urwchancal* with the mathscr option amsfonts,S amssymb, txfonts, or pxfonts txfonts or pxfonts bbold or mathbbol† mbboard† bbm bbm bbm dsfont dsfont with the sans option dsserif dsserif china2e‡ eufrak yfonts¶ yfonts¶ yfonts¶ The “TEX font” column lists the underlying TEX font (or, more accurately, the .tfm file) that provides the math alphabet. See the corresponding table in the associated Raw Font Tables document for the math alphabet’s complete character set. * urwchancal redefines \mathcal or \mathscr to use Zapf Chancery as the caligraphic or script font. However, like all \mathcal and \mathscr commands shown in Table 316, these support only uppercase letters. An alternative is to put “\DeclareMathAlphabet{\mathpzc}{OT1}{pzc}{m}{it}” in your document’s preamble to make \mathpzc typeset a wider set of characters in Zapf Chancery. Unfortunately, with this technique accents, superscripts, and subscripts don’t align as well as they do with urwchancal. r As a similar trick, you can typeset the Calligra font’s script “ ” (or other calligraphic symbols) in math mode by loading the calligra package and putting “\DeclareMathAlphabet{\mathcalligra}{T1}{calligra}{m}{n}” in your document’s preamble to make \mathcalligra typeset its argument in the Calligra font. You may also want to specify “\DeclareFontShape{T1}{calligra}{m}{n}{<->s*[2.2]callig15}{}” to set Calligra at 2.2 times its design size for a better blend with typical body fonts. 123 † The mathbbol package defines some additional blackboard bold characters: parentheses, square brackets, angle brackets, and—if the bbgreekl option is passed to mathbbol—Greek letters. For instance, “<[(αβγ)]>” is produced by “\mathbb{\Langle\Lbrack\Lparen\bbalpha\bbbeta\bbgamma \Rparen\Rbrack\Rangle}”. mbboard extends the blackboard bold symbol set significantly further. It supports not only the Greek alphabet—including “Greek-like” symbols such as \bbnabla (“”)—but also all punctuation marks, various currency symbols such as \bbdollar (“$”) and \bbeuro (“û”), and the Hebrew alphabet (e.g., “\bbfinalnun\bbyod\bbqof\bbpe” → “ÏÉ×Ô”). ‡ The \sym. . . commands provided by the ChinA2e package are actually textmode commands. They are included in Table 316 because they resemble the blackboard-bold symbols that appear in the rest of the table. In addition to the 26 letters of the English alphabet, ChinA2e provides three umlauted blackboardbold letters: \symAE (“ ”), \symOE (“ ”), and \symUE (“ ”). Note that ChinA2e does provide math-mode commands for the most common number-set symbols. These are presented in Table 187 on page 92. Û Ü Ý ¶ As their \text. . . names imply, the fonts provided by the yfonts package are actually text fonts. They are included in Table 316 because they are frequently used in a mathematical context. S An older (i.e., prior to 1991) version of the 𝒜ℳ𝒮’s fonts rendered C, N, R, S, and Z as C, N, R, S, and Z. As some people prefer the older glyphs—much to the 𝒜ℳ𝒮’s surprise—and because those glyphs fail to build under modern versions of METAFONT, Berthold Horn uploaded PostScript fonts for the older blackboard-bold glyphs to CTAN, to the fonts/msym10 directory. As of this writing, however, there are no LATEX 2𝜀 packages for utilizing the now-obsolete glyphs. 124 4 Science and technology symbols This section lists symbols that are employed in various branches of science and engineering. Table 317: gensymb Symbols Defined to Work in Both Math and Text Mode ℃ ° µ Ω \celsius \degree ‰ \micro \ohm \perthousand Table 318: wasysym Electrical and Physical Symbols : ! & \AC @ \VHF :::: : \photon QPPPPPPR \HF Table 319: ifsym Pulse Diagram Symbols \FallingEdge \LongPulseHigh ' $ \LongPulseLow \PulseHigh % " # \PulseLow \RaisingEdge \gluon \ShortPulseHigh \ShortPulseLow In addition, within \textifsym{. . .}, the following codes are valid: l L l L m M h H m M d D h H d D < = < << > ? > >> mm<DDD>mm This enables one to write “\textifsym{mm<DDD>mm}” to get “ ” or “\textifsym{L|H|L|H|L}” to get “ ”. See also the timing package, which provides a wide variety of pulse-diagram symbols within an environment designed specifically for typesetting pulse diagrams. L|H|L|H|L Finally, \textifsym supports the display of segmented digits, as would appear on an LCD: “\textifsym{-123.456}” produces “ ”. “\textifsym{b}” outputs a blank with the same width as an “ ”. -123.456 8 Table 320: ar Aspect Ratio Symbol A \AR Table 321: textcomp Text-mode Science and Engineering Symbols ℃ \textcelsius ℧ \textmho 125 µ \textmu Ω \textohm Table 322: steinmetz Extensible Phasor Symbol 𝑎𝑏𝑐 \phase{abc} The \phase command uses the pict2e package to draw a horizontally and vertically scalable Steinmetz phasor symbol. Consequently, \phase works only with those TEX backends supported by pict2e. See the pict2e documentation for more information. Table 323: emf Electromotive Force Symbols E \emf with package option boondox (default) E \emf with package option cal* \emf with package option calligra E E \emf with package option chorus ℰ \emf with package option cmr E \emf with package option fourier E \emf with package option frcursive E \emf with package option miama ℰ * \emf with package option rsfs With the cal package option, \emf uses \mathcal. Hence, the depiction of “E” depends on the currently loaded math font. Table 324: wasysym Astronomical Symbols ' ♀ \mercury \venus \earth \mars X Y \jupiter \saturn ⊙ \astrosun # \fullmoon $ \leftmoon ] ^ \aries \taurus \gemini _ ` \cancer \leo \virgo a b c \libra \scorpio \sagittarius e d f \aquarius \capricornus \pisces \ascnode \descnode V \conjunction W \opposition ♁ ♂ Z [ \uranus \neptune \ \pluto \newmoon % \rightmoon \vernal Table 325: marvosym Astronomical Symbols  à \Mercury \Venus Ê Ä \Earth \Mars Á \Moon À \Sun à á â \Aries \Taurus \Gemini ã ä å \Cancer \Leo \Virgo Å Æ \Jupiter \Saturn Ç È \Uranus \Neptune æ ç è \Libra \Scorpio \Sagittarius é ê ë \Capricorn \Aquarius \Pisces É \Pluto Note that \Aries . . . \Pisces can also be specified with \Zodiac{1} . . . \Zodiac{12}. 126 Table 326: fontawesome Astronomical Symbols { | ☼ \faMars \faMercury ♀ \faMoonO \faSunO \faVenus Table 327: mathabx Astronomical Symbols A B \Mercury \Venus C D \Earth \Mars E F \Jupiter \Saturn G H \Uranus \Neptune I J \Pluto \varEarth M \fullmoon K \leftmoon N \newmoon L \rightmoon @ \Sun P \Aries Q \Taurus R \Gemini mathabx also defines \girl as an alias for \Venus, \boy as an alias for \Mars, and \Moon as an alias for \leftmoon. Table 328: stix Astronomical Symbols ☉ \astrosun ☾ \leftmoon 127 ☽ \rightmoon ☼ \sun Table 329: starfont Astronomical Symbols f g L \Mercury \Venus \Terra h j S \Mars \Jupiter \Saturn F G J \Uranus \Neptune \Pluto l A H \varTerra \varUranus \varPluto s \Sun d \Moon a \varMoon ä Ü \Cupido \Hades ü Ä \Zeus \Kronos ß Ö \Apollon \Admetos ö § \Vulkanus \Poseidon Ø \Lilith k \NorthNode ? \SouthNode +  D \Amor \Ceres \Chiron @ % ½ \Eros \Hidalgo \Hygiea ; : ¿ \Juno \Pallas \Psyche ˝ ˙ \Sappho \Vesta K \Fortune x c v b \Aries \Taurus \Gemini \Cancer n m X C \Leo \Virgo \Libra \Scorpio V B N M \Sagittarius \Capricorn \Aquarius \Pisces Z \varCapricorn q p u \Conjunction \Opposition \Trine t r o \Square \Sextile \Quincunx w e i \Semisextile \Semisquare \Sesquiquadrate 1 2 \ASC \DSC ’ 4 \EastPoint \IC 3 ! \MC \Vertex 7 \Direct 5 \Retrograde 6 \Station Ò \Air Ñ \Earth Ð \Fire Ó \Water 0 \Natal å \Pentagram ) \Radix Table 330: wasysym APL Symbols ~ F o } \APLbox \APLcomment \APLdown \APLdownarrowbox \APLinput ÷ ~ p − 𝑎 ∘ \APLcirc{a} ∼ 𝑎 q \APLinv \APLleftarrowbox \APLlog \APLminus \APLrightarrowbox E n − ∖ − / \APLstar \APLup \APLuparrowbox \notbackslash \notslash \APLnot{a} 𝑎| \APLvert{a} Table 331: stix APL Symbols ⍰ ⍓ \APLboxquestion \APLboxupcaret ⍀ ⌿ 128 \APLnotbackslash \APLnotslash Table 332: apl APL Symbols | \ \ / \AB \AM \BL \BX \CB \CE \CO \CR \CS \DA % | \DD \DE \DL \DM \DQ \DU \EN \EP \FL \FM \GD \GE \GO \GU \IB \IO \LB \LD \LE \LG | { * & \LK \LO \LU \NE \NG \NN \NR \NT \OM \OR ' } \PD \QQ \RB \RK \RO \RU \RV \SO \SS \TR | SS \ ^ A B C D E F \UA \US \UU \XQ \ZA \ZB \ZC \ZD \ZE \ZF G H I J K L M N O P \ZG \ZH \ZI \ZJ \ZK \ZL \ZM \ZN \ZO \ZP Q R S T U V W X Y Z \ZQ \ZR \ZS \ZT \ZU \ZV \ZW \ZX \ZY \ZZ Table 333: marvosym Computer Hardware Symbols Í Ï \ComputerMouse \Keyboard Ñ Ò \ParallelPort \Printer Î Ð \SerialInterface \SerialPort Table 334: keystroke Computer Keys Alt AltGr Break \Alt Enter \AltGr Esc * \Break Home * \Esc \Home * \PrtSc* → \RArrow ←˒ \Return \Ins Scroll \Scroll* \Ctrl* ← \LArrow Shift ⇑ \Shift* \DArrow Num \NumLock \BSpace Ctrl ↓ * PrtSc Ins →−↦ † \Enter* * \Spacebar Del \Del * Page ↓ \PgDown → − − −− → \Tab† End \End* Page ↑ \PgUp* ↑ \UArrow * Changes based on the language option passed to the keystroke package. For example, the german option makes \Del produce “ Entf ” instead of “ Del ”. † These symbols utilize the rotating package and therefore display improperly in most DVI viewers. The \keystroke command draws a key with an arbitrary label. For example, “\keystroke{F7}” produces “ F7 ”. 129 Table 335: ascii Control Characters (CP437) ␁ ␂ ␃ ␄ ␅ ␆ ␇ \SOH \STX \ETX \EOT \ENQ \ACK \BEL ␡ \DEL ␈ ␉ ␊ ␋ ␌ \BS \HT \LF \VT \FF \CR \SO ␏ ␐ ␑ ␒ ␓ ␔ ␕ \SI \DLE \DCa \DCb \DCc \DCd \NAK ␖ ␗ ␘ ␙ ␚ ␛ ␜ \SYN \ETB \CAN \EM \SUB \ESC \FS \NBSP ␀ \NUL ¦ \splitvert ␝ ␞ \GS \RS \US Code Page 437 (CP437), which was first utilized by the original IBM PC, uses the symbols \SOH through \US to depict ASCII characters 1–31 and \DEL to depict ASCII character 127. The \NUL symbol, not part of CP437, represents ASCII character 0. \NBSP, also not part of CP437, represents a nonbreaking space. \splitvert is merely the “|” character drawn as it was on the IBM PC. Table 336: logic Logic Gates \ANDd \ANDl \ANDr \BUFu \NANDl \ORd \BusWidth \NANDr \ORl \INVd \NANDu \ORr \ANDu \INVl \NORd \ORu \BUFd \INVr \NORl \BUFl \INVu \BUFr \NANDd \NORr \NORu The logic package implements the digital logic-gate symbols specified by the U.S. Department of Defense’s MIL-STD-806 standard. Note that on CTAN, the package is called logic, but the package is loaded using \usepackage{milstd}. (There was already a—completely unrelated—milstd package on CTAN at the time of logic’s release.) Consequently, package details are listed under milstd in Table 547 and Table 548 on page 239. Table 337: marvosym Communication Symbols k z \Email \EmailCT t u \fax \FAX v B \Faxmachine \Letter 130 E H \Lightning \Mobilefone A T \Pickup \Telefon Table 338: marvosym Engineering Symbols " # % \Beam \Bearing \Circpipe \Circsteel \Fixedbearing \Flatsteel * l & L $ ' \Force \Hexasteel \Lefttorque \Lineload \Loosebearing \Lsteel \Octosteel \Rectpipe \Rectsteel \Righttorque \RoundedLsteel* \RoundedTsteel* \RoundedTTsteel \Squarepipe \Squaresteel \Tsteel \TTsteel \RoundedLsteel and \RoundedTsteel seem to be swapped, at least in the 2000/05/01 version of marvosym. Table 339: wasysym Biological Symbols ♀ \female ♂ \male Table 340: stix Biological Symbols ♀ ⚥ ♂ ⚲ \female \Hermaphrodite \male \neuter Table 341: marvosym Biological Symbols ~ \FEMALE \Female \FemaleFemale } \FemaleMale \Hermaphrodite \HERMAPHRODITE | \Male \MALE \MaleMale { \Neutral Table 342: fontawesome Biological Symbols { \faGenderless \faMars \faMarsDouble \faMarsStroke } \faMarsStrokeH \faMarsStrokeV \faNeuter \faTransgender ~ ♀ \faTransgenderAlt \faVenus \faVenusDouble \faVenusMars fontawesome defines \faIntersex as a synonym for \faTransgender Table 343: marvosym Safety-related Symbols h n \Biohazard \BSEfree C J \CEsign \Estatically ` a 131 \Explosionsafe \Laserbeam j ! \Radioactivity \Stopsign Table 344: feyn Feynman Diagram Symbols ∪ ¶ \bigbosonloop ⊃ ∓ ⊣ \bigbosonloopA \bigbosonloopV \gvcropped ⌉ \feyn{a} ⌋ { ⌈ ⌊ \feyn{c} } \feyn{f} ⨿ \feyn{fd} ↕ ⊑ \feyn{fl} ≀ \feyn{flS} → \feyn{fs} † ¶ ∩ ♣ ↕ ‖ \hfermion \shfermion \smallbosonloop ≪ ⌈ ⇕ \smallbosonloopV \wfermion \whfermion \smallbosonloopA ♣ \feyn{fu} ‡ \feyn{fv} ⊓ \feyn{g} ♢ \feyn{g1} \feyn{gl} \feyn{glB} \feyn{glu} \feyn{gu} \feyn{gv} ♢∫ \feyn{gd} ↑ ⟩ ⇕ ↓ √ 𝒫 \feyn{glS} ⟨ | \feyn{gvs} \feyn{h} S \feyn{hd} \feyn{hs} \feyn{hu} \feyn{m} \feyn{ms} \feyn{p} \feyn{P} \feyn{x} ⊥ All other arguments to the \feyn command produce a “ ” symbol. The feyn package provides various commands for composing the preceding symbols into complete Feynman diagrams. See the feyn documentation for examples and additional information. Table 345: svrsymbols Physics Ideograms Ñ Ð 𝑤 𝑀 𝑦 𝑛 𝐸 𝐹 𝐺 𝐻 𝐼 𝐽 𝐾 Ò 𝑢 𝐶 È Ê É \adsorbate \adsorbent \antimuon \antineutrino \antineutron \antiproton \antiquark \antiquarkb \antiquarkc \antiquarkd \antiquarks \antiquarkt \antiquarku \anyon \assumption \atom \bigassumption \Bigassumption \biggassumption 𝑣 𝛥 𝑐 𝛤 ð 𝑠 ÷ Ë ñ ℎ Ó 𝛩 𝑓 Î ö î ï í Í \experimentalsym \externalsym \fermiDistrib \fermion \Gluon \graphene \graviton \hbond \Higgsboson \hole \interaction \internalsym \ion \ionicbond \Jpsimeson \Kaonminus \Kaonnull \Kaonplus \magnon Õ 𝑑 Ô 𝑂 𝑃 𝑄 𝑅 𝑆 𝑇 𝑈 𝑙 𝛯 æ ç å 𝑡 𝜐 𝑍 𝑜 \protein \proton \quadrupole \quark \quarkb \quarkc \quarkd \quarks \quarkt \quarku \reference \resistivity \rhomesonminus \rhomesonnull \rhomesonplus \solid \spin \spindown \spinup (continued on next page) 132 (continued from previous page) Ú Û Ù 𝜓 𝛱 𝛴 𝜒 ⁀ 𝑉 Ý Þ Ü Å 𝑎 𝑞 è é 𝑖 \Bmesonminus \Bmesonnull \Bmesonplus \bond \boseDistrib \boson \conductivity \covbond \dipole \Dmesonminus \Dmesonnull \Dmesonplus \doublecovbond \electron \errorsym \etameson \etamesonprime \exciton 𝛬 Ç 𝐴 𝑥 𝑁 𝑔 𝑒 𝐵 ã ä 𝑗 ë ì ê 𝑝 𝜙 𝑘 𝑚 \maxwellDistrib \metalbond \method \muon \neutrino \neutron \nucleus \orbit \phimeson \phimesonnull \phonon \pionminus \pionnull \pionplus \plasmon \polariton \polaron \positron 133 𝑧 Ì 𝑏 Ï × Ö à á ß Æ â 𝐿 𝑟 ô ó ò õ \surface \svrexample \svrphoton \tachyon \tauleptonminus \tauleptonplus \Tmesonminus \Tmesonnull \Tmesonplus \triplecovbond \Upsilonmeson \varphoton \water \Wboson \Wbosonminus \Wbosonplus \Zboson 5 Dingbats Dingbats are symbols such as stars, arrows, and geometric shapes. They are commonly used as bullets in itemized lists or, more generally, as a means to draw attention to the text that follows. The pifont dingbat package warrants special mention. Among other capabilities, pifont provides a LATEX interface to the Zapf Dingbats font (one of the standard 35 PostScript fonts). However, rather than name each of the dingbats individually, pifont merely provides a single \ding command, which outputs the character that lies at a given position in the font. The consequence is that the pifont symbols can’t be listed by name in this document’s index, so be mindful of that fact when searching for a particular symbol. Table 346: bbding Arrows y { \ArrowBoldDownRight \ArrowBoldRightCircled z w \ArrowBoldRightShort \ArrowBoldRightStrobe x \ArrowBoldUpRight Table 347: pifont Arrows Ô Õ Ö × Ø Ù Ú Û Ü \ding{212} \ding{213} \ding{214} \ding{215} \ding{216} \ding{217} \ding{218} \ding{219} \ding{220} Ý Þ ß à á â ã ä å \ding{221} \ding{222} \ding{223} \ding{224} \ding{225} \ding{226} \ding{227} \ding{228} \ding{229} æ ç è é ê ë ì í î \ding{230} \ding{231} \ding{232} \ding{233} \ding{234} \ding{235} \ding{236} \ding{237} \ding{238} ï ñ ò ó ô õ ö ÷ ø \ding{239} \ding{241} \ding{242} \ding{243} \ding{244} \ding{245} \ding{246} \ding{247} \ding{248} ù ú û ü ý þ \ding{249} \ding{250} \ding{251} \ding{252} \ding{253} \ding{254} Table 348: adfsymbols Arrows C K S c k s I Q Y i q y \adfarrowne1 \adfarrowne2 \adfarrowne3 \adfarrowne4 \adfarrowne5 \adfarrowne6 \adfarrownw1 \adfarrownw2 \adfarrownw3 \adfarrownw4 \adfarrownw5 \adfarrownw6 E M U e m u D L T d l t \adfarrows1 \adfarrows2 \adfarrows3 \adfarrows4 \adfarrows5 \adfarrows6 \adfarrowse1 \adfarrowse2 \adfarrowse3 \adfarrowse4 \adfarrowse5 \adfarrowse6 \adfhalfarrowleft \adfhalfarrowleftsolid A a \adfhalfarrowright \adfhalfarrowrightsolid \adfarrowe1 \adfarrowe2 \adfarrowe3 \adfarrowe4 \adfarrowe5 \adfarrowe6 \adfarrown1 \adfarrown2 \adfarrown3 \adfarrown4 \adfarrown5 \adfarrown6 B b J R Z j r z H P X h p x F N V f n v G O W g o w \adfarrowsw1 \adfarrowsw2 \adfarrowsw3 \adfarrowsw4 \adfarrowsw5 \adfarrowsw6 \adfarroww1 \adfarroww2 \adfarroww3 \adfarroww4 \adfarroww5 \adfarroww6 Technically, the digit at the end of each \adfarrow⟨dir ⟩⟨digit⟩ command is a macro argument, not part of the command name. The preceding symbols can also be produced by passing a number or a style/direction pair to the \adfarrow command. For example, both \adfarrow{19} and \adfarrow[comic]{east} produce “S”. See the adfsymbols documentation for more information. 134 Table 349: adforn Arrows { ( } ) [ ] \adfhalfleftarrow \adfhalfleftarrowhead \adfhalfrightarrow \adfhalfrightarrowhead \adfleftarrowhead \adfrightarrowhead Table 350: arev Arrows ➢ \arrowbullet Table 351: fontawesome Arrows ○ ○ H ○ d ○ ○ \faArrowCircleDown \faArrowCircleLeft \faArrowCircleODown \faArrowCircleOLeft \faArrowCircleORight \faArrowCircleOUp \faArrowCircleRight \faArrowCircleUp ø ù ú È ò ô û \faArrowDown \faArrowLeft \faArrowRight \faArrows \faArrowsAlt \faArrowsH \faArrowsV \faArrowUp ¶ · ¸ ¹ î < \faLongArrowDown \faLongArrowLeft \faLongArrowRight \faLongArrowUp \faRepeat \faUndo fontawesome defines \faRotateLeft as a synonym for \faUndo and \faRotateRight as a synonym for \faRepeat. Table 352: fontawesome Chevrons ! " # $ \faChevronCircleDown \faChevronCircleLeft \faChevronCircleRight \faChevronCircleUp \faChevronDown \faChevronLeft % \faChevronRight \faChevronUp Table 353: marvosym Scissors q s \CutLeft \CutRight R Q \CuttingLine \LeftScissors S \RightScissors Table 354: bbding Scissors \ScissorHollowLeft \ScissorHollowRight \ScissorLeft \ScissorLeftBrokenBottom \ScissorLeftBrokenTop \ScissorRight \ScissorRightBrokenBottom \ScissorRightBrokenTop Table 355: pifont Scissors ! \ding{33} " \ding{34} # 135 \ding{35} $ \ding{36} Table 356: dingbat Pencils W P \largepencil \smallpencil Table 357: arev Pencils ✎ \pencil Table 358: fontawesome Pencils Ò M \faPencil \faPencilSquare L \faPencilSquareO Table 359: bbding Pencils and Nibs \NibLeft \NibRight \NibSolidLeft \NibSolidRight \PencilLeft \PencilLeftDown \PencilLeftUp \PencilRight \PencilRightDown \PencilRightUp Table 360: pifont Pencils and Nibs . \ding{46} / \ding{47} 0 \ding{48} 1 Table 361: dingbat Fists R D U \leftpointright \leftthumbsdown \leftthumbsup L d u \rightpointleft \ding{49} N 2 \ding{50} \rightpointright \rightthumbsdown \rightthumbsup Table 362: bbding Fists \HandCuffLeft \HandCuffLeftUp \HandCuffRight \HandCuffRightUp \HandLeft \HandLeftUp \HandPencilLeft \HandRight \HandRightUp Table 363: pifont Fists * \ding{42} + \ding{43} 136 , \ding{44} - \ding{45} Table 364: fourier Fists T U \lefthand \righthand Table 365: arev Fists ☞ \pointright Table 366: fontawesome Fists ­ \faHandLizardO \faHandODown \faHandOLeft \faHandORight \faHandOUp « ° ¯ ª ¬ \faHandPaperO \faHandPeaceO \faHandPointerO \faHandRockO \faHandScissorsO ® , \faHandSpockO \faThumbsDown \faThumbsODown \faThumbsOUp \faThumbsUp fontawesome defines \faHandGrabO as a synonym for \faHandRockO and \faHandStopO as a synonym for \faHandPaperO. Table 367: bbding Crosses and Plusses * 4 . \Cross \CrossBoldOutline \CrossClowerTips \CrossMaltese + , ' ( \CrossOpenShadow \CrossOutline \Plus \PlusCenterOpen & ) \PlusOutline \PlusThinCenterOpen Table 368: pifont Crosses and Plusses 9 : \ding{57} \ding{58} ; < = > \ding{59} \ding{60} \ding{61} \ding{62} ? @ \ding{63} \ding{64} Table 369: adfsymbols Crosses and Plusses D E \adfbullet{4} \adfbullet{5} F G H I \adfbullet{6} \adfbullet{7} \adfbullet{8} \adfbullet{9} J \adfbullet{10} Table 370: arev Crosses ♱ \eastcross ♰ \westcross Table 371: bbding Xs and Check Marks ! " \Checkmark \CheckmarkBold # $ \XSolid \XSolidBold 137 % \XSolidBrush Table 372: pifont Xs and Check Marks 3 4 \ding{51} \ding{52} 5 6 7 8 \ding{53} \ding{54} \ding{55} \ding{56} Table 373: wasysym Xs and Check Marks 2 \CheckedBox \Square 4 \XBox Table 374: marvosym Xs and Check Marks V * X \Checkedbox \CrossedBox* O \HollowBox marvosym defines \Crossedbox as a synonym for \CrossedBox. Table 375: arev Xs and Check Marks ✓ ✗ \ballotcheck \ballotx Table 376: fontawesome Xs and Check Marks Ë Í ○ * \faCheck \faCheckCircle \faCheckCircleO é \faCheckSquare \faCheckSquareO \faTimes* ë ○ \faTimesCircle \faTimesCircleO fontawesome defines both \faClose and \faRemove as synonyms for \faTimes. Table 377: pifont Circled Numerals ¬ ­ ® ¯ ° ± ² ³ ´ µ \ding{172} \ding{173} \ding{174} \ding{175} \ding{176} \ding{177} \ding{178} \ding{179} \ding{180} \ding{181} ¶ · ¸ ¹ º » ¼ ½ ¾ ¿ \ding{182} \ding{183} \ding{184} \ding{185} \ding{186} \ding{187} \ding{188} \ding{189} \ding{190} \ding{191} À Á Â Ã Ä Å Æ Ç È É \ding{192} \ding{193} \ding{194} \ding{195} \ding{196} \ding{197} \ding{198} \ding{199} \ding{200} \ding{201} Ê Ë Ì Í Î Ï Ð Ñ Ò Ó \ding{202} \ding{203} \ding{204} \ding{205} \ding{206} \ding{207} \ding{208} \ding{209} \ding{210} \ding{211} pifont (part of the psnfss package) provides a dingautolist environment which resembles enumerate but uses circled numbers as bullets.4 See the psnfss documentation for more information. 4 In fact, dingautolist can use any set of consecutive Zapf Dingbats symbols. 138 Table 378: wasysym Stars C A \davidsstar \hexstar B \varhexstar Table 379: bbding Stars, Flowers, and Similar Shapes N A B X C D 0 / Z S Y H I F E R \Asterisk \AsteriskBold \AsteriskCenterOpen \AsteriskRoundedEnds \AsteriskThin \AsteriskThinCenterOpen \DavidStar \DavidStarSolid \EightAsterisk \EightFlowerPetal \EightFlowerPetalRemoved \EightStar \EightStarBold \EightStarConvex \EightStarTaper \FiveFlowerOpen P 8 ; ? 7 9 : < = > @ 1 V W 5 6 \FiveFlowerPetal \FiveStar \FiveStarCenterOpen \FiveStarConvex \FiveStarLines \FiveStarOpen \FiveStarOpenCircled \FiveStarOpenDotted \FiveStarOutline \FiveStarOutlineHeavy \FiveStarShadow \FourAsterisk \FourClowerOpen \FourClowerSolid \FourStar \FourStarOpen 2 3 O U M Q L [ G K ` ^ _ ] \ J \JackStar \JackStarBold \SixFlowerAlternate \SixFlowerAltPetal \SixFlowerOpenCenter \SixFlowerPetalDotted \SixFlowerPetalRemoved \SixFlowerRemovedOpenPetal \SixStar \SixteenStarLight \Snowflake \SnowflakeChevron \SnowflakeChevronBold \Sparkle \SparkleBold \TwelweStar Table 380: pifont Stars, Flowers, and Similar Shapes A B C D E F G H I \ding{65} \ding{66} \ding{67} \ding{68} \ding{69} \ding{70} \ding{71} \ding{72} \ding{73} J K L M N O P Q R \ding{74} \ding{75} \ding{76} \ding{77} \ding{78} \ding{79} \ding{80} \ding{81} \ding{82} S T U V W X Y Z [ \ding{83} \ding{84} \ding{85} \ding{86} \ding{87} \ding{88} \ding{89} \ding{90} \ding{91} \ ] ^ _ ` a b c d \ding{92} \ding{93} \ding{94} \ding{95} \ding{96} \ding{97} \ding{98} \ding{99} \ding{100} e f g h i j k \ding{101} \ding{102} \ding{103} \ding{104} \ding{105} \ding{106} \ding{107} Table 381: adfsymbols Stars, Flowers, and Similar Shapes A B C K L \adfbullet{1} \adfbullet{2} \adfbullet{3} \adfbullet{11} \adfbullet{12} M N O P Q \adfbullet{13} \adfbullet{14} \adfbullet{15} \adfbullet{16} \adfbullet{17} R S T U V \adfbullet{18} \adfbullet{19} \adfbullet{20} \adfbullet{21} \adfbullet{22} W X Y Z \adfbullet{23} \adfbullet{24} \adfbullet{25} \adfbullet{26} Table 382: adforn Stars 0 1 \adfast{1} \adfast{2} 2 3 \adfast{3} \adfast{4} 4 5 \adfast{5} \adfast{6} 139 6 7 \adfast{7} \adfast{8} 8 9 \adfast{9} \adfast{10} Table 383: fontawesome Stars \faStar \faStarHalf \faStarHalfO \faStarO fontawesome defines both \faStarHalfEmpty and \faStarHalfFull as synonyms for \faStarHalfO. Table 384: fourier Fleurons and Flowers O M N L ; < \aldine \aldineleft \aldineright \aldinesmall \decofourleft \decofourright 8 = 9 : A B \decoone \decosix \decothreeleft \decothreeright \decotwo \floweroneleft C J F K D \floweroneright \leafleft \leafNE \leafright \starredbullet Table 385: adforn Fleurons and Flowers r x l m u n v q < s T w o z y p R X L M U N V Q > S t W O Z Y P \adfdownhalfleafleft \adfdownleafleft \adfflatdownhalfleafleft \adfflatdownoutlineleafleft \adfflatleafleft \adfflatleafoutlineleft \adfflatleafsolidleft \adfflowerleft \adfhalfleafleft \adfhangingflatleafleft \adfhangingleafleft \adfleafleft \adfoutlineleafleft \adfsmallhangingleafleft \adfsmallleafleft \adfsolidleafleft \adfdownhalfleafright \adfdownleafright \adfflatdownhalfleafright \adfflatdownoutlineleafright \adfflatleafright \adfflatleafoutlineright \adfflatleafsolidright \adfflowerright \adfhalfleafright \adfhangingflatleafright \adfhangingleafright \adfleafright \adfoutlineleafright \adfsmallhangingleafright \adfsmallleafright \adfsolidleafright Table 386: wasysym Geometric Shapes # 7 \Circle \CIRCLE \hexagon # G G I \LEFTcircle \LEFTCIRCLE \Leftcircle 8 D J \octagon \pentagon \Rightcircle # H H 9 \RIGHTcircle \RIGHTCIRCLE \varhexagon Table 387: MnSymbol Geometric Shapes ☀ ⧫ ⧫ ◯ ◇ \filledlargestar \filledlozenge \filledmedlozenge \largecircle \largediamond ◊ ◻ ☆ ✡ \largelozenge \largepentagram \largesquare \largestar \largestarofdavid ◊ ✡ ◊ \medlozenge \medstarofdavid \smalllozenge MnSymbol defines \bigcirc as a synonym for \largecircle; \bigstar as a synonym for \filledlargestar; \lozenge as a synonym for \medlozenge; and, \blacklozenge as a synonym for \filledmedlozenge. 140 Table 388: fdsymbol Geometric Shapes ⬤ ⬛ ★ ◯ ⬜ \largeblackcircle \largeblacksquare \largeblackstar \largecircle \largesquare _ ^ ☆ ⟠ ⧫ \largetriangledown \largetriangleup \largewhitestar \lozengeminus \medblacklozenge ◊ ⬪ ⬫ ✡ \medlozenge \smallblacklozenge \smalllozenge \starofdavid fdsymbol defines synonyms for almost all of the preceding symbols: ◯ ★ _ ^ ⧫ ⬤ \bigcirc \bigstar \bigtriangledown \bigtriangleup \blacklozenge \lgblkcircle ⬛ ◯ ⬜ ◊ ⧫ ⧫ \lgblksquare \lgwhtcircle \lgwhtsquare \lozenge \mdblklozenge \mdlgblklozenge ◊ ◊ ⬪ ⬫ \mdlgwhtlozenge \mdwhtlozenge \smblklozenge \smwhtlozenge Table 389: boisik Geometric Shapes ã ã ï ë è \bigstar \blacklozenge \blacksquare \blacktriangle \blacktriangledown } â ç ó ø \diamond \lozenge \lozengedot \square \star í ÿ þ ä \triangledown \triangleleft \triangleright \varlrttriangle Table 390: stix Geometric Shapes ↺ ↸ ⏣ ▼ ▲ ★ ▽ ⨞ △ ☆ ⧭ ⚈ ⚉ ◕ ⧪ ◈ ▣ ◖ ⧫ ◄ ► ◗ \acwopencirclearrow \barovernorthwestarrow \benzenr \bigblacktriangledown \bigblacktriangleup \bigstar \bigtriangledown \bigtriangleleft \bigtriangleup \bigwhitestar \blackcircledownarrow \blackcircledrightdot \blackcircledtwodots \blackcircleulquadwhite \blackdiamonddownarrow \blackinwhitediamond \blackinwhitesquare \blacklefthalfcircle \blacklozenge \blackpointerleft \blackpointerright \blackrighthalfcircle ⧨ ⧩ ⃝ ⃟ ⃞ ⃤ ⧳ ⧱ ⧯ ⧲ ⧰ ⧮ ◉ ⏥ ⎔ ⬣ ⌂ ▭ ▬ ◙ ◛ ◚ \downtriangleleftblack \downtrianglerightblack \enclosecircle \enclosediamond \enclosesquare \enclosetriangle \errbarblackcircle \errbarblackdiamond \errbarblacksquare \errbarcircle \errbardiamond \errbarsquare \fisheye \fltns \hexagon \hexagonblack \house \hrectangle \hrectangleblack \inversewhitecircle \invwhitelowerhalfcircle \invwhiteupperhalfcircle ◃ ▹ ⬩ ⬪ ▪ ⭒ ◦ ⋄ ⬫ ▫ ⌑ ⬓ ▩ ▤ ▦ ◧ ⬕ ◱ ◪ ◲ ▨ ▧ \smalltriangleleft \smalltriangleright \smblkdiamond \smblklozenge \smblksquare \smwhitestar \smwhtcircle \smwhtdiamond \smwhtlozenge \smwhtsquare \sqlozenge \squarebotblack \squarecrossfill \squarehfill \squarehvfill \squareleftblack \squarellblack \squarellquad \squarelrblack \squarelrquad \squareneswfill \squarenwsefill (continued on next page) 141 (continued from previous page) ▴ ▾ ◀ ▶ ⬬ ⬮ ◡ ⧉ ◎ ◦ ◒ ⦿ ⧬ ⚆ ✪ ⚇ ⦾ ◐ ◵ ◶ ◑ ◓ ◴ ◷ ◔ ◍ ⧃ ⧂ ↻ ⬙ ⟐ ⬖ ⬗ ⬘ ◌ ⬚ \blacktriangle \blacktriangledown \blacktriangleleft \blacktriangleright \blkhorzoval \blkvertoval \botsemicircle \boxonbox \bullseye \circ \circlebottomhalfblack \circledbullet \circledownarrow \circledrightdot \circledstar \circledtwodots \circledwhitebullet \circlelefthalfblack \circlellquad \circlelrquad \circlerighthalfblack \circletophalfblack \circleulquad \circleurquad \circleurquadblack \circlevertfill \cirE \cirscir \cwopencirclearrow \diamondbotblack \diamondcdot \diamondleftblack \diamondrightblack \diamondtopblack \dottedcircle \dottedsquare ⬤ ⬛ ◯ ⬜ ◣ ◺ ◢ ◿ ⚫ ⬥ ⬧ ◼ ● ◆ ■ ◇ ◊ □ ⦁ ◾ ⚬ ◽ ⚪ ⬦ ⬨ ◻ ⭑ ⭐ ▱ ▰ ⬠ ⬟ ⭔ ⭓ ◂ ▸ \lgblkcircle \lgblksquare \lgwhtcircle \lgwhtsquare \llblacktriangle \lltriangle \lrblacktriangle \lrtriangle \mdblkcircle \mdblkdiamond \mdblklozenge \mdblksquare \mdlgblkcircle \mdlgblkdiamond \mdlgblksquare \mdlgwhtdiamond \mdlgwhtlozenge \mdlgwhtsquare \mdsmblkcircle \mdsmblksquare \mdsmwhtcircle \mdsmwhtsquare \mdwhtcircle \mdwhtdiamond \mdwhtlozenge \mdwhtsquare \medblackstar \medwhitestar \parallelogram \parallelogramblack \pentagon \pentagonblack \rightpentagon \rightpentagonblack \smallblacktriangleleft \smallblacktriangleright ◨ ⬒ ◩ ◰ ⬔ ◳ ▥ ▢ ◠ ⏢ ◬ ▿ ◭ ⧊ ◮ ⧌ ⧋ ◤ ◸ ⦽ ◥ ◹ ⬡ ⬢ ⌬ ⊿ ✶ ▯ ▮ ⬝ ⬞ ⟁ ◅ ▻ ⬭ ⬯ \squarerightblack \squaretopblack \squareulblack \squareulquad \squareurblack \squareurquad \squarevfill \squoval \topsemicircle \trapezium \trianglecdot \triangledown \triangleleftblack \triangleodot \trianglerightblack \triangles \triangleubar \ulblacktriangle \ultriangle \uparrowoncircle \urblacktriangle \urtriangle \varhexagon \varhexagonblack \varhexagonlrbonds \varlrtriangle \varstar \vrectangle \vrectangleblack \vysmblksquare \vysmwhtsquare \whiteinwhitetriangle \whitepointerleft \whitepointerright \whthorzoval \whtvertoval stix defines \diamond as a synonym for \smwhtdiamond, \blacksquare as a synonym for \mdlgblksquare, \square and \Box as synonyms for \mdlgwhtsquare, \triangle and \varbigtriangleup as synonyms for \bigtriangleup, \rhd as a synonym for \vartriangleright, \varbigtriangledown as a synonym for \bigtriangledown, \lhd as a synonym for \vartriangleleft, \Diamond and \lozenge as synonyms for \mglgwhtlozenge, \bigcirc as a synonym for \mglgwhtcircle, \circ as a synonym for \smwhtcircle. and \mdlgblklozenge as a synonym for \blacklozenge. 142 Table 391: ifsym Geometric Shapes % & _ / # " $ ! 5 6 U V P S R \BigCircle \BigCross \BigDiamondshape \BigHBar \BigLowerDiamond \BigRightDiamond \BigSquare \BigTriangleDown \BigTriangleLeft \BigTriangleRight \BigTriangleUp \BigVBar \Circle \Cross \DiamondShadowA \DiamondShadowB \DiamondShadowC \Diamondshape \FilledBigCircle \FilledBigDiamondshape \FilledBigSquare \FilledBigTriangleDown \FilledBigTriangleLeft T Q e f u v p s r t q ` c b d a o ? \FilledBigTriangleRight \FilledBigTriangleUp \FilledCircle \FilledDiamondShadowA \FilledDiamondShadowC \FilledDiamondshape \FilledSmallCircle \FilledSmallDiamondshape \FilledSmallSquare \FilledSmallTriangleDown \FilledSmallTriangleLeft \FilledSmallTriangleRight \FilledSmallTriangleUp \FilledSquare \FilledSquareShadowA \FilledSquareShadowC \FilledTriangleDown \FilledTriangleLeft \FilledTriangleRight \FilledTriangleUp \HBar \LowerDiamond \RightDiamond E F O @ C B D A * ) 0 3 2 4 1 \SmallCircle \SmallCross \SmallDiamondshape \SmallHBar \SmallLowerDiamond \SmallRightDiamond \SmallSquare \SmallTriangleDown \SmallTriangleLeft \SmallTriangleRight \SmallTriangleUp \SmallVBar \SpinDown \SpinUp \Square \SquareShadowA \SquareShadowB \SquareShadowC \TriangleDown \TriangleLeft \TriangleRight \TriangleUp \VBar The ifsym documentation points out that one can use \rlap to combine some of the above into useful, new symbols. For example, \BigCircle and \FilledSmallCircle combine to give “ ”. Likewise, \Square and \Cross combine to give “ ”. See Section 10.3 for more information about constructing new symbols out of existing symbols. u% 0 Table 392: bbding Geometric Shapes d a p b e c s r \CircleShadow \CircleSolid \DiamondSolid \Ellipse \EllipseShadow \EllipseSolid \HalfCircleLeft \HalfCircleRight u v t f k m l h \Rectangle \RectangleBold \RectangleThin \Square \SquareCastShadowBottomRight \SquareCastShadowTopLeft \SquareCastShadowTopRight \SquareShadowBottomRight 143 j i g o n \SquareShadowTopLeft \SquareShadowTopRight \SquareSolid \TriangleDown \TriangleUp Table 393: pifont Geometric Shapes l m n o p q \ding{108} \ding{109} \ding{110} Δ \ding{111} \ding{112} \ding{113} r s t \ding{114} \ding{115} \ding{116} u w x y z \ding{117} \ding{119} \ding{120} \ding{121} \ding{122} Table 394: universa Geometric Shapes \baucircle Γ \bausquare Θ \bautriangle Table 395: adfsymbols Geometric Shapes a b c d e \adfbullet{27} \adfbullet{28} \adfbullet{29} \adfbullet{30} \adfbullet{31} f g h o p \adfbullet{32} \adfbullet{33} \adfbullet{34} \adfbullet{41} \adfbullet{42} q r s t u \adfbullet{43} \adfbullet{44} \adfbullet{45} \adfbullet{46} \adfbullet{47} v w x y z \adfbullet{48} \adfbullet{49} \adfbullet{50} \adfbullet{51} \adfbullet{52} Table 396: fontawesome Geometric Shapes ○ ○␣ \faCircle \faCircleO ; A \faCircleONotch \faCircleThin ○ ␣ \faDotCircleO \faSquare \faSquareO Table 397: oplotsymbl Geometric Shapes \circlet \circletcross \circletdot \circletfill \circletfillha \circletfillhb \circletfillhl \circletfillhr \circletlineh \circletlinev \circletlinevh \hexago \hexagocross \hexagodot \hexagofill \hexagofillha \hexagofillhb \hexagofillhl \hexagofillhr \rhombusfillha \rhombusfillhb \rhombusfillhl \rhombusfillhr \rhombuslineh \rhombuslinev \rhombuslinevh \squad \squadcross \squaddot \squadfill \squadfillha \squadfillhb \squadfillhl \squadfillhr \squadlineh \squadlinev \squadlinevh \starlet \trianglepalineh \trianglepalinev \trianglepalinevh \trianglepb \trianglepbcross \trianglepbdot \trianglepbfill \trianglepbfillha \trianglepbfillhb \trianglepbfillhl \trianglepbfillhr \trianglepblineh \trianglepblinev \trianglepblinevh \trianglepl \triangleplcross \trianglepldot \triangleplfill \triangleplfillha (continued on next page) 144 (continued from previous page) \hexagolineh \hexagolinev \hexagolinevh \pentago \pentagocross \pentagodot \pentagofill \pentagofillha \pentagofillhb \pentagofillhl \pentagofillhr \pentagolineh \pentagolinev \pentagolinevh \rhombus \rhombuscross \rhombusdot \rhombusfill \starletcross \starletdot \starletfill \starletfillha \starletfillhb \starletfillhl \starletfillhr \starletlineh \starletlinev \starletlinevh \trianglepa \trianglepacross \trianglepadot \trianglepafill \trianglepafillha \trianglepafillhb \trianglepafillhl \trianglepafillhr \triangleplfillhb \triangleplfillhl \triangleplfillhr \trianglepllineh \trianglepllinev \trianglepllinevh \trianglepr \triangleprcross \triangleprdot \triangleprfill \triangleprfillha \triangleprfillhb \triangleprfillhl \triangleprfillhr \triangleprlineh \triangleprlinev \triangleprlinevh “fillha”, “fillhb”, “fillhl”, and “fillhr”, imply, respectively, “half-filled above”, “half-filled below”, “half-filled left”, and “half-filled right”. In the \triangle. . . symbols, “pa”, “pb”, “pr”, and “pl” refer respectively to “peak above”, “peak below”, “peak left”, and “peak right”. All oplotsymbl symbols are implemented with Tik Z graphics, not with a font. Table 398: LATEX 2𝜀 Playing-Card Suits ♣ ♢ \clubsuit \diamondsuit ♡ ♠ \heartsuit \spadesuit Table 399: txfonts/pxfonts Playing-Card Suits p \varclubsuit q \vardiamondsuit r \varheartsuit s \varspadesuit Table 400: MnSymbol Playing-Card Suits ♣ \clubsuit ♢ \diamondsuit ♡ \heartsuit ♠ \spadesuit Table 401: fdsymbol Playing-Card Suits ♣ ♢ \clubsuit \diamondsuit ♡ ♠ \heartsuit \spadesuit ♦ ♥ \vardiamondsuit \varheartsuit Table 402: boisik Playing-Card Suits ô \clubsuit õ \diamondsuit 145 ö \heartsuit ÷ \spadesuit Table 403: stix Playing-Card Suits ♣ ♢ ♡ ♠ \clubsuit \diamondsuit ♧ ♦ \heartsuit \spadesuit ♥ ♤ \varclubsuit \vardiamondsuit \varheartsuit \varspadesuit Table 404: arev Playing-Card Suits ♧ \varclub ♦ ♥ \vardiamond \varheart ♤ \varspade Table 405: adforn Flourishes C D I E F B H J G K A \adfclosedflourishleft \adfdoubleflourishleft \adfdoublesharpflourishleft \adfflourishleft \adfflourishleftdouble \adfopenflourishleft \adfsharpflourishleft \adfsickleflourishleft \adfsingleflourishleft \adftripleflourishleft \adfwavesleft c d i e f b h j g k a \adfclosedflourishright \adfdoubleflourishright \adfdoublesharpflourishright \adfflourishright \adfflourishrightdouble \adfopenflourishright \adfsharpflourishright \adfsickleflourishright \adfsingleflourishright \adftripleflourishright \adfwavesright Table 406: Miscellaneous oplotsymbl Symbols \lineh \linev \linevh \scross \scrossvh All oplotsymbl symbols are implemented with Tik Z graphics, not with a font. Table 407: Miscellaneous dingbat Dingbats O C D E \anchor C \carriagereturn I \checkmark S \eye B \filledsquarewithdots Z \satellitedish \Sborder \squarewithdots \Zborder Table 408: Miscellaneous bbding Dingbats q \Envelope \OrnamentDiamondSolid \Peace \Phone \PhoneHandset \Plane T \SunshineOpenCircled \Tape Table 409: Miscellaneous pifont Dingbats % & ' \ding{37} \ding{38} \ding{39} ( ) v \ding{40} \ding{41} \ding{118} ¤ ¥ ¦ \ding{164} \ding{165} \ding{166} 146 § ¨ ª \ding{167} \ding{168} \ding{170} « © \ding{171} \ding{169} Table 410: Miscellaneous adforn Dingbats • \adfbullet = \adfdiamond ¶ 147 \adfgee § \adfS | \adfsquare 6 Ancient languages This section presents letters and ideograms from various ancient scripts. Some of these symbols may also be useful in other typesetting contexts because of their pictorial nature. Table 411: phaistos Symbols from the Phaistos Disk J \PHarrow e \PHeagle B \PHplumedHead h \PHbee o \PHflute d \PHram X \PHbeehive H \PHgaunlet l \PHrosette R \PHboomerang p \PHgrater P \PHsaw K \PHbow G \PHhelmet L \PHshield b \PHbullLeg a \PHhide Y \PHship D \PHcaptive Z \PHhorn V \PHsling S \PHcarpentryPlane Q \PHlid r \PHsmallAxe c \PHcat m \PHlily q \PHstrainer E \PHchild N \PHmanacles C \PHtattooedHead M \PHclub O \PHmattock I \PHtiara W \PHcolumn n \PHoxBack g \PHtunny U \PHcomb k \PHpapyrus j \PHvine T \PHdolium A \PHpedestrian s \PHwavyBand f \PHdove i \PHplaneTree F \PHwoman Table 412: protosem Proto-Semitic Characters a A b B g d D e \Aaleph \AAaleph \Abeth \AAbeth \Agimel \Adaleth \AAdaleth \Ahe E z w H h T y Y \AAhe \Azayin \Avav \Aheth \AAheth \Ateth \Ayod \AAyod k K l L m n o O \Akaph \AAkaph \Alamed \AAlamed \Amem \Anun \Aayin \AAayin s p P x X q Q r \Asamekh \Ape \AApe \Asade \AAsade \Aqoph \AAqoph \Aresh R S v V t The protosem package defines abbreviated control sequences for each of the above. In addition, single-letter shortcuts can be used within the argument to the \textproto command (e.g., “\textproto{Pakyn}” produces “Pakyn”). See the protosem documentation for more information. 148 \AAresh \Ashin \Ahelmet \AAhelmet \Atav Table 413: hieroglf Hieroglyphics A \HA I \HI n \Hn T \HT a \Ha i \Hi O \HO t \Ht B \HB Π \Hibl o \Ho Φ \Htongue b \Hb Θ \Hibp p \Hp U \HU c \Hc Ξ \Hibs P \HP u \Hu C \HC Λ \Hibw Ω \Hplural V \HV D \HD J \HJ + \Hplus v \Hv d \Hd j \Hj Q \HQ — \Hvbar ff \Hdual k \Hk q \Hq w \Hw e E \He \HE K L \HK \HL ? R \Hquery \HR W X \HW \HX f \Hf l \Hl r \Hr x \Hx F \HF m \Hm s \Hs Y \HY G \HG M \HM S \HS y \Hy g \Hg ϒ \Hman Ψ \Hscribe z \Hz h \Hh Δ \Hms / \Hslash Z \HZ H \HH N \HN Σ \Hsv — \Hone 3 \Hhundred 5 \HXthousand 7 \Hmillion 2 \Hten 4 \Hthousand 6 \HCthousand The hieroglf package defines alternate control sequences and single-letter shortcuts for each of the above which can be used within the argument to the \textpmhg command (e.g., “\textpmhg{Pakin}” produces “Pakin”). See the hieroglf documentation for more information. Table 414: linearA Linear A Script \LinearAI \LinearAII \LinearAIII \LinearAIV \LinearAV \LinearAVI \LinearAVII \LinearAVIII \LinearAIX \LinearAX \LinearAXI \LinearAXII \LinearAXIII b c d e f g h i j k l m n \LinearAXCIX \LinearAC \LinearACI \LinearACII \LinearACIII \LinearACIV \LinearACV \LinearACVI \LinearACVII \LinearACVIII \LinearACIX \LinearACX \LinearACXI \LinearACXCVII \LinearACXCVIII \LinearACXCIX \LinearACC \LinearACCI \LinearACCII \LinearACCIII \LinearACCIV \LinearACCV \LinearACCVI \LinearACCVII \LinearACCVIII \LinearACCIX t u v w x y z { | } ~ \LinearACCXCV \LinearACCXCVI \LinearACCXCVII \LinearACCXCVIII \LinearACCXCIX \LinearACCC \LinearACCCI \LinearACCCII \LinearACCCIII \LinearACCCIV \LinearACCCV \LinearACCCVI \LinearACCCVII (continued on next page) 149 (continued from previous page) ! " # $ % & ' ( ) * + , . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A \LinearAXIV \LinearAXV \LinearAXVI \LinearAXVII \LinearAXVIII \LinearAXIX \LinearAXX \LinearAXXI \LinearAXXII \LinearAXXIII \LinearAXXIV \LinearAXXV \LinearAXXVI \LinearAXXVII \LinearAXXVIII \LinearAXXIX \LinearAXXX \LinearAXXXI \LinearAXXXII \LinearAXXXIII \LinearAXXXIV \LinearAXXXV \LinearAXXXVI \LinearAXXXVII \LinearAXXXVIII \LinearAXXXIX \LinearAXL \LinearAXLI \LinearAXLII \LinearAXLIII \LinearAXLIV \LinearAXLV \LinearAXLVI \LinearAXLVII \LinearAXLVIII \LinearAXLIX \LinearAL \LinearALI \LinearALII \LinearALIII \LinearALIV \LinearALV \LinearALVI \LinearALVII \LinearALVIII \LinearALIX \LinearALX \LinearALXI \LinearALXII \LinearALXIII \LinearALXIV \LinearALXV \LinearALXVI o p q r s t u v w x y z { | } ~ ¡ ¢ £ \LinearACXII \LinearACXIII \LinearACXIV \LinearACXV \LinearACXVI \LinearACXVII \LinearACXVIII \LinearACXIX \LinearACXX \LinearACXXI \LinearACXXII \LinearACXXIII \LinearACXXIV \LinearACXXV \LinearACXXVI \LinearACXXVII \LinearACXXVIII \LinearACXXIX \LinearACXXX \LinearACXXXI \LinearACXXXII \LinearACXXXIII \LinearACXXXIV \LinearACXXXV \LinearACXXXVI \LinearACXXXVII \LinearACXXXVIII \LinearACXXXIX \LinearACXL \LinearACXLI \LinearACXLII \LinearACXLIII \LinearACXLIV \LinearACXLV \LinearACXLVI \LinearACXLVII \LinearACXLVIII \LinearACXLIX \LinearACL \LinearACLI \LinearACLII \LinearACLIII \LinearACLIV \LinearACLV \LinearACLVI \LinearACLVII \LinearACLVIII \LinearACLIX \LinearACLX \LinearACLXI \LinearACLXII \LinearACLXIII \LinearACLXIV ! " # $ % & ' ( ) * + , . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S \LinearACCX \LinearACCXI \LinearACCXII \LinearACCXIII \LinearACCXIV \LinearACCXV \LinearACCXVI \LinearACCXVII \LinearACCXVIII \LinearACCXIX \LinearACCXX \LinearACCXXI \LinearACCXXII \LinearACCXXIII \LinearACCXXIV \LinearACCXXV \LinearACCXXVI \LinearACCXXVII \LinearACCXXVIII \LinearACCXXIX \LinearACCXXX \LinearACCXXXI \LinearACCXXXII \LinearACCXXXIII \LinearACCXXXIV \LinearACCXXXV \LinearACCXXXVI \LinearACCXXXVII \LinearACCXXXVIII \LinearACCXXXIX \LinearACCXL \LinearACCXLI \LinearACCXLII \LinearACCXLIII \LinearACCXLIV \LinearACCXLV \LinearACCXLVI \LinearACCXLVII \LinearACCXLVIII \LinearACCXLIX \LinearACCL \LinearACCLI \LinearACCLII \LinearACCLIII \LinearACCLIV \LinearACCLV \LinearACCLVI \LinearACCLVII \LinearACCLVIII \LinearACCLIX \LinearACCLX \LinearACCLXI \LinearACCLXII ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ ­ ® ¯ ° ± ² ³ ´ µ \LinearACCCVIII \LinearACCCIX \LinearACCCX \LinearACCCXI \LinearACCCXII \LinearACCCXIII \LinearACCCXIV \LinearACCCXV \LinearACCCXVI \LinearACCCXVII \LinearACCCXVIII \LinearACCCXIX \LinearACCCXX \LinearACCCXXI \LinearACCCXXII \LinearACCCXXIII \LinearACCCXXIV \LinearACCCXXV \LinearACCCXXVI \LinearACCCXXVII \LinearACCCXXVIII \LinearACCCXXIX \LinearACCCXXX \LinearACCCXXXI \LinearACCCXXXII \LinearACCCXXXIII \LinearACCCXXXIV \LinearACCCXXXV \LinearACCCXXXVI \LinearACCCXXXVII \LinearACCCXXXVIII \LinearACCCXXXIX \LinearACCCXL \LinearACCCXLI \LinearACCCXLII \LinearACCCXLIII \LinearACCCXLIV \LinearACCCXLV \LinearACCCXLVI \LinearACCCXLVII \LinearACCCXLVIII \LinearACCCXLIX \LinearACCCL \LinearACCCLI \LinearACCCLII \LinearACCCLIII \LinearACCCLIV \LinearACCCLV \LinearACCCLVI \LinearACCCLVII \LinearACCCLVIII \LinearACCCLIX \LinearACCCLX (continued on next page) 150 (continued from previous page) B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a \LinearALXVII \LinearALXVIII \LinearALXIX \LinearALXX \LinearALXXI \LinearALXXII \LinearALXXIII \LinearALXXIV \LinearALXXV \LinearALXXVI \LinearALXXVII \LinearALXXVIII \LinearALXXIX \LinearALXXX \LinearALXXXI \LinearALXXXII \LinearALXXXIII \LinearALXXXIV \LinearALXXXV \LinearALXXXVI \LinearALXXXVII \LinearALXXXVIII \LinearALXXXIX \LinearALXXXX \LinearAXCI \LinearAXCII \LinearAXCIII \LinearAXCIV \LinearAXCV \LinearAXCVI \LinearAXCVII \LinearAXCVIII ¤ ¥ ¦ § ¨ © ª « ¬ ­ ® ¯ ° ± \LinearACLXV \LinearACLXVI \LinearACLXVII \LinearACLXVIII \LinearACLXIX \LinearACLXX \LinearACLXXI \LinearACLXXII \LinearACLXXIII \LinearACLXXIV \LinearACLXXV \LinearACLXXVI \LinearACLXXVII \LinearACLXXVIII \LinearACLXXIX \LinearACLXXX \LinearACLXXXI \LinearACLXXXII \LinearACLXXXIII \LinearACLXXXIV \LinearACLXXXV \LinearACLXXXVI \LinearACLXXXVII \LinearACLXXXVIII \LinearACLXXXIX \LinearACLXXXX \LinearACXCI \LinearACXCII \LinearACXCIII \LinearACXCIV \LinearACXCV \LinearACXCVI 151 T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s \LinearACCLXIII \LinearACCLXIV \LinearACCLXV \LinearACCLXVI \LinearACCLXVII \LinearACCLXVIII \LinearACCLXIX \LinearACCLXX \LinearACCLXXI \LinearACCLXXII \LinearACCLXXIII \LinearACCLXXIV \LinearACCLXXV \LinearACCLXXVI \LinearACCLXXVII \LinearACCLXXVIII \LinearACCLXXIX \LinearACCLXXX \LinearACCLXXXI \LinearACCLXXXII \LinearACCLXXXIII \LinearACCLXXXIV \LinearACCLXXXV \LinearACCLXXXVI \LinearACCLXXXVII \LinearACCLXXXVIII \LinearACCLXXXIX \LinearACCLXXXX \LinearACCXCI \LinearACCXCII \LinearACCXCIII \LinearACCXCIV ¶ · ¸ ¹ º » ¼ ½ ¾ ¿ À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï Ð Ñ Ò \LinearACCCLXI \LinearACCCLXII \LinearACCCLXIII \LinearACCCLXIV \LinearACCCLXV \LinearACCCLXVI \LinearACCCLXVII \LinearACCCLXVIII \LinearACCCLXIX \LinearACCCLXX \LinearACCCLXXI \LinearACCCLXXII \LinearACCCLXXIII \LinearACCCLXXIV \LinearACCCLXXV \LinearACCCLXXVI \LinearACCCLXXVII \LinearACCCLXXVIII \LinearACCCLXXIX \LinearACCCLXXX \LinearACCCLXXXI \LinearACCCLXXXII \LinearACCCLXXXIII \LinearACCCLXXXIV \LinearACCCLXXXV \LinearACCCLXXXVI \LinearACCCLXXXVII \LinearACCCLXXXVIII \LinearACCCLXXXIX Table 415: linearb Linear B Basic and Optional Letters a ; < = d D f g x > ? e i \Ba \Baii \Baiii \Bau \Bda \Bde \Bdi \Bdo \Bdu \Bdwe \Bdwo \Be \Bi j J b L k K c h v m M y A \Bja \Bje \Bjo \Bju \Bka \Bke \Bki \Bko \Bku \Bma \Bme \Bmi \Bmo B n N C E F @ o p [ P G H ] I \ q Q X 8 r ^ _ R O U \Bmu \Bna \Bne \Bni \Bno \Bnu \Bnwa \Bo \Bpa \Bpaiii \Bpe \Bpi \Bpo \Bpte \Bpu \Bpuii \Bqa \Bqe \Bqi \Bqo \Bra \Braii \Braiii \Bre \Bri \Bro ‘ V s S Y 1 2 { | t } T 3 \Broii \Bru \Bsa \Bse \Bsi \Bso \Bsu \Bswa \Bswi \Bta \Btaii \Bte \Bti 4 5 ~ u w W 6 7 z Z 9 \Bto \Btu \Btwo \Bu \Bwa \Bwe \Bwi \Bwo \Bza \Bze \Bzo These symbols must appear either within the argument to \textlinb or following the \linbfamily font-selection command within a scope. Singlecharacter shortcuts are also supported: Both “\textlinb{\Bpa\Bki\Bna}” and “\textlinb{pcn}” produce “pcn”, for example. See the linearb documentation for more information. Table 416: linearb Linear B Numerals ´ ˆ ˜ ¨ ˝ ˚ \BNi \BNii \BNiii \BNiv \BNv \BNvi ˇ ˘ ¯ ˙ ¸ ˛ \BNvii \BNviii \BNix \BNx \BNxx \BNxxx ‚ ‹ › “ ” „ \BNxl \BNl \BNlx \BNlxx \BNlxxx \BNxc « » – — ‰ \BNc \BNcc \BNccc \BNcd \BNd \BNdc ı ȷ ff fi \BNdcc \BNdccc \BNcm \BNm These symbols must appear either within the argument to \textlinb or following the \linbfamily font-selection command within a scope. Table 417: linearb Linear B Weights and Measures Ď Ĺ \BPtalent \BPvola Ľ Ł \BPvolb \BPvolcd Ń Ă \BPvolcf \BPwta Ą Ć \BPwtb \BPwtc Č \BPwtd These symbols must appear either within the argument to \textlinb or following the \linbfamily font-selection command within a scope. 152 Table 418: linearb Linear B Ideograms Ž ij Ş ť ľ Ű ň đ § ÿ ź Ř ŋ Ÿ š ě ş Ź Ů ď \BPamphora \BParrow \BPbarley \BPbilly \BPboar \BPbronze \BPbull \BPcauldroni \BPcauldronii \BPchariot ă ț Ț ń ĺ ś ř ł ¡ ż \BPchassis \BPcloth \BPcow \BPcup \BPewe \BPfoal \BPgoat \BPgoblet \BPgold \BPhorse Š ž Ť Ż IJ İ ą Ś \BPman \BPnanny \BPolive \BPox \BPpig \BPram \BPsheep \BPsow \BPspear \BPsword \BPwheat \BPwheel \BPwine \BPwineiih \BPwineiiih \BPwineivh \BPwoman \BPwool These symbols must appear either within the argument to \textlinb or following the \linbfamily font-selection command within a scope. Table 419: linearb Unidentified Linear B Symbols fl ffi ffl \BUi \BUii \BUiii ␣ ! " \BUiv \BUv \BUvi # $ % \BUvii \BUviii \BUix & ’ ­ \BUx \BUxi \BUxii ­ \Btwe These symbols must appear either within the argument to \textlinb or following the \linbfamily font-selection command within a scope. Table 420: cypriot Cypriot Letters a e g i j b k K c h \Ca \Ce \Cga \Ci \Cja \Cjo \Cka \Cke \Cki \Cko v l L d f q m M y A \Cku \Cla \Cle \Cli \Clo \Clu \Cma \Cme \Cmi \Cmo B n N C E F o p P G H I r R O U V s S Y \Cmu \Cna \Cne \Cni \Cno \Cnu \Co \Cpa \Cpe \Cpi \Cpo \Cpu \Cra \Cre \Cri \Cro \Cru \Csa \Cse \Csi 1 2 t T 3 4 5 u w W \Cso \Csu \Cta \Cte \Cti \Cto \Ctu \Cu \Cwa \Cwe 6 7 x X j b g 9 \Cwi \Cwo \Cxa \Cxe \Cya \Cyo \Cza \Czo These symbols must appear either within the argument to \textcypr or following the \cyprfamily font-selection command within a scope. Singlecharacter shortcuts are also supported: Both “\textcypr{\Cpa\Cki\Cna}” and “\textcypr{pcn}” produce “pcn”, for example. See the cypriot documentation for more information. 153 Table 421: sarabian South Arabian Letters a b g d h w \SAa \SAb \SAg \SAd \SAh \SAw z H T y k l m n s f ‘ o \SAz \SAhd \SAtd \SAy \SAk \SAl \SAm \SAn \SAs \SAf \SAlq \SAo x q r S t I D J G Z X B \SAsd \SAq \SAr \SAsv \SAt \SAhu \SAdb \SAtb \SAga \SAzd \SAsa \SAdd These symbols must appear either within the argument to \textsarab or following the \sarabfamily font-selection command within a scope. Singlecharacter shortcuts are also supported: Both “\textsarab{\SAb\SAk\SAn}” and “\textsarab{bkn}” produce “bkn”, for example. See the sarabian documentation for more information. Table 422: teubner Archaic Greek Letters and Greek Numerals \Coppa† \coppa† \digamma*,‡ Ϙ ϙ ϝ Ϝ ϟ Ϡ \Digamma* \koppa* \Sampi ϡ Ϛ ϛ \sampi* \Stigma \stigma* ϛ \varstigma * Technically, these symbols do not require teubner; it is sufficient to load the babel package with the greek option (upon which teubner depends)—but use \qoppa for \koppa and \ddigamma for \digamma. † For compatibility with other naming conventions teubner defines \Koppa as a synonym for \Coppa and \varcoppa as a synonym for \coppa. ‡ If both teubner and amssymb are loaded, teubner’s \digamma replaces amssymb’s \digamma, regardless of package-loading order. Table 423: boisik Archaic Greek Letters and Greek Numerals \ ? ( [ \Digamma \digamma \heta \Heta * ] ^ + \qoppa \Qoppa \Sampi \sampi ) _ \stigma \Stigma \vardigamma \Varsampi , \varsampi Table 424: epiolmec Epi-Olmec Script § \EOafter Ě \EOMiddle ź \EOStarWarrior Ş \EOandThen ő \EOmonster ű \EOstep Ť \EOAppear ě \EOMountain M \EOSu t \EOBeardMask \ \EOmuu S \EOsu ą \EOBedeck b \EOna ž \EOsun (continued on next page) 154 (continued from previous page) u \EOBlood ‘ \EOne Q \EOsuu ć \EObrace ^ \EOni K \EOSuu Æ \EObuilding š \EOnow : \EOta v \EOBundle c \EOnu 8 \EOte w \EOChop a \EOnuu ż \EOthrone Ř \EOChronI { \EOofficerI 7 \EOti x \EOCloth | \EOofficerII IJ \EOtime r \EODealWith } \EOofficerIII ij \EOTime Ţ \EODeer ~ \EOofficerIV £ \EOTitle Ű \EOeat 3 \EOpa Ŋ \EOTitleII đ \EOflint n \EOpak ş \EOTitleIV č Ä \EOflower \EOFold Ś Ů \EOPatron \EOPatronII < ; \EOto \EOtu ď \EOGod 1 \EOpe Ő \EOtuki  \EOGoUp ť \EOpenis İ \EOtukpa ę \EOgovernor 0 \EOpi À \EOturtle z \EOGuise Ÿ \EOPierce 9 \EOtuu ¡ \EOHallow Ę \EOPlant @ \EOtza V \EOja Ğ \EOPlay > \EOtze ĺ \EOjaguar 6 \EOpo Ŕ \EOtzetze U \EOje ţ \EOpriest = \EOtzi T \EOji Ĺ \EOPrince B \EOtzu - \EOJI 5 \EOpu ? \EOtzuu Y \EOjo 2 \EOpuu \EOundef X \EOju o \EOpuuk ă \EOvarBeardMask m \EOkak Ä \EORain W \EOvarja D \EOke L \EOSa . \EOvarji C \EOki R \EOsa / \EOvarki Ź \EOkij Å \EOsacrifice F \EOvarkuu Ă \EOKing y \EOSaw _ \EOvarni ł \EOknottedCloth q \EOScorpius 4 \EOvarpa (continued on next page) 155 (continued from previous page) ń H G E \EOknottedClothStraps \EOko \EOku \EOkuu  O I ů \EOset \EOsi \EOSi \EOsing J P A g \EOvarSi \EOvarsi \EOvartza \EOvarwuu à Ą \EOLetBlood \EOloinCloth ľ ÿ \EOSini \EOskin à h \EOvarYear \EOwa Ć \EOlongLipII Ľ \EOSky e \EOwe ň \EOLord ś \EOskyAnimal d \EOwi Č \EOLose Ł \EOskyPillar i \EOwo ] \EOma Ż \EOsnake f \EOwuu ŋ \EOmacaw N \EOSo l \EOya ŕ \EOmacawI , \EOSpan p \EOyaj [ \EOme Ń \EOSprinkle j \EOye Ď Z \EOmexNew \EOmi Ž Ň \EOstar \EOstarWarrior s k \EOYear \EOyuu Table 425: epiolmec Epi-Olmec Numerals \EOzero ˝ \EOvi ¸ \EOxii ” \EOxviii \EOi \EOii \EOiii ˚ ˇ ˘ \EOvii \EOviii \EOix ˛ ‚ ‹ \EOxiii \EOxiv \EOxv „ « \EOxix \EOxx \EOiv ¯ \EOx › \EOxvi ¨ \EOv ˙ \EOxi “ \EOxvii 156 Table 426: allrunes Runes á ą a A b B ď D d e \a \A a A b B \d D d e E F f g è H h Á i I E F f g \h H h \i i I İ ţ ¡ ł j J ń Č k l \ING \ing \Ing \j j J \k \K k l m n Ŋ ŋ o ă p P Ž r m n \NG \ng o \p p P \R r R z à s S ô ó ã ä Ô Ó T t Ä þ U u w R \RR \s s S \seight \sfive \sfour \sseven \ssix \sthree T t \textsection \th U u w The symbols in this table should appear within the argument to \textarc (for common Germanic runes), \textara (for Anglo-Frisian runes), \textarn (for normal runes), \textart (for short-twig runes), \textarl (for staveless runes), \textarm (for medieval runes), or within a scope that sets, respectively, \arcfamily, \arafamily, \arnfamily, \artfamily, \arlfamily, or \armfamily. Each family presents slightly different glyphs and/or slightly different subsets of the available runes. (The table presents the common Germanic runes.) See the allrunes documentation for more information. Table 427: allrunes Rune Separators ! * . " % : \bar \cross \dot \doublebar \doublecross \doubledot : , % . = @ \doubleeye \doubleplus \doublestar \eye \pentdot \penteye + < ? $ # & See the usage comment under Table 426. 157 \plus \quaddot \quadeye \star \triplebar \triplecross ; > - \tripledot \tripleeye \tripleplus 7 Musical symbols lilyglyphs The following symbols are used to typeset musical notation. The package provides a large lilyglyphs subset of the symbols in this section. Note, however, that depends upon the fontspec package, OpenType (.otf) fonts, and some PDF graphics and therefore works only with LuaLATEX or XELATEX. A simple way to typeset time signatures, due to Daniel Hirst, is to attach a superscript and a subscript to an empty math object. For example, ${}^3_4$ renders as “ 34 ”. Because superscripts and subscripts are left-justified, some extra padding may need to be added if the beats per measure and beat unit contain different numbers of digits. A 5 mu space (“\;”) vertically centers the “8” relative to the “12” in 4 ${}^{12}_{\;8}$ (“12 8 ”). For boldface time signatures (e.g., “ 4 ”), consider the boldface-math options presented in Section 10.5. See also Table 440. Table 428: LATEX 2𝜀 Musical Symbols ♭ \flat ♮ \natural ♯ \sharp Table 429: textcomp Musical Symbols ♪ \textmusicalnote Table 430: wasysym Musical Symbols \eighthnote \halfnote \twonotes \fullnote ♩ \quarternote Table 431: MnSymbol Musical Symbols ♭ \flat ♮ \natural ♯ \sharp Table 432: fdsymbol Musical Symbols ♭ \flat ♮ \natural ♯ \sharp Table 433: boisik Musical Symbols ù \flat ú \natural û \sharp Table 434: stix Musical Symbols ♪ ♭ ♮ ♩ \eighthnote \flat \natural \quarternote ♯ ♫ \sharp \twonotes Table 435: arev Musical Symbols ♩ \quarternote ♪ \eighthnote 158 ♬ \sixteenthnote Table 436: MusiXTEX Musical Symbols R K \allabreve ffl \lsf W \shake \altoclef – \lsfz X \Shake C \backturn $ \maxima j \Shakel I \bassclef 9 \meterplus m \Shakene \caesura Y \mordent k \Shakenw U \coda w \Mordent l \Shakesw i \Coda ; \PAUSe \smallaltoclef ! \Dep \PAuse y \doublethumb : = \pause L J H — \downbow # \Ped " \sPed ? \ds > \qp G \trebleclef NQ \duevolte B \qqs E \trill \fermatadown @ \qs D \turn P \fermataup \reverseallabreve \upbow x \flageolett { T \reverseC ffi \usf < \hpause h \sDep » \usfz A \hs \Segno 8 \wq ’ \longa \segno ­ \wqq O V n \smallbassclef \smalltrebleclef All of these symbols are intended to be used in the context of typesetting musical scores. See the MusiXTEX documentation for more information. 159 Table 437: MusiXTEX Alternative Clefs M b z g \drumclef \gregorianCclef \gregorianFclef \oldGclef In addition to MusiXTEX, \drumclef requires the musixper package; \oldGclef requires the musixlit package; and both \gregorianCclef and \gregorianFclef require the musixgre package. Together with MusiXTEX, these packages provide a complete system for typesetting percussion notation (musixper), liturgical music (musixlit), and Gregorian chants (musixgre, including the staffs and all of the necessary neumes. See the MusiXTEX documentation for more information. Table 438: harmony Musical Symbols == ˇ “ˇ “ “ =ˇ=( “ ˇ == ˇ“ ? \AAcht D /D \Acht \AchtBL \AchtBR \AcPa \DD /D ss SS ¯ < \DDohne \Dohne \Ds \DS \Ganz \GaPa ˘“ < ‰ “ =ˇ=) “ ˇ== ˇ=“ == ˇ“ == ˇ “= \Halb \HaPa \Pu \Sech \SechBL \SechBl @ < ˇ“ > \SechBR > \VM \SechBr \SePa \UB \Vier \ViPa ˇ “* A \Zwdr \ZwPa The MusiXTEX package must be installed to use harmony. Table 439: musicography Musical Symbols [ ] ˇ “( ˇ “( ‰ Z ˘“ ˘ “‰ \musDoubleFlat ^ \musDoubleSharp \musEighth \musEighthDotted \musFlat \musHalf \musHalfDotted ˇ“ ˇ “‰ V \ ˇ “) ˇ “) ‰ \musNatural ˇ “+ \musSixtyFourth \musQuarter \musQuarterDotted \musSegno \musSharp \musSixteenth \musSixteenthDotted ˇ “+ ‰ ˇ *“ ˇ “* ‰ \musSixtyFourthDotted \musThirtySecond \musThirtySecondDotted \musWhole \musWholeDotted ¯ ¯‰ musicography defines \fl, \sh, and \na as shorthands for \musFlat, \musSharp, and musNatural, respectively. It also defines \musCorchea as an alias for \musEighth, \musCorcheaDotted as an alias for \musEighthDotted, \musFusa as an alias for \musEighth, \musFusaDotted as an alias for \musEighthDotted, \musMinim as an alias for \musHalf, \musMinimDotted as an alias for \musHalfDotted, \musSemibreve as an alias for \musWhole, \musSemibreveDotted as an alias for \musWholeDotted, \musSemiminim as an alias for \musQuarter, and \musSeminiminimDotted as an alias for \musQuarterDotted. The MusiXTEX package must be installed to use musicography. 160 Table 440: musicography Time Signatures S S3 S3 2 R \meterC \meterCThree \meterCThreeTwo SZ \meterCZ \meterCutC ○ \meterO Other time signatures can be specified with \musMeter, as in \musMeter{2}{4} → 2 4 The MusiXTEX package must be installed to use musicography. Table 441: harmony Musical Accents .a . a Aa .a . a Aa \Ferli{A}\Ferli{a}* /A/a \Ohne{A}\Ohne{a}* \Fermi{A}\Fermi{a} ̃︂ A ̃︂ a \Umd{A}\Umd{a}* Alal \Kr{A}\Kr{a} * These symbols take an optional argument which shifts the accent either horizontally or vertically (depending on the command) by the given distance. In addition to the accents shown above, \HH is a special accent command that accepts five period-separated characters and typesets them such that b c “\HH.X.a.b.c.d.” produces “Xa d”. All arguments except the first can be omitted: “\HH.X.....” produces “X”. \Takt takes two arguments and composes them into a musical time signature. For example, “\Takt{12}{8}” produces S “ 12 8 ”. As two special cases, “\Takt{c}{0}” produces “ ” and “\Takt{c}{1}” produces “R ”. The MusiXTEX package must be installed to use harmony. lilyglyphs Single Notes Table 442: , u uu uu u , C \eighthNote \eighthNoteDotted \eighthNoteDottedDouble \eighthNoteDottedDoubleDown \eighthNoteDottedDown \eighthNoteDown \halfNote \halfNoteDotted \halfNoteDottedDouble \halfNoteDottedDoubleDown \halfNoteDottedDown \halfNoteDown \quarterNote u C © © © Z Z Z Z Z \quarterNoteDottedDown \quarterNoteDown \sixteenthNote \sixteenthNoteDotted \sixteenthNoteDottedDouble \sixteenthNoteDottedDoubleDown \sixteenthNoteDottedDown \sixteenthNoteDown \thirtysecondNote \thirtysecondNoteDotted \thirtysecondNoteDottedDouble \thirtysecondNoteDottedDoubleDown \thirtysecondNoteDottedDown (continued on next page) 161 (continued from previous page) u uu uu Z \quarterNoteDotted \quarterNoteDottedDouble \quarterNoteDottedDoubleDown \thirtysecondNoteDown \wholeNote \wholeNoteDotted lilyglyphs defines synonyms for all of the preceding symbols: C u uu uu u C Z Z Z Z Z Z , u uu uu \crotchet \crotchetDotted \crotchetDottedDouble \crotchetDottedDoubleDown \crotchetDottedDown \crotchetDown \demisemiquaver \demisemiquaverDotted \demisemiquaverDottedDouble \demisemiquaverDottedDoubleDown \demisemiquaverDottedDown \demisemiquaverDown \minim \minimDotted \minimDottedDouble \minimDottedDoubleDown \twoBeamedQuavers ZZZ ZZ Z \threeBeamedQuavers © © © \minimDottedDown \minimDown \quaver \quaverDotted \quaverDottedDouble \quaverDottedDoubleDown \quaverDottedDown \quaverDown \semibreve \semibreveDotted \semiquaver \semiquaverDotted \semiquaverDottedDouble \semiquaverDottedDoubleDown \semiquaverDottedDown \semiquaverDown lilyglyphs Beamed Notes Table 443: CC u , Z ZZ ZZ Z \threeBeamedQuaversII \threeBeamedQuaversIII \threeBeamedQuaversI lilyglyphs Clefs Table 444: \clefC \clefF \clefG Each of these symbols provides a smaller, “inline” form (\clefCInline, \clefFInline, and \clefGInline, respectively) intended for use within a lilyglyphs paragraph. See the documentation for more information. 162 lilyglyphs Time Signatures Table 445: \lilyTimeC \lilyTimeCHalf lilyglyphs also provides a \lilyTimeSignature command that lets a user typeset single and compound time signatures by specifying a numerator and a lilyglyphs denominator. See the documentation for more information. lilyglyphs Accidentals Table 446: \doublesharp \sharpArrowdown \flat \sharpArrowup \flatflat \sharpSlashslashslashStem \natural \sharpSlashslashslashStemstem \sharp \sharpSlashslashStem \sharpArrowboth \sharpSlashslashStemstemstem lilyglyphs Rests Table 447: \crotchetRest \crotchetRestDotted \halfNoteRest \halfNoteRestDotted \quaverRest \quaverRestDotted \semiquaverRest \semiquaverRestDotted \wholeNoteRest \wholeNoteRestDotted Multiply dotted rests can be produced with the \lilyPrintMoreDots comlilyglyphs mand. See the documentation for more information. lilyglyphs Dynamics Letters Table 448: \lilyDynamics{f} \lilyDynamics{p} \lilyDynamics{m} \lilyDynamics{r} \lilyDynamics{s} \lilyDynamics{z} \lilyRF \lilyRFZ These letters and the digits 0–9 are the only alphanumerics defined by lilyglyphs ’s underlying Emmentaler fonts. Table 449: lilyglyphs Dynamics Symbols \crescHairpin \decrescHairpin 163 lilyglyphs Articulations Table 450: \lilyAccent \lilyEspressivo \lilyStaccato \lilyThumb \marcato \marcatoDown \portato \portatoDown \staccatissimo \tenuto lilyglyphs Scripts Table 451: \fermata lilyglyphs Accordion Notation Table 452: \accordionBayanBass \accordionDiscant \accordionFreeBass \accordionOldEE \accordionPull \accordionPush Table 453: \accordionStdBass lilyglyphs Named Time Signatures \lilyGlyph{timesig.C22} \lilyGlyph{timesig.C44} \lilyGlyph{timesig.mensural22} \lilyGlyph{timesig.mensural24} \lilyGlyph{timesig.mensural32} \lilyGlyph{timesig.mensural34} \lilyGlyph{timesig.mensural44} \lilyGlyph{timesig.mensural48} \lilyGlyph{timesig.mensural64} \lilyGlyph{timesig.mensural68} \lilyGlyph{timesig.mensural68alt} \lilyGlyph{timesig.mensural94} \lilyGlyph{timesig.mensural98} \lilyGlyph{timesig.neomensural22} \lilyGlyph{timesig.neomensural24} \lilyGlyph{timesig.neomensural32} \lilyGlyph{timesig.neomensural34} \lilyGlyph{timesig.neomensural44} \lilyGlyph{timesig.neomensural48} \lilyGlyph{timesig.neomensural64} \lilyGlyph{timesig.neomensural68} \lilyGlyph{timesig.neomensural68alt} \lilyGlyph{timesig.neomensural94} \lilyGlyph{timesig.neomensural98} lilyglyphs defines shorter names for a few of these symbols. See Table 445. 164 lilyglyphs Named Scripts Table 454: \lilyGlyph{scripts.arpeggio} \lilyGlyph{scripts.arpeggio.arrow.1} \lilyGlyph{scripts.arpeggio.arrow.M1} \lilyGlyph{scripts.augmentum} \lilyGlyph{scripts.prallmordent} \lilyGlyph{scripts.prallprall} \lilyGlyph{scripts.prallup} \lilyGlyph{scripts.rcomma} \lilyGlyph{scripts.barline.kievan} \lilyGlyph{scripts.caesura.curved} \lilyGlyph{scripts.caesura.straight} \lilyGlyph{scripts.circulus} \lilyGlyph{scripts.coda} \lilyGlyph{scripts.daccentus} \lilyGlyph{scripts.dfermata} \lilyGlyph{scripts.dlongfermata} \lilyGlyph{scripts.dmarcato} \lilyGlyph{scripts.downbow} \lilyGlyph{scripts.downmordent} \lilyGlyph{scripts.downprall} \lilyGlyph{scripts.dpedalheel} \lilyGlyph{scripts.dpedaltoe} \lilyGlyph{scripts.dportato} \lilyGlyph{scripts.dsemicirculus} \lilyGlyph{scripts.dshortfermata} \lilyGlyph{scripts.dsignumcongruentiae} \lilyGlyph{scripts.dstaccatissimo} \lilyGlyph{scripts.dverylongfermata} \lilyGlyph{scripts.espr} \lilyGlyph{scripts.flageolet} \lilyGlyph{scripts.halfopen} \lilyGlyph{scripts.halfopenvertical} \lilyGlyph{scripts.ictus} \lilyGlyph{scripts.lcomma} \lilyGlyph{scripts.lineprall} \lilyGlyph{scripts.lvarcomma} \lilyGlyph{scripts.mordent} \lilyGlyph{scripts.open} \lilyGlyph{scripts.reverseturn} \lilyGlyph{scripts.rvarcomma} \lilyGlyph{scripts.segno} \lilyGlyph{scripts.sforzato} \lilyGlyph{scripts.snappizzicato} \lilyGlyph{scripts.staccato} \lilyGlyph{scripts.stopped} \lilyGlyph{scripts.tenuto} \lilyGlyph{scripts.thumb} \lilyGlyph{scripts.tickmark} \lilyGlyph{scripts.trilelement} \lilyGlyph{scripts.trill} \lilyGlyph{scripts.trill_element} \lilyGlyph{scripts.turn} \lilyGlyph{scripts.uaccentus} \lilyGlyph{scripts.ufermata} \lilyGlyph{scripts.ulongfermata} \lilyGlyph{scripts.umarcato} \lilyGlyph{scripts.upbow} \lilyGlyph{scripts.upedalheel} \lilyGlyph{scripts.upedaltoe} \lilyGlyph{scripts.upmordent} \lilyGlyph{scripts.uportato} \lilyGlyph{scripts.upprall} \lilyGlyph{scripts.usemicirculus} \lilyGlyph{scripts.ushortfermata} \lilyGlyph{scripts.usignumcongruentiae} \lilyGlyph{scripts.ustaccatissimo} \lilyGlyph{scripts.uverylongfermata} \lilyGlyph{scripts.varcoda} \lilyGlyph{scripts.prall} \lilyGlyph{scripts.pralldown} \lilyGlyph{scripts.varsegno} lilyglyphs defines \fermata as a shorter \lilyGlyph{scripts.ufermata}. See Table 451. 165 name for “ ” than lilyglyphs Named Rests Table 455: \lilyGlyph{rests.0} \lilyGlyph{rests.0mensural} \lilyGlyph{rests.4mensural} \lilyGlyph{rests.4neomensural} \lilyGlyph{rests.0neomensural} \lilyGlyph{rests.5} \lilyGlyph{rests.0o} \lilyGlyph{rests.6} \lilyGlyph{rests.1} \lilyGlyph{rests.1mensural} \lilyGlyph{rests.1neomensural} \lilyGlyph{rests.1o} \lilyGlyph{rests.2} \lilyGlyph{rests.2classical} \lilyGlyph{rests.2mensural} \lilyGlyph{rests.2neomensural} \lilyGlyph{rests.3} \lilyGlyph{rests.3mensural} \lilyGlyph{rests.3neomensural} \lilyGlyph{rests.4} \lilyGlyph{rests.7} \lilyGlyph{rests.M1} \lilyGlyph{rests.M1mensural} \lilyGlyph{rests.M1neomensural} \lilyGlyph{rests.M1o} \lilyGlyph{rests.M2} \lilyGlyph{rests.M2mensural} \lilyGlyph{rests.M2neomensural} \lilyGlyph{rests.M3} \lilyGlyph{rests.M3mensural} \lilyGlyph{rests.M3neomensural} lilyglyphs defines shorter names for a few of these symbols. See Table 447. lilyglyphs Named Pedals Table 456: \lilyGlyph{pedal.*} \lilyGlyph{pedal..} \lilyGlyph{pedal.d} \lilyGlyph{pedal.e} \lilyGlyph{pedal.M} \lilyGlyph{pedal.P} \lilyGlyph{pedal.Ped} 166 lilyglyphs Named Flags Table 457: \lilyGlyph{flags.d3} \lilyGlyph{flags.d4} \lilyGlyph{flags.mensuralu03} \lilyGlyph{flags.mensuralu04} \lilyGlyph{flags.d5} \lilyGlyph{flags.mensuralu05} \lilyGlyph{flags.d6} \lilyGlyph{flags.mensuralu06} \lilyGlyph{flags.d7} \lilyGlyph{flags.dgrace} \lilyGlyph{flags.mensuralu13} \lilyGlyph{flags.mensuralu14} \lilyGlyph{flags.mensurald03} \lilyGlyph{flags.mensuralu15} \lilyGlyph{flags.mensurald04} \lilyGlyph{flags.mensuralu16} \lilyGlyph{flags.mensurald05} \lilyGlyph{flags.mensuralu23} \lilyGlyph{flags.mensurald06} \lilyGlyph{flags.mensuralu24} \lilyGlyph{flags.mensurald13} \lilyGlyph{flags.mensuralu25} \lilyGlyph{flags.mensurald14} \lilyGlyph{flags.mensuralu26} \lilyGlyph{flags.mensurald15} \lilyGlyph{flags.u3} \lilyGlyph{flags.mensurald16} \lilyGlyph{flags.u4} \lilyGlyph{flags.mensurald23} \lilyGlyph{flags.u5} \lilyGlyph{flags.mensurald24} \lilyGlyph{flags.u6} \lilyGlyph{flags.mensurald25} \lilyGlyph{flags.u7} \lilyGlyph{flags.mensurald26} \lilyGlyph{flags.ugrace} lilyglyphs Named Custodes Table 458: \lilyGlyph{custodes.hufnagel.d0} \lilyGlyph{custodes.hufnagel.d1} \lilyGlyph{custodes.hufnagel.d2} \lilyGlyph{custodes.hufnagel.u0} \lilyGlyph{custodes.hufnagel.u1} \lilyGlyph{custodes.hufnagel.u2} \lilyGlyph{custodes.medicaea.d0} \lilyGlyph{custodes.medicaea.d1} \lilyGlyph{custodes.medicaea.d2} \lilyGlyph{custodes.medicaea.u0} \lilyGlyph{custodes.medicaea.u1} \lilyGlyph{custodes.medicaea.u2} \lilyGlyph{custodes.mensural.d0} \lilyGlyph{custodes.mensural.d1} \lilyGlyph{custodes.mensural.d2} \lilyGlyph{custodes.mensural.u0} \lilyGlyph{custodes.mensural.u1} \lilyGlyph{custodes.mensural.u2} \lilyGlyph{custodes.vaticana.d0} \lilyGlyph{custodes.vaticana.d1} \lilyGlyph{custodes.vaticana.d2} \lilyGlyph{custodes.vaticana.u0} \lilyGlyph{custodes.vaticana.u1} \lilyGlyph{custodes.vaticana.u2} 167 lilyglyphs Named Clefs Table 459: \lilyGlyph{clefs.blackmensural.c} \lilyGlyph{clefs.mensural.g_change} \lilyGlyph{clefs.blackmensural.c_change} \lilyGlyph{clefs.neomensural.c} \lilyGlyph{clefs.C} \lilyGlyph{clefs.C_change} \lilyGlyph{clefs.F} \lilyGlyph{clefs.neomensural.c_change} \lilyGlyph{clefs.percussion} \lilyGlyph{clefs.percussion_change} \lilyGlyph{clefs.F_change} \lilyGlyph{clefs.petrucci.c1} \lilyGlyph{clefs.G} \lilyGlyph{clefs.petrucci.c1_change} \lilyGlyph{clefs.G_change} \lilyGlyph{clefs.petrucci.c2} \lilyGlyph{clefs.hufnagel.do} \lilyGlyph{clefs.petrucci.c2_change} \lilyGlyph{clefs.hufnagel.do.fa} \lilyGlyph{clefs.petrucci.c3} \lilyGlyph{clefs.hufnagel.do.fa_change} \lilyGlyph{clefs.petrucci.c3_change} \lilyGlyph{clefs.hufnagel.do_change} \lilyGlyph{clefs.petrucci.c4} \lilyGlyph{clefs.hufnagel.fa} \lilyGlyph{clefs.petrucci.c4_change} \lilyGlyph{clefs.hufnagel.fa_change} \lilyGlyph{clefs.petrucci.c5} \lilyGlyph{clefs.kievan.do} \lilyGlyph{clefs.petrucci.c5_change} \lilyGlyph{clefs.kievan.do_change} \lilyGlyph{clefs.petrucci.f} \lilyGlyph{clefs.medicaea.do} \lilyGlyph{clefs.petrucci.f_change} \lilyGlyph{clefs.medicaea.do_change} \lilyGlyph{clefs.petrucci.g} \lilyGlyph{clefs.medicaea.fa} \lilyGlyph{clefs.petrucci.g_change} \lilyGlyph{clefs.medicaea.fa_change} \lilyGlyph{clefs.tab} \lilyGlyph{clefs.mensural.c} \lilyGlyph{clefs.tab_change} \lilyGlyph{clefs.mensural.c_change} \lilyGlyph{clefs.mensural.f} \lilyGlyph{clefs.mensural.f_change} \lilyGlyph{clefs.vaticana.do} \lilyGlyph{clefs.vaticana.do_change} \lilyGlyph{clefs.vaticana.fa} \lilyGlyph{clefs.mensural.g} \lilyGlyph{clefs.vaticana.fa_change} lilyglyphs defines shorter names for a few of these symbols. See Table 444. 168 Table 460: lilyglyphs Named Noteheads \lilyGlyph{noteheads.d0doFunk} \lilyGlyph{noteheads.d0fa} \lilyGlyph{noteheads.d0faFunk} \lilyGlyph{noteheads.d0faThin} \lilyGlyph{noteheads.d0miFunk} \lilyGlyph{noteheads.d0reFunk} \lilyGlyph{noteheads.d0tiFunk} \lilyGlyph{noteheads.d1do} \lilyGlyph{noteheads.d1doFunk} \lilyGlyph{noteheads.d1doThin} \lilyGlyph{noteheads.d1doWalker} \lilyGlyph{noteheads.d1fa} \lilyGlyph{noteheads.d1faFunk} \lilyGlyph{noteheads.d1faThin} \lilyGlyph{noteheads.d1faWalker} \lilyGlyph{noteheads.d1miFunk} \lilyGlyph{noteheads.d1re} \lilyGlyph{noteheads.d1reFunk} \lilyGlyph{noteheads.d1reThin} \lilyGlyph{noteheads.d1reWalker} \lilyGlyph{noteheads.d1ti} \lilyGlyph{noteheads.d1tiFunk} \lilyGlyph{noteheads.d1tiThin} \lilyGlyph{noteheads.d1tiWalker} \lilyGlyph{noteheads.d1triangle} \lilyGlyph{noteheads.d2do} \lilyGlyph{noteheads.d2doFunk} \lilyGlyph{noteheads.d2doThin} \lilyGlyph{noteheads.d2doWalker} \lilyGlyph{noteheads.d2fa} \lilyGlyph{noteheads.d2faFunk} \lilyGlyph{noteheads.d2faThin} \lilyGlyph{noteheads.d2faWalker} \lilyGlyph{noteheads.d2kievan} \lilyGlyph{noteheads.d2re} \lilyGlyph{noteheads.d2reFunk} \lilyGlyph{noteheads.d2reThin} \lilyGlyph{noteheads.d2reWalker} \lilyGlyph{noteheads.d2ti} \lilyGlyph{noteheads.d2tiFunk} \lilyGlyph{noteheads.d2tiThin} \lilyGlyph{noteheads.d2tiWalker} \lilyGlyph{noteheads.d2triangle} \lilyGlyph{noteheads.d3kievan} \lilyGlyph{noteheads.dM2} \lilyGlyph{noteheads.dM2blackmensural} \lilyGlyph{noteheads.dM2mensural} \lilyGlyph{noteheads.dM2neomensural} \lilyGlyph{noteheads.dM2semimensural} \lilyGlyph{noteheads.dM3blackmensural} (continued on next page) 169 (continued from previous page) \lilyGlyph{noteheads.dM3mensural} \lilyGlyph{noteheads.dM3neomensural} \lilyGlyph{noteheads.dM3semimensural} \lilyGlyph{noteheads.drM2mensural} \lilyGlyph{noteheads.drM2neomensural} \lilyGlyph{noteheads.drM2semimensural} \lilyGlyph{noteheads.drM3mensural} \lilyGlyph{noteheads.drM3neomensural} \lilyGlyph{noteheads.drM3semimensural} \lilyGlyph{noteheads.s0} \lilyGlyph{noteheads.s0blackmensural} \lilyGlyph{noteheads.s0blackpetrucci} \lilyGlyph{noteheads.s0cross} \lilyGlyph{noteheads.s0diamond} \lilyGlyph{noteheads.s0do} \lilyGlyph{noteheads.s0doThin} \lilyGlyph{noteheads.s0doWalker} \lilyGlyph{noteheads.s0faWalker} \lilyGlyph{noteheads.s0harmonic} \lilyGlyph{noteheads.s0kievan} \lilyGlyph{noteheads.s0la} \lilyGlyph{noteheads.s0laFunk} \lilyGlyph{noteheads.s0laThin} \lilyGlyph{noteheads.s0laWalker} \lilyGlyph{noteheads.s0mensural} \lilyGlyph{noteheads.s0mi} \lilyGlyph{noteheads.s0miMirror} \lilyGlyph{noteheads.s0miThin} \lilyGlyph{noteheads.s0miWalker} \lilyGlyph{noteheads.s0neomensural} \lilyGlyph{noteheads.s0petrucci} \lilyGlyph{noteheads.s0re} \lilyGlyph{noteheads.s0reThin} \lilyGlyph{noteheads.s0reWalker} \lilyGlyph{noteheads.s0slash} \lilyGlyph{noteheads.s0sol} \lilyGlyph{noteheads.s0solFunk} \lilyGlyph{noteheads.s0ti} \lilyGlyph{noteheads.s0tiThin} \lilyGlyph{noteheads.s0tiWalker} \lilyGlyph{noteheads.s0triangle} \lilyGlyph{noteheads.s1} \lilyGlyph{noteheads.s1blackpetrucci} \lilyGlyph{noteheads.s1cross} \lilyGlyph{noteheads.s1diamond} \lilyGlyph{noteheads.s1kievan} \lilyGlyph{noteheads.s1la} \lilyGlyph{noteheads.s1laFunk} \lilyGlyph{noteheads.s1laThin} \lilyGlyph{noteheads.s1laWalker} \lilyGlyph{noteheads.s1mensural} \lilyGlyph{noteheads.s1mi} \lilyGlyph{noteheads.s1miMirror} (continued on next page) 170 (continued from previous page) \lilyGlyph{noteheads.s1miThin} \lilyGlyph{noteheads.s1miWalker} \lilyGlyph{noteheads.s1neomensural} \lilyGlyph{noteheads.s1petrucci} \lilyGlyph{noteheads.s1slash} \lilyGlyph{noteheads.s1sol} \lilyGlyph{noteheads.s1solFunk} \lilyGlyph{noteheads.s2} \lilyGlyph{noteheads.s2blackpetrucci} \lilyGlyph{noteheads.s2cross} \lilyGlyph{noteheads.s2diamond} \lilyGlyph{noteheads.s2harmonic} \lilyGlyph{noteheads.s2la} \lilyGlyph{noteheads.s2laFunk} \lilyGlyph{noteheads.s2laThin} \lilyGlyph{noteheads.s2laWalker} \lilyGlyph{noteheads.s2mensural} \lilyGlyph{noteheads.s2mi} \lilyGlyph{noteheads.s2miFunk} \lilyGlyph{noteheads.s2miMirror} \lilyGlyph{noteheads.s2miThin} \lilyGlyph{noteheads.s2miWalker} \lilyGlyph{noteheads.s2neomensural} \lilyGlyph{noteheads.s2petrucci} \lilyGlyph{noteheads.s2slash} \lilyGlyph{noteheads.s2sol} \lilyGlyph{noteheads.s2solFunk} \lilyGlyph{noteheads.s2xcircle} \lilyGlyph{noteheads.shufnagel.lpes} \lilyGlyph{noteheads.shufnagel.punctum} \lilyGlyph{noteheads.shufnagel.virga} \lilyGlyph{noteheads.sM1} \lilyGlyph{noteheads.sM1blackmensural} \lilyGlyph{noteheads.sM1double} \lilyGlyph{noteheads.sM1kievan} \lilyGlyph{noteheads.sM1mensural} \lilyGlyph{noteheads.sM1neomensural} \lilyGlyph{noteheads.sM1semimensural} \lilyGlyph{noteheads.sM2blackligmensural} \lilyGlyph{noteheads.sM2kievan} \lilyGlyph{noteheads.sM2ligmensural} \lilyGlyph{noteheads.sM2semiligmensural} \lilyGlyph{noteheads.sM3blackligmensural} \lilyGlyph{noteheads.sM3ligmensural} \lilyGlyph{noteheads.sM3semiligmensural} \lilyGlyph{noteheads.smedicaea.inclinatum} \lilyGlyph{noteheads.smedicaea.punctum} \lilyGlyph{noteheads.smedicaea.rvirga} \lilyGlyph{noteheads.smedicaea.virga} \lilyGlyph{noteheads.sr1kievan} \lilyGlyph{noteheads.srM1mensural} \lilyGlyph{noteheads.srM1neomensural} \lilyGlyph{noteheads.srM1semimensural} (continued on next page) 171 (continued from previous page) \lilyGlyph{noteheads.srM2ligmensural} \lilyGlyph{noteheads.srM2semiligmensural} \lilyGlyph{noteheads.srM3ligmensural} \lilyGlyph{noteheads.srM3semiligmensural} \lilyGlyph{noteheads.ssolesmes.auct.asc} \lilyGlyph{noteheads.ssolesmes.auct.desc} \lilyGlyph{noteheads.ssolesmes.incl.auctum} \lilyGlyph{noteheads.ssolesmes.incl.parvum} \lilyGlyph{noteheads.ssolesmes.oriscus} \lilyGlyph{noteheads.ssolesmes.stropha} \lilyGlyph{noteheads.ssolesmes.stropha.aucta} \lilyGlyph{noteheads.svaticana.cephalicus} \lilyGlyph{noteheads.svaticana.epiphonus} \lilyGlyph{noteheads.svaticana.inclinatum} \lilyGlyph{noteheads.svaticana.inner.cephalicus} \lilyGlyph{noteheads.svaticana.linea.punctum} \lilyGlyph{noteheads.svaticana.linea.punctum.cavum} \lilyGlyph{noteheads.svaticana.lpes} \lilyGlyph{noteheads.svaticana.plica} \lilyGlyph{noteheads.svaticana.punctum} \lilyGlyph{noteheads.svaticana.punctum.cavum} \lilyGlyph{noteheads.svaticana.quilisma} \lilyGlyph{noteheads.svaticana.reverse.plica} \lilyGlyph{noteheads.svaticana.reverse.vplica} \lilyGlyph{noteheads.svaticana.upes} \lilyGlyph{noteheads.svaticana.vepiphonus} \lilyGlyph{noteheads.svaticana.vlpes} \lilyGlyph{noteheads.svaticana.vplica} \lilyGlyph{noteheads.svaticana.vupes} \lilyGlyph{noteheads.u0doFunk} \lilyGlyph{noteheads.u0fa} \lilyGlyph{noteheads.u0faFunk} \lilyGlyph{noteheads.u0faThin} \lilyGlyph{noteheads.u0miFunk} \lilyGlyph{noteheads.u0reFunk} \lilyGlyph{noteheads.u0tiFunk} \lilyGlyph{noteheads.u1do} \lilyGlyph{noteheads.u1doFunk} \lilyGlyph{noteheads.u1doThin} \lilyGlyph{noteheads.u1doWalker} \lilyGlyph{noteheads.u1fa} \lilyGlyph{noteheads.u1faFunk} \lilyGlyph{noteheads.u1faThin} \lilyGlyph{noteheads.u1faWalker} \lilyGlyph{noteheads.u1miFunk} \lilyGlyph{noteheads.u1re} \lilyGlyph{noteheads.u1reFunk} \lilyGlyph{noteheads.u1reThin} \lilyGlyph{noteheads.u1reWalker} \lilyGlyph{noteheads.u1ti} \lilyGlyph{noteheads.u1tiFunk} \lilyGlyph{noteheads.u1tiThin} \lilyGlyph{noteheads.u1tiWalker} (continued on next page) 172 (continued from previous page) \lilyGlyph{noteheads.u1triangle} \lilyGlyph{noteheads.u2do} \lilyGlyph{noteheads.u2doFunk} \lilyGlyph{noteheads.u2doThin} \lilyGlyph{noteheads.u2doWalker} \lilyGlyph{noteheads.u2fa} \lilyGlyph{noteheads.u2faFunk} \lilyGlyph{noteheads.u2faThin} \lilyGlyph{noteheads.u2faWalker} \lilyGlyph{noteheads.u2kievan} \lilyGlyph{noteheads.u2re} \lilyGlyph{noteheads.u2reFunk} \lilyGlyph{noteheads.u2reThin} \lilyGlyph{noteheads.u2reWalker} \lilyGlyph{noteheads.u2ti} \lilyGlyph{noteheads.u2tiFunk} \lilyGlyph{noteheads.u2tiThin} \lilyGlyph{noteheads.u2tiWalker} \lilyGlyph{noteheads.u2triangle} \lilyGlyph{noteheads.u3kievan} \lilyGlyph{noteheads.uM2} \lilyGlyph{noteheads.uM2blackmensural} \lilyGlyph{noteheads.uM2mensural} \lilyGlyph{noteheads.uM2neomensural} \lilyGlyph{noteheads.uM2semimensural} \lilyGlyph{noteheads.uM3blackmensural} \lilyGlyph{noteheads.uM3mensural} \lilyGlyph{noteheads.uM3neomensural} \lilyGlyph{noteheads.uM3semimensural} \lilyGlyph{noteheads.urM2mensural} \lilyGlyph{noteheads.urM2neomensural} \lilyGlyph{noteheads.urM2semimensural} \lilyGlyph{noteheads.urM3mensural} \lilyGlyph{noteheads.urM3neomensural} \lilyGlyph{noteheads.urM3semimensural} Table 461: lilyglyphs Named Accordion Symbols \lilyGlyph{accordion.bayanbass} \lilyGlyph{accordion.discant} \lilyGlyph{accordion.dot} \lilyGlyph{accordion.oldEE} \lilyGlyph{accordion.pull} \lilyGlyph{accordion.push} \lilyGlyph{accordion.freebass} \lilyGlyph{accordion.stdbass} lilyglyphs defines shorter names for all \lilyGlyph{accordion.dot}. See Table 452. 173 of these symbols except lilyglyphs Named Accidentals Table 462: \lilyGlyph{accidentals.doublesharp} \lilyGlyph{accidentals.flat} \lilyGlyph{accidentals.flat.arrowboth} \lilyGlyph{accidentals.flat.arrowdown} \lilyGlyph{accidentals.flat.arrowup} \lilyGlyph{accidentals.flat.slash} \lilyGlyph{accidentals.flat.slashslash} \lilyGlyph{accidentals.flatflat} \lilyGlyph{accidentals.flatflat.slash} \lilyGlyph{accidentals.hufnagelM1} \lilyGlyph{accidentals.kievan1} \lilyGlyph{accidentals.kievanM1} \lilyGlyph{accidentals.leftparen} \lilyGlyph{accidentals.medicaeaM1} \lilyGlyph{accidentals.mensural1} \lilyGlyph{accidentals.mensuralM1} \lilyGlyph{accidentals.mirroredflat} \lilyGlyph{accidentals.mirroredflat.backslash} \lilyGlyph{accidentals.mirroredflat.flat} \lilyGlyph{accidentals.natural} \lilyGlyph{accidentals.natural.arrowboth} \lilyGlyph{accidentals.natural.arrowdown} \lilyGlyph{accidentals.natural.arrowup} \lilyGlyph{accidentals.rightparen} \lilyGlyph{accidentals.sharp} \lilyGlyph{accidentals.sharp.arrowboth} \lilyGlyph{accidentals.sharp.arrowdown} \lilyGlyph{accidentals.sharp.arrowup} \lilyGlyph{accidentals.sharp.slashslash.stem} \lilyGlyph{accidentals.sharp.slashslash.stemstemstem} \lilyGlyph{accidentals.sharp.slashslashslash.stem} \lilyGlyph{accidentals.sharp.slashslashslash.stemstem} \lilyGlyph{accidentals.vaticana0} \lilyGlyph{accidentals.vaticanaM1} lilyglyphs defines shorter names for a few of these symbols. See Table 446. lilyglyphs Named Arrowheads Table 463: \lilyGlyph{arrowheads.close.01} \lilyGlyph{arrowheads.close.0M1} \lilyGlyph{arrowheads.close.11} \lilyGlyph{arrowheads.close.1M1} 174 \lilyGlyph{arrowheads.open.01} \lilyGlyph{arrowheads.open.0M1} \lilyGlyph{arrowheads.open.11} \lilyGlyph{arrowheads.open.1M1} Table 464: lilyglyphs Named Alphanumerics and Punctuation \lilyGlyph{zero} \lilyGlyph{one} \lilyGlyph{two} \lilyGlyph{three} \lilyGlyph{four} \lilyGlyph{five} \lilyGlyph{six} \lilyGlyph{seven} \lilyGlyph{eight} \lilyGlyph{nine} \lilyGlyph{f} \lilyGlyph{m} \lilyGlyph{p} \lilyGlyph{r} \lilyGlyph{s} \lilyGlyph{z} \lilyGlyph{comma} \lilyGlyph{hyphen} \lilyGlyph{period} \lilyGlyph{plus} lilyglyphs See Table 448 for an alternative way to typeset dynamics letters. additionally provides a \lilyText command that can be useful for typesetting lilyglyphs groups of the preceding symbols. See the documentation for more information. lilyglyphs Named Musical Symbols Table 465: Miscellaneous \lilyGlyph{brackettips.down} \lilyGlyph{brackettips.up} \lilyGlyph{dots.dot} \lilyGlyph{dots.dotkievan} \lilyGlyph{dots.dotvaticana} \lilyGlyph{ties.lyric.default} \lilyGlyph{ties.lyric.short} 175 8 Other symbols The following are all the symbols that didn’t fit neatly or unambiguously into any of the previous sections. (Do weather symbols belong under “Science and technology”? Should dice be considered “mathematics”?) While some of the tables contain clearly related groups of symbols (e.g., symbols related to various board games), others represent motley assortments of whatever the font designer felt like drawing. Table 466: textcomp Genealogical Symbols b d \textborn \textdied c l \textdivorced \textleaf m \textmarried Table 467: wasysym General Symbols m 1 | * \ataribox \bell \blacksmiley \Bowtie \brokenvert \checked \clock L / 6 " \diameter \DOWNarrow \frownie \invdiameter \kreuz \LEFTarrow \leftturn ! , \lightning \phone \pointer \recorder \RIGHTarrow \rightturn \smiley ☼ K S ◊ \sun \UParrow \wasycmd* \wasylozenge wasysym defines \applecmd as a synonym for \wasycmd. Table 468: manfnt Dangerous Bend Symbols \dbend ~ \lhdbend \reversedvideodbend Note that these symbols descend far beneath the baseline. manfnt also defines non-descending versions, which it calls, correspondingly, \textdbend, \textlhdbend, and \textreversedvideodbend. Table 469: Miscellaneous manfnt Symbols $ % # y ! \manboldkidney \manconcentriccircles \manconcentricdiamond \mancone \mancube \manerrarrow \manfilledquartercircle \manhpennib \manimpossiblecube \mankidney \manlhpenkidney & ' " 7 x 6 176 \manpenkidney \manquadrifolium \manquartercircle \manrotatedquadrifolium \manrotatedquartercircle \manstar \mantiltpennib \mantriangledown \mantriangleright \mantriangleup \manvpennib Table 470: marvosym Media Control Symbols · ¸ ¹ » º ¶ \Forward \ForwardToEnd \ForwardToIndex ´ µ ½ \MoveDown \MoveUp \Rewind \RewindToIndex \RewindToStart \ToBottom ¼ \ToTop Table 471: marvosym Laundry Symbols Ø Ó Õ Ë « ¾ ¿ ¬ î Ý Ü ¯ ° ± Ì ¨ ² × Ù \AtForty \AtNinetyFive \AtSixty \Bleech \CleaningA \CleaningF \CleaningFF \CleaningP \CleaningPP \Dontwash \Handwash \IroningI \IroningII \IroningIII \NoBleech \NoChemicalCleaning \NoIroning \NoTumbler \ShortFifty \ShortForty Ô Ö Û Ú \ShortNinetyFive \ShortSixty \ShortThirty \SpecialForty \Tumbler \WashCotton \WashSynthetics \WashWool Table 472: marvosym Information Symbols ® U K o \Bicycle \ClockLogo \Coffeecup \Football x I i y \Gentsroom \Industry \Info \Ladiesroom Z w b \PointingHand \Wheelchair \WritingHand Table 473: Other marvosym Symbols ý F M N ¥ ª § \Ankh \Bat \BOLogo \BOLogoL \BOLogoP ÿ ³ m @ \Bouquet \Celtcross \CircledA \Cross \Frowny \Heart \ManFace \MineSign \Mundus \MVAt f © þ Y \PeaceDove \Smiley \WomanFace \Yinyang Table 474: Miscellaneous universa Symbols Ξ Λ \bauforms \bauhead Table 475: Miscellaneous fourier Symbols , * \bomb \grimace ! . \noway \textthing* 6 5 \textxswdown* \textxswup* " \warning fourier defines math-mode synonyms for a few of the preceding symbols: \thething (“.”), \xswordsup (“5”), and \xswordsdown (“6”). 177 Table 476: ifsym Weather Symbols ! # " \Cloud \FilledCloud \FilledRainCloud \FilledSunCloud \FilledWeakRainCloud \Fog \Hail \HalfSun \Lightning \NoSun \Rain \RainCloud \Sleet \Snow \SnowCloud \Sun \SunCloud \ThinFog $ \WeakRain \WeakRainCloud \FilledSnowCloud In addition, \Thermo{0}. . .\Thermo{6} produce thermometers that are be tween 0/6 and 6/6 full of mercury: Similarly, \wind{⟨sun⟩}{⟨angle⟩}{⟨strength⟩} will draw wind symbols with a given amount of sun (0–4), a given angle (in degrees), and a given strength in km/h (0–100). For example, \wind{0}{0}{0} produces “ 0 ”, \wind{2}{0}{0} produces “ 0 ”, and \wind{4}{0}{100} produces “ : ”. \SummitSign \StoneMan \Hut \FilledHut \Village \Interval \StopWatchEnd Table 477: ifsym Alpine Symbols \Summit \Mountain \IceMountain \VarMountain \VarIceMountain \SurveySign \Joch \Flag \VarFlag \Tent Table 478: ifsym Clocks \StopWatchStart \Taschenuhr \HalfFilledHut \VarSummit \VarClock \Wecker \VarTaschenuhr ifsym also exports a \showclock macro. \showclock{⟨hours⟩}{⟨minutes⟩} outputs a clock displaying the corresponding time. For instance, “\showclock{5}{40}” produces “ ”. ⟨hours⟩ must be an integer from 0 to 11, and ⟨minutes⟩ must be an integer multiple of 5 from 0 to 55. D : : Table 479: Other ifsym Symbols \FilledSectioningDiamond \Fire \Irritant \Cube{1} \Cube{2} \StrokeOne \StrokeTwo :: :: \Letter \PaperLandscape \PaperPortrait ( \Cube{3} \Cube{4} \StrokeThree \StrokeFour 178 \Radiation \SectioningDiamond \Telephone \Cube{5} \Cube{6} ; \StrokeFive Table 480: clock Clocks i 1i 23ii \ClockStyle \ClockFramefalse 0 1 2 3 0 i 01i 0023ii \ClockFrametrue The clock package provides a \clock command to typeset an arbitrary time on an analog clock (and \clocktime to typeset the document’s build time). For example, the clocks in the above table were produced with \clock{15}{41}. Clock symbols are composed from a font of clock-face fragments using one of four values for \ClockStyle and either \ClockFrametrue or \ClockFrametrue as illustrated above. See the clock documentation for more information. Table 481: epsdice Dice \epsdice{1} \epsdice{2} \epsdice{3} \epsdice{4} \epsdice{5} \epsdice{6} Table 482: hhcount Dice \fcdice{1} \fcdice{2} \fcdice{3} \fcdice{4} \fcdice{5} \fcdice{6} The \fcdice command accepts values larger than 6. “\fcdice{47}” produces “ ”. Table 483: stix Dice ⚀ ⚁ \dicei \diceii ⚂ ⚃ \diceiii \diceiv 179 ⚄ ⚅ \dicev \dicevi For example, Table 484: bullcntr Tally Markers ∙ \bullcntr{⟨1 ⟩} ∙ ∙ ∙ ∙ \bullcntr{⟨4 ⟩} ∙∙ ∙∙∙ ∙∙ \bullcntr{⟨7 ⟩} ∙ ∙ \bullcntr{⟨2 ⟩} ∙ ∙ ∙ ∙ ∙ \bullcntr{⟨5 ⟩} ∙∙∙ ∙∙ ∙∙∙ \bullcntr{⟨8 ⟩} ∙ ∙ ∙ \bullcntr{⟨3 ⟩} ∙∙ ∙ ∙ ∙∙ \bullcntr{⟨6 ⟩} ∙∙∙ ∙∙∙ ∙∙∙ \bullcntr{⟨9 ⟩} The notation for \bullcntr used in the above bears explanation. \bullcntr does not take a number as its argument but rather a LATEX counter, whose value it uses to typeset a tally marker. “\bullcntr{⟨3 ⟩}”, for example, means to invoke \bullcntr with a counter whose value is 3. (\bullcntr usage is therefore akin to that of LATEX’s \fnsymbol.) The intention is to use \bullcntr indirectly via the bullenum package’s bullenum environment, which is a variation on the enumerate environment that uses \bullcntr to typeset the labels. To typeset individual tally markers, one can define a helper command: \newcounter{bull} \newcommand{\showbullcntr}[1]{% \setcounter{bull}{#1}% \bullcntr{bull}% } bullcntr’s package options smallctrbull, largectrbull, and heartctrbull and corresponding commands \smallctrbull, \largectrbull, and \heartctrbull control the formatting of each tally marker: \bullcntr{⟨5 ⟩} small large heart ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ♡ ♡ ♡ ♡ ♡ The default is smartctrbull (\smartctrbull), which maps counter values 1–5 to large pips and 6–9 to small pips. It is also possible to use arbitrary symbols for \bullcntr’s pips. See the bullcntr documentation for more information. Table 485: hhcount Tally Markers \fcscore{1} \fcscore{2} \fcscore{3} \fcscore{4} \fcscore{5} The \fcscore command accepts values larger than 5. ”. “\fcscore{47}” produces “ For example, Table 486: dozenal Tally Markers 1 2 \tally{1} \tally{2} 3 4 \tally{3} \tally{4} 180 5 6 \tally{5} \tally{6} Table 487: skull Symbols A \skull Table 488: Non-Mathematical mathabx Symbols O \rip Table 489: skak Chess Informator Symbols g i b a e X O I + RR P l n V t G \bbetter \bdecisive \betteris \bishoppair \bupperhand \capturesymbol \castlingchar \castlinghyphen \centre \checksymbol \chesscomment \chessetc \chesssee \compensation \counterplay \devadvantage \diagonal d L j H O O-O-O x y m S U N F o r M s \doublepawns \ending \equal \file \kside \longcastling \markera \markerb \mate \morepawns \moreroom \novelty \onlymove \opposbishops \passedpawn \qside \samebishops 181 q O-O T k u R f h J v A E C w c D \seppawns \shortcastling \timelimit \unclear \unitedpawns \various \wbetter \wdecisive \weakpt \with \withattack \withidea \withinit \without \wupperhand \zugzwang Table 490: skak Chess Pieces and Chessboard Squares a b Z j k m n o p l q \BlackBishopOnWhite s r \BlackEmptySquare B \symbishop \BlackKingOnBlack K \symking \BlackKingOnWhite N \symknight \BlackKnightOnBlack p \sympawn \BlackKnightOnWhite Q \symqueen \BlackPawnOnBlack R \symrook \BlackBishopOnBlack \BlackPawnOnWhite \BlackQueenOnBlack \BlackQueenOnWhite A B 0 \BlackRookOnBlack \BlackRookOnWhite \WhiteBishopOnBlack \WhiteBishopOnWhite J K M N O P L Q S R \WhiteKingOnBlack \WhiteKingOnWhite \WhiteKnightOnBlack \WhiteKnightOnWhite \WhitePawnOnBlack \WhitePawnOnWhite \WhiteQueenOnBlack \WhiteQueenOnWhite \WhiteRookOnBlack \WhiteRookOnWhite \WhiteEmptySquare The skak package also provides commands for drawing complete chessboards. See the skak documentation for more information. } | ~ Table 491: igo Go Symbols \blackstone[\igocircle] \blackstone[\igocross] \blackstone[\igonone] \blackstone[\igosquare] \blackstone[\igotriangle] } | ~ \whitestone[\igocircle] \whitestone[\igocross] \whitestone[\igonone] \whitestone[\igosquare] \whitestone[\igotriangle] In addition to the symbols shown above, igo’s \blackstone and \whitestone commands accept numbers from 1 to 99 and display them circled as , , , ..., and , , , . . . , , respectively. c c The igo package is intended to typeset complete Go boards (goban). See the igo documentation for more information. 182 Table 492: go Go Symbols \botborder \empty \hoshi \lftborder \lftbotcorner \lfttopcorner \rtborder \rtbotcorner ~ \rttopcorner \square \topborder \triangle In addition to the board fragments and stones shown above, go’s \black and \white commands accept numbers from 1 to 253 and display them circled as , , , ..., and , , , . . . , , respectively. \black and \white additionally accept \square and \triangle as arguments, producing and and for \black and and and for \white. } } ~ ~ The go package is intended to typeset complete Go boards (goban). See the go documentation for more information. Table 493: metre Metrical Symbols × ´˘ ˘ ´˘˘ ˘´˘ ˘˘ ˘˘´ ˘˘ ˘˘˘ ¯˘´¯˘ × \a \B \b \Bb \BB \bb \bB \bba \bbb \BBm ¯˘¯˘´ ¯˘´¯˘ ¯˘˘¯˘˘ ¯˘¯ ¯˘˘¯¯¯˘ ˘ ´¯˘¯ \bBm \bbm \Bbm \bbmb \bbmx \bm \Bm \c \C \Cc ¯ ´¯ ¯ ¯´˘ ¯˘ ¯˘´¯˘ ¯˘¯˘´ ¯˘¯˘ × \cc \Ccc \m \M \ma \Mb \mb \mBb \mbB \mbb ¯˘´¯˘ ¯˘¯¯˘¯˘ ∘∘ \Mbb \mbbx \oo \p \pm \pp \Pp \ppm \ppp \Ppp ˙ ¯˙ ˙˙ ˙˙ ¯˙˙˙ ˙ ˙˙˙ ˙ ˙˙ ˙ ˙˙˙ ˙˙ ˙˙ ˙˙ ˙˙ ∼ ∼ ⊗ \Pppp \pppp \Ppppp \ppppp \ps \pxp \Pxp \R \r \T ⊗ ¯˙ ¯˙˙ ˙˙˙˙ \t \tsbm \tsmb \tsmm \vppm \vpppm \x The preceding symbols are valid only within the argument to the metre command. Table 494: metre Small and Large Metrical Symbols ÷ < · < · ⊃ × ···· ∧ > · > · ·· ∼ ⊗ ⊕ \anaclasis \antidiple \antidiple* \antisigma \asteriscus \catalexis \diple \diple* \obelus \obelus* \respondens \terminus \terminus* ÷ < · < · ⊃ × ···· ∧ > >·· ·· ∼ ⊗ ⊕ 183 \Anaclasis \Antidiple \Antidiple* \Antisigma \Asteriscus \Catalexis \Diple \Diple* \Obelus \Obelus* \Respondens \Terminus \Terminus* Table 495: teubner Metrical Symbols Ι Θ Κ Ξ Ζ Ψ θ \aeolicbii \aeolicbiii \aeolicbiv \anceps \ancepsdbrevis \banceps \barbbrevis ι ς β γ ̮ Ϙ \barbrevis \bbrevis \brevis \catal \corona \coronainv \hiatus H η λ ε δ φ κ \ipercatal \longa \ubarbbrevis \ubarbrevis \ubarsbrevis \ubrevislonga The teubner package provides a \newmetrics command that helps users combine the preceding symbols as well as other teubner symbols. For example, the predefined \pentam symbol uses \newmetrics to juxtapose six \longas, two \barbbrevises, four \brevises, and a \dBar into “λθλθλ||λββλββλ”. See the teubner documentation for more information. Table 496: dictsym Dictionary Symbols a G A B C \dsaeronautical \dsagricultural \dsarchitectural \dsbiological \dschemical c H J L M \dscommercial \dsheraldical \dsjuridical \dsliterary \dsmathematical m X R T \dsmedical \dsmilitary \dsrailways \dstechnical Table 497: simpsons Characters from The Simpsons \Bart \Homer \Burns \Lisa \Maggie \SNPP \Marge The location of the characters’ pupils can be controlled with the \Goofy command. See A METAFONT of ‘Simpsons’ characters [Che98] for more information. Also, each of the above can be prefixed with \Left to make the character face left instead of right: \Left\Bart 184 Table 498: pmboxdraw Box-Drawing Symbols \textblock \textSFli \textSFxli \textSFxxiii \textdkshade \textSFlii \textSFxlii \textSFxxiv \textdnblock \textSFliii \textSFxliii \textSFxxv \textlfblock \textSFliv \textSFxliv \textSFxxvi \textltshade \textSFv \textSFxlix \textSFxxvii \textrtblock \textSFvi \textSFxlv \textSFxxviii \textSFi \textSFii \textSFvii \textSFviii \textSFxlvi \textSFxlvii \textSFxxxix \textSFxxxvi \textSFiii \textSFx \textSFxlviii \textSFxxxvii \textSFiv \textSFxi \textSFxx \textSFxxxviii \textSFix \textSFxix \textSFxxi \textshade \textSFl \textSFxl \textSFxxii \textupblock Code Page 437 (CP437), which was first utilized by the original IBM PC, contains the set of box-drawing symbols (sides, corners, and intersections of single- and double-ruled boxes) shown above in character positions 176–223. These symbols also appear in the Unicode Box Drawing and Block Element tables. The pmboxdraw package draws the CP437 box-drawing symbols using TEX rules (specifically, \vrule) instead of with a font and thereby provides the ability to alter both rule width and the separation between rules. See the pmboxdraw documentation for more information. Table 499: staves Magical Staves \staveI \staveXXIV . \staveXLVII \staveII \staveXXV / \staveXLVIII \staveIII \staveXXVI 0 \staveXLIX \staveIV \staveXXVII 1 \staveL \staveV \staveXXVIII 2 \staveLI \staveVI \staveXXIX 3 \staveLII \staveVII \staveXXX 4 \staveLIII \staveVIII \staveXXXI 5 \staveLIV \staveIX \staveXXXII 6 \staveLV \staveXXXIII 7 \staveLVI \staveXXXIV 8 \staveLVII \staveX \staveXI ! (continued on next page) 185 (continued from previous page) \staveXII " \staveXXXV 9 \staveLVIII \staveXIII # \staveXXXVI : \staveLIX \staveXIV $ \staveXXXVII ; \staveLX \staveXV % \staveXXXVIII < \staveLXI \staveXVI & \staveXXXIX = \staveLXII \staveXVII ' \staveXL > \staveLXIII \staveXVIII ( \staveXLI ? \staveLXIV \staveXIX ) \staveXLII @ \staveLXV \staveXX * \staveXLIII A \staveLXVI \staveXXI + \staveXLIV B \staveLXVII \staveXXII , \staveXLV C \staveLXVIII \staveXXIII - \staveXLVI The meanings of these symbols are described on the Web site for the Museum of Icelandic Sorcery and Witchcraft at http://www.galdrasyning.is/ index.php?option=com content&task=category&sectionid=5&id= 18&Itemid=60 (TinyURL: http://tinyurl.com/25979m). For example, \staveL (“1”) is intended to ward off ghosts and evil spirits. Table 500: pigpen Cipher Symbols A B C D E F G H I – {\pigpenfont {\pigpenfont {\pigpenfont {\pigpenfont {\pigpenfont {\pigpenfont {\pigpenfont {\pigpenfont {\pigpenfont A} B} C} D} E} F} G} H} I} J K L M N O P Q R {\pigpenfont {\pigpenfont {\pigpenfont {\pigpenfont {\pigpenfont {\pigpenfont {\pigpenfont {\pigpenfont {\pigpenfont J} K} L} M} N} O} P} Q} R} S T U V W X Y Z Table 501: ChinA2e Phases of the Moon \MoonPha{1} — \MoonPha{2} ˝ \MoonPha{3} Table 502: ChinA2e Recycling Symbols ¨ \Greenpoint 186 {\pigpenfont {\pigpenfont {\pigpenfont {\pigpenfont {\pigpenfont {\pigpenfont {\pigpenfont {\pigpenfont ˜ S} T} U} V} W} X} Y} Z} \MoonPha{4} Table 503: marvosym Recycling Symbols ß \PackingWaste Þ \Recycling A A Table 504: recycle Recycling Symbols A \recycle \Recycle \RECYCLE The METAFONT code that implements the recycling symbols shown above is, in the words of its author, “awful code [that] doesn’t even put the logo in a box (properly)”. Expect to receive “Inconsistent equation (off by ⟨number ⟩)” errors from METAFONT. Fortunately, if you tell METAFONT to proceed past those errors (e.g., by pressing Enter after each one or by specifying “-interaction=nonstopmode” on the METAFONT command line) it should produce a valid font. The commands listed above should be used within a group (e.g., “{\recycle}”) because they exhibit the side effect of changing the font to the recycle font. Table 505: Other ChinA2e Symbols ¡ # \Info \Postbox ¿ @ \Request \Telephone Table 506: soyombo Soyombo Symbols # * \Soyombo – \sA* ˝ \sO* These symbols require that the Soyombo font be active (“{\soyombo . . . }”). 187 Table 507: knitting Knitting Symbols ! " ( ) * 2 3 4 5 6 7 8 9 : ; < = > @ \textknit{!} \textknit{"} \textknit{(} \textknit{)} \textknit{*} \textknit{-} \textknit{2} \textknit{3} \textknit{4} \textknit{5} \textknit{6} \textknit{7} \textknit{8} \textknit{9} \textknit{:} \textknit{;} \textknit{<} \textknit{=} \textknit{>} \textknit{@} [ ] A a B b E F f H h I i J j L l M m O \textknit{[} \textknit{]} \textknit{A} \textknit{a} \textknit{B} \textknit{b} \textknit{E} \textknit{F} \textknit{f} \textknit{H} \textknit{h} \textknit{I} \textknit{i} \textknit{J} \textknit{j} \textknit{L} \textknit{l} \textknit{M} \textknit{m} \textknit{O} Q q R r S s T t U u V v W w X x Y y Z z \textknit{Q} \textknit{q} \textknit{R} \textknit{r} \textknit{S} \textknit{s} \textknit{T} \textknit{t} \textknit{U} \textknit{u} \textknit{V} \textknit{v} \textknit{W} \textknit{w} \textknit{X} \textknit{x} \textknit{Y} \textknit{y} \textknit{Z} \textknit{z} The knitting package is intended to typeset complete knitting charts. See the knitting documentation for more information. Some symbols behave differently when used as part of a sequence. For example, contrast \textknit{1} (“1 1”), \textknit{11} (“1„ 1„”), and \textknit{111} (“1”„ 1”„”). Similarly, contrast \textknit{"} (“" " ”) and \textknit{""} (“ «”). Again, see the knitting documentation for more information. Table 508: countriesofeurope Country Maps \Albania \Andorra \Austria \Belarus \Belgium \Bosnia \Latvia \Liechtenstein \Lithuania \Luxembourg \Macedonia \Malta (continued on next page) 188 (continued from previous page) \Bulgaria \Croatia \Czechia \Denmark \Estonia \Finland \France \Moldova \Montenegro \Netherlands \Norway \Poland \Portugal \Romania ¡ ¢ £ \Germany \GreatBritain \Greece \Serbia \Slovakia \Slovenia (continued on next page) 189 (continued from previous page) ¤ ¥ ¦ \Hungary \Iceland \Ireland \Spain \Sweden \Switzerland \Italy The preceding commands work only when the CountriesOfEurope font family is active. For convenience, the package defines a \countriesofeuropefamily command that switches to that font family. By default, countries are drawn in the current font size. Hence, “{\countriesofeuropefamily\France}” draws a nearly unrecognizable “”. For clarity of presentation, Table 508 scales each glyph to 72 pt. via an explicit \fontsize{72}{72}. An alternative is to specify the scaled package option to scale all country glyphs by a given factor of the font size. Table 509: euflag European Union flag F F F F F F F F F F F F \euflag The \euflag flag is drawn using the LATEX picture environment. Table 510: Miscellaneous arev Symbols ⚓ ☣ ❝ ❞ \anchor \biohazard \heavyqtleft \heavyqtright ☻ ☢ ♻ ☹ \invsmileface \radiation \recycle \sadface 190 ☠ ☺ ♨ ⚔ \skull \smileface \steaming \swords ⚠ ☯ \warning \yinyang Table 511: cookingsymbols Cooking Symbols \Bottomheat \Dish \Fanoven \Fork \Gasstove \Gloves \Knife \Oven \Spoon \Topbottomheat \Topheat Table 512: tikzsymbols Cooking Symbols \bakingplate \blender \bottle \bowl \cooker \eggbeater \fryingpan \garlicpress \grater \oven \pan \peeler \pot \rollingpin \sieve \squeezer \trident tikzsymbols defines German-language aliases for each of the above: \Backblech for \bakingplate, \Bratpfanne for \fryingpan, \Dreizack for \trident, \Flasche for \bottle, \Herd for \cooker, \Kochtopf for \pot, \Knoblauchpresse for \garlicpress, \Nudelholz for \rollingpin, \Ofen for \oven, \Pfanne for \pan, \Purierstab for \blender, \Reibe for \grater, \Saftpresse for \squeezer, \Schaler for \peeler, \Schneebesen for \eggbeater, \Schussel for \bowl, and \Sieb for \sieve. All tikzsymbols symbols are implemented with Tik Z graphics, not with a font. Table 513: tikzsymbols Emoticons \Annoey \Cat \cChangey{1} \Changey{1} \Cooley \Innocey \Laughey \Neutrey \NiceReapey \Ninja \Nursey \oldWinkey © \rWalley \Sadey \SchrodingersCat{0} \Sey \Sleepey \Smiley \Tongey \Vomey \Walley \Winkey \wInnocey \Xey All tikzsymbols symbols are implemented with Tik Z graphics, not with a font. Hence, symbols like \Ninja can include color. In fact, most of the commands shown above accept one or more color arguments for further customization. Also note that \cChangey, \Changey, and \SchrodingersCat take a mandatory argument. See the tikzsymbols documentation for more information. Table 514: tikzsymbols 3D Emoticons \dAnnoey \dcChangey{1} \dChangey{1} \dCooley \dInnocey \dLaughey \dNeutrey \dNinja \dNursey \drWalley \dSadey \dSey \dSleepey \dSmiley \dTongey \dVomey \dWalley \dWinkey \dXey \olddWinkey All tikzsymbols symbols are implemented with Tik Z graphics, not with a font. Hence, all of the symbols shown above can include color. In fact, each command in Table 514 accepts one or more color arguments for further customization. Note that \dcChangey and \dChangey also take a mandatory argument. See the tikzsymbols documentation for more information. 191 Table 515: tikzsymbols Trees \Autumntree \Springtree \Summertree \Wintertree \WorstTree All tikzsymbols symbols are implemented with Tik Z graphics, not with a font. Hence, all of the symbols shown above can include color. tikzsymbols additionally defines a \BasicTree command that supports customization of trunk and leaf colors. See the tikzsymbols documentation for more information. Table 516: Miscellaneous tikzsymbols Symbols \Bed \Candle K \Chair \Coffeecup \Fire \Moai \Snowman \Strichmaxerl \Tribar All tikzsymbols symbols are implemented with Tik Z graphics, not with a font. \Tribar supports customization of the fill color for each bar. \Strichmaxerl supports customization of the angles at which the stick figure’s arms and legs are drawn. See the tikzsymbols documentation for more information. Table 517: scsnowman Snowmen \scsnowman * \scsnowman is drawn using Tik Z. The command accepts a number of options for controlling the presence, appearance, and color of the snowman’s body, eyes, nose, mouth, arms, hat, and more. See the scsnowman documentation for more information, but the following examples showcase a subset of the possibilities (drawn large for clarity): \scsnowman \scsnowman[eyes, mouth, nose, arms, hat, muffler, buttons, snow, broom] Table 518: Miscellaneous bclogo Symbols \bcattention \bcetoile \bcpanchant \bcbombe \bcfemme \bcpeaceandlove \bcbook \bcfeujaune \bcpluie (continued on next page) 192 (continued from previous page) 1 JAN \bccalendrier \bcfeurouge \bcplume \bccle \bcfeutricolore \bcpoisson \bcclefa \bcfeuvert \bcquestion \bcclesol \bcfleur \bcrecyclage \bccoeur \bchomme \bcrosevents \bccrayon \bchorloge \bcsmbh \bccube \bcicosaedre \bcsmmh \bcdallemagne \bcinfo \bcsoleil \bcdanger \bcinterdit \bcdautriche \bclampe \bcstop \bcdbelgique \bcloupe \bctakecare \bcdbulgarie \bcneige \bctetraedre \bcdfrance \bcnote \bctrefle \bcditalie \bcnucleaire \bctrombone \bcdluxembourg \bcoctaedre \bcvaletcoeur \bcdodecaedre \bcoeil \bcvelo \bcdpaysbas \bcorne \bcyin \bcdz \bcours \bceclaircie \bcoutil ♠ \bcspadesuit STOP All bclogo symbols are implemented with Tik Z (or alternatively, PSTricks) graphics, not with a font. This is how the symbols shown above can include color. 193 Table 519: fontawesome Web-Related Icons ¿ è é ê ë ì í À î ï ð h ∠ ∠ ∠ ∠ ∠ ∠ ∠ ∠ ö ^ * [ ý ¤ ○ | í $ % W X e I ] [ f \fa500px \faAdjust \faAdn \faAlignCenter \faAlignJustify \faAlignLeft \faAlignRight \faAmazon \faAmbulance \faAnchor \faAndroid \faAngellist \faAngleDoubleDown \faAngleDoubleLeft \faAngleDoubleRight \faAngleDoubleUp \faAngleDown \faAngleLeft \faAngleRight \faAngleUp \faApple \faArchive \faAreaChart \faAsterisk \faAt \faBackward \faBalanceScale \faBan \faBarChart \faBarcode \faBars \faBatteryEmpty \faBatteryFull \faBatteryHalf \faBatteryQuarter \faBatteryThreeQuarters \faBed \faBeer \faBehance \faBehanceSquare \faBell \faBellO \faBellSlash \faBellSlashO \faBicycle \faBinoculars \faBirthdayCake \faBitbucket \faBitbucketSquare \faBlackTie \faBold ♀ m n 3 4 6 0 2 o 1 < p q 5 / r s t u º v x w y ú z { | } ~ n G © ¶ c d < \faFemale \faFighterJet \faFile \faFileArchiveO \faFileAudioO \faFileCodeO \faFileExcelO \faFileImageO \faFileO \faFilePdfO \faFilePowerpointO \faFilesO \faFileText \faFileTextO \faFileVideoO \faFileWordO \faFilm \faFilter \faFire \faFireExtinguisher \faFirefox \faFlag \faFlagCheckered \faFlagO \faFlask \faFlickr \faFloppyO \faFolder \faFolderO \faFolderOpen \faFolderOpenO \faFont \faFonticons \faForumbee \faForward \faFoursquare \faFrownO \faFutbolO \faGamepad \faGavel \faGetPocket \faGg \faGgCircle \faGift \faGit \faGithub \faGithubAlt \faGithubSquare \faGitSquare \faGlass \faGlobe Ø Ù Û ○ J + + Z +o Ê ß á â ? ? å æ ç ( \ è ì ï ð õ ö ÷ ø ¸ @ ü y x o þ E ÿ ý v p \faPlane \faPlay \faPlayCircle \faPlayCircleO \faPlug \faPlus \faPlusCircle \faPlusSquare \faPlusSquareO \faPowerOff \faPrint \faPuzzlePiece \faQq \faQrcode \faQuestion \faQuestionCircle \faQuoteLeft \faQuoteRight \faRandom \faRebel \faRecycle \faReddit \faRedditSquare \faRefresh \faRenren \faReply \faReplyAll \faRetweet \faRoad \faRocket \faRss \faRssSquare \faSafari \faScissors \faSearch \faSearchMinus \faSearchPlus \faSellsy \faServer \faShare \faShareAlt \faShareAltSquare \faShareSquare \faShareSquareO \faShield \faShip \faShirtsinbulk \faShoppingCart \faSignal \faSignIn \faSignOut (continued on next page) 194 (continued from previous page) F ◎ f l P Ä Â Á à ) 4 5 t s i _ ¢ T ¡ S U V a ¹ Ð / £ , . / \faBolt \faBomb \faBook \faBookmark \faBookmarkO \faBriefcase \faBug \faBuilding \faBuildingO \faBullhorn \faBullseye \faBus \faBuysellads \faCalculator \faCalendar \faCalendarCheckO \faCalendarMinusO \faCalendarO \faCalendarPlusO \faCalendarTimesO \faCamera \faCameraRetro \faCar \faCaretDown \faCaretLeft \faCaretRight \faCaretSquareODown \faCaretSquareOLeft \faCaretSquareORight \faCaretSquareOUp \faCaretUp \faCartArrowDown \faCartPlus \faCc \faCcAmex \faCcDinersClub \faCcDiscover \faCcJcb \faCcMastercard \faCcPaypal \faCcStripe \faCcVisa \faCertificate \faChainBroken \faChild \faChrome \faClipboard \faClockO \faClone \faCloud \faCloudDownload \faCloudUpload \faCode + + R = B ♥ z ♥ @ © ¨ § ¥ ¦ Ì h Å ¡ ¼ g ¢ 9 ¤ ¥ ^ § a b ¨ b ª « ¬ : ­ ` ® ¯ ° \faGoogle \faGooglePlus \faGooglePlusSquare \faGoogleWallet \faGraduationCap \faGratipay \faHackerNews \faHddO \faHeader \faHeadphones \faHeart \faHeartbeat \faHeartO \faHistory \faHome \faHospitalO \faHourglass \faHourglassEnd \faHourglassHalf \faHourglassO \faHourglassStart \faHouzz \faHSquare \faHtml5 \faICursor \faInbox \faIndent \faIndustry \faInfo \faInfoCircle \faInstagram \faInternetExplorer \faIoxhost \faItalic \faJoomla \faJsfiddle \faKey \faKeyboardO \faLanguage \faLaptop \faLastfm \faLastfmSquare \faLeaf \faLeanpub \faLemonO \faLevelDown \faLevelUp \faLifeRing \faLightbulbO \faLineChart \faLink \faLinkedin \faLinkedinSquare q r D K . ! , & ' y ] ! " A # $ % * ½ & ' ( ) \faSimplybuilt \faSitemap \faSkyatlas \faSkype \faSlack \faSliders \faSlideshare \faSmileO \faSort \faSortAlphaAsc \faSortAlphaDesc \faSortAmountAsc \faSortAmountDesc \faSortAsc \faSortDesc \faSortNumericAsc \faSortNumericDesc \faSoundcloud \faSpaceShuttle \faSpinner \faSpoon \faSpotify \faStackExchange \faStackOverflow \faSteam \faSteamSquare \faStepBackward \faStepForward \faStethoscope \faStickyNote \faStickyNoteO \faStop \faStreetView \faStrikethrough \faStumbleupon \faStumbleuponCircle \faSubscript \faSubway \faSuitcase \faSuperscript \faTable \faTablet \faTachometer \faTag \faTags \faTasks \faTaxi \faTelevision \faTencentWeibo \faTerminal \faTextHeight \faTextWidth \faTh (continued on next page) 195 (continued from previous page) 0 8 1 2 3 6 7 Ê Ë 8 9 : ☼ ó m ¾ = > û ? " # a B u I J K N … … R Q T U V o ñ W Y \ X \faCodeFork \faCodepen \faCoffee \faCog \faCogs \faColumns \faComment \faCommenting \faCommentingO \faCommentO \faComments \faCommentsO \faCompass \faCompress \faConnectdevelop \faContao \faCreditCard \faCrop \faCrosshairs \faCss3 \faCube \faCubes \faCutlery \faDashcube \faDatabase \faDelicious \faDesktop \faDeviantart \faDiamond \faDigg \faDownload \faDribbble \faDropbox \faDrupal \faEject \faEllipsisH \faEllipsisV \faEmpire \faEnvelope \faEnvelopeO \faEnvelopeSquare \faEraser \faExchange \faExclamation \faExclamationCircle \faExclamationTriangle \faExpand \faExpeditedssl \faExternalLink \faExternalLinkSquare \faEye \faEyedropper \faEyeSlash ± ² ³ Î 9 ´ µ º » ♂ É ½ È Æ Ç ¾ k ¿ À Á  − − − − Æ Ç x É N e µ » ` Ï > ? C Ñ Q Ó Ô Õ \faLinux \faList \faListAlt \faListOl \faListUl \faLocationArrow \faLock \faMagic \faMagnet \faMale \faMap \faMapMarker \faMapO \faMapPin \faMapSigns \faMaxcdn \faMeanpath \faMedium \faMedkit \faMehO \faMicrophone \faMicrophoneSlash \faMinus \faMinusCircle \faMinusSquare \faMinusSquareO \faMobile \faMoney \faMotorcycle \faMousePointer \faMusic \faNewspaperO \faObjectGroup \faObjectUngroup \faOdnoklassniki \faOdnoklassnikiSquare \faOpencart \faOpenid \faOpera \faOptinMonster \faOutdent \faPagelines \faPaintBrush \faPaperclip \faPaperPlane \faPaperPlaneO \faParagraph \faPause \faPaw \faPaypal \faPhone \faPhoneSquare \faPictureO * + à . 0 c d Y 1 + 2 ´ 3 4 H 5 6 L 7 8 : ; b c e g h w i Í j 7 k l m n p O · q r s t \faThLarge \faThList \faThumbTack \faTicket \faTint \faToggleOff \faToggleOn \faTrain \faTrash \faTrashO \faTree \faTrello \faTripadvisor \faTrophy \faTruck \faTty \faTumblr \faTumblrSquare \faTwitch \faTwitter \faTwitterSquare \faUmbrella \faUnderline \faUniversity \faUnlock \faUnlockAlt \faUpload \faUser \faUserMd \faUserPlus \faUsers \faUserSecret \faUserTimes \faVideoCamera \faVimeo \faVimeoSquare \faVine \faVk \faVolumeDown \faVolumeOff \faVolumeUp \faWeibo \faWeixin \faWhatsapp \faWheelchair \faWifi \faWikipediaW \faWindows \faWordpress \faWrench \faXing \faXingSquare \faYahoo (continued on next page) 196 (continued from previous page) g h j k \faFacebook \faFacebookOfficial \faFacebookSquare \faFastBackward \faFastForward \faFax _ Ö × \faPieChart \faPiedPiper \faPiedPiperAlt \faPinterest \faPinterestP \faPinterestSquare M u v w \faYCombinator \faYelp \faYoutube \faYoutubePlay \faYoutubeSquare fontawesome defines synonyms for many of the preceding symbols: ) | * ® < @ A L g ø 5 2 2 4 \faAutomobile \faBank \faBarChartO \faBattery0 \faBattery1 \faBattery2 \faBattery3 \faBattery4 \faCab \faChain \faCopy \faCut \faDashboard \faDedent \faEdit \faFacebookF \faFeed \faFileMovieO \faFilePhotoO \faFilePictureO \faFileSoundO 3 2 3 Õ © : : þ ï ð Æ í Ð Õ \faFileZipO \faFlash \faGe \faGear \faGears \faGittip \faGroup \faHotel \faImage \faInstitution \faLegal \faLifeBouy \faLifeSaver \faMailForward \faMailReply \faMailReplyAll \faMobilePhone \faMortarBoard \faNavicon \faPaste \faPhoto 197 í ú > ? G : 4 5 ½ a o = = \faRa \faReorder \faSave \faSend \faSendO \faSoccerBallO \faSortDown \faSortUp \faSupport \faToggleDown \faToggleLeft \faToggleRight \faToggleUp \faTv \faUnlink \faUnsorted \faWarning \faWechat \faYc \faYCombinatorSquare \faYcSquare Table 520: rubikcube Rubik’s Cube Rotations \rrhD \rrhF \rrhLw \rrhRw \rrhU \rrhDa \rrhFp \rrhLwp \rrhRwp \rrhUa \rrhDap \rrhFw \rrhM \rrhSd \rrhUap \rrhDp \rrhFwp \rrhMp \rrhSdp \rrhUp \rrhDs \rrhL \rrhR \rrhSl \rrhUs \rrhDsp \rrhLa \rrhRa \rrhSlp \rrhUsp \rrhDw \rrhLap \rrhRap \rrhSr \rrhUw \rrhDwp \rrhLp \rrhRp \rrhSrp \rrhUwp \rrhE \rrhLs \rrhRs \rrhSu \rrhEp \rrhLsp \rrhRsp \rrhSup All rubikcube symbols are implemented with Tik Z graphics, not with a font. In addition to the symbols shown above, the rubikcube package defines commands for combinations of textual and graphical representations of rotations ”) as well as commands that produce (e.g., \textRubikUa produces “Ua colored illustrations of Rubik’s Cube configurations and rotations. See the rubikcube documentation for more information. 198 9 Fonts with minimal LATEX support The symbol fonts shown in this section are provided without a corresponding LATEX 2𝜀 style file that assigns a convenient name to each glyph. Consequently, each glyph must be accessed by number. To help with this, the pifont package defines a \Pisymbol command that typesets a specified character by number from a specified LATEX font family. Alas, most of the fonts in this section do not even define a LATEX font family. Hence, except where otherwise specified, a document will need to include code like the following in its preamble: \usepackage{pifont} \DeclareFontFamily{U}{⟨name⟩}{} \DeclareFontShape{U}{⟨name⟩}{m}{n}{<-> ⟨font⟩}{} where ⟨font⟩ is the name of the .tfm font file (or .mf font file, from which a .tfm font file can be generated automatically), and ⟨name⟩ is a name to use to refer to that font. It’s generally good practice to use the name of the font file for ⟨name⟩, as in the following: \usepackage{pifont} \DeclareFontFamily{U}{hands}{} \DeclareFontShape{U}{hands}{m}{n}{<-> hands}{} A B Table 521: hands Fists \Pisymbol{hands}{65} \Pisymbol{hands}{66} C D \Pisymbol{hands}{67} \Pisymbol{hands}{68} Table 522: greenpoint Recycling Symbols G \Pisymbol{greenpoint}{71} Table 523: nkarta Map Symbols ! " # $ % & ' ( ) * + , . / 0 1 \Pisymbol{nkarta}{33} \Pisymbol{nkarta}{34} \Pisymbol{nkarta}{35} \Pisymbol{nkarta}{36} \Pisymbol{nkarta}{37} \Pisymbol{nkarta}{38} \Pisymbol{nkarta}{39} \Pisymbol{nkarta}{40} \Pisymbol{nkarta}{41} \Pisymbol{nkarta}{42} \Pisymbol{nkarta}{43} \Pisymbol{nkarta}{44} \Pisymbol{nkarta}{45} \Pisymbol{nkarta}{46} \Pisymbol{nkarta}{47} \Pisymbol{nkarta}{48} \Pisymbol{nkarta}{49} ` a b c d e f g h i j k l m n o p \Pisymbol{nkarta}{96} \Pisymbol{nkarta}{97} \Pisymbol{nkarta}{98} \Pisymbol{nkarta}{99} \Pisymbol{nkarta}{100} \Pisymbol{nkarta}{101} \Pisymbol{nkarta}{102} \Pisymbol{nkarta}{103} \Pisymbol{nkarta}{104} \Pisymbol{nkarta}{105} \Pisymbol{nkarta}{106} \Pisymbol{nkarta}{107} \Pisymbol{nkarta}{108} \Pisymbol{nkarta}{109} \Pisymbol{nkarta}{110} \Pisymbol{nkarta}{111} \Pisymbol{nkarta}{112} Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï Ð Ñ \Pisymbol{nkarta}{193} \Pisymbol{nkarta}{194} \Pisymbol{nkarta}{195} \Pisymbol{nkarta}{196} \Pisymbol{nkarta}{197} \Pisymbol{nkarta}{198} \Pisymbol{nkarta}{199} \Pisymbol{nkarta}{200} \Pisymbol{nkarta}{201} \Pisymbol{nkarta}{202} \Pisymbol{nkarta}{203} \Pisymbol{nkarta}{204} \Pisymbol{nkarta}{205} \Pisymbol{nkarta}{206} \Pisymbol{nkarta}{207} \Pisymbol{nkarta}{208} \Pisymbol{nkarta}{209} (continued on next page) 199 (continued from previous page) 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \Pisymbol{nkarta}{50} \Pisymbol{nkarta}{51} \Pisymbol{nkarta}{52} \Pisymbol{nkarta}{53} \Pisymbol{nkarta}{54} \Pisymbol{nkarta}{55} \Pisymbol{nkarta}{56} \Pisymbol{nkarta}{57} \Pisymbol{nkarta}{58} \Pisymbol{nkarta}{59} \Pisymbol{nkarta}{60} \Pisymbol{nkarta}{61} \Pisymbol{nkarta}{62} \Pisymbol{nkarta}{63} \Pisymbol{nkarta}{64} \Pisymbol{nkarta}{65} \Pisymbol{nkarta}{66} \Pisymbol{nkarta}{67} \Pisymbol{nkarta}{68} \Pisymbol{nkarta}{69} \Pisymbol{nkarta}{70} \Pisymbol{nkarta}{71} \Pisymbol{nkarta}{72} \Pisymbol{nkarta}{73} \Pisymbol{nkarta}{74} \Pisymbol{nkarta}{75} \Pisymbol{nkarta}{76} \Pisymbol{nkarta}{77} \Pisymbol{nkarta}{78} \Pisymbol{nkarta}{79} \Pisymbol{nkarta}{80} \Pisymbol{nkarta}{81} \Pisymbol{nkarta}{82} \Pisymbol{nkarta}{83} \Pisymbol{nkarta}{84} \Pisymbol{nkarta}{85} \Pisymbol{nkarta}{86} \Pisymbol{nkarta}{87} \Pisymbol{nkarta}{88} \Pisymbol{nkarta}{89} \Pisymbol{nkarta}{90} \Pisymbol{nkarta}{91} q r s t u v w x y z { | } ~ ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ ­ ® ¯ ° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ \Pisymbol{nkarta}{113} \Pisymbol{nkarta}{114} \Pisymbol{nkarta}{115} \Pisymbol{nkarta}{116} \Pisymbol{nkarta}{117} \Pisymbol{nkarta}{118} \Pisymbol{nkarta}{119} \Pisymbol{nkarta}{120} \Pisymbol{nkarta}{121} \Pisymbol{nkarta}{122} \Pisymbol{nkarta}{123} \Pisymbol{nkarta}{124} \Pisymbol{nkarta}{125} \Pisymbol{nkarta}{126} \Pisymbol{nkarta}{161} \Pisymbol{nkarta}{162} \Pisymbol{nkarta}{163} \Pisymbol{nkarta}{164} \Pisymbol{nkarta}{165} \Pisymbol{nkarta}{166} \Pisymbol{nkarta}{167} \Pisymbol{nkarta}{168} \Pisymbol{nkarta}{169} \Pisymbol{nkarta}{170} \Pisymbol{nkarta}{171} \Pisymbol{nkarta}{172} \Pisymbol{nkarta}{173} \Pisymbol{nkarta}{174} \Pisymbol{nkarta}{175} \Pisymbol{nkarta}{176} \Pisymbol{nkarta}{177} \Pisymbol{nkarta}{178} \Pisymbol{nkarta}{179} \Pisymbol{nkarta}{180} \Pisymbol{nkarta}{181} \Pisymbol{nkarta}{182} \Pisymbol{nkarta}{183} \Pisymbol{nkarta}{184} \Pisymbol{nkarta}{185} \Pisymbol{nkarta}{186} \Pisymbol{nkarta}{187} \Pisymbol{nkarta}{188} Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß à á â ã ä å æ ç è é ê ë ì í î ï ð ñ ò ó ô õ ö ÷ ø ù ú û \Pisymbol{nkarta}{210} \Pisymbol{nkarta}{211} \Pisymbol{nkarta}{212} \Pisymbol{nkarta}{213} \Pisymbol{nkarta}{214} \Pisymbol{nkarta}{215} \Pisymbol{nkarta}{216} \Pisymbol{nkarta}{217} \Pisymbol{nkarta}{218} \Pisymbol{nkarta}{219} \Pisymbol{nkarta}{220} \Pisymbol{nkarta}{221} \Pisymbol{nkarta}{222} \Pisymbol{nkarta}{223} \Pisymbol{nkarta}{224} \Pisymbol{nkarta}{225} \Pisymbol{nkarta}{226} \Pisymbol{nkarta}{227} \Pisymbol{nkarta}{228} \Pisymbol{nkarta}{229} \Pisymbol{nkarta}{230} \Pisymbol{nkarta}{231} \Pisymbol{nkarta}{232} \Pisymbol{nkarta}{233} \Pisymbol{nkarta}{234} \Pisymbol{nkarta}{235} \Pisymbol{nkarta}{236} \Pisymbol{nkarta}{237} \Pisymbol{nkarta}{238} \Pisymbol{nkarta}{239} \Pisymbol{nkarta}{240} \Pisymbol{nkarta}{241} \Pisymbol{nkarta}{242} \Pisymbol{nkarta}{243} \Pisymbol{nkarta}{244} \Pisymbol{nkarta}{245} \Pisymbol{nkarta}{246} \Pisymbol{nkarta}{247} \Pisymbol{nkarta}{248} \Pisymbol{nkarta}{249} \Pisymbol{nkarta}{250} \Pisymbol{nkarta}{251} \ \Pisymbol{nkarta}{92} ½ \Pisymbol{nkarta}{189} ü \Pisymbol{nkarta}{252} ] \Pisymbol{nkarta}{93} ¾ \Pisymbol{nkarta}{190} ý \Pisymbol{nkarta}{253} ^ _ \Pisymbol{nkarta}{94} \Pisymbol{nkarta}{95} ¿ À \Pisymbol{nkarta}{191} \Pisymbol{nkarta}{192} þ \Pisymbol{nkarta}{254} 200 Table 524: moonphase Astronomical Symbols \Pisymbol{moonphase}{0} \Pisymbol{moonphase}{1} \Pisymbol{moonphase}{2} \Pisymbol{moonphase}{3} Table 525: astrosym Astronomical Symbols \Pisymbol{astrosym}{0} \Pisymbol{astrosym}{1} \Pisymbol{astrosym}{2} \Pisymbol{astrosym}{3} \Pisymbol{astrosym}{4} \Pisymbol{astrosym}{5} \Pisymbol{astrosym}{6} \Pisymbol{astrosym}{7} \Pisymbol{astrosym}{8} \Pisymbol{astrosym}{9} \Pisymbol{astrosym}{10} \Pisymbol{astrosym}{11} \Pisymbol{astrosym}{12} \Pisymbol{astrosym}{13} \Pisymbol{astrosym}{14} \Pisymbol{astrosym}{15} \Pisymbol{astrosym}{16} \Pisymbol{astrosym}{17} \Pisymbol{astrosym}{18} \Pisymbol{astrosym}{19} \Pisymbol{astrosym}{20} \Pisymbol{astrosym}{21} \Pisymbol{astrosym}{22} \Pisymbol{astrosym}{23} \Pisymbol{astrosym}{24} \Pisymbol{astrosym}{25} \Pisymbol{astrosym}{26} \Pisymbol{astrosym}{27} \Pisymbol{astrosym}{28} \Pisymbol{astrosym}{29} \Pisymbol{astrosym}{30} \Pisymbol{astrosym}{31} \Pisymbol{astrosym}{32} ¡ ¢ £ ¤ \Pisymbol{astrosym}{132} \Pisymbol{astrosym}{133} \Pisymbol{astrosym}{134} \Pisymbol{astrosym}{135} \Pisymbol{astrosym}{136} \Pisymbol{astrosym}{137} \Pisymbol{astrosym}{138} \Pisymbol{astrosym}{139} \Pisymbol{astrosym}{140} \Pisymbol{astrosym}{141} \Pisymbol{astrosym}{142} \Pisymbol{astrosym}{143} \Pisymbol{astrosym}{144} \Pisymbol{astrosym}{145} \Pisymbol{astrosym}{146} \Pisymbol{astrosym}{147} \Pisymbol{astrosym}{148} \Pisymbol{astrosym}{149} \Pisymbol{astrosym}{150} \Pisymbol{astrosym}{151} \Pisymbol{astrosym}{152} \Pisymbol{astrosym}{153} \Pisymbol{astrosym}{154} \Pisymbol{astrosym}{155} \Pisymbol{astrosym}{156} \Pisymbol{astrosym}{157} \Pisymbol{astrosym}{158} \Pisymbol{astrosym}{159} \Pisymbol{astrosym}{160} \Pisymbol{astrosym}{161} \Pisymbol{astrosym}{162} \Pisymbol{astrosym}{163} \Pisymbol{astrosym}{164} (continued on next page) 201 (continued from previous page) ! " # $ % & ' ( ) * + , . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E Z [ \ ] \Pisymbol{astrosym}{33} \Pisymbol{astrosym}{34} \Pisymbol{astrosym}{35} \Pisymbol{astrosym}{36} \Pisymbol{astrosym}{37} \Pisymbol{astrosym}{38} \Pisymbol{astrosym}{39} \Pisymbol{astrosym}{40} \Pisymbol{astrosym}{41} \Pisymbol{astrosym}{42} \Pisymbol{astrosym}{43} \Pisymbol{astrosym}{44} \Pisymbol{astrosym}{45} \Pisymbol{astrosym}{46} \Pisymbol{astrosym}{47} \Pisymbol{astrosym}{48} \Pisymbol{astrosym}{49} \Pisymbol{astrosym}{50} \Pisymbol{astrosym}{51} \Pisymbol{astrosym}{52} \Pisymbol{astrosym}{53} \Pisymbol{astrosym}{54} \Pisymbol{astrosym}{55} \Pisymbol{astrosym}{56} \Pisymbol{astrosym}{57} \Pisymbol{astrosym}{58} \Pisymbol{astrosym}{59} \Pisymbol{astrosym}{60} \Pisymbol{astrosym}{61} \Pisymbol{astrosym}{62} \Pisymbol{astrosym}{63} \Pisymbol{astrosym}{64} \Pisymbol{astrosym}{65} \Pisymbol{astrosym}{66} \Pisymbol{astrosym}{67} \Pisymbol{astrosym}{68} \Pisymbol{astrosym}{69} \Pisymbol{astrosym}{90} \Pisymbol{astrosym}{91} \Pisymbol{astrosym}{92} \Pisymbol{astrosym}{93} ¥ ¦ § ¨ © ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿ È É Ê Ë Ì Í Î Ï Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý \Pisymbol{astrosym}{165} \Pisymbol{astrosym}{166} \Pisymbol{astrosym}{167} \Pisymbol{astrosym}{168} \Pisymbol{astrosym}{169} \Pisymbol{astrosym}{178} \Pisymbol{astrosym}{179} \Pisymbol{astrosym}{180} \Pisymbol{astrosym}{181} \Pisymbol{astrosym}{182} \Pisymbol{astrosym}{183} \Pisymbol{astrosym}{184} \Pisymbol{astrosym}{185} \Pisymbol{astrosym}{186} \Pisymbol{astrosym}{187} \Pisymbol{astrosym}{188} \Pisymbol{astrosym}{189} \Pisymbol{astrosym}{190} \Pisymbol{astrosym}{191} \Pisymbol{astrosym}{200} \Pisymbol{astrosym}{201} \Pisymbol{astrosym}{202} \Pisymbol{astrosym}{203} \Pisymbol{astrosym}{204} \Pisymbol{astrosym}{205} \Pisymbol{astrosym}{206} \Pisymbol{astrosym}{207} \Pisymbol{astrosym}{208} \Pisymbol{astrosym}{209} \Pisymbol{astrosym}{210} \Pisymbol{astrosym}{211} \Pisymbol{astrosym}{212} \Pisymbol{astrosym}{213} \Pisymbol{astrosym}{214} \Pisymbol{astrosym}{215} \Pisymbol{astrosym}{216} \Pisymbol{astrosym}{217} \Pisymbol{astrosym}{218} \Pisymbol{astrosym}{219} \Pisymbol{astrosym}{220} \Pisymbol{astrosym}{221} (continued on next page) 202 (continued from previous page) ^ _ d e f g h i j k l m n o p q r s t u v w x y z { | } ~ \Pisymbol{astrosym}{94} \Pisymbol{astrosym}{95} \Pisymbol{astrosym}{100} \Pisymbol{astrosym}{101} \Pisymbol{astrosym}{102} \Pisymbol{astrosym}{103} \Pisymbol{astrosym}{104} \Pisymbol{astrosym}{105} \Pisymbol{astrosym}{106} \Pisymbol{astrosym}{107} \Pisymbol{astrosym}{108} \Pisymbol{astrosym}{109} \Pisymbol{astrosym}{110} \Pisymbol{astrosym}{111} \Pisymbol{astrosym}{112} \Pisymbol{astrosym}{113} \Pisymbol{astrosym}{114} \Pisymbol{astrosym}{115} \Pisymbol{astrosym}{116} \Pisymbol{astrosym}{117} \Pisymbol{astrosym}{118} \Pisymbol{astrosym}{119} \Pisymbol{astrosym}{120} \Pisymbol{astrosym}{121} \Pisymbol{astrosym}{122} \Pisymbol{astrosym}{123} \Pisymbol{astrosym}{124} \Pisymbol{astrosym}{125} \Pisymbol{astrosym}{126} \Pisymbol{astrosym}{127} \Pisymbol{astrosym}{128} \Pisymbol{astrosym}{129} \Pisymbol{astrosym}{130} \Pisymbol{astrosym}{131} Þ ß à á â ã ä å æ ç è é ê ë ì í î ï ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ 203 \Pisymbol{astrosym}{222} \Pisymbol{astrosym}{223} \Pisymbol{astrosym}{224} \Pisymbol{astrosym}{225} \Pisymbol{astrosym}{226} \Pisymbol{astrosym}{227} \Pisymbol{astrosym}{228} \Pisymbol{astrosym}{229} \Pisymbol{astrosym}{230} \Pisymbol{astrosym}{231} \Pisymbol{astrosym}{232} \Pisymbol{astrosym}{233} \Pisymbol{astrosym}{234} \Pisymbol{astrosym}{235} \Pisymbol{astrosym}{236} \Pisymbol{astrosym}{237} \Pisymbol{astrosym}{238} \Pisymbol{astrosym}{239} \Pisymbol{astrosym}{240} \Pisymbol{astrosym}{241} \Pisymbol{astrosym}{242} \Pisymbol{astrosym}{243} \Pisymbol{astrosym}{244} \Pisymbol{astrosym}{245} \Pisymbol{astrosym}{246} \Pisymbol{astrosym}{247} \Pisymbol{astrosym}{248} \Pisymbol{astrosym}{249} \Pisymbol{astrosym}{250} \Pisymbol{astrosym}{251} \Pisymbol{astrosym}{252} \Pisymbol{astrosym}{253} \Pisymbol{astrosym}{254} \Pisymbol{astrosym}{255} Table 526: webomints Decorative Borders / 0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V \Pisymbol{WebOMintsGD}{47} \Pisymbol{WebOMintsGD}{48} \Pisymbol{WebOMintsGD}{49} \Pisymbol{WebOMintsGD}{50} \Pisymbol{WebOMintsGD}{51} \Pisymbol{WebOMintsGD}{52} \Pisymbol{WebOMintsGD}{53} \Pisymbol{WebOMintsGD}{54} \Pisymbol{WebOMintsGD}{55} \Pisymbol{WebOMintsGD}{56} \Pisymbol{WebOMintsGD}{57} \Pisymbol{WebOMintsGD}{65} \Pisymbol{WebOMintsGD}{66} \Pisymbol{WebOMintsGD}{67} \Pisymbol{WebOMintsGD}{68} \Pisymbol{WebOMintsGD}{69} \Pisymbol{WebOMintsGD}{70} \Pisymbol{WebOMintsGD}{71} \Pisymbol{WebOMintsGD}{72} \Pisymbol{WebOMintsGD}{73} \Pisymbol{WebOMintsGD}{74} \Pisymbol{WebOMintsGD}{75} \Pisymbol{WebOMintsGD}{76} \Pisymbol{WebOMintsGD}{77} \Pisymbol{WebOMintsGD}{78} \Pisymbol{WebOMintsGD}{79} \Pisymbol{WebOMintsGD}{80} \Pisymbol{WebOMintsGD}{81} \Pisymbol{WebOMintsGD}{82} \Pisymbol{WebOMintsGD}{83} \Pisymbol{WebOMintsGD}{84} \Pisymbol{WebOMintsGD}{85} \Pisymbol{WebOMintsGD}{86} W X Y Z [ ] a b c d e f g h i j k l m n o p q r s t u v w x y z \Pisymbol{WebOMintsGD}{87} \Pisymbol{WebOMintsGD}{88} \Pisymbol{WebOMintsGD}{89} \Pisymbol{WebOMintsGD}{90} \Pisymbol{WebOMintsGD}{91} \Pisymbol{WebOMintsGD}{93} \Pisymbol{WebOMintsGD}{97} \Pisymbol{WebOMintsGD}{98} \Pisymbol{WebOMintsGD}{99} \Pisymbol{WebOMintsGD}{100} \Pisymbol{WebOMintsGD}{101} \Pisymbol{WebOMintsGD}{102} \Pisymbol{WebOMintsGD}{103} \Pisymbol{WebOMintsGD}{104} \Pisymbol{WebOMintsGD}{105} \Pisymbol{WebOMintsGD}{106} \Pisymbol{WebOMintsGD}{107} \Pisymbol{WebOMintsGD}{108} \Pisymbol{WebOMintsGD}{109} \Pisymbol{WebOMintsGD}{110} \Pisymbol{WebOMintsGD}{111} \Pisymbol{WebOMintsGD}{112} \Pisymbol{WebOMintsGD}{113} \Pisymbol{WebOMintsGD}{114} \Pisymbol{WebOMintsGD}{115} \Pisymbol{WebOMintsGD}{116} \Pisymbol{WebOMintsGD}{117} \Pisymbol{WebOMintsGD}{118} \Pisymbol{WebOMintsGD}{119} \Pisymbol{WebOMintsGD}{120} \Pisymbol{WebOMintsGD}{121} \Pisymbol{WebOMintsGD}{122} webomints provides a uwebo.fd font-definition file. Instead of using pifont and \Pisymbol to typeset a glyph, a document can select the webomints font directly. For example, {\usefont{U}{webo}{xl}{n}\char73\char74}— alternatively, {\usefont{U}{webo}{xl}{n}IJ}—will typeset “IJ”. This can be useful for typesetting a number of webomints glyphs in a row. The niceframe package can be used to typeset decorative frames using fonts such as webomints. 204 Table 527: umranda Decorative Borders \Pisymbol{umranda}{0} \Pisymbol{umranda}{1} \Pisymbol{umranda}{2} " # $ \Pisymbol{umranda}{34} \Pisymbol{umranda}{35} \Pisymbol{umranda}{36} D E F \Pisymbol{umranda}{68} \Pisymbol{umranda}{69} \Pisymbol{umranda}{70} \Pisymbol{umranda}{3} % \Pisymbol{umranda}{37} G \Pisymbol{umranda}{71} \Pisymbol{umranda}{4} & \Pisymbol{umranda}{38} H \Pisymbol{umranda}{72} \Pisymbol{umranda}{5} ' \Pisymbol{umranda}{39} I \Pisymbol{umranda}{73} \Pisymbol{umranda}{6} ( \Pisymbol{umranda}{40} J \Pisymbol{umranda}{74} \Pisymbol{umranda}{7} \Pisymbol{umranda}{8} ) * \Pisymbol{umranda}{41} \Pisymbol{umranda}{42} K L \Pisymbol{umranda}{75} \Pisymbol{umranda}{76} \Pisymbol{umranda}{9} \Pisymbol{umranda}{10} + , \Pisymbol{umranda}{43} \Pisymbol{umranda}{44} M N \Pisymbol{umranda}{77} \Pisymbol{umranda}{78} \Pisymbol{umranda}{11} \Pisymbol{umranda}{12} . \Pisymbol{umranda}{45} \Pisymbol{umranda}{46} O P \Pisymbol{umranda}{79} \Pisymbol{umranda}{80} \Pisymbol{umranda}{13} \Pisymbol{umranda}{14} / 0 \Pisymbol{umranda}{47} \Pisymbol{umranda}{48} Q R \Pisymbol{umranda}{81} \Pisymbol{umranda}{82} \Pisymbol{umranda}{15} \Pisymbol{umranda}{16} 1 2 \Pisymbol{umranda}{49} \Pisymbol{umranda}{50} S T \Pisymbol{umranda}{83} \Pisymbol{umranda}{84} \Pisymbol{umranda}{17} \Pisymbol{umranda}{18} \Pisymbol{umranda}{19} 3 4 5 \Pisymbol{umranda}{51} \Pisymbol{umranda}{52} \Pisymbol{umranda}{53} U V W \Pisymbol{umranda}{85} \Pisymbol{umranda}{86} \Pisymbol{umranda}{87} \Pisymbol{umranda}{20} 6 \Pisymbol{umranda}{54} X \Pisymbol{umranda}{88} \Pisymbol{umranda}{21} 7 \Pisymbol{umranda}{55} Y \Pisymbol{umranda}{89} \Pisymbol{umranda}{22} \Pisymbol{umranda}{23} 8 9 \Pisymbol{umranda}{56} \Pisymbol{umranda}{57} Z [ \Pisymbol{umranda}{90} \Pisymbol{umranda}{91} \Pisymbol{umranda}{24} : \Pisymbol{umranda}{58} \ \Pisymbol{umranda}{92} \Pisymbol{umranda}{25} \Pisymbol{umranda}{26} \Pisymbol{umranda}{27} \Pisymbol{umranda}{28} \Pisymbol{umranda}{29} \Pisymbol{umranda}{30} \Pisymbol{umranda}{31} \Pisymbol{umranda}{32} ; < = > ? @ A B \Pisymbol{umranda}{59} \Pisymbol{umranda}{60} \Pisymbol{umranda}{61} \Pisymbol{umranda}{62} \Pisymbol{umranda}{63} \Pisymbol{umranda}{64} \Pisymbol{umranda}{65} \Pisymbol{umranda}{66} ] ^ _ ` a b c d \Pisymbol{umranda}{93} \Pisymbol{umranda}{94} \Pisymbol{umranda}{95} \Pisymbol{umranda}{96} \Pisymbol{umranda}{97} \Pisymbol{umranda}{98} \Pisymbol{umranda}{99} \Pisymbol{umranda}{100} ! \Pisymbol{umranda}{33} C \Pisymbol{umranda}{67} e \Pisymbol{umranda}{101} The niceframe package can be used to typeset decorative frames using fonts such as umranda. 205 Table 528: umrandb Decorative Borders ! " # $ % & ' ( ) \Pisymbol{umrandb}{0} \Pisymbol{umrandb}{1} \Pisymbol{umrandb}{2} \Pisymbol{umrandb}{3} \Pisymbol{umrandb}{4} \Pisymbol{umrandb}{5} \Pisymbol{umrandb}{6} \Pisymbol{umrandb}{7} \Pisymbol{umrandb}{8} \Pisymbol{umrandb}{9} \Pisymbol{umrandb}{10} \Pisymbol{umrandb}{11} \Pisymbol{umrandb}{12} \Pisymbol{umrandb}{13} \Pisymbol{umrandb}{14} \Pisymbol{umrandb}{15} \Pisymbol{umrandb}{16} \Pisymbol{umrandb}{17} \Pisymbol{umrandb}{18} \Pisymbol{umrandb}{19} \Pisymbol{umrandb}{20} \Pisymbol{umrandb}{21} \Pisymbol{umrandb}{22} \Pisymbol{umrandb}{23} \Pisymbol{umrandb}{24} \Pisymbol{umrandb}{25} \Pisymbol{umrandb}{26} \Pisymbol{umrandb}{27} \Pisymbol{umrandb}{28} \Pisymbol{umrandb}{29} \Pisymbol{umrandb}{30} \Pisymbol{umrandb}{31} \Pisymbol{umrandb}{32} \Pisymbol{umrandb}{33} \Pisymbol{umrandb}{34} \Pisymbol{umrandb}{35} \Pisymbol{umrandb}{36} \Pisymbol{umrandb}{37} \Pisymbol{umrandb}{38} \Pisymbol{umrandb}{39} \Pisymbol{umrandb}{40} \Pisymbol{umrandb}{41} * + , . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S \Pisymbol{umrandb}{42} \Pisymbol{umrandb}{43} \Pisymbol{umrandb}{44} \Pisymbol{umrandb}{45} \Pisymbol{umrandb}{46} \Pisymbol{umrandb}{47} \Pisymbol{umrandb}{48} \Pisymbol{umrandb}{49} \Pisymbol{umrandb}{50} \Pisymbol{umrandb}{51} \Pisymbol{umrandb}{52} \Pisymbol{umrandb}{53} \Pisymbol{umrandb}{54} \Pisymbol{umrandb}{55} \Pisymbol{umrandb}{56} \Pisymbol{umrandb}{57} \Pisymbol{umrandb}{58} \Pisymbol{umrandb}{59} \Pisymbol{umrandb}{60} \Pisymbol{umrandb}{61} \Pisymbol{umrandb}{62} \Pisymbol{umrandb}{63} \Pisymbol{umrandb}{64} \Pisymbol{umrandb}{65} \Pisymbol{umrandb}{66} \Pisymbol{umrandb}{67} \Pisymbol{umrandb}{68} \Pisymbol{umrandb}{69} \Pisymbol{umrandb}{70} \Pisymbol{umrandb}{71} \Pisymbol{umrandb}{72} \Pisymbol{umrandb}{73} \Pisymbol{umrandb}{74} \Pisymbol{umrandb}{75} \Pisymbol{umrandb}{76} \Pisymbol{umrandb}{77} \Pisymbol{umrandb}{78} \Pisymbol{umrandb}{79} \Pisymbol{umrandb}{80} \Pisymbol{umrandb}{81} \Pisymbol{umrandb}{82} \Pisymbol{umrandb}{83} T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { \Pisymbol{umrandb}{84} \Pisymbol{umrandb}{85} \Pisymbol{umrandb}{86} \Pisymbol{umrandb}{87} \Pisymbol{umrandb}{88} \Pisymbol{umrandb}{89} \Pisymbol{umrandb}{90} \Pisymbol{umrandb}{91} \Pisymbol{umrandb}{92} \Pisymbol{umrandb}{93} \Pisymbol{umrandb}{94} \Pisymbol{umrandb}{95} \Pisymbol{umrandb}{96} \Pisymbol{umrandb}{97} \Pisymbol{umrandb}{98} \Pisymbol{umrandb}{99} \Pisymbol{umrandb}{100} \Pisymbol{umrandb}{101} \Pisymbol{umrandb}{102} \Pisymbol{umrandb}{103} \Pisymbol{umrandb}{104} \Pisymbol{umrandb}{105} \Pisymbol{umrandb}{106} \Pisymbol{umrandb}{107} \Pisymbol{umrandb}{108} \Pisymbol{umrandb}{109} \Pisymbol{umrandb}{110} \Pisymbol{umrandb}{111} \Pisymbol{umrandb}{112} \Pisymbol{umrandb}{113} \Pisymbol{umrandb}{114} \Pisymbol{umrandb}{115} \Pisymbol{umrandb}{116} \Pisymbol{umrandb}{117} \Pisymbol{umrandb}{118} \Pisymbol{umrandb}{119} \Pisymbol{umrandb}{120} \Pisymbol{umrandb}{121} \Pisymbol{umrandb}{122} \Pisymbol{umrandb}{123} The niceframe package can be used to typeset decorative frames using fonts such as umrandb. 206 Table 529: dingbat Decorative Borders E \Pisymbol{dingbat}{69} a \Pisymbol{dingbat}{97} F \Pisymbol{dingbat}{70} b \Pisymbol{dingbat}{98} G \Pisymbol{dingbat}{71} c \Pisymbol{dingbat}{99} H \Pisymbol{dingbat}{72} d \Pisymbol{dingbat}{100} J \Pisymbol{dingbat}{74} e \Pisymbol{dingbat}{101} K \Pisymbol{dingbat}{75} f \Pisymbol{dingbat}{102} L \Pisymbol{dingbat}{76} g \Pisymbol{dingbat}{103} M \Pisymbol{dingbat}{77} h \Pisymbol{dingbat}{104} The preceding table is incomplete in that it includes only unnamed dingbat symbols. Named symbols are included in Table 361 and Table 407 (both intermixed with symbols from the ark10 font). The dingbat package includes a udingbat.fd file so a document does not need to specify the \DeclareFontFamily and \DeclareFontShape commands list at the beginning of Section 9. The niceframe package can be used to typeset decorative frames using fonts such as dingbat. 0 1 2 3 4 5 : ; < = Table 530: knot Celtic Knots \Pisymbol{knot1}{48} \Pisymbol{knot1}{49} \Pisymbol{knot1}{50} \Pisymbol{knot1}{51} \Pisymbol{knot1}{52} \Pisymbol{knot1}{53} \Pisymbol{knot1}{58} \Pisymbol{knot1}{59} \Pisymbol{knot1}{60} \Pisymbol{knot1}{61} D E F G H I J K L M \Pisymbol{knot1}{68} \Pisymbol{knot1}{69} \Pisymbol{knot1}{70} \Pisymbol{knot1}{71} \Pisymbol{knot1}{72} \Pisymbol{knot1}{73} \Pisymbol{knot1}{74} \Pisymbol{knot1}{75} \Pisymbol{knot1}{76} \Pisymbol{knot1}{77} T U V W X ` a b c d \Pisymbol{knot1}{84} \Pisymbol{knot1}{85} \Pisymbol{knot1}{86} \Pisymbol{knot1}{87} \Pisymbol{knot1}{88} \Pisymbol{knot1}{96} \Pisymbol{knot1}{97} \Pisymbol{knot1}{98} \Pisymbol{knot1}{99} \Pisymbol{knot1}{100} (continued on next page) 207 (continued from previous page) > ? @ A B C 0 1 2 3 4 5 : ; < = > ? @ A B C 0 1 2 3 4 5 : ; < = > ? @ A B \Pisymbol{knot1}{62} \Pisymbol{knot1}{63} \Pisymbol{knot1}{64} \Pisymbol{knot1}{65} \Pisymbol{knot1}{66} \Pisymbol{knot1}{67} \Pisymbol{knot2}{48} \Pisymbol{knot2}{49} \Pisymbol{knot2}{50} \Pisymbol{knot2}{51} \Pisymbol{knot2}{52} \Pisymbol{knot2}{53} \Pisymbol{knot2}{58} \Pisymbol{knot2}{59} \Pisymbol{knot2}{60} \Pisymbol{knot2}{61} \Pisymbol{knot2}{62} \Pisymbol{knot2}{63} \Pisymbol{knot2}{64} \Pisymbol{knot2}{65} \Pisymbol{knot2}{66} \Pisymbol{knot2}{67} \Pisymbol{knot3}{48} \Pisymbol{knot3}{49} \Pisymbol{knot3}{50} \Pisymbol{knot3}{51} \Pisymbol{knot3}{52} \Pisymbol{knot3}{53} \Pisymbol{knot3}{58} \Pisymbol{knot3}{59} \Pisymbol{knot3}{60} \Pisymbol{knot3}{61} \Pisymbol{knot3}{62} \Pisymbol{knot3}{63} \Pisymbol{knot3}{64} \Pisymbol{knot3}{65} \Pisymbol{knot3}{66} N O P Q R S D E F G H I J K L M N O P Q R S D E F G H I J K L M N O P Q R \Pisymbol{knot1}{78} \Pisymbol{knot1}{79} \Pisymbol{knot1}{80} \Pisymbol{knot1}{81} \Pisymbol{knot1}{82} e f g h i \Pisymbol{knot1}{101} \Pisymbol{knot1}{102} \Pisymbol{knot1}{103} \Pisymbol{knot1}{104} \Pisymbol{knot1}{105} \Pisymbol{knot1}{83} \Pisymbol{knot2}{68} \Pisymbol{knot2}{69} \Pisymbol{knot2}{70} \Pisymbol{knot2}{71} \Pisymbol{knot2}{72} \Pisymbol{knot2}{73} \Pisymbol{knot2}{74} \Pisymbol{knot2}{75} \Pisymbol{knot2}{76} \Pisymbol{knot2}{77} \Pisymbol{knot2}{78} \Pisymbol{knot2}{79} \Pisymbol{knot2}{80} \Pisymbol{knot2}{81} \Pisymbol{knot2}{82} T U V W X ` a b c d e f g h i \Pisymbol{knot2}{84} \Pisymbol{knot2}{85} \Pisymbol{knot2}{86} \Pisymbol{knot2}{87} \Pisymbol{knot2}{88} \Pisymbol{knot2}{96} \Pisymbol{knot2}{97} \Pisymbol{knot2}{98} \Pisymbol{knot2}{99} \Pisymbol{knot2}{100} \Pisymbol{knot2}{101} \Pisymbol{knot2}{102} \Pisymbol{knot2}{103} \Pisymbol{knot2}{104} \Pisymbol{knot2}{105} \Pisymbol{knot2}{83} \Pisymbol{knot3}{68} \Pisymbol{knot3}{69} \Pisymbol{knot3}{70} \Pisymbol{knot3}{71} \Pisymbol{knot3}{72} \Pisymbol{knot3}{73} \Pisymbol{knot3}{74} \Pisymbol{knot3}{75} \Pisymbol{knot3}{76} \Pisymbol{knot3}{77} \Pisymbol{knot3}{78} \Pisymbol{knot3}{79} \Pisymbol{knot3}{80} \Pisymbol{knot3}{81} \Pisymbol{knot3}{82} T U V W X ` a b c d e f g h i \Pisymbol{knot3}{84} \Pisymbol{knot3}{85} \Pisymbol{knot3}{86} \Pisymbol{knot3}{87} \Pisymbol{knot3}{88} \Pisymbol{knot3}{96} \Pisymbol{knot3}{97} \Pisymbol{knot3}{98} \Pisymbol{knot3}{99} \Pisymbol{knot3}{100} \Pisymbol{knot3}{101} \Pisymbol{knot3}{102} \Pisymbol{knot3}{103} \Pisymbol{knot3}{104} \Pisymbol{knot3}{105} (continued on next page) 208 (continued from previous page) C 0 1 2 3 4 5 : ; < = > ? @ A B C 0 1 2 3 4 5 : ; < = > ? @ A B C 0 1 2 3 \Pisymbol{knot3}{67} \Pisymbol{knot4}{48} \Pisymbol{knot4}{49} \Pisymbol{knot4}{50} \Pisymbol{knot4}{51} \Pisymbol{knot4}{52} \Pisymbol{knot4}{53} \Pisymbol{knot4}{58} \Pisymbol{knot4}{59} \Pisymbol{knot4}{60} \Pisymbol{knot4}{61} \Pisymbol{knot4}{62} \Pisymbol{knot4}{63} \Pisymbol{knot4}{64} \Pisymbol{knot4}{65} \Pisymbol{knot4}{66} \Pisymbol{knot4}{67} \Pisymbol{knot5}{48} \Pisymbol{knot5}{49} \Pisymbol{knot5}{50} \Pisymbol{knot5}{51} \Pisymbol{knot5}{52} \Pisymbol{knot5}{53} \Pisymbol{knot5}{58} \Pisymbol{knot5}{59} \Pisymbol{knot5}{60} \Pisymbol{knot5}{61} \Pisymbol{knot5}{62} \Pisymbol{knot5}{63} \Pisymbol{knot5}{64} \Pisymbol{knot5}{65} \Pisymbol{knot5}{66} \Pisymbol{knot5}{67} \Pisymbol{knot6}{48} \Pisymbol{knot6}{49} \Pisymbol{knot6}{50} \Pisymbol{knot6}{51} S D E F G H I J K L M N O P Q R S D E F G H I J K L M N O P Q R S D E F G \Pisymbol{knot3}{83} \Pisymbol{knot4}{68} \Pisymbol{knot4}{69} \Pisymbol{knot4}{70} \Pisymbol{knot4}{71} \Pisymbol{knot4}{72} \Pisymbol{knot4}{73} \Pisymbol{knot4}{74} \Pisymbol{knot4}{75} \Pisymbol{knot4}{76} \Pisymbol{knot4}{77} \Pisymbol{knot4}{78} \Pisymbol{knot4}{79} \Pisymbol{knot4}{80} \Pisymbol{knot4}{81} \Pisymbol{knot4}{82} T U V W X ` a b c d e f g h i \Pisymbol{knot4}{84} \Pisymbol{knot4}{85} \Pisymbol{knot4}{86} \Pisymbol{knot4}{87} \Pisymbol{knot4}{88} \Pisymbol{knot4}{96} \Pisymbol{knot4}{97} \Pisymbol{knot4}{98} \Pisymbol{knot4}{99} \Pisymbol{knot4}{100} \Pisymbol{knot4}{101} \Pisymbol{knot4}{102} \Pisymbol{knot4}{103} \Pisymbol{knot4}{104} \Pisymbol{knot4}{105} \Pisymbol{knot4}{83} \Pisymbol{knot5}{68} \Pisymbol{knot5}{69} \Pisymbol{knot5}{70} \Pisymbol{knot5}{71} \Pisymbol{knot5}{72} \Pisymbol{knot5}{73} \Pisymbol{knot5}{74} \Pisymbol{knot5}{75} \Pisymbol{knot5}{76} \Pisymbol{knot5}{77} \Pisymbol{knot5}{78} \Pisymbol{knot5}{79} \Pisymbol{knot5}{80} \Pisymbol{knot5}{81} \Pisymbol{knot5}{82} T U V W X ` a b c d e f g h i \Pisymbol{knot5}{84} \Pisymbol{knot5}{85} \Pisymbol{knot5}{86} \Pisymbol{knot5}{87} \Pisymbol{knot5}{88} \Pisymbol{knot5}{96} \Pisymbol{knot5}{97} \Pisymbol{knot5}{98} \Pisymbol{knot5}{99} \Pisymbol{knot5}{100} \Pisymbol{knot5}{101} \Pisymbol{knot5}{102} \Pisymbol{knot5}{103} \Pisymbol{knot5}{104} \Pisymbol{knot5}{105} \Pisymbol{knot5}{83} \Pisymbol{knot6}{68} \Pisymbol{knot6}{69} \Pisymbol{knot6}{70} \Pisymbol{knot6}{71} T U V W \Pisymbol{knot6}{84} \Pisymbol{knot6}{85} \Pisymbol{knot6}{86} \Pisymbol{knot6}{87} (continued on next page) 209 (continued from previous page) 4 5 : ; < = > ? @ A B C 0 1 2 3 4 5 : ; < = > ? @ A B C \Pisymbol{knot6}{52} \Pisymbol{knot6}{53} \Pisymbol{knot6}{58} \Pisymbol{knot6}{59} \Pisymbol{knot6}{60} \Pisymbol{knot6}{61} \Pisymbol{knot6}{62} \Pisymbol{knot6}{63} \Pisymbol{knot6}{64} \Pisymbol{knot6}{65} \Pisymbol{knot6}{66} \Pisymbol{knot6}{67} \Pisymbol{knot7}{48} \Pisymbol{knot7}{49} \Pisymbol{knot7}{50} \Pisymbol{knot7}{51} \Pisymbol{knot7}{52} \Pisymbol{knot7}{53} \Pisymbol{knot7}{58} \Pisymbol{knot7}{59} \Pisymbol{knot7}{60} \Pisymbol{knot7}{61} \Pisymbol{knot7}{62} \Pisymbol{knot7}{63} \Pisymbol{knot7}{64} \Pisymbol{knot7}{65} \Pisymbol{knot7}{66} \Pisymbol{knot7}{67} H I J K L M N O P Q R S D E F G H I J K L M N O P Q R S \Pisymbol{knot6}{72} \Pisymbol{knot6}{73} \Pisymbol{knot6}{74} \Pisymbol{knot6}{75} \Pisymbol{knot6}{76} \Pisymbol{knot6}{77} \Pisymbol{knot6}{78} \Pisymbol{knot6}{79} \Pisymbol{knot6}{80} \Pisymbol{knot6}{81} \Pisymbol{knot6}{82} X ` a b c d e f g h i \Pisymbol{knot6}{88} \Pisymbol{knot6}{96} \Pisymbol{knot6}{97} \Pisymbol{knot6}{98} \Pisymbol{knot6}{99} \Pisymbol{knot6}{100} \Pisymbol{knot6}{101} \Pisymbol{knot6}{102} \Pisymbol{knot6}{103} \Pisymbol{knot6}{104} \Pisymbol{knot6}{105} \Pisymbol{knot6}{83} \Pisymbol{knot7}{68} \Pisymbol{knot7}{69} \Pisymbol{knot7}{70} \Pisymbol{knot7}{71} \Pisymbol{knot7}{72} \Pisymbol{knot7}{73} \Pisymbol{knot7}{74} \Pisymbol{knot7}{75} \Pisymbol{knot7}{76} \Pisymbol{knot7}{77} \Pisymbol{knot7}{78} \Pisymbol{knot7}{79} \Pisymbol{knot7}{80} \Pisymbol{knot7}{81} \Pisymbol{knot7}{82} T U V W X ` a b c d e f g h i \Pisymbol{knot7}{84} \Pisymbol{knot7}{85} \Pisymbol{knot7}{86} \Pisymbol{knot7}{87} \Pisymbol{knot7}{88} \Pisymbol{knot7}{96} \Pisymbol{knot7}{97} \Pisymbol{knot7}{98} \Pisymbol{knot7}{99} \Pisymbol{knot7}{100} \Pisymbol{knot7}{101} \Pisymbol{knot7}{102} \Pisymbol{knot7}{103} \Pisymbol{knot7}{104} \Pisymbol{knot7}{105} \Pisymbol{knot7}{83} The following is an example of a basic knot, using \usefont{U}{knot⟨number ⟩}{m}{n} to change fonts for multiple characters instead of \Pisymbol to typeset one character at a time. Note that all of the characters in the knot fonts lie conveniently within the range of printable ASCII characters. Input CDB FHG @EA CDB CDB CDB CDB CDB CDB CDB FHG @EA FHG @EA FHG @EA FHG @EA FHG @EA FHG @EA FHG @EA knot1 knot2 knot3 knot4 knot5 knot6 knot7 The niceframe package can be used to typeset decorative frames using fonts such as knot, especially using characters 48–63 of each font variant. 210 Table 531: dancers Dancing Men \Pisymbol{dancers}{0} V \Pisymbol{dancers}{86} ¬ \Pisymbol{dancers}{172} \Pisymbol{dancers}{1} W \Pisymbol{dancers}{87} ­ \Pisymbol{dancers}{173} \Pisymbol{dancers}{2} X \Pisymbol{dancers}{88} ® \Pisymbol{dancers}{174} \Pisymbol{dancers}{3} Y \Pisymbol{dancers}{89} ¯ \Pisymbol{dancers}{175} \Pisymbol{dancers}{4} Z \Pisymbol{dancers}{90} ° \Pisymbol{dancers}{176} \Pisymbol{dancers}{5} [ \Pisymbol{dancers}{91} ± \Pisymbol{dancers}{177} \Pisymbol{dancers}{6} \ \Pisymbol{dancers}{92} ² \Pisymbol{dancers}{178} \Pisymbol{dancers}{7} ] \Pisymbol{dancers}{93} ³ \Pisymbol{dancers}{179} \Pisymbol{dancers}{8} ^ \Pisymbol{dancers}{94} ´ \Pisymbol{dancers}{180} \Pisymbol{dancers}{9} _ \Pisymbol{dancers}{95} µ \Pisymbol{dancers}{181} \Pisymbol{dancers}{10} ` \Pisymbol{dancers}{96} ¶ \Pisymbol{dancers}{182} \Pisymbol{dancers}{11} a \Pisymbol{dancers}{97} · \Pisymbol{dancers}{183} \Pisymbol{dancers}{12} b \Pisymbol{dancers}{98} ¸ \Pisymbol{dancers}{184} \Pisymbol{dancers}{13} c \Pisymbol{dancers}{99} ¹ \Pisymbol{dancers}{185} \Pisymbol{dancers}{14} d \Pisymbol{dancers}{100} º \Pisymbol{dancers}{186} \Pisymbol{dancers}{15} e \Pisymbol{dancers}{101} » \Pisymbol{dancers}{187} \Pisymbol{dancers}{16} f \Pisymbol{dancers}{102} ¼ \Pisymbol{dancers}{188} \Pisymbol{dancers}{17} g \Pisymbol{dancers}{103} ½ \Pisymbol{dancers}{189} \Pisymbol{dancers}{18} h \Pisymbol{dancers}{104} ¾ \Pisymbol{dancers}{190} \Pisymbol{dancers}{19} i \Pisymbol{dancers}{105} ¿ \Pisymbol{dancers}{191} \Pisymbol{dancers}{20} j \Pisymbol{dancers}{106} À \Pisymbol{dancers}{192} \Pisymbol{dancers}{21} k \Pisymbol{dancers}{107} Á \Pisymbol{dancers}{193} \Pisymbol{dancers}{22} l \Pisymbol{dancers}{108}  \Pisymbol{dancers}{194} \Pisymbol{dancers}{23} m \Pisymbol{dancers}{109} à \Pisymbol{dancers}{195} \Pisymbol{dancers}{24} n \Pisymbol{dancers}{110} Ä \Pisymbol{dancers}{196} \Pisymbol{dancers}{25} o \Pisymbol{dancers}{111} Å \Pisymbol{dancers}{197} \Pisymbol{dancers}{26} p \Pisymbol{dancers}{112} Æ \Pisymbol{dancers}{198} \Pisymbol{dancers}{27} q \Pisymbol{dancers}{113} Ç \Pisymbol{dancers}{199} \Pisymbol{dancers}{28} r \Pisymbol{dancers}{114} È \Pisymbol{dancers}{200} \Pisymbol{dancers}{29} s \Pisymbol{dancers}{115} É \Pisymbol{dancers}{201} \Pisymbol{dancers}{30} t \Pisymbol{dancers}{116} Ê \Pisymbol{dancers}{202} \Pisymbol{dancers}{31} u \Pisymbol{dancers}{117} Ë \Pisymbol{dancers}{203} \Pisymbol{dancers}{32} v \Pisymbol{dancers}{118} Ì \Pisymbol{dancers}{204} \Pisymbol{dancers}{33} w \Pisymbol{dancers}{119} Í \Pisymbol{dancers}{205} ! (continued on next page) 211 (continued from previous page) " \Pisymbol{dancers}{34} x \Pisymbol{dancers}{120} Î \Pisymbol{dancers}{206} # \Pisymbol{dancers}{35} y \Pisymbol{dancers}{121} Ï \Pisymbol{dancers}{207} $ \Pisymbol{dancers}{36} z \Pisymbol{dancers}{122} Ð \Pisymbol{dancers}{208} % \Pisymbol{dancers}{37} { \Pisymbol{dancers}{123} Ñ \Pisymbol{dancers}{209} & \Pisymbol{dancers}{38} | \Pisymbol{dancers}{124} Ò \Pisymbol{dancers}{210} ' \Pisymbol{dancers}{39} } \Pisymbol{dancers}{125} Ó \Pisymbol{dancers}{211} ( \Pisymbol{dancers}{40} ~ \Pisymbol{dancers}{126} Ô \Pisymbol{dancers}{212} ) \Pisymbol{dancers}{41} \Pisymbol{dancers}{127} Õ \Pisymbol{dancers}{213} * \Pisymbol{dancers}{42} \Pisymbol{dancers}{128} Ö \Pisymbol{dancers}{214} + \Pisymbol{dancers}{43} \Pisymbol{dancers}{129} × \Pisymbol{dancers}{215} , \Pisymbol{dancers}{44} \Pisymbol{dancers}{130} Ø \Pisymbol{dancers}{216} - \Pisymbol{dancers}{45} \Pisymbol{dancers}{131} Ù \Pisymbol{dancers}{217} . \Pisymbol{dancers}{46} \Pisymbol{dancers}{132} Ú \Pisymbol{dancers}{218} / \Pisymbol{dancers}{47} \Pisymbol{dancers}{133} Û \Pisymbol{dancers}{219} 0 \Pisymbol{dancers}{48} \Pisymbol{dancers}{134} Ü \Pisymbol{dancers}{220} 1 \Pisymbol{dancers}{49} \Pisymbol{dancers}{135} Ý \Pisymbol{dancers}{221} 2 \Pisymbol{dancers}{50} \Pisymbol{dancers}{136} Þ \Pisymbol{dancers}{222} 3 \Pisymbol{dancers}{51} \Pisymbol{dancers}{137} ß \Pisymbol{dancers}{223} 4 \Pisymbol{dancers}{52} \Pisymbol{dancers}{138} à \Pisymbol{dancers}{224} 5 \Pisymbol{dancers}{53} \Pisymbol{dancers}{139} á \Pisymbol{dancers}{225} 6 \Pisymbol{dancers}{54} \Pisymbol{dancers}{140} â \Pisymbol{dancers}{226} 7 \Pisymbol{dancers}{55} \Pisymbol{dancers}{141} ã \Pisymbol{dancers}{227} 8 \Pisymbol{dancers}{56} \Pisymbol{dancers}{142} ä \Pisymbol{dancers}{228} 9 \Pisymbol{dancers}{57} \Pisymbol{dancers}{143} å \Pisymbol{dancers}{229} : \Pisymbol{dancers}{58} \Pisymbol{dancers}{144} æ \Pisymbol{dancers}{230} ; \Pisymbol{dancers}{59} \Pisymbol{dancers}{145} ç \Pisymbol{dancers}{231} < \Pisymbol{dancers}{60} \Pisymbol{dancers}{146} è \Pisymbol{dancers}{232} = \Pisymbol{dancers}{61} \Pisymbol{dancers}{147} é \Pisymbol{dancers}{233} > \Pisymbol{dancers}{62} \Pisymbol{dancers}{148} ê \Pisymbol{dancers}{234} ? \Pisymbol{dancers}{63} \Pisymbol{dancers}{149} ë \Pisymbol{dancers}{235} @ \Pisymbol{dancers}{64} \Pisymbol{dancers}{150} ì \Pisymbol{dancers}{236} A \Pisymbol{dancers}{65} \Pisymbol{dancers}{151} í \Pisymbol{dancers}{237} B \Pisymbol{dancers}{66} \Pisymbol{dancers}{152} î \Pisymbol{dancers}{238} C \Pisymbol{dancers}{67} \Pisymbol{dancers}{153} ï \Pisymbol{dancers}{239} D \Pisymbol{dancers}{68} \Pisymbol{dancers}{154} ð \Pisymbol{dancers}{240} (continued on next page) 212 (continued from previous page) E \Pisymbol{dancers}{69} \Pisymbol{dancers}{155} ñ \Pisymbol{dancers}{241} F \Pisymbol{dancers}{70} \Pisymbol{dancers}{156} ò \Pisymbol{dancers}{242} G \Pisymbol{dancers}{71} \Pisymbol{dancers}{157} ó \Pisymbol{dancers}{243} H \Pisymbol{dancers}{72} \Pisymbol{dancers}{158} ô \Pisymbol{dancers}{244} I \Pisymbol{dancers}{73} \Pisymbol{dancers}{159} õ \Pisymbol{dancers}{245} J \Pisymbol{dancers}{74} \Pisymbol{dancers}{160} ö \Pisymbol{dancers}{246} K \Pisymbol{dancers}{75} ¡ \Pisymbol{dancers}{161} ÷ \Pisymbol{dancers}{247} L \Pisymbol{dancers}{76} ¢ \Pisymbol{dancers}{162} ø \Pisymbol{dancers}{248} M \Pisymbol{dancers}{77} £ \Pisymbol{dancers}{163} ù \Pisymbol{dancers}{249} N \Pisymbol{dancers}{78} ¤ \Pisymbol{dancers}{164} ú \Pisymbol{dancers}{250} O \Pisymbol{dancers}{79} ¥ \Pisymbol{dancers}{165} û \Pisymbol{dancers}{251} P \Pisymbol{dancers}{80} ¦ \Pisymbol{dancers}{166} ü \Pisymbol{dancers}{252} Q \Pisymbol{dancers}{81} § \Pisymbol{dancers}{167} ý \Pisymbol{dancers}{253} R \Pisymbol{dancers}{82} ¨ \Pisymbol{dancers}{168} þ \Pisymbol{dancers}{254} S \Pisymbol{dancers}{83} © \Pisymbol{dancers}{169} ÿ \Pisymbol{dancers}{255} T \Pisymbol{dancers}{84} ª \Pisymbol{dancers}{170} U \Pisymbol{dancers}{85} « \Pisymbol{dancers}{171} Fans of Sherlock Holmes mysteries will recognize these glyphs as forming the substitution cipher featured in Sir Arthur Conan Doyle’s The Adventure of the Dancing Men (1903). Table 532: semaphor Semaphore Alphabet # $ * . $0# $1# $2# $3# $4# $5# $6# $7# $8# $9# \Pisymbol{smfpr10}{34} \Pisymbol{smfpr10}{35} \Pisymbol{smfpr10}{36} \Pisymbol{smfpr10}{42} \Pisymbol{smfpr10}{46} \Pisymbol{smfpr10}{48} \Pisymbol{smfpr10}{49} \Pisymbol{smfpr10}{50} \Pisymbol{smfpr10}{51} \Pisymbol{smfpr10}{52} \Pisymbol{smfpr10}{53} \Pisymbol{smfpr10}{54} \Pisymbol{smfpr10}{55} \Pisymbol{smfpr10}{56} \Pisymbol{smfpr10}{57} t u v w x y z ˜ Ă Ą Ć Č Ď Ě Ę \Pisymbol{smfpr10}{116} \Pisymbol{smfpr10}{117} \Pisymbol{smfpr10}{118} \Pisymbol{smfpr10}{119} \Pisymbol{smfpr10}{120} \Pisymbol{smfpr10}{121} \Pisymbol{smfpr10}{122} \Pisymbol{smfpr10}{126} \Pisymbol{smfpr10}{128} \Pisymbol{smfpr10}{129} \Pisymbol{smfpr10}{130} \Pisymbol{smfpr10}{131} \Pisymbol{smfpr10}{132} \Pisymbol{smfpr10}{133} \Pisymbol{smfpr10}{134} ÿ ź ž ż À Á Â Ã Ä Å Ç È É Ê Ë \Pisymbol{smfpr10}{184} \Pisymbol{smfpr10}{185} \Pisymbol{smfpr10}{186} \Pisymbol{smfpr10}{187} \Pisymbol{smfpr10}{192} \Pisymbol{smfpr10}{193} \Pisymbol{smfpr10}{194} \Pisymbol{smfpr10}{195} \Pisymbol{smfpr10}{196} \Pisymbol{smfpr10}{197} \Pisymbol{smfpr10}{199} \Pisymbol{smfpr10}{200} \Pisymbol{smfpr10}{201} \Pisymbol{smfpr10}{202} \Pisymbol{smfpr10}{203} (continued on next page) 213 (continued from previous page) A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c d e f g h i j k l m n o p q r s \Pisymbol{smfpr10}{65} \Pisymbol{smfpr10}{66} \Pisymbol{smfpr10}{67} \Pisymbol{smfpr10}{68} \Pisymbol{smfpr10}{69} \Pisymbol{smfpr10}{70} \Pisymbol{smfpr10}{71} \Pisymbol{smfpr10}{72} \Pisymbol{smfpr10}{73} \Pisymbol{smfpr10}{74} \Pisymbol{smfpr10}{75} \Pisymbol{smfpr10}{76} \Pisymbol{smfpr10}{77} \Pisymbol{smfpr10}{78} \Pisymbol{smfpr10}{79} \Pisymbol{smfpr10}{80} \Pisymbol{smfpr10}{81} \Pisymbol{smfpr10}{82} \Pisymbol{smfpr10}{83} \Pisymbol{smfpr10}{84} \Pisymbol{smfpr10}{85} \Pisymbol{smfpr10}{86} \Pisymbol{smfpr10}{87} \Pisymbol{smfpr10}{88} \Pisymbol{smfpr10}{89} \Pisymbol{smfpr10}{90} \Pisymbol{smfpr10}{97} \Pisymbol{smfpr10}{98} \Pisymbol{smfpr10}{99} \Pisymbol{smfpr10}{100} \Pisymbol{smfpr10}{101} \Pisymbol{smfpr10}{102} \Pisymbol{smfpr10}{103} \Pisymbol{smfpr10}{104} \Pisymbol{smfpr10}{105} \Pisymbol{smfpr10}{106} \Pisymbol{smfpr10}{107} \Pisymbol{smfpr10}{108} \Pisymbol{smfpr10}{109} \Pisymbol{smfpr10}{110} \Pisymbol{smfpr10}{111} \Pisymbol{smfpr10}{112} \Pisymbol{smfpr10}{113} \Pisymbol{smfpr10}{114} \Pisymbol{smfpr10}{115} Ğ Ĺ Ľ Ł Ń Ň Ő Ŕ Ř Ś Š Ş Ť Ţ Ű Ů Ÿ Ź Ž Ż İ đ ă ą ć č ď ě ę ğ ĺ ľ ł ń ň ő ŕ ř ś š ş ť ţ ű ů \Pisymbol{smfpr10}{135} \Pisymbol{smfpr10}{136} \Pisymbol{smfpr10}{137} \Pisymbol{smfpr10}{138} \Pisymbol{smfpr10}{139} \Pisymbol{smfpr10}{140} \Pisymbol{smfpr10}{142} \Pisymbol{smfpr10}{143} \Pisymbol{smfpr10}{144} \Pisymbol{smfpr10}{145} \Pisymbol{smfpr10}{146} \Pisymbol{smfpr10}{147} \Pisymbol{smfpr10}{148} \Pisymbol{smfpr10}{149} \Pisymbol{smfpr10}{150} \Pisymbol{smfpr10}{151} \Pisymbol{smfpr10}{152} \Pisymbol{smfpr10}{153} \Pisymbol{smfpr10}{154} \Pisymbol{smfpr10}{155} \Pisymbol{smfpr10}{157} \Pisymbol{smfpr10}{158} \Pisymbol{smfpr10}{160} \Pisymbol{smfpr10}{161} \Pisymbol{smfpr10}{162} \Pisymbol{smfpr10}{163} \Pisymbol{smfpr10}{164} \Pisymbol{smfpr10}{165} \Pisymbol{smfpr10}{166} \Pisymbol{smfpr10}{167} \Pisymbol{smfpr10}{168} \Pisymbol{smfpr10}{169} \Pisymbol{smfpr10}{170} \Pisymbol{smfpr10}{171} \Pisymbol{smfpr10}{172} \Pisymbol{smfpr10}{174} \Pisymbol{smfpr10}{175} \Pisymbol{smfpr10}{176} \Pisymbol{smfpr10}{177} \Pisymbol{smfpr10}{178} \Pisymbol{smfpr10}{179} \Pisymbol{smfpr10}{180} \Pisymbol{smfpr10}{181} \Pisymbol{smfpr10}{182} \Pisymbol{smfpr10}{183} 214 Ì Í Î Ï Ñ Ò Ó Ô Õ Ö Ø Ù Ú Û Ü Ý à á â ã ä å ç è é ê ë ì í î ï ñ ò ó ô õ ö ø ù ú û ü ý \Pisymbol{smfpr10}{204} \Pisymbol{smfpr10}{205} \Pisymbol{smfpr10}{206} \Pisymbol{smfpr10}{207} \Pisymbol{smfpr10}{209} \Pisymbol{smfpr10}{210} \Pisymbol{smfpr10}{211} \Pisymbol{smfpr10}{212} \Pisymbol{smfpr10}{213} \Pisymbol{smfpr10}{214} \Pisymbol{smfpr10}{216} \Pisymbol{smfpr10}{217} \Pisymbol{smfpr10}{218} \Pisymbol{smfpr10}{219} \Pisymbol{smfpr10}{220} \Pisymbol{smfpr10}{221} \Pisymbol{smfpr10}{224} \Pisymbol{smfpr10}{225} \Pisymbol{smfpr10}{226} \Pisymbol{smfpr10}{227} \Pisymbol{smfpr10}{228} \Pisymbol{smfpr10}{229} \Pisymbol{smfpr10}{231} \Pisymbol{smfpr10}{232} \Pisymbol{smfpr10}{233} \Pisymbol{smfpr10}{234} \Pisymbol{smfpr10}{235} \Pisymbol{smfpr10}{236} \Pisymbol{smfpr10}{237} \Pisymbol{smfpr10}{238} \Pisymbol{smfpr10}{239} \Pisymbol{smfpr10}{241} \Pisymbol{smfpr10}{242} \Pisymbol{smfpr10}{243} \Pisymbol{smfpr10}{244} \Pisymbol{smfpr10}{245} \Pisymbol{smfpr10}{246} \Pisymbol{smfpr10}{248} \Pisymbol{smfpr10}{249} \Pisymbol{smfpr10}{250} \Pisymbol{smfpr10}{251} \Pisymbol{smfpr10}{252} \Pisymbol{smfpr10}{253} semaphor provides a semaf.fd font-definition file. Instead of using pifont and \Pisymbol to typeset a glyph, a document can select the semaphor fonts directly, although this does require putting \input{semaf.fd} in the document’s preamble. For example, {\usefont{OT1}{smfp}{m}{n}Hello} will typeset “Hello”. This can be useful for typesetting complete messages. Roman, bold, monospace, slanted, and bold+slanted styles are all supported. In addition, semaphor provides three variations of each font: a “person” version (smfpr10), which is what is illustrated in the preceding table, a “pillar” version (smfr10), which shows the flags on a pillar rather than being held by a person, and an “empty” version (smfer10), which shows only the flags and no pillar or person. Contrast these variations of the letter “H”: H (person) vs. H (pillar) vs. H (empty) Table 533: cryst Crystallography Symbols # $ % & ' ( ) * + \Pisymbol{cryst}{0} \Pisymbol{cryst}{2} \Pisymbol{cryst}{3} \Pisymbol{cryst}{4} \Pisymbol{cryst}{5} \Pisymbol{cryst}{6} \Pisymbol{cryst}{7} \Pisymbol{cryst}{8} \Pisymbol{cryst}{9} \Pisymbol{cryst}{10} \Pisymbol{cryst}{12} \Pisymbol{cryst}{15} \Pisymbol{cryst}{20} \Pisymbol{cryst}{21} \Pisymbol{cryst}{22} \Pisymbol{cryst}{24} \Pisymbol{cryst}{25} \Pisymbol{cryst}{27} \Pisymbol{cryst}{28} \Pisymbol{cryst}{29} \Pisymbol{cryst}{30} \Pisymbol{cryst}{31} \Pisymbol{cryst}{32} \Pisymbol{cryst}{35} \Pisymbol{cryst}{36} \Pisymbol{cryst}{37} \Pisymbol{cryst}{38} \Pisymbol{cryst}{39} \Pisymbol{cryst}{40} \Pisymbol{cryst}{41} \Pisymbol{cryst}{42} \Pisymbol{cryst}{43} ? @ A B K M N O P Q R S T U W X Y _ a b c f g h i k l m p q x y \Pisymbol{cryst}{63} \Pisymbol{cryst}{64} \Pisymbol{cryst}{65} \Pisymbol{cryst}{66} \Pisymbol{cryst}{75} \Pisymbol{cryst}{77} \Pisymbol{cryst}{78} \Pisymbol{cryst}{79} \Pisymbol{cryst}{80} \Pisymbol{cryst}{81} \Pisymbol{cryst}{82} \Pisymbol{cryst}{83} \Pisymbol{cryst}{84} \Pisymbol{cryst}{85} \Pisymbol{cryst}{87} \Pisymbol{cryst}{88} \Pisymbol{cryst}{89} \Pisymbol{cryst}{95} \Pisymbol{cryst}{97} \Pisymbol{cryst}{98} \Pisymbol{cryst}{99} \Pisymbol{cryst}{102} \Pisymbol{cryst}{103} \Pisymbol{cryst}{104} \Pisymbol{cryst}{105} \Pisymbol{cryst}{107} \Pisymbol{cryst}{108} \Pisymbol{cryst}{109} \Pisymbol{cryst}{112} \Pisymbol{cryst}{113} \Pisymbol{cryst}{120} \Pisymbol{cryst}{121} ¯ ± ² ³ ¹ » ¼ ½ Ã Å Æ Ç Ê Ë Ì Ò Ô Õ \Pisymbol{cryst}{138} \Pisymbol{cryst}{139} \Pisymbol{cryst}{140} \Pisymbol{cryst}{141} \Pisymbol{cryst}{142} \Pisymbol{cryst}{143} \Pisymbol{cryst}{145} \Pisymbol{cryst}{147} \Pisymbol{cryst}{148} \Pisymbol{cryst}{149} \Pisymbol{cryst}{155} \Pisymbol{cryst}{157} \Pisymbol{cryst}{158} \Pisymbol{cryst}{159} \Pisymbol{cryst}{175} \Pisymbol{cryst}{177} \Pisymbol{cryst}{178} \Pisymbol{cryst}{179} \Pisymbol{cryst}{185} \Pisymbol{cryst}{187} \Pisymbol{cryst}{188} \Pisymbol{cryst}{189} \Pisymbol{cryst}{195} \Pisymbol{cryst}{197} \Pisymbol{cryst}{198} \Pisymbol{cryst}{199} \Pisymbol{cryst}{202} \Pisymbol{cryst}{203} \Pisymbol{cryst}{204} \Pisymbol{cryst}{210} \Pisymbol{cryst}{212} \Pisymbol{cryst}{213} (continued on next page) 215 (continued from previous page) , / 0 1 2 7 9 : ; < = > \Pisymbol{cryst}{44} \Pisymbol{cryst}{45} \Pisymbol{cryst}{47} \Pisymbol{cryst}{48} \Pisymbol{cryst}{49} \Pisymbol{cryst}{50} \Pisymbol{cryst}{55} \Pisymbol{cryst}{57} \Pisymbol{cryst}{58} \Pisymbol{cryst}{59} \Pisymbol{cryst}{60} \Pisymbol{cryst}{61} \Pisymbol{cryst}{62} { | } \Pisymbol{cryst}{123} \Pisymbol{cryst}{124} \Pisymbol{cryst}{125} \Pisymbol{cryst}{127} \Pisymbol{cryst}{128} \Pisymbol{cryst}{129} \Pisymbol{cryst}{130} \Pisymbol{cryst}{131} \Pisymbol{cryst}{132} \Pisymbol{cryst}{133} \Pisymbol{cryst}{135} \Pisymbol{cryst}{136} \Pisymbol{cryst}{137} Ü Ý ß à æ ç è é ì ð ñ ò ó \Pisymbol{cryst}{220} \Pisymbol{cryst}{221} \Pisymbol{cryst}{223} \Pisymbol{cryst}{224} \Pisymbol{cryst}{230} \Pisymbol{cryst}{231} \Pisymbol{cryst}{232} \Pisymbol{cryst}{233} \Pisymbol{cryst}{236} \Pisymbol{cryst}{240} \Pisymbol{cryst}{241} \Pisymbol{cryst}{242} \Pisymbol{cryst}{243} Table 534: dice Dice 1 2 3 4 5 6 a b c d \Pisymbol{dice3d}{49} \Pisymbol{dice3d}{50} \Pisymbol{dice3d}{51} \Pisymbol{dice3d}{52} \Pisymbol{dice3d}{53} \Pisymbol{dice3d}{54} \Pisymbol{dice3d}{97} \Pisymbol{dice3d}{98} \Pisymbol{dice3d}{99} \Pisymbol{dice3d}{100} e f g h i j k l m n \Pisymbol{dice3d}{101} \Pisymbol{dice3d}{102} \Pisymbol{dice3d}{103} \Pisymbol{dice3d}{104} \Pisymbol{dice3d}{105} \Pisymbol{dice3d}{106} \Pisymbol{dice3d}{107} \Pisymbol{dice3d}{108} \Pisymbol{dice3d}{109} \Pisymbol{dice3d}{110} o p q r s t u v w x \Pisymbol{dice3d}{111} \Pisymbol{dice3d}{112} \Pisymbol{dice3d}{113} \Pisymbol{dice3d}{114} \Pisymbol{dice3d}{115} \Pisymbol{dice3d}{116} \Pisymbol{dice3d}{117} \Pisymbol{dice3d}{118} \Pisymbol{dice3d}{119} \Pisymbol{dice3d}{120} dice defines its symbols at a very small design size. glyphs shown above were scaled up by a factor of four \DeclareFontShape{U}{dice3d}{m}{n}{<-> s*[4] dice3d}{}. The using An alternative to using \Pisymbol to select a die rotation is to rely on some cleverness in the kerning tables provided by the dice font. The individual digits “1” through “6” each produce the corresponding (2D) die face: {\usefont{U}{dice3d}{m}{n}2 2 1} produces “ ”, for example. When followed by a letter “a” through “d”, those pairs are kerned to produce a 3D die rotation with the digit specifying by the top face and the letter specifying one of the four possible front faces, sorted by increasing value. For example, {\usefont{U}{dice3d}{m}{n}2a 2b 1d} produces “ ”. 221 efd 216 0 1 2 3 4 5 Table 535: magic Trading Card Symbols 6 7 8 9 B G \Pisymbol{magic}{48} \Pisymbol{magic}{49} \Pisymbol{magic}{50} \Pisymbol{magic}{51} \Pisymbol{magic}{52} \Pisymbol{magic}{53} \Pisymbol{magic}{54} \Pisymbol{magic}{55} \Pisymbol{magic}{56} \Pisymbol{magic}{57} \Pisymbol{magic}{66} \Pisymbol{magic}{71} R T U W X Z \Pisymbol{magic}{82} \Pisymbol{magic}{84} \Pisymbol{magic}{85} \Pisymbol{magic}{87} \Pisymbol{magic}{88} \Pisymbol{magic}{90} The preceding symbols resemble those from Wizards of the Coast’s Magic: The Gathering trading-card game. An alternative to entering symbols numerically using \Pisymbol is to switch to the magic font with \usefont{U}{magic}{m}{n} and employ the following mnemonic characters: 0–9 B G R T U W X Z 0–9 B G R T U W X Z Circled numerals 0–9 Black magic symbol Green magic symbol Red magic symbol Tap symbol (tilted “T” in a circle) Blue magic symbol White magic symbol Circled “X” (for mana cost, e.g., Fireball) Circled “10” (for mana cost, e.g., Aladdin’s Lamp) Table 536: bartel-chess-fonts Chess Pieces and Chessboard Squares \Pisymbol{fselch}{0} \Pisymbol{fselch}{1} \Pisymbol{fselch}{2} \Pisymbol{fselch}{3} \Pisymbol{fselch}{4} \Pisymbol{fselch}{5} \Pisymbol{fselch}{6} \Pisymbol{fselch}{7} \Pisymbol{fselch}{8} \Pisymbol{fselch}{9} \Pisymbol{fselch}{10} \Pisymbol{fselch}{11} \Pisymbol{fselch}{12} \Pisymbol{fselch}{13} \Pisymbol{fselch}{14} \Pisymbol{fselch}{15} \Pisymbol{fselch}{16} \Pisymbol{fselch}{17} \Pisymbol{fselch}{18} \Pisymbol{fselch}{19} 7 8 9 : ; < = > ? @ A B C D E F G H I J \Pisymbol{fselch}{55} \Pisymbol{fselch}{56} \Pisymbol{fselch}{57} \Pisymbol{fselch}{58} \Pisymbol{fselch}{59} \Pisymbol{fselch}{60} \Pisymbol{fselch}{61} \Pisymbol{fselch}{62} \Pisymbol{fselch}{63} \Pisymbol{fselch}{64} \Pisymbol{fselch}{65} \Pisymbol{fselch}{66} \Pisymbol{fselch}{67} \Pisymbol{fselch}{68} \Pisymbol{fselch}{69} \Pisymbol{fselch}{70} \Pisymbol{fselch}{71} \Pisymbol{fselch}{72} \Pisymbol{fselch}{73} \Pisymbol{fselch}{74} n o p q r s t u v w x y z { | } ~ \Pisymbol{fselch}{110} \Pisymbol{fselch}{111} \Pisymbol{fselch}{112} \Pisymbol{fselch}{113} \Pisymbol{fselch}{114} \Pisymbol{fselch}{115} \Pisymbol{fselch}{116} \Pisymbol{fselch}{117} \Pisymbol{fselch}{118} \Pisymbol{fselch}{119} \Pisymbol{fselch}{120} \Pisymbol{fselch}{121} \Pisymbol{fselch}{122} \Pisymbol{fselch}{123} \Pisymbol{fselch}{124} \Pisymbol{fselch}{125} \Pisymbol{fselch}{126} \Pisymbol{fselch}{127} \Pisymbol{fselch}{128} \Pisymbol{fselch}{129} (continued on next page) 217 (continued from previous page) ! " # $ % & ' ( ) * + , . / 0 1 2 3 4 5 6 \Pisymbol{fselch}{20} \Pisymbol{fselch}{21} \Pisymbol{fselch}{22} \Pisymbol{fselch}{23} \Pisymbol{fselch}{24} \Pisymbol{fselch}{25} \Pisymbol{fselch}{26} \Pisymbol{fselch}{27} \Pisymbol{fselch}{28} \Pisymbol{fselch}{29} \Pisymbol{fselch}{30} \Pisymbol{fselch}{31} \Pisymbol{fselch}{32} \Pisymbol{fselch}{33} \Pisymbol{fselch}{34} \Pisymbol{fselch}{35} \Pisymbol{fselch}{36} \Pisymbol{fselch}{37} \Pisymbol{fselch}{38} \Pisymbol{fselch}{39} \Pisymbol{fselch}{40} \Pisymbol{fselch}{41} \Pisymbol{fselch}{42} \Pisymbol{fselch}{43} \Pisymbol{fselch}{44} \Pisymbol{fselch}{45} \Pisymbol{fselch}{46} \Pisymbol{fselch}{47} \Pisymbol{fselch}{48} \Pisymbol{fselch}{49} \Pisymbol{fselch}{50} \Pisymbol{fselch}{51} \Pisymbol{fselch}{52} \Pisymbol{fselch}{53} \Pisymbol{fselch}{54} K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m \Pisymbol{fselch}{75} \Pisymbol{fselch}{76} \Pisymbol{fselch}{77} \Pisymbol{fselch}{78} \Pisymbol{fselch}{79} \Pisymbol{fselch}{80} \Pisymbol{fselch}{81} \Pisymbol{fselch}{82} \Pisymbol{fselch}{83} \Pisymbol{fselch}{84} \Pisymbol{fselch}{85} \Pisymbol{fselch}{86} \Pisymbol{fselch}{87} \Pisymbol{fselch}{88} \Pisymbol{fselch}{89} \Pisymbol{fselch}{90} \Pisymbol{fselch}{91} \Pisymbol{fselch}{92} \Pisymbol{fselch}{93} \Pisymbol{fselch}{94} \Pisymbol{fselch}{95} \Pisymbol{fselch}{96} \Pisymbol{fselch}{97} \Pisymbol{fselch}{98} \Pisymbol{fselch}{99} \Pisymbol{fselch}{100} \Pisymbol{fselch}{101} \Pisymbol{fselch}{102} \Pisymbol{fselch}{103} \Pisymbol{fselch}{104} \Pisymbol{fselch}{105} \Pisymbol{fselch}{106} \Pisymbol{fselch}{107} \Pisymbol{fselch}{108} \Pisymbol{fselch}{109} £ © ¯ ´ º À Æ Ì Ò Ø Þ ä ê ð ö \Pisymbol{fselch}{130} \Pisymbol{fselch}{131} \Pisymbol{fselch}{132} \Pisymbol{fselch}{133} \Pisymbol{fselch}{134} \Pisymbol{fselch}{135} \Pisymbol{fselch}{136} \Pisymbol{fselch}{137} \Pisymbol{fselch}{138} \Pisymbol{fselch}{139} \Pisymbol{fselch}{140} \Pisymbol{fselch}{141} \Pisymbol{fselch}{142} \Pisymbol{fselch}{143} \Pisymbol{fselch}{144} \Pisymbol{fselch}{145} \Pisymbol{fselch}{151} \Pisymbol{fselch}{157} \Pisymbol{fselch}{163} \Pisymbol{fselch}{169} \Pisymbol{fselch}{175} \Pisymbol{fselch}{180} \Pisymbol{fselch}{186} \Pisymbol{fselch}{192} \Pisymbol{fselch}{198} \Pisymbol{fselch}{204} \Pisymbol{fselch}{210} \Pisymbol{fselch}{216} \Pisymbol{fselch}{222} \Pisymbol{fselch}{228} \Pisymbol{fselch}{234} \Pisymbol{fselch}{240} \Pisymbol{fselch}{246} In addition to the fselch font showcased above, bartel-chess-fonts also provides a pkelch font which includes the same symbol set (minus some of the highernumbered characters) but drawn in a slightly different style. bartel-chess-fonts provides the fselch and pkelch fonts in various sizes (optically scaled). See “LATEX 2𝜀 Font Selection” [LAT19] for advice on how to expose these sorts of fonts to LATEX using \DeclareFontFamily and \DeclareFontShape. 218 10 Additional Information Unlike the previous sections of this document, Section 10 does not contain new symbol tables. Rather, it provides additional help in using the Comprehensive LATEX Symbol List. First, it draws attention to symbol names used by multiple packages. Next, it provides some guidelines for finding symbols and gives some examples regarding how to construct missing symbols out of existing ones. Then, it comments on the spacing surrounding symbols in math mode. After that, it presents an ASCII and Latin 1 quickreference guide, showing how to enter all of the standard ASCII/Latin 1 symbols in LATEX. And finally, it lists some statistics about this document itself. 10.1 Symbol Name Clashes Unfortunately, a number of symbol names are not unique; they appear in more than one package. Depending on how the symbols are defined in each package, LATEX will either output an error message or replace an earlier-defined symbol with a later-defined symbol. Table 537 on the following page presents a selection of name clashes that appear in this document. Using multiple symbols with the same name in the same document—or even merely loading conflicting symbol packages—can be tricky but, as evidenced by the existence of Table 537, not impossible. The general procedure is to load the first package, rename the conflicting symbols, and then load the second package. Examine the LATEX source for this document (symbols.tex) for examples of this and other techniques for handling symbol conflicts. Note that symbols.tex’s \savesymbol and \restoresymbol macros have been extracted into the savesym package, which can be downloaded from CTAN. txfonts and pxfonts redefine a huge number of symbols—essentially, all of the symbols defined by latexsym, textcomp, the various 𝒜ℳ𝒮 symbol sets, and LATEX 2𝜀 itself. Similarly, mathabx redefines a vast number of math symbols in an attempt to improve their look. The txfonts, pxfonts, and mathabx conflicts are not listed in Table 537 because they are designed to be compatible with the symbols they replace. Table 538 on page 221 illustrates what “compatible” means in this context. To use the new txfonts/pxfonts symbols without altering the document’s main font, merely reset the default font families back to their original values after loading one of those packages: \renewcommand\rmdefault{cmr} \renewcommand\sfdefault{cmss} \renewcommand\ttdefault{cmtt} 10.2 Resizing symbols Mathematical symbols listed in this document as “variable-sized” are designed to stretch vertically. Each variable-sized symbol comes in one or more basic sizes plus a variation comprising both stretchable and nonstretchable segments. Table 539 on page 221 presents the symbols \} and \uparrow in their default size, in their \big, \Big, \bigg, and \Bigg sizes, in an even larger size achieved using \left/ \right, and—for contrast—in a large size achieved by changing the font size using LATEX 2𝜀 ’s \fontsize command. Because the symbols shown belong to the Computer Modern family, the type1cm package needs to be loaded to support font sizes larger than 24.88 pt. Note how \fontsize makes the symbol wider and thicker. (The graphicx package’s \scalebox or \resizebox commands would produce a similar effect.) Also, the \fontsize-enlarged symbol is vertically centered relative to correspondingly large text, unlike the symbols enlarged using \big et al. or \left/\right, which all use the same math axis regardless of symbol size. However, \fontsize is not limited to mathematical delimiters. Also, \scalebox and \resizebox are more robust to poorly composed symbols (e.g., two symbols made to overlap by backspacing a fixed distance) but do not work with every TEX backend and will produce jagged symbols when scaling a bitmapped font. All variable-sized delimiters are defined (by the corresponding .tfm file) in terms of up to five segments, as illustrated by Figure 1 on page 221. The top, middle, and bottom segments are of a fixed size. The top-middle and middle-bottom segments (which are constrained to be the same character) are repeated as many times as necessary to achieve the desired height. 10.3 Where can I find the symbol for . . . ? If you can’t find some symbol you’re looking for in this document, there are a few possible explanations: 219 220 \baro \bigtriangledown \bigtriangleup \checkmark \Circle \Cross \ggg \Letter \lightning \Lightning \lll \Square \Sun \TriangleDown \TriangleUp Symbol ▽ △ LATEX 2𝜀 ≪ ≫ X 𝒜ℳ𝒮 ` a stmaryrd # wasysym @ Î Ï mathabx À E B marvosym Table 537: Symbol Name Clashes o n f * bbding 0 3 1 5 ifsym D dingbat < wsuipa Table 538: Example of a Benign Name Clash txfonts (Times Roman) Default (Computer Modern) Symbol R R \textrecipe R Table 539: Sample resized delimiters Symbol \} Default size \big \Big }︂ }︁ }︀ } \bigg \Bigg \left / \right }︃ ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ \uparrow ↑ ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ −→ ⌃ ⎮ ⎮ ⎮ ⌃ ⎮ ⎮ ⌃ ⎮ ⌃ ⎮ ⎮ ⎮ ⎮ ⎫ top ⎪ top-middle (extensible) ⎬ middle ⎪ middle-bottom (extensible) ⎭ bottom ⌃ ⎮ ⎮ ⎮ ⎮ ⎮ ⎮ ⎮ ⎮ ⎮ ⎮ ⎮ ⎮ Figure 1: Implementation of variable-sized delimiters 221 \fontsize } ↑ • The symbol isn’t intuitively named. As a few examples, the ifsym command to draw dice is “\Cube”; a plus sign with a circle around it (“exclusive or” to computer engineers) is “\oplus”; and lightning bolts in fonts designed by German speakers may have “blitz” in their names as in the ulsy package. The moral of the story is to be creative with synonyms when searching the index. • The symbol is defined by some package that I overlooked (or deemed unimportant). If there’s some symbol package that you think should be included in the Comprehensive LATEX Symbol List, please send me e-mail at the address listed on the title page. • The symbol isn’t defined in any package whatsoever. Even in the last case, all is not lost. Sometimes, a symbol exists in a font, but there is no LATEX binding for it. For example, the PostScript Symbol font contains a “↵” symbol, which may be useful for representing a carriage return, but there is no package (as far as I know) for accessing that symbol. To produce an unnamed symbol, you need to switch to the font explicitly with LATEX 2𝜀 ’s low-level font commands [LAT19] and use TEX’s primitive \char command [Knu86a] to request a specific character number in the font. For example, one can define a command to typeset a long s (“ ſ ”) using character 115 from the Latin Modern fonts in the TS1 font encoding:5 \newcommand{\textlongs}{{% \fontencoding{TS1}\fontfamily{lmr}\selectfont\char115% }} Then, “\textlongs ucce\textlongs sful” will produce “ſucceſsful”—in the current font style (roman, italic, bold, etc.) In fact, \char is not strictly necesssary in all cases; the character can often be entered symbolically. For example, the symbol for an impulse train or Tate-Shafarevich group (“ ”) is actually an uppercase sha in the Cyrillic alphabet. (Cyrillic is supported by the OT2 font encoding, for instance). While a sha can be defined numerically as “{\fontencoding{OT2}\selectfont\char88}” it may be more intuitive to use the OT2 font encoding’s “SH” ligature: “{\fontencoding{OT2}\selectfont SH}”. Another possibility is to use the T2A font encoding’s \CYRSH command: “{\fontencoding{T2A}\selectfont \CYRSH}”. For the specific case of the U font encoding, which is used for symbol or “pi” fonts, the pifont package defines a convenient \Pisymbol command. \Pisymbol typesets a specified character (by number) in a specified font family. For example, “\Pisymbol{psy}{191}” produces the aforementioned “↵” symbol by typesetting character number 191 in the psy (PostScript Symbol) font family. X Reflecting and rotating existing symbols A common request on comp.text.tex is for a reversed or rotated version of an existing symbol. As a last resort, these effects can be achieved with the graphicx (or graphics) package’s \reflectbox and \rotatebox macros. For example, \textsuperscript{\reflectbox{?}} produces an irony mark (“ ? ”), and \rotatebox[origin=c]{180}{$\iota$} produces the definite-description operator (“ ”). As noted by Marc Olschok in a July 2011 post on comp.text.tex, Project Gutenberg uses \reflectbox to typeset the part (“3”) and whole (“3”) relations used in Dedekind’s set notation: 𝜄 \newcommand\partof{\mathrel{\raisebox{0.45ex}{$\mathfrak{3}$}}} \newcommand\wholeof{\mathrel{\reflectbox{$\partof$}}} The disadvantage of the graphicx/graphics approach is that not every TEX backend handles graphical transformations.6 Far better is to find a suitable font that contains the desired symbol in the correct orientation. For instance, if the phonetic package is available, then \textit{\riota} will yield a backendindependent “ ”. Similarly, tipa’s \textrevepsilon (“3”) or wsuipa’s \revepsilon (“”) may be used to express the mathematical notion of “such that” in a cleaner manner than with \reflectbox or \rotatebox.7 5 Since January 2020, the wasysym package provides a \longs symbol. See Table 47. As an example, Xdvi ignores both \reflectbox and \rotatebox. 7 More common symbols for representing “such that” include “|”, “:”, and “s.t.”. 6 222 Joining and overlapping existing symbols Symbols that do not exist in any font can sometimes be fabricated out of existing symbols. The LATEX 2𝜀 source file fontdef.dtx contains a number of such definitions. For example, \models (see Table 89 on page 50) is defined in that file with: \def\models{\mathrel|\joinrel=} where \mathrel and \joinrel are used to control the horizontal spacing. \def is the TEX primitive upon which LATEX’s \newcommand is based. See The TEXbook [Knu86a] for more information on all three of those commands. With some simple pattern-matching, one can easily define a backward \models sign (“=|”): \def\ismodeledby{=\joinrel\mathrel|} In general, arrows/harpoons, horizontal lines (“=”, “-”, “\relbar”, and “\Relbar”), and the various math-extension characters can be combined creatively with miscellaneous other characters to produce a variety of new symbols. Of course, new symbols can be composed from any set of existing characters. For instance, LATEX defines \hbar (“~”) as a “¯” character (\mathchar’26) followed by a backspace of 9 math units (\mkern-9mu), followed by the letter “ℎ”: \def\hbar{{\mathchar’26\mkern-9muh}} We can just as easily define other barred letters: \def\bbar{{\mathchar’26\mkern-9mu b}} \def\dbar{{\mathchar’26\mkern-12mu d}} (The space after the “mu” is optional but is added for clarity.) \bbar and \dbar define “¯ 𝑏” and “¯ 𝑑”, respectively. Note that \dbar requires a greater backward math kern than \bbar; a −9 mu kern would have produced the less-attractive “¯ 𝑑” glyph. The amsmath package provides \overset and \underset commands for placing one symbol respec𝐺 tively above or below another. For example, \overset{G}{\sim}8 produces “∼” (sometimes used for “equidecomposable with respect to 𝐺”). Sometimes an ordinary tabular environment can be co-opted into juxtaposing existing symbols into a new symbol. Consider the following definition of \asterism (“** * ”) from a June 2007 post to comp.text.tex by Peter Flynn: \newcommand{\asterism}{\smash{% \raisebox{-.5ex}{% \setlength{\tabcolsep}{-.5pt}% \begin{tabular}{@{}cc@{}}% \multicolumn2c*\\[-2ex]*&*% \end{tabular}}}} Note how the space between columns (\tabcolsep) and rows (\\[. . . ]) is made negative to squeeze the asterisks closer together. There is a TEX primitive called \mathaccent that centers one mathematical symbol atop another. · For example, one can define \dotcup (“∪”)—the composition of a \cup and a \cdot—as follows: \newcommand{\dotcup}{\ensuremath{\mathaccent\cdot\cup}} The catch is that \mathaccent requires the accent to be a “math character”. That is, it must be a character in a math font as opposed to a symbol defined in terms of other symbols. See The TEXbook [Knu86a] for more information. Another TEX primitive that is useful for composing symbols is \vcenter. \vcenter is conceptually similar to “\begin{tabular}{l}” in LATEX but takes a list of vertical material instead of \\-separated rows. Also, it vertically centers the result on the math axis. (Many operators, such as “+” and “−” are also vertically centered on the math axis.) Enrico Gregorio posted the following symbol definition to comp.text.tex in March 2004 in response to a query about an alternate way to denote equivalence: 8 A LT EX’s \stackrel command is similar but is limited to placing a symbol above a binary relation. 223 \newcommand*{\threesim}{% \mathrel{\vcenter{\offinterlineskip \hbox{$\sim$}\vskip-.35ex\hbox{$\sim$}\vskip-.35ex\hbox{$\sim$}}}} The \threesim symbol, which vertically centers three \sim (“∼”) symbols with 0.35 𝑥-heights of space ∼ between them, is rendered as “∼ ∼”. \offinterlineskip is a macro that disables implicit interline spacing. Without it, \threesim would have a full line of vertical spacing between each \sim. Because ∼ of \vcenter, \threesim aligns properly with other math operators: 𝑎 ÷ 𝑏 ∼ ∼ 𝑐 × 𝑑. A related LATEX command, borrowed from Plain TEX, is \ooalign. \ooalign vertically overlaps symbols and works both within and outside of math mode. Essentially, it creates a single-column tabular environment with zero vertical distance between rows. However, because it is based directly on TEX’s \ialign primitive, \ooalign uses TEX’s tabular syntax instead of LATEX’s (i.e., with \cr as the row terminator instead of \\). The following example of \ooalign, a macro that defines a standard∘ state symbol (\stst, “− ”) as a superscripted Plimsoll line (\barcirc, “− ∘ ”),9 is due to an October 2007 comp.text.tex post by Donald Arseneau: \makeatletter \providecommand\barcirc{\mathpalette\@barred\circ} \def\@barred#1#2{\ooalign{\hfil$#1-$\hfil\cr\hfil$#1#2$\hfil\cr}} \newcommand\stst{^{\protect\barcirc}} \makeatother In the preceding code, note the \ooalign call’s use of \hfil to horizontally center a minus sign (“−”) and a \circ (“∘”). As another example of \ooalign, consider the following code (due to Enrico Gregorio in a June 2007 post to comp.text.tex) that overlaps a \ni (“∋”) and two minus signs (“− −”) to produce “∋ − −”, an obscure variation on the infrequently used “3” symbol for “such that”discussed on page 222: \newcommand{\suchthat}{% \mathrel{\ooalign{$\ni$\cr\kern-1pt$-$\kern-6.5pt$-$}}} The slashed package, although originally designed for producing Feynman slashed-character notation, in fact facilitates the production of arbitrary overlapped symbols. The default behavior is to overwrite / However, the \declareslashed a given character with “/”. For example, \slashed{D} produces “𝐷”. command provides the flexibility to specify the mathematical context of the composite character (operator, relation, punctuation, etc., as will be discussed in Section 10.4), the overlapping symbol, horizontal and vertical adjustments in symbol-relative units, and the character to be overlapped. Consider, for example, the symbol for reduced quadrupole moment (“𝐼”). This can be declared as follows: \newcommand{\rqm}{{% \declareslashed{}{\text{-}}{0.04}{0}{I}\slashed{I}}} \declareslashed{·}{·}{·}{·}{I} affects the meaning of all subsequent \slashed{I} commands in the same scope. The preceding definition of \rqm therefore uses an extra set of curly braces to limit that scope to a single \slashed{I}. In addition, \rqm uses amstext’s \text macro (described on page 226) to make \declareslashed use a text-mode hyphen (“-”) instead of a math-mode minus sign (“−”) and to ensure that the hyphen scales properly in size in subscripts and superscripts. See slashed’s documentation (located in slashed.sty itself) for a detailed usage description of the \slashed and \declareslashed commands. Somewhat simpler than slashed is the centernot package. centernot provides a single command, \centernot, which, like \not, puts a slash over the subsequent mathematical symbol. However, instead of putting the slash at a fixed location, \centernot centers the slash over its argument. \centernot might be used, for example, to create a “does not imply” symbol: ̸=⇒ \not\Longrightarrow vs. =⇒ ̸ \centernot\Longrightarrow See the centernot documentation for more information. 9 While \barcirc illustrates how to combine symbols using \ooalign, the stmaryrd package’s \minuso command (Table 52 on page 30) provides a similar glyph (“ ”) as a single, indivisible symbol. 224 Making new symbols work in superscripts and subscripts To make composite symbols work properly within subscripts and superscripts, you may need to use TEX’s \mathchoice primitive. \mathchoice evaluates one of four expressions, based on whether the current math style is display, text, script, or scriptscript. (See The TEXbook [Knu86a] for a more complete description.) For example, the following LATEX code—posted to comp.text.tex by Torsten Bronger—composes a sub/superscriptable “⊥ ⊤” symbol out of \top and \bot (“⊤” and “⊥”): \def\topbotatom#1{\hbox{\hbox to 0pt{$#1\bot$\hss}$#1\top$}} \newcommand*{\topbot}{\mathrel{\mathchoice{\topbotatom\displaystyle} {\topbotatom\textstyle} {\topbotatom\scriptstyle} {\topbotatom\scriptscriptstyle}}} The following is another example that uses \mathchoice to construct symbols in different math modes. The code defines a principal value integral symbol, which is an integral sign with a line through it. \def\Xint#1{\mathchoice {\XXint\displaystyle\textstyle{#1}}% {\XXint\textstyle\scriptstyle{#1}}% {\XXint\scriptstyle\scriptscriptstyle{#1}}% {\XXint\scriptscriptstyle\scriptscriptstyle{#1}}% \!\int} \def\XXint#1#2#3{{\setbox0=\hbox{$#1{#2#3}{\int}$} \vcenter{\hbox{$#2#3$}}\kern-.5\wd0}} \def\ddashint{\Xint=} \def\dashint{\Xint-} (The preceding code was taken verbatim from the UK T ∫︀EX Users Group FAQ at http://www.tex.ac.uk/.) −”), while \ddashint produces a double-dashed \dashint produces a single-dashed integral sign (“ ∫︀ one (“=”). The \Xint macro defined above can also be used to generate ∫︀ ∫︀ ∫︀ a wealth of new inte∫︀ grals: “” (\Xint\circlearrowright), “ ” (\Xint\circlearrowleft), “⊂” (\Xint\subset), “∞” (\Xint\infty), and so forth. LATEX 2𝜀 provides a simple wrapper for \mathchoice that sometimes helps produce terser symbol definitions. The macro is called \mathpalette and it takes two arguments. \mathpalette invokes the first argument, passing it one of “\displaystyle”, “\textstyle”, “\scriptstyle”, or “\scriptscriptstyle”, followed by the second argument. \mathpalette is useful when a symbol macro must know which math style is currently in use (e.g., to set it explicitly within an \mbox). Donald Arseneau posted the following \mathpalette-based definition of a probabilistic-independence symbol (“⊥ ⊥”) to comp.text.tex in June 2000: \newcommand\independent{\protect\mathpalette{\protect\independenT}{\perp}} \def\independenT#1#2{\mathrel{\rlap{$#1#2$}\mkern2mu{#1#2}}} The \independent macro uses \mathpalette to pass the \independenT helper macro both the current math style and the \perp symbol. \independenT typesets \perp in the current math style, moves two math units to the right, and finally typesets a second—overlapping—copy of \perp, again in the current math style. \rlap, which enables text overlap, is described on the following page. Some people like their square-root signs with a trailing “hook” (i.e., “√ ”) as this helps visually √ √ distinguish expressions like “ 3𝑥 ” from those like “ 3𝑥”. In March 2002, Dan Luecking posted a \mathpalette-based definition of a hooked square-root symbol to comp.text.tex. This code was subsequently refined by Max Dohse and Scott Pakin into the version shown below, which accepts a root as an optional argument, for consistency with \sqrt. \newcommand{\hksqrt}[2][]{\mathpalette\DHLhksqrt{[#1]{#2\,}}} \def\DHLhksqrt#1#2{\setbox0=\hbox{$#1\sqrt#2$}\dimen0=\ht0 \advance\dimen0-0.2\ht0 \setbox2=\hbox{\vrule height\ht0 depth -\dimen0}% {\box0\lower0.4pt\box2}} 225 Notice how \hksqrt uses \mathpalette to pass the current math style (\displaystyle, \textstyle, etc.) to \DHLhksqrt as argument #1. \DHLhksqrt subsequently uses that style within an \hbox. The rest of the code is simply using TEX primitives to position a hook of height 0.2 times the \sqrt height at the right of the \sqrt. See The TEXbook [Knu86a] for more understanding of TEX “boxes” and “dimens”. Sometimes, however, amstext’s \text macro is all that is necessary to make composite symbols appear correctly in subscripts and superscripts, as in the following definitions of \neswarrow (“↗ ↘”) and \nwsearrow (“↖ ↘”):10 \newcommand{\neswarrow}{\mathrel{\text{$\nearrow$\llap{$\swarrow$}}}} \newcommand{\nwsearrow}{\mathrel{\text{$\nwarrow$\llap{$\searrow$}}}} \text resembles LATEX’s \mbox command but shrinks its argument appropriately when used within a subscript or superscript. \llap (“left overlap”) and its counterpart, \rlap (“right overlap”), appear frequently when creating composite characters. \llap outputs its argument to the left of the current position, overlapping whatever text is already there. Similarly, \rlap overlaps whatever text would normally appear to the right of its argument. For example, “A\llap{B}” and “\rlap{A}B” each produce “A B”. However, the result of the former is the width of “A”, and the result of the latter is the width of “B”—\llap{. . . } and \rlap{. . . } take up zero space. In a June 2002 post to comp.text.tex, Donald Arseneau presented a general macro for aligning an arbitrary number of symbols on their horizontal centers and vertical baselines: \makeatletter \def\moverlay{\mathpalette\mov@rlay} \def\mov@rlay#1#2{\leavevmode\vtop{% \baselineskip\z@skip \lineskiplimit-\maxdimen \ialign{\hfil$#1##$\hfil\cr#2\crcr}}} \makeatother The \makeatletter and \makeatother commands are needed to coerce LATEX into accepting “@” as part of a macro name. \moverlay takes a list of symbols separated by \cr (TEX’s equivalent of LATEX’s \\). For example, the \topbot command defined on the previous page could have been expressed as “\moverlay{\top\cr\bot}” and the \neswarrow command defined above could have been expressed as “\moverlay{\nearrow\cr\swarrow}”. The basic concept behind \moverlay’s implementation is that \moverlay typesets the given symbols in a table that utilizes a zero \baselineskip. This causes every row to be typeset at the same vertical position. See The TEXbook [Knu86a] for explanations of the TEX primitives used by \moverlay. Steven B. Segletes answered a question on TEX Stack Exchange, “AMS inequalities: a variant of \gtrsim and \lesssim” on typesetting \gtrsim (“&”) and \lesssim (“.”) with the \sim symbol slanted to match the angle of the greater-than/less-than sign. His solution incorporates the graphicx package’s \rotatebox for rotating the “∼”, the stackengine package’s \stackengine command for stacking two symbols on top of each other, and the scalerel package’s \ThisStyle, \SavedStyle, and \LMex commands for scaling the symbol based on the surrounding context. The following code due to Segletes defines the 11 \gtrsimslant (“>”) and \lesssimslant (“< ∼ ”) symbols: ∼ \newcommand\lesssimslant{\mathrel{\ensurestackMath{\ThisStyle{% \stackengine{-.4\LMex}{\SavedStyle<}{% \rotatebox{-25}{$\SavedStyle\sim$}}{U}{r}{F}{T}{S}}}}} \newcommand\gtrsimslant{\mathrel{\ensurestackMath{\ThisStyle{% \stackengine{-.4\LMex}{\SavedStyle>}{% \rotatebox{25}{$\SavedStyle\sim$}}{U}{l}{F}{T}{S}}}}} Modifying LATEX-generated symbols Oftentimes, symbols composed in the LATEX 2𝜀 source code can be modified with minimal effort to produce useful variations. For example, fontdef.dtx composes the \ddots symbol (see Table 277 on page 114) out of three periods, raised 7 pt., 4 pt., and 1 pt., respectively: 10 Note that if your goal is to typeset commutative diagrams or pushout/pullback diagrams, then you should probably be using XY-pic. 11 The code as posted on TEX Stack Exchange named these \vargtrsim and \varlesssim. They are renamed here for naming consistency with symbols such as \geqslant (“>”). 226 \def\ddots{\mathinner{\mkern1mu\raise7\p@ \vbox{\kern7\p@\hbox{.}}\mkern2mu \raise4\p@\hbox{.}\mkern2mu\raise\p@\hbox{.}\mkern1mu}} \p@ is a LATEX 2𝜀 shortcut for “pt” or “1.0pt”. The remaining commands are defined in The TEXbook [Knu86a]. To draw a version of \ddots with the dots going along the opposite diagonal, we merely have to reorder the \raise7\p@, \raise4\p@, and \raise\p@: \makeatletter \def\revddots{\mathinner{\mkern1mu\raise\p@ \vbox{\kern7\p@\hbox{.}}\mkern2mu \raise4\p@\hbox{.}\mkern2mu\raise7\p@\hbox{.}\mkern1mu}} \makeatother \revddots is essentially identical to the mathdots package’s \iddots command or the yhmath package’s \adots command. Producing complex accents Accents are a special case of combining existing symbols to make new symbols. While various tables in this document show how to add an accent to an existing symbol, some applications, such as transliterations from non-Latin alphabets, require multiple accents per character. For instance, the creator of pdfTEX writes his name as “Hàn Th´ ^e Thành”. The dblaccnt package enables LATEX to stack accents, as in “H\‘an Th\’{\^e} Th\‘anh” (albeit not in the OT1 font encoding). In addition, the wsuipa package defines \diatop and \diaunder macros for putting one or more diacritics or accents above or below a given character. For example, \diaunder[{\diatop[\’|\=]}|\textsubdot{r}] produces “´r̄”. See the ˙ wsuipa documentation for more information. The accents package facilitates the fabrication of accents in math mode. Its \accentset command ⋆ enables any character to be used as an accent. For instance, \accentset{\star}{f} produces “𝑓 ” and 𝑒 \accentset{e}{X} produces “𝑋”. \underaccent does the same thing, but places the accent beneath the character. This enables constructs like \underaccent{\tilde}{V}, which produces “𝑉 ”. accents provides other accent-related features as well; see the documentation for more information.˜ Creating extensible symbols A relatively simple example of creating extensible symbols stems from a comp.text.tex post by Donald Arseneau (June 2003). The following code defines an equals sign that extends as far to the right as possible, just like LATEX’s \hrulefill command: \makeatletter \def\equalsfill{$\m@th\mathord=\mkern-7mu \cleaders\hbox{$\!\mathord=\!$}\hfill \mkern-7mu\mathord=$} \makeatother TEX’s \cleaders and \hfill primitives are the key to understanding \equalsfill’s extensibility. Essentially, \equalsfill repeats a box containing “=” plus some negative space until it fills the maximum available horizontal space. \equalsfill is intended to be used with LATEX’s \stackrel command, which stacks one mathematical expression (slightly re𝑎 duced in size) atop another. Hence, “\stackrel{a}{\rightarrow}” produces “→” and “X definition \stackrel{\text{definition}}{\hbox{\equalsfill}} Y” produces “𝑋 ====== 𝑌 ”. If all that needs to extend are horizontal and vertical lines—as opposed to repeated symbols such as the “=” in the previous example—LATEX’s array or tabular environments may suffice. Consider the following code (due to a February 1999 comp.text.tex post by Donald Arseneau and subsequent modifications by Billy Yu and Scott Pakin) for typesetting annuity and life-insurance symbols: \DeclareRobustCommand{\actuarial}[2][]{% \def\arraystretch{0}% \setlength\arraycolsep{0.5pt}% 227 } \setlength\arrayrulewidth{0.5pt}% \setbox0=\hbox{$\scriptstyle#1#2$}% \begin{array}[b]{*2{@{}>{\scriptstyle}c}|} \cline{2-2}% \rule[1.25pt]{0pt}{\ht0}% #1 & #2% \end{array}% Using the preceding definition, one can type, e.g., “$a_{\actuarial{n}}$” to produce “𝑎𝑛 ” and “$a_{\actuarial[x:]{n}}$” to produce “𝑎𝑥:𝑛 ”. This is similar in concept to how the actuarialangle package defines its \actuarialangle command (Table 261). For a more complete solution for typesetting actuarial symbols see the actuarialsymbol package. A more complex example of composing accents is the following definition of extensible \overbracket, \underbracket, \overparenthesis, and \underparenthesis symbols, taken from a May 2002 comp.text.tex post by Donald Arseneau: \makeatletter \def\overbracket#1{\mathop{\vbox{\ialign{##\crcr\noalign{\kern3\p@} \downbracketfill\crcr\noalign{\kern3\p@\nointerlineskip} $\hfil\displaystyle{#1}\hfil$\crcr}}}\limits} \def\underbracket#1{\mathop{\vtop{\ialign{##\crcr $\hfil\displaystyle{#1}\hfil$\crcr\noalign{\kern3\p@\nointerlineskip} \upbracketfill\crcr\noalign{\kern3\p@}}}}\limits} \def\overparenthesis#1{\mathop{\vbox{\ialign{##\crcr\noalign{\kern3\p@} \downparenthfill\crcr\noalign{\kern3\p@\nointerlineskip} $\hfil\displaystyle{#1}\hfil$\crcr}}}\limits} \def\underparenthesis#1{\mathop{\vtop{\ialign{##\crcr $\hfil\displaystyle{#1}\hfil$\crcr\noalign{\kern3\p@\nointerlineskip} \upparenthfill\crcr\noalign{\kern3\p@}}}}\limits} \def\downparenthfill{$\m@th\braceld\leaders\vrule\hfill\bracerd$} \def\upparenthfill{$\m@th\bracelu\leaders\vrule\hfill\braceru$} \def\upbracketfill{$\m@th\makesm@sh{\llap{\vrule\@height3\p@\@width.7\p@}}% \leaders\vrule\@height.7\p@\hfill \makesm@sh{\rlap{\vrule\@height3\p@\@width.7\p@}}$} \def\downbracketfill{$\m@th \makesm@sh{\llap{\vrule\@height.7\p@\@depth2.3\p@\@width.7\p@}}% \leaders\vrule\@height.7\p@\hfill \makesm@sh{\rlap{\vrule\@height.7\p@\@depth2.3\p@\@width.7\p@}}$} \makeatother Table 540 showcases these accents. The TEXbook [Knu86a] or another book on TEX primitives is indispensible for understanding how the preceding code works. The basic idea is that \downparenthfill, \upparenthfill, \downbracketfill, and \upbracketfill do all of the work; they output a left symbol (e.g., \braceld [“⏞”] for \downparenthfill), a horizontal rule that stretches as wide as possible, and a right symbol (e.g., \bracerd [“ ”] for \downparenthfill). \overbracket, \underbracket, \overparenthesis, and \underparenthesis merely create a table whose width is determined by the given text, thereby constraining the width of the horizontal rules. Table 540: Manually Composed Extensible Accents ⏞ 𝑎𝑏𝑐 \overbracket{abc} 𝑎𝑏𝑐 \overparenthesis{abc} 𝑎𝑏𝑐 \underbracket{abc} 𝑎𝑏𝑐 ⏟ \underparenthesis{abc} Note that the simplewick package provides mechanisms for typesetting Wick contractions, which utilize \overbracket- and \underbracket-like brackets of variable width and height (or depth). For example, “\acontraction{}{A}{B}{C}\acontraction[2ex]{A}{B}{C}{D}\bcontraction{}{A}{BC}{D} 228 ABCD” produces 𝐴𝐵𝐶𝐷 . See the simplewick documentation for more information. Developing new symbols from scratch Sometimes is it simply not possible to define a new symbol in terms of existing symbols. Fortunately, most, if not all, TEX distributions are shipped with a tool called METAFONT which is designed specifically for creating fonts to be used with TEX. The METAFONTbook [Knu86b] is the authoritative text on METAFONT. If you plan to design your own symbols with METAFONT, The METAFONTbook is essential reading. You may also want to read the freely available METAFONT primer located at http://metafont.tutorial.free.fr/. The following is an extremely brief tutorial on how to create a new LATEX symbol using METAFONT. Its primary purpose is to cover the LATEX-specific operations not mentioned in The METAFONTbook and to demonstrate that symbol-font creation is not necessarily a difficult task. Suppose we need a symbol to represent a light bulb (“A”).12 The first step is to draw this in METAFONT. It is common to separate the font into two files: a size-dependent file, which specifies the design size and various font-specific parameters that are a function of the design size; and a size-independent file, which draws characters in the given size. Figure 2 shows the METAFONT code for lightbulb10.mf. lightbulb10.mf specifies various parameters that produce a 10 pt. light bulb then loads lightbulb.mf. Ideally, one should produce lightbulb⟨size⟩.mf files for a variety of ⟨size⟩s. This is called “optical scaling”. It enables, for example, the lines that make up the light bulb to retain the same thickness at different font sizes, which looks much nicer than the alternative—and default—“mechanical scaling”. When a lightbulb⟨size⟩.mf file does not exist for a given size ⟨size⟩, the computer mechanically produces a wider, taller, thicker symbol: A A vs. 10 pt. 20 pt. vs. A vs. 30 pt. A vs. 40 pt. A 50 pt. vs. A A font_identifier := "LightBulb10"; font_size 10pt#; vs. 60 pt. 70 pt. % Name the font. % Specify the design size. em# := 10pt#; cap# := 7pt#; sb# := 1/4pt#; 𝑜# := 1/16pt#; % “M” width is 10 points. % Capital letter height is 7 points above the baseline. % Leave this much space on the side of each character. % Amount that curves overshoot borders. input lightbulb % Load the file that draws the actual glyph. Figure 2: Sample METAFONT size-specific file (lightbulb10.mf) lightbulb.mf, shown in Figure 3, draws a light bulb using the parameters defined in lightbulb10.mf. Note that the the filenames “lightbulb10.mf” and “lightbulb.mf” do not follow the Berry font-naming scheme [Ber01]; the Berry font-naming scheme is largely irrelevant for symbol fonts, which generally lack bold, italic, small-caps, slanted, and other such variants. The code in Figures Figure 2 and Figure 3 is heavily commented and should demonstrate some of the basic concepts behind METAFONT usage: declaring variables, defining points, drawing lines and curves, and preparing to debug or fine-tune the output. Again, The METAFONTbook [Knu86b] is the definitive reference on METAFONT programming. METAFONT can produce “proofs” of fonts—large, labeled versions that showcase the logical structure of each character. In fact, proof mode is METAFONT’s default mode. To produce a proof of lightbulb10.mf, issue the following commands at the operating-system prompt: 12 I’m not a very good artist; you’ll have to pretend that “ A” looks like a light bulb. 229 % Target a given printer. mode_setup; define_pixels(em, cap, sb); define_corrected_pixels(𝑜); % Convert to device-specific units. % Same, but add a device-specific fudge factor. %% Define a light bulb at the character position for “A” %% with width 1/2em#, height cap#, and depth 1pt#. beginchar("A", 1/2em#, cap#, 1pt#); "A light bulb"; pickup pencircle scaled 1/2pt; % Use a pen with a small, circular tip. %% Define the points we need. top 𝑧1 = (𝑤/2, ℎ + 𝑜); % 𝑧1 is at the top of a circle. rt 𝑧2 = (𝑤 + sb + 𝑜 − 𝑥4 , 𝑦4 ); % 𝑧2 is at the same height as 𝑧4 but the opposite side. bot 𝑧3 = (𝑧1 − (0, 𝑤 − sb − 𝑜)); % 𝑧3 is at the bottom of the circle. lft 𝑧4 = (sb − 𝑜, 1/2[𝑦1 , 𝑦3 ]); % 𝑧4 is on the left of the circle. path bulb; % Define a path for the bulb itself. bulb = 𝑧1 . . 𝑧2 . . 𝑧3 . . 𝑧4 . . cycle; % The bulb is a closed path. 𝑧5 = point 2 − 1/3 of bulb; % 𝑧5 lies on the bulb, a little to the right of 𝑧3 . 𝑧6 = (𝑥5 , 0); % 𝑧6 is at the bottom, directly under 𝑧5 . 𝑧7 = (𝑥8 , 0); % 𝑧7 is at the bottom, directly under 𝑧8 . 𝑧8 = point 2 + 1/3 of bulb; % 𝑧8 lies on the bulb, a little to the left of 𝑧3 . bot 𝑧67 = ( 1/2[𝑥6 , 𝑥7 ], pen_bot − 𝑜 − 1/8pt); % 𝑧67 lies halfway between 𝑧6 and 𝑧7 but a jot lower. %% Draw the bulb and the base. draw bulb; draw 𝑧5 - - 𝑧6 . . 𝑧67 . . 𝑧7 - - 𝑧8 ; % Draw the bulb proper. % Draw the base of the bulb. %% Display key positions and points to help us debug. makegrid(0, sb, 𝑤/2, 𝑤 − sb)(0, −1pt, 𝑦2 , ℎ); % Label “interesting” 𝑥 and 𝑦 coordinates. penlabels(1, 2, 3, 4, 5, 6, 67, 7, 8); % Label control points for debugging. endchar; end Figure 3: Sample METAFONT size-independent file (lightbulb.mf) ⇐ Produces lightbulb10.2602gf ⇐ Produces lightbulb10.dvi prompt > mf lightbulb10.mf prompt > gftodvi lightbulb10.2602gf You can then view lightbulb10.dvi with any DVI viewer. The result is shown in Figure 4. Observe how the grid defined with makegrid at the bottom of Figure 3 draws vertical lines at positions 0, sb, 𝑤/2, and 𝑤 − sb and horizontal lines at positions 0, −1pt, 𝑦2 , and ℎ. Similarly, observe how the penlabels command labels all of the important coordinates: 𝑧1 , 𝑧2 , . . . , 𝑧8 and 𝑧67 , which lightbulb.mf defines to lie between 𝑧6 and 𝑧7 . Most, if not all, TEX distributions include a Plain TEX file called testfont.tex that is useful for testing new fonts in a variety of ways. One useful routine produces a table of all of the characters in the font: prompt > tex testfont This is TeX, Version 3.14159 (Web2C 7.3.1) (/usr/share/texmf/tex/plain/base/testfont.tex Name of the font to test = lightbulb10 Now type a test command (\help for help):) *∖table *∖bye [1] Output written on testfont.dvi (1 page, 1516 bytes). Transcript written on testfont.log. 230 1 4 2 8 7 3 67 5 6 Figure 4: Proof diagram of lightbulb10.mf The resulting table, stored in testfont.dvi and illustrated in Figure 5, shows every character in the font. To understand how to read the table, note that the character code for “A”—the only character defined by lightbulb10.mf—is 41 in hexadecimal (base 16) and 101 in octal (base 8). Test of lightbulb10 on March 11, 2003 at 1127 ´0 ´10x ´11x ˝8 ´1 A ´2 ˝9 ˝A ´3 ´4 ´5 ´6 ´7 ˝4x ˝B ˝C ˝D ˝E ˝F Figure 5: Font table produced by testfont.tex The LightBulb10 font is now usable by TEX. LATEX 2𝜀 , however, needs more information before documents can use the font. First, we create a font-description file that tells LATEX 2𝜀 how to map fonts in a given font family and encoding to a particular font in a particular font size. For symbol fonts, this mapping is fairly simple. Symbol fonts almost always use the “U” (“Unknown”) font encoding and frequently occur in only one variant: normal weight and non-italicized. The filename for a fontdescription file important; it must be of the form “⟨encoding⟩⟨family⟩.fd”, where ⟨encoding⟩ is the lowercase version of the encoding name (typically “u” for symbol fonts) and ⟨family⟩ is the name of the font family. For LightBulb10, let’s call this “bulb”. Figure 6 lists the contents of ubulb.fd. The document “LATEX 2𝜀 Font Selection” [LAT19] describes \DeclareFontFamily and \DeclareFontShape in detail, but the gist of ubulb.fd is first to declare a U-encoded version of the bulb font family and then to specify that a LATEX 2𝜀 request for a U-encoded version of bulb with a (m)edium font series (as opposed to, e.g., bold) and a (n)ormal font shape (as opposed to, e.g., italic) should translate into a TEX request for lightbulb10.tfm mechanically scaled to the current font size. \DeclareFontFamily{U}{bulb}{} \DeclareFontShape{U}{bulb}{m}{n}{<-> lightbulb10}{} Figure 6: LATEX 2𝜀 font-description file (ubulb.fd) The final step is to write a LATEX 2𝜀 style file that defines a name for each symbol in the font. Because we have only one symbol our style file, lightbulb.sty (Figure 7), is rather trivial. Note that instead of typesetting “A” we could have had \lightbulb typeset “\char65”, “\char"41”, or “\char’101” (respectively, decimal, hexadecimal, and octal character offsets into the font). For a simple, one-character symbol font such as LightBulb10 it would be reasonable to merge ubulb.fd into lightbulb.sty instead of maintaining two separate files. In either case, a document need only include “\usepackage{lightbulb}” to 231 make the \lightbulb symbol available. \newcommand{\lightbulb}{{\usefont{U}{bulb}{m}{n}A}} Figure 7: LATEX 2𝜀 style file (lightbulb.sty) METAFONT normally produces bitmapped fonts. However, it is also possible, with the help of some external tools, to produce PostScript Type 1 fonts. These have the advantages of rendering better in Adobe® Acrobat® (at least in versions prior to 6.0) and of being more memory-efficient when handled by a PostScript interpreter. See http://www.tex.ac.uk/FAQ-textrace.html for pointers to tools that can produce Type 1 fonts from METAFONT. 10.4 Math-mode spacing Terms such as “binary operators”, “relations”, and “punctuation” in Section 3 primarily regard the surrounding spacing. (See the Short Math Guide for LATEX [Dow00] for a nice exposition on the subject.) To use a symbol for a different purpose, you can use the TEX commands \mathord, \mathop, \mathbin, \mathrel, \mathopen, \mathclose, and \mathpunct. For example, if you want to use \downarrow as a variable (an “ordinary” symbol) instead of a delimiter, you can write “$3 x + \mathord{\downarrow}$” to get the properly spaced “3𝑥 + ↓” rather than the awkward˙ that spaces like the ordinary setlooking “3𝑥+ ↓”. Similarly, to create a dotted-union symbol (“∪”) union symbol (\cup) it must be defined with \mathbin, just as \cup is. Contrast “$A \dot{\cup} B$” ˙ ˙ 𝐵”). See The TEXbook [Knu86a] for the defini(“𝐴∪𝐵”) with “$A \mathbin{\dot{\cup}} B$” (“𝐴 ∪ tive description of math-mode spacing. The purpose of the “log-like symbols” in Table 183 and Table 184 is to provide the correct amount of spacing around and within multiletter function names. Table 541 contrasts the output of the loglike symbols with various, naı̈ve alternatives. In addition to spacing, the log-like symbols also handle subscripts properly. For example, “\max_{p \in P}” produces “max𝑝∈𝑃 ” in text, but “max” as part 𝑝∈𝑃 of a displayed formula. Table 541: Spacing Around/Within Log-like Symbols LATEX expression Output $r $r $r $r 𝑟 sin 𝜃 𝑟𝑠𝑖𝑛𝜃 𝑟sin𝜃 𝑟sin𝜃 \sin \theta$ sin \theta$ \mbox{sin} \theta$ \mathrm{sin} \theta$ (best) The amsmath package makes it straightforward to define new log-like symbols: \DeclareMathOperator{\atan}{atan} \DeclareMathOperator*{\lcm}{lcm} The difference between \DeclareMathOperator and \DeclareMathOperator* involves the handling of subscripts. With \DeclareMathOperator*, subscripts are written beneath log-like symbols in display style and to the right in text style. This is useful for limit operators (e.g., \lim) and functions that tend to map over a set (e.g., \min). In contrast, \DeclareMathOperator tells TEX that subscripts should always be displayed to the right of the operator, as is common for functions that take a single parameter (e.g., \log and \cos). Table 542 contrasts symbols declared with \DeclareMathOperator and \DeclareMathOperator* in both text style ($. . .$) and display style (\[. . .\]).13 It is common to use a thin space (\,) between the words of a multiword operators, as in “\DeclareMathOperator*{\argmax}{arg\,max}”. \liminf, \limsup, and all of the log-like symbols shown in Table 184 utilize this spacing convention. 13 Note that \displaystyle can be used to force display style within $. . .$ and \textstyle can be used to force text style within \[. . .\]. 232 Table 542: Defining new log-like symbols 10.5 Declaration function $\newlogsym_{p \in P}$ \[ \newlogsym_{p \in P} \] \DeclareMathOperator newlogsym𝑝∈𝑃 newlogsym𝑝∈𝑃 \DeclareMathOperator* newlogsym𝑝∈𝑃 newlogsym 𝑝∈𝑃 Bold mathematical symbols LATEX does not normally use bold symbols when typesetting mathematics. However, bold symbols are occasionally needed, for example when naming vectors. Any of the approaches described at http:// www.tex.ac.uk/FAQ-boldgreek.html can be used to produce bold mathematical symbols. Table 543 contrasts the output produced by these various techniques. As the table illustrates, these techniques exhibit variation in their formatting of Latin letters (upright vs. italic), formatting of Greek letters (bold vs. normal), formatting of operators and relations (bold vs. normal), and spacing. xfakebold’s \setBold command is unique in that it takes a thickness argument and supports arbitrary symbol thickness, although it works only with vector fonts, not bitmapped fonts. Table 543: Producing bold mathematical symbols 10.6 Package Code Output none none none amsbsy amsbsy bm fixmath xfakebold $\alpha + b = \Gamma \div D$ $\mathbf{\alpha + b = \Gamma \div D}$ \boldmath$\alpha + b = \Gamma \div D$ $\pmb{\alpha + b = \Gamma \div D}$ $\boldsymbol{\alpha + b = \Gamma \div D}$ $\bm{\alpha + b = \Gamma \div D}$ $\mathbold{\alpha + b = \Gamma \div D}$ \setBold[0.3] $\alpha + b = \Gamma \div D$ \unsetBold 𝛼+𝑏=Γ÷𝐷 𝛼+b=Γ÷D 𝛼+𝑏=Γ÷𝐷 𝛼+𝑏=Γ÷𝐷 𝛼+𝑏=Γ÷𝐷 𝛼+𝑏=Γ÷𝐷 𝛼+𝑏=𝛤 ÷𝐷 𝛼+𝑏=Γ÷𝐷 (no bold) (faked bold) (faked bold) ASCII and Latin 1 quick reference Table 544 on the next page amalgamates data from various other tables in this document into a convenient reference for LATEX 2𝜀 typesetting of ASCII characters, i.e., the characters available on a typical U.S. computer keyboard. The first two columns list the character’s ASCII code in decimal and hexadecimal. The third column shows what the character looks like. The fourth column lists the LATEX 2𝜀 command to typeset the character as a text character. And the fourth column lists the LATEX 2𝜀 command to typeset the character within a \texttt{. . .} command (or, more generally, when \ttfamily is in effect). The following are some additional notes about the contents of Table 544: • “"” is not available in the OT1 font encoding. • Table 544 shows a close quote for character 39 for consistency with the open quote shown for character 96. A straight quote can be typeset using \textquotesingle (cf. Table 46). • The characters “<”, “>”, and “|” do work as expected in math mode, although they produce, respectively, “¡”, “¿”, and “—” in text mode when using the OT1 font encoding.14 The following are some alternatives for typesetting “<”, “>”, and “|”: – Specify a document font encoding other than OT1 (as described on page 12). 14 Donald Knuth didn’t think such symbols were important outside of mathematics so he omitted them from his text fonts. 233 Table 544: LATEX 2𝜀 ASCII Table Dec Hex 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 .. . 57 58 59 60 61 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 .. . 39 3A 3B 3C 3D Char Body text ! " # $ % & ’ ( ) * + , . / 0 1 2 .. . 9 : ; < = ! \textquotedbl \# \$ \% \& ’ ( ) * + , . / 0 1 2 .. . 9 : ; \textless = \texttt Dec ! " \# \$ \% \& ’ ( ) * + , . / 0 1 2 .. . 9 : ; < = 62 63 64 65 66 67 .. . 90 91 92 93 94 95 96 97 98 99 .. . 122 123 124 125 126 Hex 3E 3F 40 41 42 43 .. . 5A 5B 5C 5D 5E 5F 60 61 62 63 .. . 7A 7B 7C 7D 7E Char Body text > ? @ A B C .. . Z [ \ ] ˆ _ ‘ a b c .. . z { | } ˜ \textgreater ? @ A B C .. . Z [ \textbackslash ] \^{} \_ ‘ a b c .. . z \{ \textbar \} \~{} \texttt > ? @ A B C .. . Z [ \char‘\\ ] \^{} \char‘\_ ‘ a b c .. . z \char‘\{ | \char‘\} \~{} – Use the appropriate symbol commands from Table 2 on page 14, viz. \textless, \textgreater, and \textbar. – Enter the symbols in math mode instead of text mode, i.e., $<$, $>$, and $|$. Note that for typesetting metavariables many people prefer \textlangle and \textrangle to \textless and \textgreater; i.e., “⟨filename⟩” instead of “<filename>”. • Although “/” does not require any special treatment, LATEX additionally defines a \slash command which outputs the same glyph but permits a line break afterwards. That is, “increase/decrease” is always typeset as a single entity while “increase\slash{}decrease” may be typeset with “increase/” on one line and “decrease” on the next. • \textasciicircum can be used instead of \^{}, and \textasciitilde can be used instead of \~{}. Note that \textasciitilde and \~{} produce raised, diacritic tildes. “Text” (i.e., vertically centered) tildes can be generated with either the math-mode \sim command (shown in Table 89 on page 50), which produces a somewhat wide “∼”, or the textcomp package’s \texttildelow (shown in Table 46 on page 27), which produces a vertically centered “~” in most fonts but a baseline-oriented “~” in Computer Modern, txfonts, pxfonts, and various other fonts originating from the TEX world. If your goal is to typeset tildes in URLs or Unix filenames, your best bet is to use the url package, which has a number of nice features such as proper line-breaking of such names. • The various \char commands within \texttt are necessary only in the OT1 font encoding. In other encodings (e.g., T1), commands such as \{, \}, \_, and \textbackslash all work properly. • The code page 437 (IBM PC) version of ASCII characters 1 to 31 can be typeset using the ascii package. See Table 335 on page 130. 234 • To replace “‘” and “’” with the more computer-like (and more visibly distinct) “`” and “'” within a verbatim environment, use the upquote package. Outside of verbatim, you can use \char18 and \char13 to get the modified quote characters. (The former is actually a grave accent.) Similar to Table 544, Table 545 on the next page is an amalgamation of data from other tables in this document. While Table 544 shows how to typeset the 7-bit ASCII character set, Table 545 shows the Latin 1 (Western European) character set, also known as ISO-8859-1. The following are some additional notes about the contents of Table 545: • A “(tc)” after a symbol name means that the textcomp package must be loaded to access that symbol. A “(T1)” means that the symbol requires the T1 font encoding. The fontenc package can change the font encoding document-wide. • Many of the \text. . . accents can also be produced using the accent commands shown in Table 18 on page 20 plus an empty argument. For instance, \={} is essentially the same as \textasciimacron. • The commands in the “LATEX 2𝜀 ” columns work both in body text and within a \texttt{. . .} command (or, more generally, when \ttfamily is in effect). • The “£” and “$” glyphs occupy the same slot (36) of the OT1 font encoding, with “£” appearing in italic fonts and “$” appearing in roman fonts. A problem with LATEX’s default handling of this double-mapping is that “{\sffamily\slshape\pounds}” produces “$”, not “£”. Other font encodings use separate slots for the two characters and are therefore robust to the problem of “£”/”$” conflicts. Authors who use \pounds should select a font encoding other than OT1 (as explained on page 12) or use the textcomp package, which redefines \pounds to use the TS1 font encoding. • Character 173, \-, is shown as “-” but is actually a discretionary hyphen; it appears only at the end of a line. Microsoft® Windows® normally uses a superset of Latin 1 called “Code Page 1252” or “CP1252” for short. CP1252 introduces symbols in the Latin 1 “invalid” range (characters 128–159). Table 546 presents the characters with which CP1252 augments the standard Latin 1 table. The following are some additional notes about the contents of Table 546: • As in Table 545, a “(tc)” after a symbol name means that the textcomp package must be loaded to access that symbol. A “(T1)” means that the symbol requires the T1 font encoding. The fontenc package can change the font encoding document-wide. • Not all characters in the 128–159 range are defined. • Look up “euro signs” in the index for alternatives to \texteuro. While too large to incorporate into this document, a listing of ISO 8879:1986 SGML/XML character entities and their LATEX equivalents is available from http://www.bitjungle.com/isoent/. Some of the characters presented there make use of isoent, a LATEX 2𝜀 package (available from the same URL) that fakes some of the missing ISO glyphs using the LATEX picture environment.15 10.7 Unicode characters Unicode is a “universal character set”—a standard for encoding (i.e., assigning unique numbers to) the symbols appearing in many of the world’s languages. While ASCII can represent 128 symbols and Latin 1 can represent 256 symbols, Unicode can represent an astonishing 1,114,112 symbols. Because TEX and LATEX predate the Unicode standard and Unicode fonts by almost a decade, support for Unicode has had to be added to the base TEX and LATEX systems. Note first that LATEX distinguishes between input encoding—the characters used in the .tex file—and output encoding—the characters that appear in the generated .dvi, .pdf, etc. file. 15 isoent is not featured in this document, because it is not available from CTAN and because the faked symbols are not “true” characters; they exist in only one size, regardless of the body text’s font size. 235 Table 545: LATEX 2𝜀 Latin 1 Table Dec Hex 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF D0 Char ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ ® ¯ ° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿ À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï Ð LATEX 2𝜀 !‘ \textcent \pounds \textcurrency \textyen \textbrokenbar \S \textasciidieresis \textcopyright \textordfeminine \guillemetleft \textlnot \\textregistered \textasciimacron \textdegree \textpm \texttwosuperior \textthreesuperior \textasciiacute \textmu \P \textperiodcentered \c{} \textonesuperior \textordmasculine \guillemetright \textonequarter \textonehalf \textthreequarters ?‘ \‘{A} \’{A} \^{A} \~{A} \"{A} \AA \AE \c{C} \‘{E} \’{E} \^{E} \"{E} \‘{I} \’{I} \^{I} \"{I} \DH (tc) (tc) (tc) (tc) (tc) (T1) (tc) (tc) (tc) (tc) (tc) (tc) (tc) (tc) (tc) (T1) (tc) (tc) (tc) (T1) 236 Dec Hex 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF Char Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß à á â ã ä å æ ç è é ê ë ì í î ï ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ LATEX 2𝜀 \~{N} \‘{O} \’{O} \^{O} \~{O} \"{O} \texttimes \O \‘{U} \’{U} \^{U} \"{U} \’{Y} \TH \ss \‘{a} \’{a} \^{a} \~{a} \"{a} \aa \ae \c{c} \‘{e} \’{e} \^{e} \"{e} \‘{ı} \’{ı} \^{ı} \"{ı} \dh \~{n} \‘{o} \’{o} \^{o} \~{o} \"{o} \textdiv \o \‘{u} \’{u} \^{u} \"{u} \’{y} \th \"{y} (tc) (T1) (T1) (tc) (T1) Table 546: LATEX 2𝜀 Code Page 1252 Table Dec Hex 128 130 131 132 133 134 135 136 137 138 139 140 142 80 82 83 84 85 86 87 88 89 8A 8B 8C 8E LATEX 2𝜀 Char € ‚ f „ ... † ‡ ^ ‰ Š ‹ Œ Ž \texteuro \quotesinglbase \textit{f} \quotedblbase \dots \dag \ddag \textasciicircum \textperthousand \v{S} \guilsinglleft \OE \v{Z} (tc) (T1) (T1) (tc) (T1) Dec Hex 145 146 147 148 149 150 151 152 153 154 155 156 158 159 91 92 93 94 95 96 97 98 99 9A 9B 9C 9E 9F Char ‘ ’ “ ” • – — ~ ™ š › œ ž Ÿ LATEX 2𝜀 ‘ ’ “ ” \textbullet – –\textasciitilde \texttrademark \v{s} \guilsinglright \oe \v{z} \"{Y} (T1) Inputting Unicode characters To include Unicode characters in a .tex file, load the ucs package and load the inputenc package with the utf8x (“UTF-8 extended”) option.16 These packages enable LATEX to translate UTF-8 sequences to LATEX commands, which are subsequently processed as normal. For example, the UTF-8 text “Copyright © 2020”—“©” is not an ASCII character and therefore cannot be input directly without packages such as ucs/inputenc—is converted internally by inputenc to “Copyright \textcopyright{} 2020” and therefore typeset as “Copyright © 2020”. The ucs/inputenc combination supports only a tiny subset of Unicode’s million-plus symbols. Additional symbols can be added manually using the \DeclareUnicodeCharacter command. \DeclareUnicodeCharacter takes two arguments: a Unicode number and a LATEX command to execute when the corresponding Unicode character is encountered in the input. For example, the Unicode character “degree celsius” (“ ℃ ”) appears at character position U+2103.17 However, “ ℃ ” is not one of the characters that ucs and inputenc recognize. The following document shows how to use \DeclareUnicodeCharacter to tell LATEX that the “ ℃ ” character should be treated as a synonym for \textcelsius: \documentclass{article} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{textcomp} \DeclareUnicodeCharacter{"2103}{\textcelsius} % Enable direct input of U+2103. \begin{document} It was a balmy 21℃. \end{document} which produces It was a balmy 21℃. See the ucs documentation for more information and for descriptions of the various options that control ucs’s behavior. 16 UTF-8 is the 8-bit Unicode Transformation Format, a popular mechanism for representing Unicode symbol numbers as sequences of one to four bytes. 17 The Unicode convention is to express character positions as “U+⟨hexadecimal number ⟩”. 237 Outputting Unicode characters Orthogonal to the ability to include Unicode characters in a LATEX input file is the ability to include a given Unicode character in the corresponding output file. By far the easiest approach is to use XELATEX instead of pdfLATEX or ordinary LATEX. XELATEX handles Unicode input and output natively and can utilize system fonts directly without having to expose them via .tfm, .fd, and other such files. To output a Unicode character, a XELATEX document can either include that character directly as UTF-8 text or use TEX’s \char primitive, which XELATEX extends to accept numbers larger than 255. Suppose we want to output the symbols for versicle (“ ”) and response (“ ”) in a document. The Unicode charts list “versicle” at position U+2123 and “response” at position U+211F. We therefore need to install a font that contains those characters at their proper positions. One such font that is freely available from CTAN is Junicode (Junicode.ttf) from the junicode package. The fontspec package makes it easy for a XELATEX document to utilize a system font. The following example defines a \textjuni command that uses fontspec to typeset its argument in Junicode: \documentclass{article} \usepackage{fontspec} \newcommand{\textjuni}[1]{{\fontspec{Junicode}#1}} \begin{document} We use ‘‘\textjuni{\char"2123}’’ for a versicle and ‘‘\textjuni{\char"211F}’’ for a response. \end{document} which produces We use “ ” for a versicle and “ ” for a response. (Typesetting the entire document in Junicode would be even easier. See the fontspec documentation for more information regarding font selection.) Note how the preceding example uses \char to specify a Unicode character by number. The double quotes before the number indicate that the number is represented in hexadecimal instead of decimal. 10.8 About this document History David Carlisle wrote the first version of this document in October, 1994. It originally contained all of the native LATEX symbols (Table 50, Table 72, Table 89, Table 139, Table 183, Table 188, Table 222, Table 223, Table 236, Table 246, Table 302, and a few tables that have since been reorganized) and was designed to be nearly identical to the tables in Chapter 3 of Leslie Lamport’s book [Lam86]. Even the table captions and the order of the symbols within each table matched! The 𝒜ℳ𝒮 symbols (Table 51, Table 90, Table 91, Table 142, Table 143, Table 189, Table 198, Table 216, and Table 303) and an initial Math Alphabets table (Table 316) were added thereafter. Later, Alexander Holt provided the stmaryrd tables (Table 52, Table 74, Table 92, Table 145, Table 179, and Table 217). In January, 2001, Scott Pakin took responsibility for maintaining the symbol list and has since implemented a complete overhaul of the document. The result, now called, “The Comprehensive LATEX Symbol List”, includes the following new features: • the addition of a handful of new math alphabets, dozens of new font tables, and thousands of new symbols • the categorization of the symbol tables into body-text symbols, mathematical symbols, science and technology symbols, dingbats, ancient languages, and other symbols, to provide a more user-friendly document structure • an index, table of contents, hyperlinks, and a frequently-requested symbol list, to help users quickly locate symbols • symbol tables rewritten to list the symbols in alphabetical order • appendices providing additional information relevant to using symbols in LATEX 238 • tables showing how to typeset all of the characters in the ASCII and Latin 1 font encodings Furthermore, the internal structure of the document has been completely altered from David Carlisle’s original version. Most of the changes are geared towards making the document easier to extend, modify, and reformat. Build characteristics Table 547 lists some of this document’s build characteristics. Most important is the list of packages that LATEX couldn’t find, but that symbols.tex otherwise would have been able to take advantage of. Complete, prebuilt versions of this document are available from CTAN via https:// www.ctan.org/pkg/comprehensive/. Table 548 shows the package date (specified in the .sty file with \ProvidesPackage) for each package that was used to build this document and that specifies a package date. Packages are not listed in any particular order in either Table 547 or Table 548. Table 547: Document Characteristics Characteristic Value Source file: Build date: Symbols documented: Packages included: symbols.tex June 25, 2020 14599 textcomp latexsym amssymb stmaryrd euscript wasysym pifont manfnt bbding undertilde ifsym tipa tipx extraipa wsuipa phonetic ulsy ar metre txfonts mathabx fclfont skak ascii dingbat skull eurosym esvect yfonts yhmath esint mathdots trsym universa upgreek overrightarrow chemarr chemarrow nath trfsigns mathtools phaistos arcs vietnam t4phonet holtpolt semtrans dictsym extarrows protosem harmony hieroglf cclicenses mathdesign arev MnSymbol fdsymbol boisik cmll extpfeil keystroke fge turnstile simpsons epsdice feyn staves igo colonequals shuffle fourier dozenal pmboxdraw pigpen clock teubner linearA linearb cypriot sarabian china2e harpoon steinmetz milstd recycle DotArrow ushort hhcount ogonek combelow musixtex ccicons adfsymbols adforn bigints soyombo tfrupee knitting textgreek begriff frege abraces countriesofeurope cookingsymbols prodint epiolmec mdwmath rsfso fontawesome stix hands greenpoint nkarta astrosym webomints moonphase dancers semaphor umranda umrandb cryst starfont tikzsymbols dice apl go magic bartel-chess-fonts actuarialangle lilyglyphs knot bclogo bullcntr rubikcube svrsymbols halloweenmath old-arrows allrunes emf esrelation oplotsymbl cmupint realhats euflag scsnowman endofproofwd mismath musicography accents nicefrac bm xfakebold junicode mathrsfs chancery urwchancal calligra bbold mbboard dsfont bbm dsserif none Packages omitted: Table 548: Package versions used in the preparation of this document Name Date Name Date Name Date textcomp stmaryrd pifont 2020/02/02 1994/03/03 2020/03/25 latexsym euscript manfnt 1998/08/17 2009/06/22 1999/07/01 amssymb wasysym bbding 2013/01/14 2020/01/19 1999/04/15 (continued on next page) 239 (continued from previous page) Name Date Name Date Name Date undertilde tipx metre skak skull mathdots upgreek phaistos semtrans protosem cclicenses boisik fge feyn dozenal clock linearb china2e milstd hhcount musixtex bigints knitting abraces epiolmec stix actuarialangle rubikcube emf realhats musicography bm 2000/08/08 2003/01/01 2001/12/05 2018/01/08 2002/01/23 2014/06/11 2003/02/12 2004/04/23 1998/02/10 2005/03/18 2005/05/20 2009/08/21 2015/05/19 2017/11/03 2018/05/11 2001/04/10 2005/06/22 1997/06/01 2009/06/25 1995/03/31 2001/07/08 2010/02/15 2019/04/03 2012/08/24 2003/11/05 2018/04/17 2019/06/13 2018/02/25 2016/09/09 2019/04/14 2020/01/29 2019/07/24 ifsym wsuipa txfonts ascii eurosym trsym chemarr arcs dictsym harmony MnSymbol extpfeil turnstile colonequals pmboxdraw teubner cypriot harpoon DotArrow ogonek ccicons soyombo textgreek countriesofeurope mdwmath starfont bclogo svrsymbols oplotsymbl euflag accents xfakebold 2000/04/18 1994/07/16 2008/01/22 2006/05/30 1998/08/06 2000/06/25 2016/05/16 2004/05/09 2004/07/26 2007/05/04 2007/01/21 2009/10/31 2007/06/23 2016/05/16 2019/12/05 2016/03/31 2009/05/22 1994/11/02 2007/02/12 95/07/17 2017/10/30 1996/09/01 2011/10/09 2018/12/29 1996/04/11 2010/09/29 2016/01/10 2019/02/12 2017/08/04 2020/05/22 2006/05/12 2020/06/22 tipa ar mathabx dingbat yfonts universa mathtools t4phonet extarrows hieroglf fdsymbol keystroke epsdice shuffle pigpen linearA sarabian steinmetz ushort combelow adforn tfrupee frege cookingsymbols fontawesome tikzsymbols bullcntr halloweenmath cmupint scsnowman nicefrac calligra 2002/08/08 2012/01/23 2003/07/29 2001/04/27 2019/04/04 2019/08/26 2020/03/24 2004/06/01 2020/03/12 2015/06/02 2011/11/01 2010/04/23 2007/02/15 2008/10/27 2008/12/07 2006/03/13 2005/11/12 2009/06/14 2001/06/13 2010/05/02 2019/10/13 2010/12/15 2012/08/04 2014/12/28 2016/05/15 2019/02/08 2007/04/02 2019/11/01 2020/04/13 2018/06/07 1998/08/04 2012/04/10 10.9 Copyright and license The Comprehensive LATEX Symbol List Copyright © 2007–2020, Scott Pakin This work may be distributed and/or modified under the conditions of the LATEX Project Public License, either version 1.3c of this license or (at your option) any later version. The latest version of this license is in http://www.latex-project.org/lppl.txt and version 1.3c or later is part of all distributions of LATEX version 2006/05/20 or later. This work has the LPPL maintenance status “maintained”. The current maintainer of this work is Scott Pakin. 240 References [AMS99] American Mathematical Society. User’s Guide for the amsmath Package (Version 2.0), December 13, 1999. Available from ftp://ftp.ams.org/pub/tex/doc/amsmath/amsldoc.pdf. [Ber01] Karl Berry. Fontname: Filenames for TEX fonts, June 2001. Available from https:// www.ctan.org/pkg/fontname. [Che98] Raymond Chen. A METAFONT of ‘Simpsons’ characters. Baskerville, 4(4):19, February 1998. ISSN 1354-5930. Available from http://uk.tug.org/wp-installed-content/uploads/2008/ 12/44.pdf. [Dow00] Michael Downes. Short math guide for LATEX, July 19, 2000. Version 1.07. Available from http://www.ams.org/tex/short-math-guide.html. [Gib97] Jeremy Gibbons. Hey—it works! TUGboat, 18(2):75–78, June 1997. Available from http:// www.tug.org/TUGboat/Articles/tb18-2/tb55works.pdf. [Gre09] Enrico Gregorio. Appunti di programmazione in LATEX e TEX, second edition, June 2009. Available from http://profs.sci.univr.it/~gregorio/introtex.pdf. [Knu86a] Donald E. Knuth. The TEXbook, volume A of Computers and Typesetting. Addison-Wesley, Reading, MA, USA, 1986. [Knu86b] Donald E. Knuth. The METAFONTbook, volume C of Computers and Typesetting. AddisonWesley, Reading, MA, USA, 1986. [Lam86] Leslie Lamport. LATEX: A document preparation system. Addison-Wesley, Reading, MA, USA, 1986. [LAT98] LATEX3 Project Team. A new math accent. LATEX News. Issue 9, June 1998. Available from https://www.latex-project.org/news/latex2e-news/ltnews09.pdf and also included in many TEX distributions. [LAT19] LATEX3 Project Team. LATEX 2𝜀 font selection, October 2019. Available from http:// mirrors.ctan.org/macros/latex/base/fntguide.pdf and also included in many TEX distributions. 241 Index If you’re having trouble locating a symbol, try looking under “T” for “\text. . .”. Many text-mode commands begin with that prefix. Also, accents are shown over/under a gray box (e.g., “ á ” for “\’”). Some symbol entries appear to be listed repeatedly. This happens when multiple packages define identical (or nearly identical) glyphs with the same symbol name.18 \" (ä) \# (#) \$ ($) \$ ($) \% (%) \& (&) \’ (á) ( (() . Symbols ......... ........ ......... ......... ........ ........ ......... ......... ...... . . . 14, 14, 15, ...... . . . 14, 14, 35, ...... ...... 20 234 234 15 234 234 20 99 ( (() . . . . . . . . . . . . . . . . 100 ( ( ( ) . . . . . . . . . . . . . . . 103 ) ()) . . . . . . . . . . . . . . . . 99 ) ()) . . . . . . . . . . . . . . . . 100 ) ) ( ) . . . . . . . . . . . . . . . 103 * (*) . \, . . . \- (-) \. (ȧ) / (/) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... .... 235, .... .... 31 232 236 20 99 / (/) . . . . . . . . . . . . . . . 100 / /( ) . . . . . . . . . . . . . . 103 \: ( ..) . . . . . . . . . . . . . . . 116 . \; ( ..) . . . . . . . . . . . . . . . 116 < (⟨) . . . . . . . . . . . . . . . . 100 ⟨ < ( ) . . . . . . . . . . . . . . . 103 .. \? ( ..) . . . . . . . . . . . . . . . 116 [ ([) . . . . . . . . . . . . . . . . 99 ⎡⎢ [ ( ⎢⎢⎢) . . . . . . . . . . . . . . . 100 [⎣ [( ) . . . . . . . . . . . . . . . 103 \\ . . . . . . . . . . . . . . . . . . 224 ] (]) . . . . . . . . . . . . . . . . 99 ⎤⎥ ] ( ⎥⎥⎥) . . . . . . . . . . . . . . . 100 ]⎦ ]( ) . . . . . . . . . . . . . . . 103 \^ (^ a) . . \^{} (^) \| (‖) . . \| (‖) . . \| (a ¿) . . 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 14, ... 99, ... 20 234 99 101 20 \= (ā) . . \={} (¯) | (∣) . . . RR RR | ( RR) . . || | ( ||) . . . | | (|)| . . . ( (() . . . ) ()) . . . / (/) . . . [ ([) . . . \_ . . . . . \_ ( ) . . \{ ({) . . \{ ({) . . \} (}) . . \} (}) . . ] (]) . . . \‘ (à) . . \~ (ã) . . \~{} (˜) . . . . . . . . . . . . . 20 . . . . . . . . . . . . . 235 . . . . . . . . . . . . . 102 . . . . . . . . . . . . . 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 50, 99, 101, 104 . . . . . . . . . 102 . . . . . . . . . 102 . . . . . . . . . 102 . . . . . . . . . 102 . . . . . . . . . 15 . . . . . . 14, 234 . . . . 14, 15, 99 . . . . . . . . . 234 . . . . 14, 15, 99 . . . . . . . . . 234 . . . . . . . . . 102 . . . . . . . . . 20 . . . . . . . . . 20 . . . . . . 14, 234 A A (A) . . . . . . . . . . . . . . . \A (ą) . . . . . . . . . . . . . . a (esvect package option) \a (á) . . . . . . . . . . . . . . \a (×) . . . . . . . . . . . . . . a (a) . . . . . . . . . . . . . . . \AA (Å) . . . . . . . . . . . . . \aa (å) . . . . . . . . . . . . . \AAaleph (A) . . . . . . . . \AAayin (O) . . . . . . . . . \AAbeth (B) == . . . . . . . . . . . . . . . . . . . . 157 157 110 157 183 157 15 15 148 148 148 \AAcht (ˇ “ ˇ “ ) . . . . . . . . . . . 160 \AAdaleth (D) . . . . . . . . . 148 \AAhe (E) . . . . . . . . . . . . 148 \AAhelmet (V) . . . . . . . . 148 \AAheth (h) . . . . . . . . . . 148 \AAkaph (K) . . . . . . . . . . 148 \AAlamed (L) . . . . . . . . . 148 \Aaleph (a) . . . . . . . . . . 148 \AApe (P) . . . . . . . . . . . . 148 \AAqoph (Q) . . . . . . . . . . 148 \AAresh (R) . . . . . . . . . . 148 \AAsade (X) . . . . . . . . . . 148 \Aayin (o) . . . . . . . . . . . 148 \AAyod (Y) . . . . . . . . . . . 148 \AB (|) . . . . . . . . . . . . . . 129 \Abeth (b) . . . . . . . . . . . 148 abraces (package) 110, 239, 240 absolute value see \lvert and \rvert abzüglich see \textdiscount This occurs frequently between amssymb and mathabx, for example. 242 \AC (:) . . . . . . . . . . . . . . 125 \ac (ð) . . . . . . . . . . . . . . 57 \acarc . . . . . . . . . . . . . . 23 \acbar . . . . . . . . . . . . . . 23 accents . 20–25, 105–111, 114, 161, 227–229 acute (á) . . . 20–24, 105 any character as . . . . 227 a) . . 20–23, 108, 109 arc ( breve (ă) . . . 20–24, 105 caron (ǎ) 20, 24, 105, 109 cedilla (¸) . . . . . . . . 20 circumflex (^ a) 20–22, 105, 107–109 comma-below (a, ) . . . 24 Cyrillic breve ( a) . . . 20 Cyrillic flex ( a) . . . . . 20 Cyrillic umlaut ( a) . . 20 diæresis (ä) . . 20, 23, 24, 105, 124 dot (ȧ or . ) . 20–22, 105 double acute (a̋) . . 20, 24 double grave ( a) . . . . 20 extensible 107–111, 114, 228–229 grave (à) . . . 20–24, 105 háček . see accents, caron hook (ả) . . . . . . . . . 20 Hungarian umlaut . . see accents, double acute inverted breve ( a) . . . 20 kroužek see accents, ring macron (ā) . . . 20, 23–25, 105, 107, 109 multiple per character 21– 22, 227 ogonek ( ˛) . . . . . . 20–24 ring (å) . 20–22, 24, 105, 106 Romanian comma-belo accent . . . . . see accents, comma-below trema . . . . . see accents, diæresis umlaut . . . . see accents, diæresis accents (package) . . . 105, 227, 239, 240 \accentset . . . . . . . . . . . 227 accidentals see musical symbols accordion notation . . . . . . 164 \accordionBayanBass ( ) 164 \accordionDiscant ( ) . 164 \accordionFreeBass ( ) 164 \accordionOldEE ( ) . . . 164 \accordionPull ( ) . . . . . 164 \accordionPush ( ) . . . . . 164 \accordionStdBass ( ) 164 \accurrent (⏦) . . . . . . . 121 \Acht (ˇ “( )== . . . . . . . . . . . . 160 \AchtBL ( ˇ “ )== . . . . . . . . . . 160 \AchtBR ( ˇ “ ) . . . . . . . . . . 160 \acidfree (♾) . . . . . . . . 117 \ACK (␆) . . . . . . . . . . . . . 130 \acontraction . . . . . . . . 228 \AcPa (? ) . . . . . . . . . . . . 160 \actuarial ( ) . . . . . . . . 228 actuarial symbols 111, 227–228 actuarialangle (package) . 111, 228, 239, 240 \actuarialangle . . . . . . 228 \actuarialangle ( ) . . . 111 actuarialsymbol (package) . 228 \acute ( ́ ) . . . . . . . . . . . 106 \acute (´) . . . . . . . . . . . 105 acute (á) . . . . . . . see accents \acutus (á) . . . . . . . . . . . 23 \acwcirclearrow (⥀) . . . 84 \acwcirclearrowdown (⟲) 78 \acwcirclearrowleft (↺) 78 \acwcirclearrowright (±) 78 \acwcirclearrowup (®) . 78 \acwgapcirclearrow (⟲) 79 \acwgapcirclearrow (⟲) 84 \acwleftarcarrow (⤹) . . . 78 \acwleftarcarrow (⤹) . . . 84 \acwnearcarrow (¡) . . . . 78 \acwnwarcarrow (¢) . . . . 78 \acwopencirclearrow (↺) 79 \acwopencirclearrow (↺) 85, 141 \acwoverarcarrow (⤺) . . 78 \acwoverarcarrow (⤺) . . 84 \acwrightarcarrow () . . 78 \acwsearcarrow (⤴) . . . . 78 \acwswarcarrow (⤷) . . . . 78 \acwunderarcarrow (⤻) . 78 \acwunderarcarrow (⤻) . 84 \Adaleth (d) . . . . . . . . . 148 adeles (A) see alphabets, math \adfarrow . . . . . . . . . . . . 134 \adfarrowe1 (C) . . . . . . . 134 \adfarrowe2 (K) . . . . . . . 134 \adfarrowe3 (S) . . . . . . 134 \adfarrowe4 (c) . . . . . . . 134 \adfarrowe5 (k) . . . . . . . 134 \adfarrowe6 (s) . . . . . . . 134 \adfarrown1 (I) . . . . . . . 134 \adfarrown2 (Q) . . . . . . . 134 \adfarrown3 (Y) . . . . . . . 134 \adfarrown4 (i) . . . . . . . 134 \adfarrown5 (q) . . . . . . . 134 \adfarrown6 (y) . . . . . . . 134 \adfarrowne1 (J) . . . . . . 134 \adfarrowne2 (R) . . . . . . 134 \adfarrowne3 (Z) . \adfarrowne4 (j) . \adfarrowne5 (r) . \adfarrowne6 (z) . \adfarrownw1 (H) . \adfarrownw2 (P) . \adfarrownw3 (X) . \adfarrownw4 (h) . \adfarrownw5 (p) . \adfarrownw6 (x) . \adfarrows1 (E) . . \adfarrows2 (M) . . \adfarrows3 (U) . . \adfarrows4 (e) . . \adfarrows5 (m) . . \adfarrows6 (u) . . \adfarrowse1 (D) . \adfarrowse2 (L) . \adfarrowse3 (T) . \adfarrowse4 (d) . \adfarrowse5 (l) . \adfarrowse6 (t) . \adfarrowsw1 (F) . \adfarrowsw2 (N) . \adfarrowsw3 (V) . \adfarrowsw4 (f) . \adfarrowsw5 (n) . \adfarrowsw6 (v) . \adfarroww1 (G) . . \adfarroww2 (O) . . \adfarroww3 (W) . \adfarroww4 (g) . . \adfarroww5 (o) . . \adfarroww6 (w) . . \adfast{1} (0) . . . \adfast{2} (1) . . . \adfast{3} (2) . . . \adfast{4} (3) . . . \adfast{5} (4) . . . \adfast{6} (5) . . . \adfast{7} (6) . . . \adfast{8} (7) . . . \adfast{9} (8) . . . \adfast{10} (9) . . \adfbullet (•) . . . \adfbullet{1} (A) . \adfbullet{2} (B) \adfbullet{3} (C) \adfbullet{4} (D) . \adfbullet{5} (E) . \adfbullet{6} (F) . \adfbullet{7} (G) . \adfbullet{8} (H) \adfbullet{9} (I) . \adfbullet{10} (J) \adfbullet{11} (K) \adfbullet{12} (L) \adfbullet{13} (M) \adfbullet{14} (N) \adfbullet{15} (O) \adfbullet{16} (P) \adfbullet{17} (Q) \adfbullet{18} (R) 243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 139 139 139 139 139 139 139 139 139 139 147 139 139 139 137 137 137 137 137 137 137 139 139 139 139 139 139 139 139 \adfbullet{19} (S) . . . . 139 \adfbullet{20} (T) . . . . . 139 \adfbullet{21} (U) . . . . . 139 \adfbullet{22} (V) . . . . 139 \adfbullet{23} (W) . . . . 139 \adfbullet{24} (X) . . . . . 139 \adfbullet{25} (Y) . . . . . 139 \adfbullet{26} (Z) . . . . 139 \adfbullet{27} (a) . . . . . 144 \adfbullet{28} (b) . . . . . 144 \adfbullet{29} (c) . . . . . 144 \adfbullet{30} (d) . . . . . 144 \adfbullet{31} (e) . . . . . 144 \adfbullet{32} (f) . . . . . 144 \adfbullet{33} (g) . . . . . 144 \adfbullet{34} (h) . . . . . 144 \adfbullet{41} (o) . . . . . 144 \adfbullet{42} (p) . . . . . 144 \adfbullet{43} (q) . . . . . 144 \adfbullet{44} (r) . . . . . 144 \adfbullet{45} (s) . . . . . 144 \adfbullet{46} (t) . . . . . 144 \adfbullet{47} (u) . . . . . 144 \adfbullet{48} (v) . . . . . 144 \adfbullet{49} (w) . . . . . 144 \adfbullet{50} (x) . . . . . 144 \adfbullet{51} (y) . . . . . 144 \adfbullet{52} (z) . . . . . 144 \adfclosedflourishleft (C) . . . . . . . 146 \adfclosedflourishright (c) . . . . . . . . . . 146 \adfdiamond (=) . . . . . . . 147 \adfdoubleflourishleft (D) . . . . . . . 146 \adfdoubleflourishright (d) . . . . . . . . . . 146 \adfdoublesharpflourishleft (I) . . . . . . . . . . . 146 \adfdoublesharpflourishright (i) . . . . . . . . . . . 146 \adfdownhalfleafleft (r) 140 \adfdownhalfleafright (R) . . . . . . . . . 140 \adfdownleafleft (x) . . 140 \adfdownleafright (X) . 140 \adfflatdownhalfleafleft (l) . . . . . . . . . . . 140 \adfflatdownhalfleafright (L) . . . . . . . . . . . 140 \adfflatdownoutlineleafleft (m) . . . . . . . . . . . . 140 \adfflatdownoutlineleafright (M) . . . . . . . . . . . . 140 \adfflatleafleft (u) . . 140 \adfflatleafoutlineleft (n) . . . . . . . . . . . 140 \adfflatleafoutlineright (N) . . . . . . . . . . . 140 \adfflatleafright (U) . 140 \adfflatleafsolidleft (v) . . . . . . . 140 \adfflatleafsolidright (V) . . . . . . . 140 \adfflourishleft (E) . . 146 \adfflourishleftdouble (F) . . . . . . . . . . 146 \adfflourishright (e) . 146 \adfflourishrightdouble (f) . . . . . . . . . . 146 \adfflowerleft (q) . . . 140 \adfflowerright (Q) . . 140 \adfgee (¶) . . . . . . . . . . . 147 \adfhalfarrowleft (B) . . 134 \adfhalfarrowleftsolid (b) . . . . . . . 134 \adfhalfarrowright (A) . 134 \adfhalfarrowrightsolid (a) . . . . . . . 134 \adfhalfleafleft (<) . . 140 \adfhalfleafright (>) . . 140 \adfhalfleftarrow ({) . . 135 \adfhalfleftarrowhead (() . . . . . . . . . 135 \adfhalfrightarrow (}) . 135 \adfhalfrightarrowhead ()) . . . . . . . . 135 \adfhangingflatleafleft (s) . . . . . . . 140 \adfhangingflatleafright (S) . . . . . . . . . . . 140 \adfhangingleafleft (T) 140 \adfhangingleafright (t) 140 \adfleafleft (w) . . . . . . 140 \adfleafright (W) . . . . . 140 \adfleftarrowhead ([) . . 135 \adfopenflourishleft (B) . . . . . . . . 146 \adfopenflourishright (b) . . . . . . . 146 adforn (package) 135, 139, 140, 146, 147, 239, 240 \adfoutlineleafleft (o) 140 \adfoutlineleafright (O) . . . . . . . . . 140 \adfrightarrowhead (]) . 135 \adfS (§) . . . . . . . . . . . . 147 \adfsharpflourishleft (H) . . . . . . . . 146 \adfsharpflourishright (h) . . . . . . . 146 \adfsickleflourishleft (J) . . . . . . . 146 \adfsickleflourishright (j) . . . . . . . . . . 146 \adfsingleflourishleft (G) . . . . . . . 146 \adfsingleflourishright (g) . . . . . . . . . . 146 \adfsmallhangingleafleft (z) . . . . . . . . . . . . 140 \adfsmallhangingleafright (Z) . . . . . . . . . . . . 140 \adfsmallleafleft (y) . 140 \adfsmallleafright (Y) . 140 \adfsolidleafleft (p) . . 140 \adfsolidleafright (P) . 140 \adfsquare (|) . . . . . . . . 147 adfsymbols (package) 134, 137, 139, 144, 239 \adftripleflourishleft (K) . . . . . . . . . . 146 \adftripleflourishright (k) . . . . . . . . . 146 \adfwavesleft (A) . . . . 146 \adfwavesright (a) . . . 146 \adj (adj) . . . . . . . . . . . 92 adjoint (†) . . . . . . . . see \dag \Admetos (Ö) . . . . . . . . . . 128 Adobe Acrobat . . . . . . . . 232 . \adots ( . . ) . . . . . . 116, 227 \adots (⋰) . . . . . . . . . . . 115 \adots (⋰) . . . . . . . . . . . 115 \adsorbate (Ñ) . . . . . . . . 132 \adsorbent (Ð) . . . . . . . . 132 advancing see \textadvancing \AE (Æ) . . . . . . . . . . . . . 15 \ae (æ) . . . . . . . . . . . . . . 15 \aeolicbii (Ι) . . . . . . . . 184 \aeolicbiii (Θ) . . . . . . 184 \aeolicbiv (Κ) . . . . . . 184 \agemO (0) . . . . . . . . . . . 119 \Agimel (g) . . . . . . . . . . 148 \Ahe (e) . . . . . . . . . . . . . 148 \Ahelmet (v) . . . . . . . . . 148 \Aheth (H) . . . . . . . . . . . 148 \ain (s) . . . . . . . . . . . . . . 24 \Air (Ò) . . . . . . . . . . . . 128 \Akaph (k) . . . . . . . . . . . 148 \Alad (}) . . . . . . . . . . . . 105 \alad (}) . . . . . . . . . . . . 105 \Alamed (l) . . . . . . . . . . 148 \Alas ({) . . . . . . . . . . . . 105 \alas ({) . . . . . . . . . . . . 105 \Albania () . . . . . . . . . . 188 \aldine (O) . . . . . . . . . . 140 \aldineleft (M) . . . . . . . 140 \aldineright (N) . . . . . . 140 \aldinesmall (L) . . . . . . 140 \aleph (ℵ) . . . . . . . . 95, 118 \aleph (ℵ) . . . . . . . . . . . 95 \aleph (ℵ) . . . . . . . . . . . 95 \aleph (ℵ) . . . . . . . . . . . 96 \Alif (˒) . . . . . . . . . . . . 20 alla breve . 159, 161, 163, 164 R \allabreve ( ) . . . . . . . allrunes (package) . . 157, \Alpha (A) . . . . . . . . . . . \alpha (𝛼) . . . . . . . . . . . alphabets . . . . . . . . . . . . African . . . . . . . . . . Cypriot . . . . . . . . . . Cyrillic . . . . . . . . . . Greek 15, 93, 94, 124, Hebrew . . . . 95, 96, hieroglyphic . . . . . . . 244 159 239 93 93 123 16 153 222 154 124 149 Linear A . . . . . Linear B . . . . . math . . . . . . . . phonetic . . . . . proto-Semitic . . South Arabian . Vietnamese . . . \alphaup (α) . . . . . . alpine symbols . . . . . \Alt ( Alt ) . . . . . . alternative denial see and | \AltGr ( AltGr ) . . . . . . . 149 . . . . 152 . . . . 123 . . 17–20 . . . . 148 . . . . 154 . . . . 16 . . . . 94 . . . . 178 . . . . 129 \uparrow . . . . 129 K \altoclef ( ) . . . . . . . 159 \AM () . . . . . . . . . . . . . . 129 \amalg (⨿) . . . . . . . . . . . 30 \amalg (⨿) . . . . . . . . . . . 32 \amalg (∐) . . . . . . . . . . . 31 \amalg (⨿) . . . . . . . . . . . 34 \Amem (m) . . . . . . . . . . . . 148 \Amor (+) . . . . . . . . . . . . 128 ampersand . . . . . . . . . see \& 𝒜ℳ𝒮 (package) . . . 12, 15, 30, 40, 50, 51, 62, 64, 69, 72, 87, 91, 93, 95, 96, 98, 99, 105, 108, 111, 114, 117– 119, 124, 219, 220, 238 amsbsy (package) . . . . . . . 233 amsfonts (package) . . 118, 123 amsmath (package) 12, 49, 91, 105, 223, 232 amssymb (package) . 12, 105, 118, 123, 154, 239 amstext (package) . . 224, 226 \Anaclasis (÷) . . . . . . . . 183 \anaclasis (÷) . . . . . . . . 183 \anceps (Ξ) . . . . . . . . . . . 184 \ancepsdbrevis (Ζ) . . . . . 184 \anchor (⚓) . . . . . . . . . . 190 \anchor (O) . . . . . . . . . 146 ancient-language symbols 148– 157 and . . . . . . . . . . . see \wedge AND gates . . . . . . . . . . . 130 \ANDd () . . . . . . . . . 130 \ANDl () . . . . . . . . 130 \Andorra () . . . . . . . . . . 188 \ANDr () . . . . . . . . 130 \ANDu () \angdnr (⦟) . \angl ( ) . . . \angle (∠) . . \angle (̸ ) . . \angle (Õ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 118 111 117 118 118 \angle (∠) . . . . . . . . . . . 118 \angle (∠) . . . . . . . . . . . 117 \angle (∠) . . . . . . . . . . . 118 angle notation . . . . . . . . . 126 angles . . . . 116–119, 122, 128 \angles (⦞) . . . . . . . . . . 118 \AngleSign (W) . . . . . . . . 116 \angleubar (⦤) . . . . . . . . 118 \angln (𝑛 ) . . . . . . . . . . . 111 Anglo-Frisian runes . . . . . 157 \anglr (𝑟 ) . . . . . . . . . . . 111 \Angstrom (Å) . . . . . . . . . 97 Ångström unit math mode see \mathring text mode . . . . . see \AA \Angud (⟩) . . . . . . . . . . . 105 \angud (⟩) . . . . . . . . . . . . 105 angular minutes . . see \prime angular seconds . see \second \Angus (⟨) . . . . . . . . . . . 105 \angus (⟨) . . . . . . . . . . . . 105 animals . . . . . . . 148, 149, 153 \Ankh () . . . . . . . . . . . . 177 \Annoey ( ) . . . . . . . . . . 191 \annuity (⃧) . . . . . . . . . . 106 annuity symbols 111, 227–228 \Antidiple (<) . . . . . . . 183 \antidiple (<) . . . . . . . . 183 · ) \Antidiple* (< . . . . . . 183 · · ) . . . . . . . 183 \antidiple* (< · \antilabe (.. .. ) . . . . . . . . 116 \antimuon (𝑤) . . . . . . . . 132 \antineutrino (𝑀) . . . . . . 132 \antineutron (𝑦) . . . . . . 132 \antiproton (𝑛) . . . . . . . 132 \antiquark (𝐸) . . . . . . . . 132 \antiquarkb (𝐹) . . . . . . . 132 \antiquarkc (𝐺) . . . . . . . 132 \antiquarkd (𝐻) . . . . . . . 132 \antiquarks (𝐼) . . . . . . . 132 \antiquarkt (𝐽) . . . . . . . 132 \antiquarku (𝐾) . . . . . . . 132 \Antisigma (⊃) . . . . . . . . 183 \antisigma (⊃) . . . . . . . . 183 \Anun (n) . . . . . . . . . . . . 148 \anyon (Ò) . . . . . . . . . . . 132 ⏞ ⏟ ) . . . . . 110 \aoverbrace ( \Ape (p) . . . . . . . . . . . . . 148 APL symbols . . . . . . . . 58–59 apl (package) . . . . . . 129, 239 APL symbols . . . . . 128, 129 \APLbox (~) . . . . . . . . . . 128 \APLboxquestion (⍰) . . . 128 \APLboxupcaret (⍓) . . . . 128 \APLcirc (∘) . . . . . . . . . . 128 \APLcomment () . . . . . . . 128 \APLdown (F) . . . . . . . . . 128 \APLdownarrowbox (o) . . 128 \APLinput (}) . . . . . . . . 128 \APLinv (÷ ~) . . . . . . . . . . 128 \APLleftarrowbox (p) . . 128 \APLlog () . . . . . . . . . . 128 \APLminus (−) . . . . . . . . 128 \APLnot (∼) . . . . . . . . . . . 128 \APLnotbackslash (⍀) . . . 128 \APLnotslash (⌿) . . . . . . 128 \APLrightarrowbox (q) . . 128 \APLstar (E) . . . . . . . . . 128 \APLup ( ) . . . . . . . . . . . 128 \APLuparrowbox (n) . . . . 128 \APLvert (|) . . . . . . . . . . 128 \Apollon (ß) . . . . . . . . . 128 apostropha . . . . see musixgre \applecmd (S) . . . . . . . . . 176 \apprge (?) . . . . . . . . . . 65 \apprle (>) . . . . . . . . . . 65 \approx (≈) . . . . . . . . . . 50 \approx (≈) . . . . . . . . . . 55 \approx (≈) . . . . . . . . . . . 52 \approx (≈) . . . . . . . . . . 58 \approxcolon (≈:) . . . . . 61 \approxcoloncolon (≈::) 61 \approxeq (u) . . . . . . . . 50 \approxeq (Ý) . . . . . . . . 57 \approxeq (≊) . . . . . . . . . 55 \approxeq (≊) . . . . . . . . . 52 \approxeq (≊) . . . . . . . . . 58 \approxeqq (⩰) . . . . . . . . 58 \approxident (≋) . . . . . . 55 \approxident (≋) . . . . . . 58 \Aqoph (q) . . . . . . . . . . . 148 \Aquarius (ê) . . . . . . . . 126 \Aquarius (N) . . . . . . . . 128 \aquarius (e) . . . . . . . . 126 \AR (A) . . . . . . . . . . . . . 125 ar (package) . . . 125, 239, 240 \arafamily . . . . . . . . . . . 157 arc ( a) . . . . . . . . see accents \arccos (arccos) . . . . . . 91 \arccot (arccot) . . . . . . 92 \arceq () . . . . . . . . . . . 57 \arceq (≘) . . . . . . . . . 55, 90 \arceq (≘) . . . . . . . . . . . 58 \arcfamily . . . . . . . . . . . 157 arcminutes . . . . . see \prime \arcosh (arcosh) . . . . . . 92 \arcoth (arcoth) . . . . . . 92 arcs (package) . . 23, 239, 240 \arcsch (arcsch) . . . . . . 92 arcseconds . . . . . see \second \arcsin (arcsin) . . . . . . 91 \arctan (arctan) . . . . . . 91 \Aresh (r) . . . . . . . . . . . 148 arev (package) . 135–138, 146, 158, 190, 239 \arg (arg) . . . . . . . . . . . 91 \Aries (P) . . . . . . . . . . . 127 \Aries (à) . . . . . . . . . . . 126 \Aries (x) . . . . . . . . . . . 128 \Aries (à) . . . . . . . . . . . 126 \aries () . . . . . . . . . . . 126 \arlfamily . . . . . . . . . . . 157 \armfamily . . . . . . . . . . . 157 \arnfamily . . . . . . . . . . . 157 \ArrowBoldDownRight (y) 134 245 \ArrowBoldRightCircled ({) . . . . . . . 134 \ArrowBoldRightShort (z) 134 \ArrowBoldRightStrobe (w) . . . . . . . . 134 \ArrowBoldUpRight (x) . 134 \arrowbullet (➢) . . . . . . 135 \Arrownot (Y) . . . . . . . . . . 90 \arrownot (X) . . . . . . . . . . 90 \ArrowOver (P) . . . . . . . . . 25 \arrowOver (p) . . . . . . . . . 25 arrows . . . . . . . . . . . 72–74, 78, 82–87, 107–112, 128, 129, 134, 135, 148, 153, 177, 188, 194–197, 199– 200, 215–216, 222 diagonal, for reducing subexpressions . . . 107 dotted . . . . . . . . . . . 112 double-headed, diagonal . . . . . . . . 226 extensible . . . . 107–112 fletched . . . . . . . 87, 134 negated . . 72, 73, 75, 79 arrows (boisik package option) . .....⃦ . . . 83 \Arrowvert (⃦) . . . . . . . . 99 X X X X \Arrowvert ( X X) . . . . . . . 100 ⇑ ⇑ ⇑ ⇑) . . . . . . . 102 \Arrowvert ( ⇑ ⎮⇑ ⇑ ⇑ ⎮ \arrowvert ( ) . . . . . . . . 99 RR RR \arrowvert ( RR) . . . . . . . . 100 ⏐ ⏐ ⏐ ⏐ \arrowvert ( ⏐ ) . . . . . . . 102 ⏐ ⏐ ⏐ \arsech (arsech) . . . . . . 92 Arseneau, Donald . . 224–228 \arsinh (arsinh) . . . . . . 92 \artanh (artanh) . . . . . . 92 \artfamily . . . . . . . . . . . 157 articulations . . . . see musical symbols \Asade (x) . . . . . . . . . . . 148 \Asamekh (s) . . . . . . . . . 148 \ASC (1) . . . . . . . . . . . . 128 ASCII . . 12, 15, 130, 210, 219, 233–235, 237, 239 table . . . . . . . . . . . . 234 ascii (package) . 130, 234, 239, 240 \ascnode () . . . . . . . . . 126 \Ashin (S) . . . . . . . . . . . 148 aspect ratio . . . . . . . . . . . 125 \Assert (⊩) . . . . . . . . . . 55 \assert (⊦) . . . . . . . . . . 55 \assert (⊦) . . . . . . . . . . . 58 \assumption (𝑢) . . . . . . 132 \ast (˚) . . . . . . . . . . . . . 31 \ast (*) . . . . . . . . . . . . . 30 \ast ({) . . . . . . . . . . . . . 33 \ast (∗) . . . . . . . . . . . . . 32 \ast (∗) . . . . . . . . . . . . . 31 \ast (∗) . . . . . . . . . . . . . 34 \asteq (⩮) . . . . \asteraccent ( ⃰ ) \Asteriscus (× ····) \asteriscus (× ····) \Asterisk (˚) . .. . .. .. .. . . . . . . . . . . . . . . . . . . . . . 58 . 106 . 183 . 183 . 31 \Asterisk (N) . . . . . . . . 139 \asterisk (˚) . . . . . . . . . 31 \AsteriskBold (A) . . . . . 139 \AsteriskCenterOpen (B) 139 \AsteriskRoundedEnds (X) . . . . . . . . . 139 asterisks . . . . . . . . . . 31, 139 \AsteriskThin (C) . . . . . 139 \AsteriskThinCenterOpen (D) . . . . . . . 139 \asterism (** * ) . . . . . . . . 223 asteroids . . . . . . . . . . . . . 128 astrological symbols . 126–128, 201–203 astronomical symbols 126–128, 186, 201–203 \astrosun (☉) . . . . . . . . 127 \astrosun (⊙) . . . . . . . . 126 astrosym (package) . . 201, 239 asymmetric braces . . . . . . 110 \asymp (≍) . . . . . . . . . . . 50 \asymp (≍) . . . . . . . . . 55, 90 \asymp (≍) . . . . . . . . . . . 89 \asymp (≍) . . . . . . . . . . . 58 asymptotic notation . . . . . 92 \atan (atan) . . . . . . . . . 232 \ataribox (m) . . . . . . . . . 176 \Atav (t) . . . . . . . . . . . . 148 \Ateth (T) . . . . . . . . . . . 148 \AtForty (Ø) . . . . . . . . 177 \AtNinetyFive (Ó) . . . . 177 \atom (𝐶) . . . . . . . . . . . . 132 atomic math objects . 91, 92, 232 \AtSixty (Õ) . . . . . . . . 177 \aunderbrace (⏟ ⏞ ) . . . . 110 \Austria () . . . . . . . . . . 188 \Aut (Aut) . . . . . . . . . . . 92 \autoleftarrow (D GGGGGG) . 111 \autoleftrightharpoons GG ) (E GGGGGGC \Ayn (˓) . . . . . . . . . . . . . 20 \Ayod (y) . . . . . . . . . . . . 148 \Azayin (z) . . . . . . . . . . 148 B B (B) . . . . . . . . . . . . . . . . 157 \B . . . . . . . . . . . . . . . . . . 16 \B (´) . . . . . . . . . . . . . . . 183 ˘ b (esvect package option) . 110 \b (a) . . . . . . . . . . . . . . . 20 ¯ \b ( ) . . . . . . . . . . . . . . . 183 ˘ b (b) . . . . . . . . . . . . . . . . 157 \Ba (a) . . . . . . . . . . . . . 152 babel (package) 15, 93, 94, 154 \babygamma (!) . . . . . . . . 19 Bachmann–Landau notation 92 \backapprox () . . . . . . . 52 \backapproxeq () . . . . . 52 \Backblech ( ) . . . . . . . 191 \backcong (≌) . . . . . . . . . 55 \backcong (≌) . . . . . . . . . 52 \backcong (≌) . . . . . . . . . 58 \backdprime (‶) . . . . . . . 117 \backepsilon () . . . . . . 50 \backepsilon (~) . . . . . . . 120 \backepsilon (϶) . . . . . . 95 \backeqsim ( ) . . . . . . . . 52 \backneg (⌐) . . . . . . . . . 120 \backneg (⌐) . . . . . . . . . . 119 \backprime (8) . . . . . . . . 119 \backprime (À) . . . . . . . . 120 \backprime (‵) . . . . . . . . 120 \backprime (‵) . . . . . . . . 119 \backprime (‵) . . . . . . . . 117 \backpropto () . . . . . . 55 \backsim (v) . . . . . . . . . 50 \backsim (Ñ) . . . . . . . . . 57 \backsim (∽) . . . . . . . . . . 55 \backsim (∽) . . . . . . . . . . 52 \backsim (∽) . . . . . . . . . 58 \backsimeq (w) . . . . . . . 50 \backsimeq (Ó) . . . . . . . . 57 \backsimeq (⋍) . . . . . . . . 55 \backsimeq (⋍) . . . . . . . . 52 \backsimeq (⋍) . . . . . . . . 58 \backsimneqq (Ó) . . . . . . 56 \backslash (∖) . . . . . 99, 118 ........ 111 \backslash (\) . . . . . . . 101 \autorightarrow (G GGGGGG A) 111 \backslash (/) \autorightleftharpoons GGGGGGB (F GG ) \Autumntree ( \Avav (w) . . . average . . . . . ⨑ \awint ( ) . . . \awint (⨑) . . \awint (⨑) . . \awintsl (⨑) . \awintup (⨑) . ........ ) .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 . 192 . 148 . 29 . 48 . 45 . 46 . 47 . 47 . . . . . . . 100 \backslash (∖) . . . . . . . . 121 \ \backslash ( ) . . . . . . . 102 \backslashdiv () \backtriplesim () \backtrprime (‷) . \backturn () . . . . . \bagmember (`) . . . \bagmember (⋿) . . \Baii (;) . . . . . . C 246 \Baiii (<) . . . . . . . . . . 152 \bakingplate ( ) . . . . . . 191 \ballotcheck (✓) . . . . . . 138 \ballotx (✗) . . . . . . . . . 138 banana brackets . . . . . . . . . . see \llparenthesis and \rrparenthesis \banceps (Ψ) . . . . . . . . . . 184 \bar ( ̄ ) . . . . . . . . . . . . . 106 \bar (¯) . . . . . . . . . . . . . 105 \bar (!) . . . . . . . . . . . . . . 157 \barb () . . . . . . . . . . . . 19 \barbbrevis (θ) . . . . . . 184 \barbrevis (ι) . . . . . . . . 184 \barcap (⩃) . . . . . . . . . . 34 \barcirc (− ∘ ) . . . . . . . . . 224 \barcup (⩂) . . . . . . . . . . 34 \bard () . . . . . . . . . . . . 19 \bardownharpoonleft (⥡) 86 \bardownharpoonright (⥝) 86 \bari (') . . . . . . . . . . . . . 19 \barin (V)⨍ . . . . . . . . . . . 96 \barint ( ) . . . . . . . . . . . 48 \barj (j) . . . . . . . . . . . . . 19 \barl (.) . . . . . . . . . . . . . 19 \barlambda () . . . . . . . . 19 \barleftarrow () . . . . . 82 \barleftarrow (⇤) . . . . . 84 \barleftarrowrightarrowbar () . . . . . . . . . . . . 82 \barleftarrowrightarrowbar (↹) . . . . . . . . . . . . 84 \barleftharpoon (Þ) . . . 74 \barleftharpoondown (⥖) 86 \barleftharpoonup (⥒) . 86 \baro ( ) . . . . . . . . . . . . 30 \baro ( vs. <) . . . . . . . . 220 \baro (ç) . . . . . . . . . . . . 33 \baro (<) . . . . . . . . . . . . 19 \BarOver (G) . . . . . . . . . . . 25 \barOver (g) . . . . . . . . . . . 25 \barovernorthwestarrow ( ) . . . . . . . . 82 \barovernorthwestarrow (↸) . . . . . . . 141 \barp (A) . . . . . . . . . . . . 19 barred letters . . . . . . . . . 223 \barrightarrowdiamond (⤠) . . . . . . . . . 84 \barrightharpoon (ß) . . 74 \barrightharpoondown (⥟) 86 \barrightharpoonup (⥛) . 86 \barsci (+) . . . . . . . . . . . 19 \barscu (X) . . . . . . . . . . 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 . 52 . 117 . 159 . 57 . 58 . 152 ) . . . . . . . 184 \Bart ( bartel-chess-fonts (package) 217, 218, 239 \baru (T) . . . . . . . . . . . . 19 \baruparrow (⤒) . . . . . . . 84 \barupharpoonleft (⥘) . . 86 \barupharpoonright (⥔) . 86 \Barv (⫧) . . . . . . \Barv (⫧) . . . . . . \barV (⫪) . . . . . . \barV (⫪) . . . . . . \barvee (⊽) . . . . \barwedge (X) . . \barwedge (Z) . . . \barwedge (Ñ) . . . \barwedge (⊼) . . . \barwedge (⊼) . . . base twelve numerals . . . tally markers \BasicTree . . . . . I) \bassclef ( \Bat (ý) . . bats . . . . . . \Bau (=) . . \baucircle ( . .... .... .... ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 58 55 58 34 31 30 33 32 34 . . . . . . 117 . . . . . . 180 . . . . . . 192 . . . . . . . . . . . . . . . ... ... 38, ... ... 159 177 114 152 144 Δ \bauforms (Ξ) . . . . . . . 177 \bauhead (Λ) . . . . . . . . 177 \bausquare (Γ) . . . . . . . 144 \bautriangle (Θ) . . . . . . 144 \BB ( ´) . . . . . . . . . . . . . . 183 ˘˘ \Bb (´ ) . . . . . . . . . . . . . . 183 ˘ ˘ \bB ( ´) . . . . . . . . . . . . . . 183 ˘ ˘ \bb ( ) . . . . . . . . . . . . . . 183 ˘ ˘ \bba (˘×˘) . . . . . . . . . . . . . 183 \bbalpha (α) . . . . . . . . . . 124 \bbar (¯ 𝑏) . . . . . . . . . . . . 223 \bbb (˘˘) . . . . . . . . . . . . . 183 ˘ \bbbeta (β) . . . . . . . . . . . 124 \Bbbk (k) . . . . . . . . . . . . 96 \Bbbk (k) . . . . . . . . . . . . 97 \Bbbk (𝕜) . . . . . . . . . . . . 97 ⅀ \Bbbsum ( ) . . . . . . . . . . 46 bbding (package) 134–137, 139, 143, 146, 220, 239 \bbdollar ($) . . . . . . . . . 124 \bbetter (g) . . . . . . . . . 181 \bbeuro (û) . . . . . . . . . . 124 \bbfinalnun (Ï) . . . . . . . 124 \bbgamma (γ) . . . . . . . . . . 124 bbgreekl (mathbbol package option) . . . . . . . . . . 124 \BBm ( ´ ) . . . . . . . . . . . . 183 ˘˘¯) . . . . . . . . . . . . 183 \Bbm (¯ ˘´˘) . . . . . . . . . . . . 183 \bBm (¯¯ ¯˘¯˘´ bbm (package) . . . . . 123, 239 \bbm ( ) . . . . . . . . . . . . 183 ˘˘ ) . . . . . . . . . . . . 183 \bbmb ¯(¯ ¯˘˘¯˘ \bbmx ( ¯¯) . . . . . . . . . . . 183 ¯˘˘¯˘() . . . . . . . . . 124 \bbnabla bbold (package) . . . . 123, 239 \bbpe (Ô) . . . . . . . . . . . . 124 \bbqof (×) . . . . . . . . . . . 124 \bbrevis (ς) . . . . . . . . . 184 \bbrktbrk (⎶) . . . . . . . . 121 \bbslash ( ) . . . . . . . . . 30 \bbslash (=) . . . . . . . . . 33 \bbyod (É) . . . . . . . . . . . . 124 ) . . . . 192 \bcattention ( ) . . . . . . . . 192 \bcbombe ( \bchomme ( . . . . . . . . 192 1 \bccalendrier ( JAN ) . . . 193 ) . . . . . . 193 \bchorloge ( \bcicosaedre ( \bcinfo ( \bcbook ( ) . . . . . . . . 193 ) . . . . 193 ) . . . . . . . . 193 \bcinterdit ( ) . . . . . 193 ) \bccle ( ) . . . . . . . . . 193 \bcclefa ( ) . . . . . . . . 193 \bcclesol ( ) . . . . . . . 193 \bccoeur ( ) . . . . . . . . 193 \bccrayon ( ) . . . . . . . 193 \bclampe ( ) . . . . . . . . 193 bclogo (package) 192, 193, 239, 240 \bcloupe ( ) . . . . . . . . 193 \bcneige ( ) . . . . . . . . 193 ) \bcnote ( \bccube ( ) . . . . . . . . 193 \bcnucleaire ( ) . . . . 193 \bcoctaedre ( ) . . . . . 193 . . . . . . . . 193 \bcdallemagne ( \bcdanger ( ) . . . 193 ) . . . . . . . 193 \bcoeil ( ) . . . . . . . . 193 \bcontraction . . . . . . . . 228 \bcdautriche ( ) . . . . 193 \bcorne ( ) . . . . . . . . 193 \bcdbelgique ( ) . . . . 193 \bcours ( ) . . . . . . . . 193 \bcdbulgarie ( ) . . . . 193 \bcdfrance ( ) . . . . . . 193 \bcditalie ( ) . . . . . . 193 \bcdluxembourg ( ) \bcdodecaedre ( \bcdpaysbas ( \bcdz ( ) . . . . . 193 ) . . . . . . . . . . 193 \bcetoile ( \bcpanchant ( ) . . . . . 192 \bcpeaceandlove ( ) . . 192 \bcpluie ( ) . . . . . . . . 192 \bcplume ( ) . . . . . . . . 193 \bcpoisson ( ) . . . . . . 193 \bcquestion ( ) . . . . . 193 \bcrecyclage ( ) . . . . 193 \bcrosevents ( ) . . . . 193 ) . . . . 193 ) . . . . . . . 192 \bcfemme ( ) . . . . . . . . 192 \bcfeujaune ( ) . . . . . 192 \bcfeurouge ( ) . . . . . 193 \bcfeutricolore ( \bcfeuvert ( \bcfleur ( ) . . . . . . . . 193 . . 193 ) . . . 193 \bceclaircie ( \bcoutil ( ) . . 193 ) . . . . . . 193 ) . . . . . . . . 193 247 \bcsmbh ( ) . . . . . . . . 193 \bcsmmh ( ) . . . . . . . . 193 \bcsoleil ( ) . . . . . . . 193 \bcspadesuit ( \bcstop ( STOP ♠) . . . . 193 ) . . . . . . . . 193 \bctakecare ( ) . . . . . 193 \bctetraedre ( ) . . . . 193 \BGconditional ( \bctrefle ( \bcvaletcoeur ( \bcyin ( ) ) . . . . . 193 ) . . . 193 . . . . . . . . 193 ) . . . . . . . . . 193 \Bda (d) . . . . . . . . . . . . . 152 \Bde (D) . . . . . . . . . . . . 152 \bdecisive (i) . . . . . . . 181 \Bdi (f) . . . . . . . . . \bdleftarcarrow (¥) \bdnearcarrow («) . \bdnwarcarrow (¨) . . . . . . . . . . . . . . 152 . 78 . 78 . 78 \Bdo (g) . . . . . . . . . . \bdoverarcarrow (¤) \bdrightarcarrow (§) \bdsearcarrow (ª) . . \bdswarcarrow (©) . . . . . . . . . . . . . 152 . 78 . 78 . 78 . 78 \Bdu (x) . . . . . . . . . . . . . 152 \bdunderarcarrow (¦) . . 78 \Bdwe (>) . . . 116 ) . . . . . . . 193 \bctrombone ( \bcvelo ( ) . . . . . . . . . . . 152 \Bdwo (?) . . . . . . . . . . . 152 \Be (e) . . . . . . . . . . . . . 152 \Beam (") . . . . . . . . . . . . 131 \Bearing (#) . . . . . . . . . 131 \because (∵) . . . . . . 50, 114 \because (¶) . . . . . . . . . 57 \because (∵) . . . . . . . . . 115 \because (∵) . . . . . . . . . . 115 \because (∵) . . . . . . . . . . 115 \Bed ( ) . . . . . . . . . . . . 192 begriff (package) . . . 116, 239 Begriffsschrift symbols . . . 116 \BEL (␇) . . . . . . . . . . . . . 130 \Belarus () . . . . . . . . . . 188 \Belgium () . . . . . . . . . . 188 \bell ( ) . . . . . . . . . . . . 176 \benzenr (⏣) . . . . . . . . . 141 beret . . . . . . . . . . . . . . . 107 Berry, Karl . . . . . . . . . . . 241 \Beta (B) . . . . . . . . . . . . 93 \beta (𝛽) . . . . . . . . . . . . 93 \betaup (β) . . . . . . . . . . . 94 \beth (i) . . . . . . . . . . . . 95 \beth (ø) . . . . . . . . . . . . 95 \beth (ℶ) . . . . . . . . . . . . 95 \beth (ℶ) . . . . . . . . . . . . 95 \beth (ℶ) . . . . . . . . . . . . 96 better . . . see \triangleleft \betteris (b) . . . . . . . . 181 \between ( ) . . . . . . . . . . 52 \between (G) . . . . . . . . . . 50 \between (·) . . . . . . . . . . 57 \between (≬) . . . . . . . . . . 55 \between () . . . . . . . . . 52 \between (≬) . . . . . . . . . . 58 \BGassert ( ) . . . . . . . . . 116 \BGcontent ( ) . . . . . . . . 116 \BGnot ( ) . . . . . . . . . . . 116 \BGquant ( ) . . . . . . . . 116 \Bi (i) . .”. . . . . . . . . . . 152 \bibridge (a ”) . . . . . . . . . 22 biconditional . . . . . . . . . . . . . . . see \leftrightarrow and \equiv \Bicycle (®) . . . . . . . . 177 \Big . . . . . . . . . . . . 219, 221 \big . . . . . . . . . . . . 219, 221 big O (𝒪) see alphabets, math big O notation . . . . . . . . . 92 \Bigassumption (Ê) . . . 132 \bigassumption (È) . . . . 132 \bigast (˚) . . . . . . . . . . 31 \bigblacktriangledown (▼) . . . . . . . . 141 \bigblacktriangleup (▲) 141 ¶ \bigbosonloop () ∪ . . . . . . 132 \bigbosonloopA () ⊃ . . . . . 132 \bigbosonloopV () . . . . \bigbot (⟘) e ......... \bigbox ( ) . . . .Ö ..... \bigboxasterisk ( Þ ) .. \bigboxbackslash ( ) . Û \bigboxbot ( Õ ) ...... \bigboxcirc ( ) . .Œ ... \bigboxcoasterisk ( ) Ó \bigboxdiv (Ô) . . . . . . \bigboxdot ( Ø ) ...... \bigboxleft ( Ñ ) ..... \bigboxminus Ð ( ) .... \bigboxplus ( Ù ) ..... \bigboxright (Ý) . . . . \bigboxslash (Ò) . . . . \bigboxtimesÚ( ) . . . . \bigboxtop ( ) . . .ß ... \bigboxtriangleup ( ) Ü \bigboxvoid ( ) . . . .. ⋂︀ \bigcap ( ) . . . . . . . . . \bigcap (⋂) . . . . . . . . . \bigcap (⋂) . . . . . . . . . ⋂ \bigcap ( ) . . . . . . . . . \bigcapdot () . . . . . . \bigcapdot (⩀) . . . . . . . \bigcapplus () . . . . . . \bigcapplus ($) . . . . . . \bigcirc (○) . . . . . . . \bigcirc (◯) . . . . . . . . \bigcirc (◯) . . . . . . . . \bigcirc (○) . . . . . . . . \BigCircle ( ) . . . . . . \BigCircle ( ) . . . . . . \bigcircle (◯) . . . . . . \bigcoast (ˇ) . . .Š. . . . \bigcomplementop ( ) . . \BigCross ( ) . . . . . . . % % 248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 121 40 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 40 44 44 46 44 44 45 44 30 141 140 142 143 143 44 31 41 143 ⋃︀ \bigcup ( ) . . . . . . . . \bigcup (⋃) . . . . . . . . \bigcup (⋃) . . . . . . . . ⋃ \bigcup ( ) . . . . . . . . \bigcupdot (⨃) . . . . . \bigcupdot (⊍) . . . . . . ⨃ \bigcupdot ( ) . . . . . \bigcupplus (⨄) . . . . . \bigcupplus (⊎) IJ..... \bigcurlyvee (b ) . . . . \bigcurlyvee ( ) . . . . \bigcurlyvee () . . . . \bigcurlyvee (⋎) . . . . \bigcurlyveedot Ż () . \bigcurlywedge (c ) . . \bigcurlywedge ( ) . . \bigcurlywedge () . . \bigcurlywedge (⋏) . . \bigcurlywedgedot () . . . . . . . . . . . . . . . . . . . 40 45 44 46 45 44 46 45 44 41 40 45 44 44 41 40 45 44 44 \BigDiamondshape ( ) . . \bigdoublecurlyvee () . \bigdoublecurlywedge () \bigdoublevee (⨈) . . . . \bigdoublevee (⩔) . . . . . \bigdoublewedge (⨇) . . . \bigdoublewedge (⩕) . . . \Bigg . . . . . . . . . . . 219, \bigg . . . . . . . . . . . 219, \biggassumption (É) . . 143 44 44 45 44 45 44 221 221 132 & ∫︀ \BigHBar ( \bigint ( . . . . . . . . . . . . . . . . . . . ) . . . . . . . . . 143 ........ g \biginterleave ( ) . . . . \biginterleave (⫼) . . . . bigints (package) 43, 239, \bigints ( ) ∫︀ ∫︀ ) 43 40 121 240 ........ 43 ........ 43 ....... 43 \bigintssss ( ) . . . . . . . ˙ \biginvamp ( ) . . . . . . . 43 50 \bigintss ( \bigintsss ( ∫︀) ∫︀) _ \BigLowerDiamond ( ) \bignplus ( ) . . . . . . \bigO (O) . . . . . . . . . . \bigo (O) . . . . . . . . . . \bigoast (2) . . . . . . . \bigoast (⊛) . Æ ...... \bigoasterisk ( Î ) ... \bigobackslash ( ) . . \bigobackslash (⦸) . . Ë \bigobot ( Å ) ....... \bigocirc ( ) . . . . . . \bigocirc (⊚) . .Ç .... \bigocoasterisk ( ) . à \bigodiv (⨀︀) . . . . . . . \bigodot ( ) . . . . . . . \bigodot (⨀) . . . . . . . \bigodot (⊙) . . . . . . . ⨀ \bigodot ( ) . . . . . . . . . . . . . . . . . . . . . . . . . . 143 . 40 . 92 . 92 . 45 . 44 . 41 . 41 . 44 . 41 . 41 . 44 . 41 . 41 . 40 . 45 . 44 . 46 \bigoint ( ∮︀ ) ........ 43 ) ....... 43 ∮︀ \bigoints ( \bigointss ( ∮︀ \bigointsss ( ∮︀) ) ....... 43 ...... 43 ∮︀ \bigointssss ( ) . . . . È \bigoleft ( Á ) ...... \bigominus ( ) . . . . . \bigominus ⨁︀ (⊖) . . . . . \bigoplus ( ) . . . . . . \bigoplus (⨁) . . . . . . \bigoplus (⊕) . . . . . . ⨁ \bigoplus ( É ) ...... \bigoright (Í) . . . . . \bigoslash ( ) . . . . . \bigoslash (⊘) . . . . . \bigostar (⍟) ⨂︀ . . . . . . \bigotimes ( ) . . . . . \bigotimes (⨂) . . . . . \bigotimes (⊗) . . . . . ⨂ \bigotimesÊ( ) . . . . . \bigotop ( ) . . . . . . . \bigotriangle (F)Ï. . . \bigotriangleup ( ) . \bigovert (⦶) Ì ...... \bigovoid ( ) f . . . . . . \bigparallel ˙ ( ) .... \bigparr (Ř) . . . . . . . \bigplus ( ) . . . . . . . \bigplus ( ) . . . . . . . \bigplus (+) . . . . . . . \bigpumpkin ( ) . . . . \BigRightDiamond ( ) \bigskull ( ) . . . . . . \bigslopedvee (⩗) . . . \bigslopedwedge (⩘) . Ű \bigsqcap ( ) . . . . . . \bigsqcap ( ) . . . . . . \bigsqcap (⨅) . . . . . . \bigsqcap (⊓) . . . . . . . ⨅ \bigsqcap ( ) . . . . . . \bigsqcapdot ($) . . . . \bigsqcapdot (,) . . . . \bigsqcapplus ( ) . . . \bigsqcapplus (() . . . \bigsqcapplus ⨆︀ (0) . . . \bigsqcup ( ) . . . . . . \bigsqcup (⨆) . . . . . . \bigsqcup (⊔) . . . . . . . ⨆ \bigsqcup ( ) . . . . . . \bigsqcupdot (&) . . . . \bigsqcupdot (.) . . . . \bigsqcupplus ( ) . . . \bigsqcupplus (*) . . . \bigsqcupplus (2) . . . \BigSquare ( Ÿ) . . . . . \bigsquplus ( ) . . . . . \bigstar (‹) . . . . . . . \bigstar (F) . . . . . . . / . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 . 41 . 41 . 44 . 40 . 45 . 44 . 46 . 41 . 41 . 44 . 44 . 40 . 45 . 44 . 46 . 41 . 44 . 41 . 44 . 41 . 40 . 50 . 41 . 45 . 44 . 38 . 143 . 38 . 34 . 34 . 41 . 40 . 45 . 44 . 46 . 45 . 44 . 42 . 45 . 44 . 40 . 44 . 44 . 46 . 44 . 44 . 42 . 45 . 44 . 143 . 41 . 31 . 119 \bigstar (ã) . . . . . . . . . 141 \bigstar (★) . . . . . . . . . 141 \bigstar (☀) . . . . . . . . . 140 \bigstar (★) . . . . . . . . . 141 ⫿ \bigtalloblong Ś ( ) . . . . . 46 \bigtimes ( ) . . . . . . . . 41 \bigtimes (⨉) . . . . . . . . 45 \bigtimes (⨉) . . . . . . . . . 44 ⨉ \bigtimes ( ) . . . . . . . . 46 \bigtop (⟙) . . . . . . . . . . 121 \BigTriangleDown (` ) . . 143 \bigtriangledown ( ) . .` 40 \bigtriangledown (▽ vs. ) . . . . . . . 220 \bigtriangledown (▽) . . 30 \bigtriangledown (_) . . 71, 141 \bigtriangledown (▽) . . 70 \bigtriangledown (▽) . 141, 142 \BigTriangleLeft ( ) . . 143 \bigtriangleleft (⨞) . . 141 \BigTriangleRight ( ) . 143 \BigTriangleUp (a ) . . . . 143 \bigtriangleup ( ) . .a. . 40 \bigtriangleup (△ vs. ) 220 \bigtriangleup (△) . . 12, 30 \bigtriangleup (^) 71, 141 \bigtriangleup (△) . . . . 70 \bigtriangleup ⨄︀ (△) 141, 142 \biguplus ( ) . . . . . . . . 40 \biguplus (⨄) . . . . . . . . 45 \biguplus (⊎) . . . . . . . . . 44 ⨄ \biguplus ( ) . . . . . . . . 46 \bigvarstar (›) . . . . . . . 31 \BigVBar ⋁︀ ( ) . . . . . . . . . 143 \bigvee ( ) . . . . . . . . . . 40 \bigvee (⋁) . . . . . . . . . . 45 \bigvee (⋁) . . . . . . . . . . 44 ⋁ \bigvee ( ) . . . . . . . . . . 46 \bigveedot ( ) . . . . . . . 45 \bigveedot ⋀︀ ( ) . . . . . . . . 44 \bigwedge ( ) . . . . . . . . 40 \bigwedge (⋀) . . . . . . . . 45 \bigwedge (⋀) . . . . . . . . . 44 ⋀ \bigwedge ( ) . . . . . . . . 46 \bigwedgedot () . . . . . . 45 \bigwedgedot () . . . . . . 44 \bigwhitestar ˘ (☆) . . . . . 141 \bigwith ( ) . . . . . . . . . 50 \binampersand (N) . . . . . 30 \binampersand (î) . . . . . 33 binary operators . . . . . 30–38 binary relations . . . 50–53, 55, 57–69, 88–90 negated 51, 52, 54–57, 59 \bindnasrepma (O) . . . . . 30 \bindnasrepma (ï) . . . . . 33 \Biohazard (h) . . . . . . . 131 \biohazard (☣) . . . . . . . . 190 biological symbols . . . . . . 131 birds . . . . . . . . . . . . . . . . 149 # ! 249 " $ bishop . . . . . . . . 182, 217–218 \bishoppair (a) . . . . . . . 181 \Bja (j) . . . . . . . . . . . . . 152 \Bje (J) . . . . . . . . . . . . . 152 \Bjo (b) . . . . . . . . . . . . . 152 \Bju (L) . . . . . . . . . . . . 152 \Bka (k) . . . . . . . . . . . . 152 \Bke (K) . . . . . . . . . . . . 152 \Bki (c) . . . . . . . . . . . . 152 \Bko (h) . . . . . . . . . . . . . 152 \Bku (v) . . . . . . . . . . . . . 152 \BL (\) . . . . . . . . . . . . . . 129 \black . . . . . . . . . . . . . . 183 \BlackBishopOnBlack ( . . . . . . . 182 a) . b \BlackBishopOnWhite ( ) . . . . . . . . 182 blackboard bold see alphabets, math \blackbowtie (ë) . . . . . . 33 \blackcircledownarrow (⧭) . . . . . . . . 141 \blackcircledrightdot (⚈) . . . . . . . . 141 \blackcircledtwodots (⚉) . . . . . . . . . 141 \blackcircleulquadwhite (◕) . . . . . . . 141 \blackdiamond (˛) . . . . . 31 \blackdiamond (⬩) . . . . . 37 \blackdiamonddownarrow (⧪) . . . . . . . 141 Z \BlackEmptySquare ( ) 182 \blackhourglass (⧗) . . . 38 \blackinwhitediamond (◈) . . . . . . . . . 141 \blackinwhitesquare (▣) 141 j) 182 \BlackKingOnWhite (k) 182 \BlackKnightOnBlack (m) . \BlackKingOnBlack ( ....... 182 n) . \BlackKnightOnWhite ( . . . . . . . 182 \blacklefthalfcircle (◖) \blacklozenge () . . . . . \blacklozenge (ã) . . 37, \blacklozenge (⧫) . . . . . \blacklozenge (⧫) . . . . . \blacklozenge (⧫) . 141, 141 119 141 141 140 142 o) 182 \BlackPawnOnWhite (p) 182 \BlackPawnOnBlack ( \blackpointerleft (◄) . 141 \blackpointerright (►) . 141 \BlackQueenOnBlack ( . . . . . . . 182 l) . q \BlackQueenOnWhite ( ) . . . . . . . . 182 \blackrighthalfcircle (◗) . . . . . . . . . 141 s) 182 \BlackRookOnWhite (r) 182 \BlackRookOnBlack ( \blacksmiley (☻) . . . . . 121 \blacksmiley (-) . . . . . . 176 \blacksquare () . . . . . . 119 \blacksquare (ï) . . . 37, 141 \blacksquare (∎) . . . . . . 36 \blacksquare (■) . . . . . . 142 \blackstone . . . . . . . . . . 182 \blacktriangle (N) . . . . 119 \blacktriangle (ë) . 37, 141 \blacktriangle (▲) . . 37, 71 \blacktriangle (▲) . . . . 70 \blacktriangle (▴) . . . . 142 \blacktriangledown (İ) . 35 \blacktriangledown (H) . 119 \blacktriangledown (è) . 37, 141 \blacktriangledown (▼) . 37, 71 \blacktriangledown (▼) . 70 \blacktriangledown (▾) . 142 \blacktriangleleft (đ) . 35 \blacktriangleleft (J) . 69 \blacktriangleleft (ê) . 37 \blacktriangleleft (◀) . 37, 71 \blacktriangleleft (◀) . 70 \blacktriangleleft (◀) 142 \blacktriangleright (§) 35 \blacktriangleright (I) 69 \blacktriangleright (é) 37 \blacktriangleright (▶) 37, 71 \blacktriangleright (▶) 70 \blacktriangleright (▶) 142 \blacktriangleup (IJ) . . . 35 \blackwhitespoon (⊷) . . 89 blank . . . . . . see \textblank \Bleech (Ë) . . . . . . . . . . 177 \blender ( ) . . . . . . . . . . 191 \blitza ( ) . . . . . . . . . . 90 \blitza ( ) . . . . . . . . . . 29 \blitzb ( ) . . . . . . . . . . 90 \blitzc ( ) . . . . . . . . . . 90 \blitzd ( ) . . . . . . . . . . 90 \blitze ( ) . . . . . . . . . . 90 \blkhorzoval (⬬) . . . . . . 142 \blkvertoval (⬮) . . . . . . 142 block-element symbols . . . 185 \Bm (´) . . . . . . . . . . . . . . 183 ˘¯ bm (package) . . . 233, 239, 240 \bm . . . . . . . . . . . . . . . . . 233 \bm ( ) . . . . . . . . . . . . . . 183 ¯˘ \Bma (m) . . . . . . . . . . . . 152 \Bme (M) . . . . . . . . . . . . 152 \Bmesonminus (Ú) . . . . . 133 \Bmesonnull (Û) . . . . . . 133 \Bmesonplus (Ù) . . . . . . 133 \Bmi (y) . . . . . . . . . . . . 152 \Bmo (A) . . . . . . . . . . . . . 152 \bmod . . . . . . . . . . . . . . . 91 \Bmu (B) . . . . . . . . . . . . 152 \Bna (n) . . . . . . . . . . . . . 152 \BNc («) . . . . . . . . . . . . . 152 \BNcc (») . . . . . . . . . . . . 152 \BNccc (–) . . . . . . . . . . 152 \BNcd (—) . . . . . . . . . . . 152 \BNcm (ff) . . . . . . . . . 152 \BNd () . . . . . . . . . . . 152 \BNdc (‰) . . . . . . . . . . 152 \BNdcc (ı) . . . . . . . . . 152 \BNdccc (ȷ) . . . . . . . . 152 \Bne (N) . . . . . . . . . . . . 152 \BNi (´) . . . . . . . . . . . . . 152 \Bni (C) . . . . . . . . . . . . . 152 \BNii (ˆ) . . . . . . . . . . . . 152 \BNiii (˜) . . . . . . . . . . . 152 \BNiv (¨) . . . . . . . . . . . . 152 \BNix (¯) . . . . . . . . . . . 152 \BNl (‹) . . . . . . . . . . . . 152 \BNlx (›) . . . . . . . . . . . 152 \BNlxx (“) . . . . . . . . . . 152 \BNlxxx (”) . . . . . . . . . 152 \BNm (fi) . . . . . . . . . . . . 152 \Bno (E) . . . . . . . . . . . . 152 \bNot (⫭) . . . . . . . . . . . . 58 \Bnu (F) . . . . . . . . . . . . . 152 \BNv (˝) . . . . . . . . . . . . . 152 \BNvi (˚) . . . . . . . . . . . . 152 \BNvii (ˇ) . . . . . . . . . . . 152 \BNviii (˘) . . . . . . . . . . 152 \Bnwa (@) . . . . . . . . . . . 152 \BNx (˙) . . . . . . . . . . . . . 152 \BNxc („) . . . . . . . . . . . 152 \BNxl (‚) . . . . . . . . . . . 152 \BNxx (¸) . . . . . . . . . . . . 152 \BNxxx (˛) . . . . . . . . . . . 152 \Bo (o) . . . . . . . . . . . . . 152 body-text symbols . . . . 14–28 boisik (package) . . . 33, 37, 45, 57, 63, 68, 71, 82, 83, 95, 97, 98, 106, 118, 120, 141, 145, 154, 158, 239, 240 bold symbols . . . . . . . . . . 233 \boldmath . . . . . . . . . . . . 233 250 \boldsymbol . . . . . . . . . . 233 \BOLogo (F) . . . . . . . . . . 177 \BOLogoL (M) . . . . . . 177 \BOLogoP (N) . . . . . . . . . . 177 bomb . . . . . . . . . . . 192–193 \bomb (,) . . . . . . . . . . . . 177 \bond (𝜓) . . . . . . . . . . . 133 Boolean domain (B) . . . . see alphabets, math Boolean logic gates . . . . . 130 boondox (emf package option) . . . . . . . 126 borders . . . . . . . . . . 204–210 born . . . . . . . . see \textborn \boseDistrib (𝛱) . . . . . . 133 \Bosnia ( ) . . . . . . . . . . . 188 \boson (𝛴) . . . . . . . . . . . 133 bosons . . . . . . . . . . . . . . 132 \Bot (‚) . . . . . . . . . . . . 98 \bot (⊥) . . . . . . 29, 96, 225 \bot (⊥) . . . . . . . . . . . . . 97 \bot () . . . . . . . . . . . . . 96 \bot (⊥) . . . . . . . . . . . . . 97 \botborder ( ) . . . \botdoteq (”) . . . . \botsemicircle (◡) \bottle ( ) . . . . . . . \Bottomheat () . . . \Bouquet (¥) . . . . . \bowl ( ) . . . . . . . . \Bowtie (1) . . . . . . \bowtie (◁▷) . . . . . . \bowtie (è) . . . . . . \bowtie (⋈) . . . . . . \bowtie (&) . . . . . . \bowtie (⋈) . . . . . . \Box () . . . . . . . . . \Box (2) . . . . . . . . . \Box (□) . . . . . . . . . \Box (◻) . . . . . . . . . \Box (□) . . . . . . . . . box-drawing symbols \boxast (i) . . . . . . \boxast (¤) . . . . . . \boxast (⧆) . . . . . . \boxasterisk (f) . . \boxbackslash (n) . \boxbackslash (⧅) . \boxbackslash (⧅) . \boxbar (k) . . . . . . \boxbar (¡) . . . . . . \boxbar (◫) . . . . . . \boxbar (◫) . . . . . . \boxbot (k) . . . . . . \boxbot () . . . . . . \boxbox () . . . . . . \boxbox (§) . . . . . . \boxbox (⧈) . . . . . . \boxbox (⧈) . . . . . . \boxbox (⧈) . . . . . . \boxbslash (j) . . . . \boxbslash () . . . . \boxbslash (⧅) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 . 52 . 142 . 191 . 191 . 177 . 191 . 176 . 50 . 33 33, 55 31, 32 . . 58 . . 118 . . 119 . . 37 . . 36 . . 142 . . 185 . . 30 . . 37 . . 38 . . 35 . . 35 . . 36 . . 36 . . 30 . . 37 . . 37 . . 38 . . 35 . . 37 . . 30 . . 37 . . 36 . . 36 . . 38 . . 30 . . 37 . . 37 \boxbslash (⧅) . . \boxcirc (e) . . . . \boxcircle () . . . \boxcircle (¥) . . . \boxcircle (⧇) . . \boxcoasterisk (g) \boxdiag (⧄) . . . . \boxdiag (⧄) . . . . \boxdiv (c) . . . . . \boxdivision (¦) . \boxdot (d) . . . . . \boxdot ( ) . . . . . \boxdot (ô) . . . . . \boxdot (⊡) . . . . . \boxdot (⊡) . . . . . \boxdot (⊡) . . . . . \boxdotLeft () . \boxdotleft () . \boxdotRight () \boxdotright () \boxempty () . . . \boxLeft () . . . \boxleft (h) . . . . \boxleft () . . . \boxleft () . . . . \boxminus (a) . . . \boxminus ( ) . . . \boxminus (ñ) . . . . \boxminus (⊟) . . . . \boxminus (⊟) . . . . \boxminus (⊟) . . . \boxonbox (⧉) . . . \boxplus (‘) . . . . \boxplus () . . . . \boxplus (ð) . . . . \boxplus (⊞) . . . . \boxplus (⊞) . . . . . \boxplus (⊞) . . . . \boxRight () . . \boxright (i) . . . \boxright () . . \boxright ( ) . . . . \boxslash (m) . . . \boxslash (l) . . . . \boxslash (¢) . . . . \boxslash (⧄) . . . . \boxslash (⧄) . . . . \boxtimes (b) . . . \boxtimes () . . . \boxtimes (ò) . . . . \boxtimes (⊠) . . . . \boxtimes (⊠) . . . . \boxtimes (⊠) . . . \boxtop (j) . . . . . \boxtop () . . . . . \boxtriangle (£) . \boxtriangleup (o) \boxvert (◫) . . . . \boxvert (q) . . . . . \boxvoid (l) . . . . \boy (D) . . . . . . . . \Bpa (p) . . . . . . . . \Bpaiii ([) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 35 30 37 38 35 37 38 35 37 35 30 37 36 36 38 73 73 73 73 30 73 35 73 37 35 30 37 36 36 38 142 35 30 37 36 36 38 73 35 73 37 35 30 37 36 36 35 30 37 36 36 38 35 37 37 35 36 36 35 127 152 152 \BPamphora (Ž) . . . . . . . . 153 \BParrow (ij) . . . . . . . . . 153 \BPbarley (Ş) . . . . . . . . . 153 \BPbilly (ť) . . . . . . . . . 153 \BPboar (ľ) . . . . . . . . . . 153 \BPbronze (Ű) . . . . . . . . 153 \BPbull (ň) . . . . . . . . . . 153 \BPcauldroni (đ) . . . . . 153 \BPcauldronii (§) . . . . 153 \BPchariot (ÿ) . . . . . . 153 \BPchassis (ź) . . . . . . 153 \BPcloth (Ř) . . . . . . . . . 153 \BPcow (ŋ) . . . . . . . . . . 153 \BPcup (Ÿ) . . . . . . . . . . 153 \Bpe (P) . . . . . . . . . . . . . 152 \BPewe (š) . . . . . . . . . . 153 \BPfoal (ě) . . . . . . . . . 153 \BPgoat (ş) . . . . . . . . . . 153 \BPgoblet (Ź) . . . . . . . . 153 \BPgold (Ů) . . . . . . . . . . 153 \BPhorse (ď) . . . . . . . . 153 \Bpi (G) . . . . . . . . . . . . . 152 \BPman (ă) . . . . . . . . . . . 153 \BPnanny (ț) . . . . . . . . . 153 \Bpo (H) . . . . . . . . . . . . . 152 \BPolive (Ț) \BPox (ń) . . . . . . . . . 153 . . . . . . . . . . . 153 \BPpig (ĺ) . . . . . . . . . . 153 \BPram (ś) . . . . . . . . . . 153 \BPsheep (ř) . . . . . . . . . 153 \BPsow (ł) . . . . . . . . . . 153 \BPspear (¡) . . . . . . . . . 153 \BPsword (ż) . . . . . . . . . . 153 \BPtalent (Ď) \Bpte (]) . . . . . . . 152 . . . . . . . . . . . 152 \Bpu (I) . . . . . . . . . . . . . 152 \Bpuii (\) . . . . . . . . . . 152 \BPvola (Ĺ) . . . . . . . . . 152 \BPvolb (Ľ) . . . . . . . . . . 152 \BPvolcd (Ł) . . . . . . . . . 152 \BPvolcf (Ń) . . . . . . . . . 152 \BPwheat (Š) . . . . . . . . . 153 \BPwheel (ž) . . . . . . . . . 153 \BPwine (Ť) . . . . . . . . . . 153 \BPwineiih (Ż) . . . . . . . 153 \BPwineiiih (IJ) . . . . . . 153 \BPwineivh (İ) . . . . . . . 153 \BPwoman (ą) . . . . . . . . . 153 \BPwool (Ś) . . . . . . . . . . 153 \BPwta (Ă) . . . . . . . . . . . 152 \BPwtb (Ą) . . . . . . . . . . . 152 \BPwtc (Ć) . . . . . . . . . . 152 251 \BPwtd (Č) . . . . . . . . . . . 152 \Bqa (q) . . . . . . . . . . . . 152 \Bqe (Q) . . . . . . . . . . . . 152 \Bqi (X) . . . . . . . . . . . . 152 \Bqo (8) . . . . . . . . . . . . . 152 \Bra (r) . . . . . . . . . . . . . 152 bra . . . . . . . . . . . . . . . . . 99 \braceld (⏞) . . . . . . . . . . 228 \bracerd ( ) . . . . . . . . . . 228 braces . . . 14, 99–102, 107–110 asymmetric . . . . . . . 110 extensible . . . . 107–110 multiline⎪ . . . . . . . . . 110 ⎪ \bracevert (⎪ ⎪) . . . . . . . 99 ⎪ ⎪ ⎪ ⎪ \bracevert ( ⎪ ⎪) . . . . . . . 100 \bracevert (⎪) . . . . . . . . 121 brackets . . . . . see delimiters \Braii (^) . . . . . . . . . . . 152 \Braiii (_) . . . . . . . . . . 152 braket (package) . . . . . . . 99 ) . . . . . . 191 \Bratpfanne ( \Bre (R) . . . . . . . . . . . . . 152 \Break ( Break ) . . . . . . . 129 \breve ( ̆ ) . . . . . . . . . . . 106 \breve (˘) . . . . . . . . . . . 105 \breve (ă) . . . . . . . . . . . 23 breve (ă) . . . . . . . see accents \brevis (β) . . . . . . . . . . 184 \Bri (O) . . . . . . . . . . . . . 152 \Bro (U) . . . . . . . . . . . . . 152 \Broii (‘) . . . . . . . . . . . 152 \brokenvert (|) . . . . . . . . 176 Bronger, Torsten . . . . . . . 225 brooms . . . . . . . . . . . 90, 113 \Bru (V) . . . . . . . . . . . . . 152 \BS (␈) . . . . . . . . . . . . . . 130 \Bsa (s) . . . . . . . . . . . . . 152 \Bse (S) . . . . . . . . . . . . . 152 \BSEfree (n) . . . . . . . . . 131 \Bsi (Y) . . . . . . . . . . . . . 152 \bsimilarleftarrow (⭁) . 84 \bsimilarrightarrow (⭇) 84 \Bso (1) . . . . . . . . . . . . . 152 \bsolhsub (⟈) . . . . . . . . 64 \BSpace ( →−↦ ) . . . . . . 129 \Bsu (2) . . \Bswa ({) . \Bswi (|) \Bta (t) . . \Btaii (}) \Bte (T) . . \Bti (3) . . \btimes (⨲) \btimes (⨲) \Bto (4) . . \Btu (5) . . \Btwe (­) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 152 152 152 152 152 152 33 34 152 152 153 \BUFl () . . . . . . . . . . 130 \BUFr () . . . . . . . . . . 130 \BUFu () . . . . . . . . . . 130 \BUi (fl) . . . . . . . . . . . . . 153 \BUii (ffi) . . . . . . . . . . . . 153 \BUiii (ffl) . . . . . . . . . . 153 \BUiv (␣) . . . . . . . . . . . . 153 \BUix (%) . . . . . . . . . . . 153 \Bulgaria () . . . . . . . . . 189 bullcntr (package) 180, 239, 240 \bullcntr{⟨1 ⟩} ( ∙ ) . . . 180 \bullcntr{⟨2 ⟩} (∙ ∙) . . . 180 \bullcntr{⟨3 ⟩} (∙∙∙) . . . 180 ∙ \bullcntr{⟨4 ⟩} (∙∙∙) . . . 180 ∙ ∙ \bullcntr{⟨5 ⟩} (∙∙∙) . . . 180 ∙ \bullcntr{⟨6 ⟩} (∙∙∙ . . . 180 ∙∙ ) ∙∙ \bullcntr{⟨7 ⟩} (∙∙∙ . . . 180 ∙∙ ) ∙∙ ) \bullcntr{⟨8 ⟩} (∙∙∙ . . . 180 ∙∙∙ ∙∙∙ \bullcntr{⟨9 ⟩} (∙∙∙ ) . . . 180 ∙∙∙ bullenum (package) . . . . . 180 bullenum . . . . . . . . . . . . 180 \bullet (∙) . . . . . . . . . . 30 \bullet (•) . . . . . . . . . . . 37 \bullet (●) . . . . . . . . . . . 31 \bullet (∙) . . . . . . . . . . . 38 bullseye . see \textbullseye \bullseye (◎) . . . . . . . . 142 \Bumpedeq (ı) . . . . . . . . 52 \bumpedeq () . . . . . . . . 52 \Bumpeq (m) . . . . . . . . . . 50 \Bumpeq (Ç) . . . . . . . . . . 57 \Bumpeq (≎) . . . . . . . . . . 55 \Bumpeq (≎) . . . . . . . . . . . 53 \Bumpeq (≎) . . . . . . . . . . 58 \bumpeq (l) . . . . . . . . . . 50 \bumpeq (Æ) . . . . . . . . . . 57 \bumpeq (≏) . . . . . . . . . . 55 \bumpeq (≏) . . . . . . . . . . . 52 \bumpeq (≏) . . . . . . . . . . 58 \bumpeqq (⪮) . . . . . . . . . . 55 \bumpeqq (⪮) . . . . . . . . . 58 \bupperhand (e) . . . . . . . 181 \Burns ( \BusWidth ( ) \BUv (!) . . . . \BUvi (") . . . \BUvii (#) . \BUviii ($) \BUx (&) . . . \BUxi (’) . . \BUxii (­) . . ) . .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 130 153 153 153 153 153 153 153 . . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 152 152 152 129 152 152 152 C \C ( a) . . . . . . . . . . . . . . . \C ( ) . . . . . . . . . . . . . . . c (esvect package option) . \c (a̧) . . . . . . . . . . . . 20, \c ( ) . . . . . . . . . . . . . . \Ca (a) . . . . . . . . . . . . . \caesura () . . . . . . . . . . . 20 183 110 236 183 153 159 O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cal (emf package option) . 126 calligra (package) 123, 239, 240 calligra (emf package option) . . . . . . . . 126 Calligra (font) . . . . . . . . . 123 calrsfs (package) . . . . . . . 123 \CAN (␘) . . . . . . . . . . . . . 130 cancel (package) . . . . . . . 107 \Cancer (ã) . . . . . . . . . . 126 \Cancer (b) . . . . . . . . . . 128 \cancer (_) . . . . . . . . . . 126 \Candle ( ) . . . . . . . . . . . 192 \candra ( ̐ ) . . . . . . . . . . . 106 \Cap (e) . . . . . . . . . . . . . 30 \Cap (Ë) . . . . . . . . . . . . . 33 \Cap (⋒) . . . . . . . . . . . . . 33 \Cap (⋒) . . . . . . . . . . . . . 32 \Cap (⋒) . . . . . . . . . . . . . 34 \cap (X) . . . . . . . . . . . . . 31 \cap (∩) . . . . . . . . . . . . . 30 \cap () . . . . . . . . . . . . . 33 \cap (∩) . . . . . . . . . . . . . 32 \cap (∩) . . . . . . . . . . . . . 31 \cap (∩) . . . . . . . . . . . . . 34 \capbarcup (⩉) . . . . . . . . 34 \capdot (⩀) . . . . . . . . . . 32 \capdot (⩀) . . . . . . . . . . 31 \capdot (⩀) . . . . . . . . . . 34 \capovercup (⩇) . . . . . . . 34 \capplus (C) . . . . . . . . . 32 \capplus (?) . . . . . . . . . . 31 \Capricorn (é) . . . . . . . . 126 \Capricorn (B) . . . . . . . 128 \capricornus (d) . . . . . . 126 \capturesymbol (X) . . . . . 181 \capwedge (⩄) . . . . . . . . . 34 card suits . 145, 146, 192–193 cardinality . . . . . see \aleph care of (c/o) . . . . . . . . . . . 121 caret . . . . . . . . . . . . . . see \^ \caretinsert (‸) . . . . . . 121 Carlisle, David . . 1, 238, 239 caron (ǎ) . . . . . . . see accents 252 carriage return . . . . . . . . 82, 84–85, 129, 130, 146, 222, see also \hookleftarrow \carriagereturn () . . . . 82 \carriagereturn (↵) . . . 84 \carriagereturn ( ) . . . 146 Cartesian product see \times castle . . . . . . . . 182, 217–218 \castlingchar (O) . . . . . 181 \castlinghyphen (-) . . . . 181 \Cat ( ) . . . . . . . . . . . . . 191 \catal (γ) . . . . . . . . . . . 184 \Catalexis (∧) . . . . . . . . 183 \catalexis (∧) . . . . . . . . 183 catamorphism . . . . . . . . . . . . see \llparenthesis and \rrparenthesis \CB (\ -) . . . . . . . . . . . . . . 129 \cb (a, ) . . . . . . . . . . . . . . 24 \Cc ( ) . . . . . . . . . . . . . . 183 CC \cc ( ○ ) . . . . . . . . . . . 27 \cc ( ) . . . . . . . . . . . . . 183 \ccAttribution (b) . . . . 27 BY: \ccby ( ○ ) . . . . . . . . . 27 \ccbyncnd (cbnd) . . . 27 \Ccc ( ) . . . . . . . . . . . . . 183 \ccCopy (©) . . . . . . . . . . 27 \cChangey ( ) . . . . . . . . . 191 ccicons (package) 27, 239, 240 cclicenses (package) . 27, 239, 240 \ccLogo (c) . . . . . . . . . . 27 $ \ccnc ( ○ ) . . . . . . . . . 27 = \ccnd ( ○ ) . . . . . . . . . 27 \ccNoDerivatives (d) . . 27 \ccNonCommercial (n) . . 27 \ccNonCommercialEU (e) . 27 \ccNonCommercialJP (y) . 27 \ccPublicDomain (p) . . . 27 \ccRemix (r) . . . . . . . . . 27 \ccsa (○ ) . . . . . . . . . . . 27 \ccSampling (m) . . . . . . . 27 \ccShare (s) . . . . . . . . . 27 \ccShareAlike (a) . . . . . 27 \ccwundercurvearrow (⤿) 84 \ccZero (z) . . . . . . . . . . 27 \cdot (·) . . . . . . . . . . 30, 223 \cdot (y) . . . . . . . . . . . . . 33 \cdot (⋅) . . . . . . . . . . 32, 115 \cdot (⋯) . . . . . . . . . . . 115 \cdot (⋅) . . . . . . . . . . 31, 115 \cdot (⋅) . . . . . . . . . . . . . 115 \cdotp (·) . . . . . . . . . . . . 114 \cdotp (⋯) . . . . . . . . . . . 115 \cdotp (⋅) . . . . . . . . . . . . 115 \cdotp (·) . . . . . . . . . . . . 115 \cdots (· · · ) . . . . . . . . . 114 \cdots (⋯) . . . . . . . . . . . 115 \cdots (⋯) . . . . . . . . . . . 115 \CE () . . . . . . . . . . . . . . 129 \Ce (e) . . . . . . . . . . . . . 153 Cedi see \textcolonmonetary cedilla (¸) . . . . . . see accents C ∖ \BUFd () . . . . . . . . . . 130 buffers . . . . . . . . . . . . . . 130 \Bwa (w) \Bwe (W) \Bwi (6) \Bwo (7) \BX () . \Bza (z) \Bze (Z) \Bzo (9) C \Btwo (~) . . . . . . . . . . . 152 \Bu (u) . . . . . . . . . . . . . 152 celestial bodies 126–128, 186, 201–203 \celsius (℃) . . . . . . . . . 125 \Celtcross () . . . . . . . . 177 Celtic knots . . . . . . 207–210 \cent (¢) . . . . . . . . . . . . 25 \centerdot (‚) . . . . . . . . 31 \centerdot ( ) . . . . . . . . . 32 \centerdot () . . . . . . . . 30 \centerdot (î) . . . . . . . . 33 \centerdot (·) . . . . . . . . 115 centernot (package) . . . . . 224 \centernot . . . . . . . . . . . 224 centigrade . see \textcelsius \centre (I) . . . . . . . . . . 181 cents . . . . . . . . see \textcent \Ceres (Â) . . . . . . . . . . . 128 \CEsign (C) . . . . . . . . . . 131 \Cga (g) . . . . . . . . . . . . 153 \Chair ( ) . . . . . . . . . . . . 192 chancery (package) . . . . . . 239 \changenotsign . . . . . . . 52 \Changey ( ) . . . . . . . . . 191 \char . 12, 222, 231, 234, 235, 238 Charter (font) . . . . . . . 25, 49 \check ( ̌ ) . . . . . . . . . . . 106 \check (ˇ) . . . . . . . . . . . 105 check marks 15, 119–121, 137, 138, 146, 176, 177, 194– 197, 220 \checked () . . . . . . . . . 176 \CheckedBox (2 ) . . . . . . . 138 \Checkedbox (V) . . . . . . . 138 \Checkmark (!) . . . . . . . 137 \checkmark (X) . . . . . . . 15 \checkmark (D) . . . . . . . 146 \checkmark (ï) . . . . . . . . 120 \checkmark (✓) . . . . . . . 120 \checkmark (✓) . . . . . . . 119 \checkmark (✓) . . . . . . . . 121 \checkmark (X vs. D) . . . 220 \CheckmarkBold (") . . . . 137 \checksymbol (+) . . . . . . 181 chemarr (package) . . 111, 239, 240 chemarrow (package) 87, 111, 239 \chemarrow (A) . . . . . . . 87 Chen, Raymond . . . . . . . 241 chess symbols . . . . . 181, 182, 217–218 \chesscomment (RR) . . . . 181 \chessetc (P) . . . . . . . . . 181 \chesssee (l) . . . . . . . . 181 chevrons . . . . . . . . . . . . . 135 \Chi (X) . . . . . . . . . . . . . 93 \chi (𝜒) . . . . . . . . . . . . . 93 ChinA2e (package) . 26, 92, 124, 186, 187 china2e (package) 123, 239, 240 \Chiron (D) . . . . . . . . . . 128 \chiup (χ) . . . . . . . . . . . 94 chorus (emf package option) 126 \Ci (i) . . . . . . . . . . . . . 153 cipher symbols . . . . . . . . 186 \cirbot (⟟) . . . . . . . . . . . 58 \circ (∘) . . . . . 30, 121, 224 \circ (◦) . . . . . . . . . . . . 37 \circ (○) . . . . . . . . . . . . 31 \circ (◦) . . . . . . . . . . . . 142 \circeq () . . . . . . . . . . 52 \circeq ($) . . . . . . . . . . 50 \circeq (Ù) . . . . . . . . . . 57 \circeq (≗) . . . . . . . . . . 55 \circeq (≗) . . . . . . . . . . . 53 \circeq (≗) . . . . . . . . . . 58 \CIRCLE ( ) . . . . . . . . . . 140 \Circle (#) . . . . . . . . . . 140 \Circle ( ) . . . . . . . . . . 143 \Circle (# vs. ) . . . . . 220 \circlearrowleft (ö) . . 73 \circlearrowleft ( ) . . 72 \circlearrowleft (£) . . 82 \circlearrowleft (↺) . . 79 \circlearrowleft (↺) . . 75 \circlearrowleft (↺) 84, 85 \circlearrowright (œ) . . 73 \circlearrowright () . 72 \circlearrowright (¢) . 82 \circlearrowright (↻) . 79 \circlearrowright (↻) . 75 \circlearrowright (↻) 84, 85 \circlebottomhalfblack (◒) . . . . . . . 142 circled numerals 138, 182, 183, 217 \CircledA (ª) . . . . . . . . 177 \circledast (~) . . . . . . . 30 \circledast (ö) . . . . . . . 37 \circledast (⊛) . . . . . . . 37 \circledast (⊛) . . . . . . . 36 \circledast (⊛) . . . . . . . 38 \circledbar (V) . . . . . . . 31 \circledbslash (W) . . . . 31 \circledbullet (⦿) . . . . 142 \circledcirc (}) . . . . . . 30 \circledcirc (õ) . . . . . . 37 \circledcirc (⊚) . . . . . . 37 \circledcirc (⊚) . . . . . . 36 \circledcirc (⊚) . . . . . . 38 \circleddash () . . . . . . 30 \circleddash (÷) . . . . . . 37 \circleddash (⊝) . . . . . . 37 \circleddash (⊖) . . . . . . 36 \circleddash (⊝) . . . . . . 38 \circleddot . . . . . see \odot \circleddotleft () . . 73 \circleddotright () . 73 \CircledEq () . . . . . . . 57 \circledequal (⊜) . . . . . 37 \circledequal (⊜) . . . . . 38 \circledgtr (S) . . . . . . . 51 \circledless (R) . . . . . . 51 \circledminus . see \ominus 5 5 253 \circledotleft . . . . . . . see \circleddotleft \circledotright . . . . . . see \circleddotright \circledownarrow (⧬) . . . 142 \circledparallel (⦷) . . 38 \circledplus . . . see \oplus \circledR (r) . . . . . . 15, 96 \circledR (Ⓡ) . . . . . . . . . 97 \circledrightdot (⚆) . . 142 \circledS (s) . . . . . . . . 96 \circledS (Ⓢ) . . . . . . . . . 97 \circledslash . see \oslash \circledstar (✪) . . . . . . 142 \circledtimes . see \otimes \circledtwodots (⚇) . . . 142 \circledvee (U) . . . . . . . 31 \circledvert (⦶) . . . . . . 37 \circledvert (⦶) . . . . . . 38 \circledwedge (T) . . . . . 31 \circledwhitebullet (⦾) 142 \circlehbar (⦵) . . . . . . . 38 \circleleft () . . . . . . 73 \circlelefthalfblack (◐) 142 \circlellquad (◵) . . . . . 142 \circlelrquad (◶) . . . . . 142 \circleonleftarrow (⬰) . 84 \circleonrightarrow (⇴) 84 \circleright () . . . . . 73 \circlerighthalfblack (◑) . . . . . . . . 142 circles . . . . . . . 128, 140–145, 147, 182, 183, 188, 199– 200, 205, 215–216 \CircleShadow (d) . . . . . 143 \CircleSolid (a) . . . . . . 143 \circlet ( ) . . . . . . . . . 144 \circletcross ( ) . . . . . 144 \circletdot ( ) . . . . . . . 144 \circletfill ( ) . . . . . . 144 \circletfillha ( ) . . . . 144 \circletfillhb ( ) . . . . 144 \circletfillhl ( ) . . . . 144 \circletfillhr ( ) . . . . 144 \circletlineh ( ) . . . . . 144 \circletlinev ( ) . . . . . 144 \circletlinevh ( ) . . . . 144 \circletophalfblack (◓) 142 \circleulquad (◴) . . . . . 142 \circleurquad (◷) . . . . . 142 \circleurquadblack (◔) . 142 \circlevertfill (◍) . . . 142 \Circpipe () . . . . . . . . . 131 \circplus (˘) . . . . . . . . 31 \circplus () . . . . . . . . . 33 \Circsteel () . . . . . . . . 131 circumflex (^ a) . . . see accents \circumflexus (ã) . . . . . 23 \cirE (⧃) ⨐. . . . . . . . . . . 142 \cirfnint ( ) . . . . . . . . . 48 \cirfnint (⨐) . . . . . . . . . 46 \cirfnintsl (⨐) . . . . . . . 47 \cirfnintup (⨐) . . . . . . . 47 \cirmid (⫯) . . . . \cirmid (⫯) . . . . \cirscir (⧂) . . \Cja (j) . . . . . . \Cjo (b) . . . . . \Cka (k) . . . . . . \Cke (K) . . . . . \Cki (c) . . . . . \Cko (h) . . . . . \Cku (v) . . . . . \Cla (l) . . . . . \Cle (L) . . . . . . \CleaningA («) . \CleaningF (¾) . \CleaningFF (¿) \CleaningP (¬) . \CleaningPP (î) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 58 142 153 153 153 153 153 153 153 153 153 177 177 177 177 177 \clefC ( ) . . . . . . . . . . . 162 \clefCInline . . . . . . . . . 162 \clefF ( ) . . . . . . . . . . . 162 \clefFInline . . . . . . . . . 162 \clefG ( ) . . . . . . . . . . . 162 \clefGInline . . . . . . . . . 162 clefs . . . . . 159–160, 162, 168, 192–193 \Cli (d) . . . . . . . . . . . . . 153 \clickb (;) . . . . . . . . . . 19 \clickc ( ) . . . . . . . . . . . 19 \clickt (R) . . . . . . . . . . . 19 \Clo (f) . . . . . . . . . . . . . 153 clock (package) . 179, 239, 240 \clock () . . . . . . . . . . . 176 1i \clock ( ) . . . . . . . . . . 179 clock symbols . . . . . 176–179, 192–193 \ClockFramefalse . . . . . . 179 \ClockFrametrue . . . . . . 179 \ClockLogo (U) . . . . . . . . 177 \ClockStyle . . . . . . . . . . 179 \clocktime . . . . . . . . . . . 179 \closedcurlyvee (¾) . . . . 32 \closedcurlywedge (¼) . . 32 \closedequal (Ü) . . . . . . 53 \closedniomega (?) . . . . 19 \closedprec (½) . . . . . . . 53 \closedrevepsilon () . . 19 \closedsucc (») . . . . . . . 53 \closedvarcap (⩍) . . . . . 34 \closedvarcup (⩌) . . . . . 34 \closedvarcupsmashprod (⩐) . . . . . . . . . 34 \closure ( ) . . . . . . . . . . 105 \closure (⁐) . . . . . . . . 55, 90 \closure (⁐) . . . . . . . . . 58 \Cloud ( ) . . . . . . . . . . . 178 clouds . . . . . . . . . . . . . . . 38 clovers . . . . . . . . . . . . . . 139 \Clu (q) . . . . . . . . . . . . 153 clubs . . . . . . . . . . . . 145, 146 \clubsuit (♣) . . . . . . . . 145 \clubsuit (ô) . . . . . . . . . 145 \clubsuit (♣) . . . . . . . . 145 \clubsuit (♣) . . . . . . . . . 145 \clubsuit (♣) . . . . . . . . . 146 \Cma (m) . . . . . . . . . . . . 153 \Cme (M) . . . . . . . . . . . . 153 \Cmi (y) . . . . . . . . . . . . 153 cmll (package) . 29, 35, 50, 61, 98, 239 \Cmo (A) . . . . . . . . . . . . 153 cmr (emf package option) . 126 \Cmu (B) . . . . . . . . . . . . 153 cmupint (package) 48, 49, 239, 240 \Cna (n) . . . . . . . . . . . . . 153 \Cne (N) . . . . . . . . . . . . . 153 \Cni (C) . . . . . . . . . . . . 153 \Cno (E) . . . . . . . . . . . . 153 \Cnu (F) . . . . . . . . . . . . . 153 \CO ( ) . . . . . . . . . . . . . . 129 \Co (o) . . . . . . . . . . . . . 153 \coAsterisk (ˇ) . . . . . . . 31 \coAsterisk (`) . . . . . . . 33 \coasterisk (ˇ) . . . . . . . 31 i \Coda () . . . . . . . . . . . . . 159 U \coda () . . . . . . . . . . . . . 159 code page 1252 . . . . . . . . 235 table . . . . . . . . . . . . 237 code page 437 . . 130, 185, 234 \Coffeecup (K) . . . 177, 192 \coh (¨) . . . . . . . . . . . . . 61 coins, ancient . . . . . . . . . 26 \Colon (∷) . . . . . . . . . . . 115 \Colon (∷) . . . . . . . . . . . 115 \colon . . . . . . . . . . . . . . 114 \colon ( : ) . . . . . . . . . . . 114 \colon (∶) . . . . . . . . . . . . 115 \colon (∶) . . . . . . . . . . . . 115 \Colonapprox () . . . . . 51 \Colonapprox (::≈) . . . . . 59 \colonapprox (:≈) . . . . . 61 \colonapprox (:≈) . . . . . 59 \colonapprox ( ) . . . . . . 51 \coloncolon (::) . . . . . . . 61 \coloncolonapprox (::≈) 61 \coloncolonequals (::=) 61 \coloncolonminus (::−) . 61 \coloncolonsim (::∼) . . . 61 \Coloneq (H) . . . . . . . . . 51 \Coloneq (::−) . . . . . . . . 59 \Coloneq (⩴) . . . . . . . . . 58 \coloneq (–) . . . . . . . 29, 52 \coloneq (:−) . . . . . . . . . 59 \coloneq (D) . . . . . . . . . 51 \coloneq (≔) . . . . . . . . . 55 \coloneq (∶=) . . . . . . . . . 53 \coloneq (≔) . . . . . . . . . 58 \Coloneqq (F) . . . . . . . . 51 254 \Coloneqq (::=) . . . . . . . 59 \coloneqq (:=) . . . . . . . . 59 \coloneqq (B) . . . . . . 29, 51 \coloneqq (≔) . . . . . . . . 55 colonequals (package) . 29, 61, 239, 240 \colonequals (:=) . . . 29, 61 \colonminus (:−) . . . . . . 61 \Colonsim () . . . . . . . . 51 \Colonsim (::∼) . . . . . . . 59 \colonsim (:∼) . . . . . . . . 61 \colonsim (:∼) . . . . . . . . 59 \colonsim () . . . . . . . . 51 combelow (package) . 24, 239, 240 combinatorial logic gates . 130 comma-below accent (a, ) . . see accents \commaminus (⨩) . . . . . . . 34 communication symbols . . 130 commutative diagrams . . . 226 comp.text.tex (newsgroup) 13, 29, 30, 222–228 compass . . . . . . . . . 199–200 \compensation (n) . . . . . 181 \complement (A) . . . . . . . 96 \complement ({) . . . . . . . 96 \complement (ý) . . . . . . . 97 \complement (∁) . . . . . . . 97 \complement (∁) . . . . . . . 44 \complement (∁) . . . . . . . 97 complete shuffle product ( ) 35 \COMPLEX ( ) . . . . . . . . . . 92 \Complex ( ) . . . . . . . . . . 92 complex numbers (C) . . . see alphabets, math composited accents . . . . . 20 Comprehensive TEX Archive Network 1, 12, 107, 124, 130, 219, 235, 238, 239 computer hardware symbols 129 computer keys . . . . . . . . . 129 Computer Modern (font) . 87, 219, 221, 234 computer symbols . . 194–197 \ComputerMouse (Í) . . . . 129 \concavediamond (⟡) . . . 38 \concavediamondtickleft (⟢) . . . . . . . . 38 \concavediamondtickright (⟣) . . . . . . . . . . . . 38 \Conclusion (;) . . . . . . . 116 \conductivity (𝜒) . . . . . 133 \cong () . . . . . . . . . . . . 50 \cong (æ) . . . . . . . . . . . . 57 \cong (≅) . . . . . . . . . . . . 55 \cong (≅) . . . . . . . . . . . . 53 \cong (≅) . . . . . . . . . . . . 58 \congdot (⩭) . . . . . . . . . 58 \Congruent (]) . . . . . . . . 116 congruent . . . . . . see \equiv \conictaper (⌲) . . . . . . . 121 \conjquant (⨇) . . . . . . . 45 » à ⨇ \conjquant ( ) . . . . . . . 46 \Conjunction (q) . . . . . . 128 \conjunction (V) . . . . . . 126 conjunction, logical see \wedge and \& consequence relations . . . . 60 contradiction symbols . 29, 90 control characters . . . . . . 130 \Conv (Conv) . . . . . . . . . 92 converse implication . . . . see \leftarrow and \subset converse nonimplication . . . . . . . see \nleftarrow and \nsubset \convolution (˙) . . . . . . 31 \convolution (@) . . . . . . 33 \cooker ( ) . . . . . . . . . . 191 cooking symbols 191, 194–197 cookingsymbols (package) 191, 239, 240 \Cooley ( ) . . . . . . . . . . 191 \Coppa (Ϙ) . . . . . . . . . . . 154 \coppa (ϙ)∐︀ . . . . . . . . . . . 154 \coprod ( ) . . . . . . . . 29, 40 \coprod (∐) . . . . . . . . . . 45 \coprod (∐) . . . . . . . . . . 44 ∐ \coprod ( ) . . . . . . . . . . 46 copyright . 14, 15, 26, 27, 236 \copyright (©) . . . . . . . 15 c \copyright (○) . . . . . . . 15 \corner (k) . . . . . . . . . . . 24 corners, box . . . . . . . . . . 185 \corona ( ̮) . . . . . . . . . . 184 \coronainv (Ϙ) . . . . . . . . 184 \Corresponds (=) . . . . . . 116 \corresponds (fl) . . . . . . 52 \corresponds () . . . . . . 57 \cos (cos) . . . . . . . . 91, 232 \cosh (cosh) . . . . . . . . . 91 \cot (cot) . . . . . . . . . . . 91 \coth (coth) . . . . . . . . . . 91 \counterplay (V) . . . . . . 181 countries . . . . . . . . . . . . . 188 European . . . . . . . . . 188 countriesofeurope (package) 188, 239, 240 CountriesOfEurope (font) 190 \countriesofeuropefamily . . . . . . . . . 190 Courier (font) . . . . . . . . . 25 \Cov (Cov) . . . . . . . . . . . 92 \cov (cov) . . . . . . . . . . . 92 \covbond (⁀) . . . . . . . . . 133 cowboy hat . . . . . . . . . . . 107 CP1252 . . see code page 1252 CP437 . . . see code page 437 \Cpa (p) . . . . . . . . . . . . . 153 \Cpe (P) . . . . . . . . . . . . . 153 \Cpi (G) . . . . . . . . . . . . 153 \Cpo (H) . . . . . . . . . . . . 153 \Cpu (I) . . . . . . . . . . . . 153 \CR ( -) . . . . . . . . . . 129, 130 \cr . . . . . . . . . . . . . . . . . 224 \Cra (r) . . . . . . . . . . . . . 153 \Cre (R) . . . . . . . . . . . . 153 Creative Commons licenses 26, 27 crescent (fge package option) . . . . . . . . 106 \crescHairpin ( ) . . . . 163 \Cri (O) . . . . . . . . . . . . 153 \Cro (U) . . . . . . . . . . . . . 153 \Croatia () . . . . . . . . . . 189 \Cross () . . . . . . . . . . . 177 \Cross (*) . . . . . . . . . . . 137 \Cross ( ) . . . . . . . . . . . 143 \Cross ( ) . . . . . . . . . . . 143 \Cross ( vs. * vs. ) . . . 220 \cross (*) . . . . . . . . . . . . 157 cross ratio . . see \textrecipe \crossb () . . . . . . . . . . . 19 \CrossBoldOutline (-) . . 137 \CrossClowerTips (4) . . 137 \crossd ( ) . . . . . . . . . . . 19 \CrossedBox (X) . . . . . . . 138 \CrossedBox (X) . . . . . . . 138 \Crossedbox (X) . . . . . . . 138 crosses 137, 146, 169–173, 177, 182, 183, 199–200 \crossh (#) . . . . . . . . . . . 19 \crossing () . . . . . . . . 55 \CrossMaltese (.) . . . . . 137 \crossnilambda (3) . . . . . 19 \CrossOpenShadow (+) . . . 137 \CrossOutline (,) . . . . . 137 crotchet see musical symbols \crotchet ( C ) . . . . . . . . . 162 \crotchetDotted ( u ) . . . . 162 \crotchetDottedDouble ( u u ) . . . . . . . . 162 \crotchetDottedDoubleDown uu ( ) . . . . . . . . . . . 162 u \crotchetDottedDown ( ) 162 C \crotchetDown ( ) . . . . . . 162 \crotchetRest ( ) . . . . . . 163 \crotchetRestDotted ( ) 163 crown . . . . . . . . . . . . . . . 107 Ŕ \crtilde (ã) . . . . . . . . . . 22 \Cru (V) . . . . . . . . . . . . . 153 crucifixes . . 137, 177, 199–200 \Crux (†) . . . . . . . . . . . . 105 \crux (†) . . . . . . . . . . . . 105 cryst (package) . . . . 215, 239 crystallography symbols . 215– 216 \CS (/ -) . . . . . . . . . . . . . . 129 \Csa (s) . . . . . . . . . . . . . 153 \csc (csc) . . . . . . . . . . . . 91 \csch (csch) . . . . . . . . . . 92 \Cse (S) . . . . . . . . . . . . . 153 \cshuffle ( ) . . . . . . . . 35 255 \Csi (Y) . . . . . . . . . . . . . 153 \Cso (1) . . . . . . . . . . . . 153 \Csu (2) . . . . . . . . . . . . 153 \csub (⫏) . . . . . . . . . . . . 64 \csube (⫑) . . . . . . . . . . . 64 \csup (⫐) . . . . . . . . . . . . 64 \csupe (⫒) . . . . . . . . . . . 64 \Cta (t) . . . . . . . . . . . . . 153 CTAN see Comprehensive TEX Archive Network \Cte (T) . . . . . . . . . . . . . 153 \Cti (3) . . . . . . . . . . . . . 153 \Cto (4) . . . . . . . . . . . . . 153 \Ctrl ( Ctrl ) . . . . . . . . . 129 \Ctu (5) . . . . . . . \Cu (u) . . . . . . . \Cube ( 222 cube root . . . . . . cube rotations . . . \Cup (d) . . . . . . . \Cup (Ê) . . . . . . . \Cup (⋓) . . . . . . . \Cup (⋓) . . . . . . . \Cup (⋓) . . . . . . . \cup (Y) . . . . . . . \cup (∪) . . . . . . \cup () . . . . . . . \cup (∪) . . . . . . . \cup (∪) . . . . . . . \cup (∪) . . . . . . . \cupbarcap (⩈) . . \cupdot (⊍) . . . . \cupdot (⊍) . . . . \cupdot (⊍) . . . . \Cupido (ä) . . . . \cupleftarrow (¯) \cupleftarrow (⊌) \cupovercap (⩆) . \cupplus (⊎) . . . \cupplus (⊎) . . . . \cupvee (⩅) . . . . # » \curl (curl) . . . . \curlyc ( ) . . . . . \curlyeqprec (ű) \curlyeqprec (2) \curlyeqprec (Ì) \curlyeqprec (⋞) \curlyeqprec (⋞) \curlyeqprec (⋞) \curlyeqsucc (ů) \curlyeqsucc (3) \curlyeqsucc (Í) \curlyeqsucc (⋟) \curlyeqsucc (⋟) \curlyeqsucc (⋟) \curlyesh (N) . . . \curlyvee (O) . . \curlyvee (g) . . \curlyvee (Ï) . . . \curlyvee (⋎) . . . . . . . . . 153 . . . . . . 153 ) 178, . see \sqrt . . . . . . 198 . . . . . . 30 . . . . . . 33 . . . . . . 33 . . . . . . 32 . . . . . . 34 . . . . . . 31 30, 223, 232 . . . . . . 33 . . . . . . 32 . . . . . . 32 . . . . . . 34 . . . . . . 34 . . . . . . 32 . . . . . . 32 . . . . . . 34 . . . . . . 128 . . . 33, 82 . . . . . 34 . . . . . . 34 . . . . 32, 33 . . . . . . 32 . . . . . . 34 . . . . . . 92 . . . . . . 19 . . . . . . 52 . . . . . . 50 . . . . . . 57 . . . . . . 55 . . . . . . 53 . . . . . . 58 . . . . . . 52 . . . . . . 50 . . . . . . 57 . . . . . . 55 . . . . . . 53 . . . . . . 58 . . . . . . 19 . . . . . . 31 . . . . . . 30 . . . . . . 33 . . . . . . 32 \curlyvee (⋎) . . . . . . . . . 32 \curlyvee (⋎) . . . . . . . . . 34 \curlyveedot (5) . . . . . . 32 \curlyveedownarrow (.) . 30 \curlyveedownarrow (Ý) 82 \curlyveeuparrow (/) . . . 30 \curlyveeuparrow (Ü) . . 82 \curlywedge (N) . . . . . . . 31 \curlywedge (f) . . . . . . . 30 \curlywedge (Î) . . . . . . . 33 \curlywedge (⋏) . . . . . . . 32 \curlywedge (⋏) . . . . . . . 32 \curlywedge (⋏) . . . . . . . 34 \curlywedgedot (4) . . . . 32 \curlywedgedownarrow (') 30 \curlywedgedownarrow (ß) 82 \curlywedgeuparrow (&) . 30 \curlywedgeuparrow (Þ) . 82 \curlyyogh (a) . . . . . . . . 19 \curlyz (^) . . . . . . . . . . . 19 \currency (¤) . . . . . . . . . 25 currency symbols . 25, 26, 121, 124 \curvearrowbotleft (ó) 73 \curvearrowbotleft (ó) . 82 \curvearrowbotleftright (õ) . . . . . . . . 73 \curvearrowbotleftright (õ) . . . . . . . . 82 \curvearrowbotright (ô) 73 \curvearrowbotright (ô) 82 \curvearrowdownup (Ë) . . 74 \curvearrowleft (ð) . . . 73 \curvearrowleft (x) . . . 72 \curvearrowleft (ð) . . . 82 \curvearrowleft (⤺) . . . 79 \curvearrowleft (↶) . . . 75 \curvearrowleft (↶) . . . 84 \curvearrowleftplus (⤽) 84 \curvearrowleftright (ò) 73 \curvearrowleftright (ò) 82 \curvearrowleftright (È) 74 \curvearrownesw (Ì) . . . 74 \curvearrownwse (Í) . . . 74 \curvearrowright (ñ) . . 73 \curvearrowright (y) . . 72 \curvearrowright (ñ) . . 82 \curvearrowright () . . 79 \curvearrowright (↷) . . 75 \curvearrowright (↷) . . 84 \curvearrowrightleft (Ê) 74 \curvearrowrightminus (⤼) . . . . . . . . . 84 \curvearrowsenw (Ï) . . . 74 \curvearrowswne (Î) . . . 74 \curvearrowupdown (É) . . 74 cut time . . 159, 161, 163, 164 \CutLeft (q) . . . . . . . . . 135 cutoff subtraction see \dotdiv \CutRight (s) . . . . . . . . . 135 \CuttingLine (R) . . . . . . 135 \Cwa (w) . . . . . . . . . . . . 153 \cwcirclearrow (⥁) . . . . 84 \cwcirclearrowdown (⟳) \cwcirclearrowleft (µ) \cwcirclearrowright (↻) \cwcirclearrowup (´) . . \Cwe (W) . . . . . . . . . . . . . \cwgapcirclearrow (⟳) . \cwgapcirclearrow (⟳) . \Cwi (6) . . . . . . . . . . . . \cwleftarcarrow () . . . . \cwnearcarrow (⤵) . . . . . \cwnwarcarrow () . . . . . \Cwo (7) . . . . . . . . . . . . . \cwopencirclearrow (↻) \cwopencirclearrow (↻) 142 \cwoverarcarrow () . . . \cwrightarcarrow (⤸) . . . \cwrightarcarrow (⤸) . . . \cwsearcarrow (⤶) . . . . . \cwswarcarrow () . . . . . \cwunderarcarrow () . . \cwundercurvearrow (⤾) . \Cxa (x) . . . . . . . . . . . . . \Cxe (X) . . . . . . . . . . . . . \Cya (j) . . . . . . . . . . . . . \Cyo (b) . . . . . . . . . . . . \cyprfamily . . . . . . . . . . Cypriot . . . . . . . . . . . . . . cypriot (package) 153, 239, \CYRSH (Ш) . . . . . . . . . . \Cza (g) . . . . . . . . . . . . \Czechia () . . . . . . . . . . \Czo (9) . . . . . . . . . . . . . 78 78 78 78 153 79 84 153 78 78 78 153 79 85, 78 78 84 78 78 78 84 153 153 153 153 153 153 240 222 153 189 153 D D (D) . . . . . . . . . . . . . . . 157 \D (a) . . . . . . . . . . . . . . . 24 ¨ d (esvect package option) . 110 \d (ď) . . . . . . . . . . . . . . 157 \d (a.) . . . . . . . . . . . . . . . 20 d (d) . . . . . . . . . . . . . . . 157 d’Alembert operator . . . . see \laplac \DA () . . . . . . . . . . . . . . 129 \dag (†) . . . . . . . . . . 15, 237 \dag (†) . . . . . . . . . . . . . 15 \dagger (†) . . . . . . . . . . 30 \dagger (ñ) . . . . . . . . . . . 33 \dagger (†) . . . . . . . . . . . 34 \dalambert (å) . . . . . . . . 120 \daleth (k) . . . . . . . . . . 95 \daleth (ú) . . . . . . . . . . 95 \daleth (ℸ) . . . . . . . . . . 95 \daleth (ℸ) . . . . . . . . . . 95 \daleth (ℸ) . . . . . . . . . . 96 dancers (package) . . . 211, 239 dancing men . . . . . . 211–213 \danger (☡) . . . . . . . . . . 121 dangerous bend symbols . 176 Danish runes see normal runes \dAnnoey ( ) . . . . . . . . . 191 \DArrow ( ↓ ) . . . . . . . . 129 256 \dasharrow . . . . . . . . . . . see \dashrightarrow \dasharrow (⇢) . . . . . . . 79 \dasharrow (⤏) . . . . . . . 85 \dashcolon (∹) . . . . . . . . 58 \dasheddownarrow (⇣) . . . 74 \dashedleftarrow (⇠) . . 74 \dashednearrow (d) . . . . 74 \dashednwarrow (e) . . . . 74 \dashedrightarrow (⇢) . . 74 \dashedsearrow (g) . . . . 74 \dashedswarrow (f) . . . . 74 \dasheduparrow (⇡) . . . . . 74 ∫︀ \dashint (−) . . . . . . . . . 225 \dashleftarrow (c) . . . . 72 \dashleftarrow (⇠) . . . . 79 \dashleftarrow (⇠) . . . . 75 \dashleftarrow (⤎) . . . . 85 \dashleftharpoondown (⥫) 86 \dashleftrightarrow (e) 73 \dashrightarrow (d) . . . 72 \dashrightarrow (⇢) . . . 79 \dashrightarrow (⇢) . . . 75 \dashrightarrow (⤏) . . . 85 \dashrightharpoondown (⥭) . . . . . . . . . 86 \DashV ()) . . . . . . . . . . . 52 \DashV (Ú) . . . . . . . . . . . 57 \DashV (⫥) . . . . . . . . . . . 55 \DashV (⫥) . . . . . . . . . . . 58 \Dashv ()) . . . . . . . . . . . 52 \Dashv (⫤) . . . . . . . . . . . 55 \Dashv (⫤) . . . . . . . . . . . 58 \dashV (Û) . . . . . . . . . . . 57 \dashV (⫣) . . . . . . . . . . . 55 \dashV (⫣) . . . . . . . . . . . 58 \dashv (⊣) . . . . . . . . . . . 50 \dashv (⊣) . . . . . . . . . . . 55 \dashv (⊣) . . . . . . . . . . . 53 \dashv (⊣) . . . . . . . . . . . 58 \DashVDash (⟚) . . . . . . . 58 \dashVdash (⟛) . . . . . . . 58 \dashVv (-) . . . . . . . . . . 52 \dashVv (Ø) . . . . . . . . . . 57 \dashVv (ý) . . . . . . . . . . 55 database symbols . . . . . . 121 \davidsstar (C) . . . . . . . 139 \DavidStar (0) . . . . . . . 139 \DavidStarSolid (/) . . . 139 \dBar (||) . . . . . . . . . . . . 184 \dbar (¯ 𝑑) . . . . . . . . . . . . 223 \dbend () . . . . . . . . . . 176 \dbkarow (⤏) . . . . . . . 84, 85 dblaccnt (package) . . . . . . 227 \dblcolon (::) . . . . . . . . . 59 \DCa (␑) . . . . . . . . . . . . . 130 \DCb (␒) . . . . . . . . . . . . . 130 \DCc (␓) . . . . . . . . . . . . . 130 \dcChangey ( ) . . . . . . . . 191 \DCd (␔) . . . . . . . . . . . . . 130 \dChangey ( ) . . . . . . . . . 191 \dCooley ( ) . . . . . . . . . 191 \DD () . . . . . . . . . . 129, 160 \ddag (‡) . . . \ddag (‡) . . . \ddagger (‡) . \ddagger (ò) . \ddagger (‡)∫︀ . \ddashint (=) \Ddashv (ÿ) . \ddddot (⃜) . . .... \ddddot ( ) . \dddot (⃛) . . ... \dddot ( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15, .. .. .. .. .. .. .. .. .. .. 237 15 30 33 34 225 55 106 105 106 105 \dddtstile ( ) . . . . . . . \ddigamma (ϝ) . . . . . . . . . \DDohne (D /D) . . . . . . . . . . \ddot ( ̈ ) . . . . . . . . . . . . \ddot (¨) . . . . . . . . . . . . \ddotdot () . . . . . . . 32, \ddotdot () . . . . . . . 32, . \ddots ( . . ) . . . . . . . . . . . \ddots ( . . ) . . . 114, 226, \ddots (⋱) . . . . . . . . . . . \ddots (⋱) . . . . . . . . . . . \ddots (⋱) . . . . . . . . . . . \ddotseq (⩷) . . . . . . . . . \DDownarrow (⟱) . . . . . . ⟰ ⟰ ⟰ \DDownarrow ( ⟰ ⟰ ⟰) . . . . . \Ddownarrow (⤋)⟱. . . . . . . 60 154 160 106 105 115 115 . . . . . . . . . . 115 227 115 115 115 58 84 102 78 \Ddownarrow (⤋) . . . . . . . 84 ⤊ ⤊ ⤊ \Ddownarrow ( ⤊ ⤊ ⤊) . . . . . 102 ⤋ \ddststile ( ) . . . . . . . 60 \ddtstile ( ) ........ 60 \ddttstile ( ) . . . . . . 60 \DE () . . . . . . . . . . . . . . 129 \DeclareFontFamily 218, 231 \DeclareFontShape . 218, 231 \DeclareMathOperator . . 232 \DeclareMathOperator* . 232 \declareslashed . . . . . . 224 \DeclareUnicodeCharacter . . . . . . . . . 237 \decofourleft (;) . . . . . 140 \decofourright (<) . . . . 140 \decoone (8) . . . . . . . . . 140 decorative borders . . 204–210 \decosix (=) . . . . . . . . . 140 \decothreeleft (9) . . . . 140 \decothreeright (:) . . . 140 \decotwo (A) . . . . . . . . . 140 \decrescHairpin ( ) . . 163 Dedekind, Richard . . . . . . 222 definite-description operator ( ) . . . . . . . 222 definition symbols . . . 29, 227 \deg (deg) . . . . . . . . . . . 91 \degree (0) . . . . . . . . . . . 119 \degree (°) . . . . . . . . . . . 125 degrees . . . . see \textdegree \DEL (␡) . . . . . . . . . . . . . 130 \DEL (␡) . . . . . . . . . . . . . 130 \Del ( Del ) . . . . . . . . . . 129 \Del ( Del ) . . . . . . . . . . 129 \Deleatur . . . . see \Denarius delimiters . . . . . . . . . 98–105 text-mode . . . . 104, 105 variable-sized . . . 99–104 wavy-line . . . . . 100–103 \Delta (Δ) . . . . . . . . . . . 93 \delta (𝛿) . . . . . . . . . . . 93 \deltaup (δ) . . . . . . . . . . 94 deminutum . . . . see musixgre demisemiquaver . . see musical symbols \demisemiquaver ( Z ) . . . . 162 \demisemiquaverDotted ( Z ) . . . . . . . . 162 \demisemiquaverDottedDouble ( Z ) . . . . . . . . . . . 162 \demisemiquaverDottedDoubleDown Z ( ) . . . . . . . . . . . 162 \demisemiquaverDottedDown Z ( ) . . . . . . . . . . . . 162 Z \demisemiquaverDown ( ) 162 \Denarius (¢) . . . . . . . . 25 \denarius (Ε) . . . . . . . . 26 \Denmark () . . . . . . . . . . 189 \dental (ag ) . . . . . . . . . . . 22 \Dep () . . . . . . . . . . . . . . 159 derivitive, partial see \partial Descartes’s equal sign () . . . . . see \rightpropto and \backpropto \descnode () . . . . . . . . 126 \det (det) . . . . . . . . . . . 91 \devadvantage (t) . . . . . 181 ! . \Dfourier ( ... ) . . . . . . \Dfourier (Ë) . . . . . . . . . . \dfourier ( ... ) . . . . . . \dfourier (Ê) . . . . . . . . . \DFT ( 61 57 61 57 ) . . . . . . . . . . . 112 \dft ( ) ... \DH (D) . . . . . . \DH (Ð) . . . . . . \dh (k) . . . . . . \dh (ð) . . . . . . diacritics . . . . . \diaeresis (ä) diæresis (ä) . . . \diagdown (å) \diagdown () \diagdown (Ü) \diagdown (Ó) \diagdown (⟍) \diagonal (G) \diagup (ä) . . \diagup () . . \diagup (Û) . . \diagup (Ò) . . \diagup (⟋) . . \diameter (I) \diameter () 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 . . . . . 19 . . 15, 236 . . . . . 19 . . 15, 236 see accents . . . . . . 23 see accents . . . . . . 119 . . . . . . 119 . . . . . . 120 . . . . . . 53 . . . . . . 121 . . . . . . 181 . . . . . . 119 . . . . . . 119 . . . . . . 120 . . . . . . 53 . . . . . . 121 . . . . . . 119 . . . . . . 29 \diameter (∅) . . . . . . . . 120 \diameter (∅) . . . . . . . . . 119 \diameter (⌀) . . . . . . . . . 121 \diameter () . . . . . . . . 176 \Diamond (^) . . . . . . . . . 118 \Diamond (3) . . . . . . . . . 119 \Diamond (◇) . . . . . . . . . 37 \Diamond (◇) . . . . . . . . . 36 \Diamond (◊) . . . . . . . . . 142 \diamond (◇) . . . . . . . . . . 30 \diamond (}) . . . . . . . 37, 141 \diamond (⋄) . . . . . . . . . . 37 \diamond (◇) . . . . . . . . . . 36 \diamond (⋄) . . . . . . . 38, 142 \diamondbackslash () . 36 \diamondbackslash ({) . . 36 \diamondbar (ª) . . . . . . . 37 \Diamondblack (_) . . . . . 119 \diamondbotblack (⬙) . . 142 \diamondbslash () . . . . 37 \diamondcdot (⟐) . . . . . . 37 \diamondcdot (⟐) . . . . . 142 \diamondcircle (®) . . . . 37 \diamonddiamond () . . . 36 \diamonddiamond () . . . 36 \Diamonddot () . . . . . . . 119 \diamonddot (⟐) . . . . . . . 36 \diamonddot (⟐) . . . . . . . 36 \DiamonddotLeft () . . 73 \Diamonddotleft () . . 73 \DiamonddotRight () . 73 \Diamonddotright () . 73 \diamonddots ( ) . . . 32, 115 \DiamondLeft () . . . . . 73 \Diamondleft ( ) . . . . . 73 \diamondleftarrow (⤝) . 84 \diamondleftarrowbar (⤟) 84 \diamondleftblack (⬖) . 142 \diamondminus (©) . . . . . 37 \diamondminus ( ) . . . . . 36 \diamondminus (x) . . . . . 36 \diamondop (¨) . . . . . . . . 37 \diamondplus (¬) . . . . . . 37 \diamondplus () . . . . . . 36 \diamondplus (|) . . . . . . 36 \DiamondRight () . . . . 73 \Diamondright () . . . . 73 \diamondrightblack (⬗) 142 diamonds . . . . see rhombuses \DiamondShadowA ( ) . . . 143 \DiamondShadowB ( ) . . . 143 \DiamondShadowC ( ) . . . 143 \Diamondshape ( ) . . . . . 143 \diamondslash () . . . . . 36 \diamondslash (z) . . . . . 36 \DiamondSolid (p) . . . . . 143 \diamondsuit (♢) . . . . . . 145 \diamondsuit (õ) . . . . . . 145 \diamondsuit (♢) . . . . . . 145 \diamondsuit (♢) . . . . . . 145 \diamondsuit (♢) . . . . . . 146 \diamondtimes («) . . . . . 37 6 𝜄 \diamondtimes () . . . . . 36 \diamondtimes (}) . . . . . 36 \diamondtopblack (⬘) . . 142 \diamondtriangle (­) . . . 37 \diamondvert () . . . . . . 36 \diamondvert (y) . . . . . . 36 \diatop . . . . . . . . . . 24, 227 \diaunder . . . . . . . . . 24, 227 dice . . . . . 178, 179, 216, 222 dice (package) . . . . . 216, 239 \dicei (⚀) . . . . . . . . . . . 179 \diceii (⚁) . . . . . . . . . . 179 \diceiii (⚂) . . . . . . . . . 179 \diceiv (⚃) . . . . . . . . . . 179 \dicev (⚄) . . . . . . . . . . . 179 \dicevi (⚅) . . . . . . . . . . 179 dictionary symbols 17–20, 184 dictsym (package) 184, 239, 240 died . . . . . . . . see \textdied differential, inexact see \dbar \Digamma (\) . . . . . . . . . . 154 \Digamma (Ϝ) . . . . . . . . . 154 \digamma (z) . . . . . . 93, 154 \digamma (?) . . . . . . . . . . 154 \digamma (ϝ) . . . . . . . . . . 97 \digamma (ϝ) . . . . . . . . . . 154 digital logic gates . . . . . . 130 digits . . . . . . . . see numerals \dim (dim) . . . . . . . . . . . 91 \ding . 16, 134–139, 144, 146 \ding{33} (!) . . . . . . . . 135 \ding{34} (") . . . . . . . . 135 \ding{35} (#) . . . . . . . . 135 \ding{36} ($) . . . . . . . . 135 \ding{37} (%) . . . . . . . . . 146 \ding{38} (&) . . . . . . . . 146 \ding{39} (') . . . . . . . . 146 \ding{40} (() . . . . . . . . 146 \ding{41} ()) . . . . . . . . . 146 \ding{42} (*) . . . . . . . . 136 \ding{43} (+) . . . . . . . . 136 \ding{44} (,) . . . . . . . . . 136 \ding{45} (-) . . . . . . . . 136 \ding{46} (.) . . . . . . . . 136 \ding{47} (/) . . . . . . . . 136 \ding{48} (0) . . . . . . . . 136 \ding{49} (1) . . . . . . . . 136 \ding{50} (2) . . . . . . . . 136 \ding{51} (3) . . . . . . . . . 138 \ding{52} (4) . . . . . . . . 138 \ding{53} (5) . . . . . . . . 138 \ding{54} (6) . . . . . . . . 138 \ding{55} (7) . . . . . . . . . 138 \ding{56} (8) . . . . . . . . . 138 \ding{57} (9) . . . . . . . . 137 \ding{58} (:) . . . . . . . . 137 \ding{59} (;) . . . . . . . . 137 \ding{60} (<) . . . . . . . . . 137 \ding{61} (=) . . . . . . . . . 137 \ding{62} (>) . . . . . . . . . 137 \ding{63} (?) . . . . . . . . . 137 \ding{64} (@) . . . . . . . . . 137 \ding{65} (A) . . . . . . . . . 139 \ding{66} (B) \ding{67} (C) \ding{68} (D) \ding{69} (E) \ding{70} (F) \ding{71} (G) \ding{72} (H) \ding{73} (I) \ding{74} (J) \ding{75} (K) \ding{76} (L) \ding{77} (M) \ding{78} (N) \ding{79} (O) \ding{80} (P) \ding{81} (Q) . \ding{82} (R) . \ding{83} (S) . \ding{84} (T) \ding{85} (U) \ding{86} (V) . \ding{87} (W) \ding{88} (X) \ding{89} (Y) \ding{90} (Z) \ding{91} ([) . \ding{92} (\) . \ding{93} (]) . \ding{94} (^) . \ding{95} (_) \ding{96} (`) \ding{97} (a) \ding{98} (b) \ding{99} (c) . \ding{100} (d) \ding{101} (e) \ding{102} (f) \ding{103} (g) \ding{104} (h) \ding{105} (i) \ding{106} (j) \ding{107} (k) \ding{108} (l) \ding{109} (m) \ding{110} (n) \ding{111} (o) \ding{112} (p) \ding{113} (q) \ding{114} (r) \ding{115} (s) \ding{116} (t) \ding{117} (u) \ding{118} (v) \ding{119} (w) \ding{120} (x) . \ding{121} (y) \ding{122} (z) \ding{123} ({) \ding{124} (|) \ding{125} (}) \ding{126} (~) \ding{161} (¡) \ding{162} (¢) 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 144 144 144 144 144 144 144 144 144 144 146 144 144 144 144 16 16 16 16 16 16 \ding{163} \ding{164} \ding{165} \ding{166} \ding{167} \ding{168} \ding{169} \ding{170} \ding{171} \ding{172} \ding{173} \ding{174} \ding{175} \ding{176} \ding{177} \ding{178} \ding{179} \ding{180} \ding{181} \ding{182} \ding{183} \ding{184} \ding{185} \ding{186} \ding{187} \ding{188} \ding{189} \ding{190} \ding{191} \ding{192} \ding{193} \ding{194} \ding{195} \ding{196} \ding{197} \ding{198} \ding{199} \ding{200} \ding{201} \ding{202} \ding{203} \ding{204} \ding{205} \ding{206} \ding{207} \ding{208} \ding{209} \ding{210} \ding{211} \ding{212} \ding{213} \ding{214} \ding{215} \ding{216} \ding{217} \ding{218} \ding{219} \ding{220} \ding{221} \ding{222} \ding{223} \ding{224} \ding{225} (£) (¤) (¥) (¦) (§) (¨) (©) (ª) («) (¬) (­) (®) (¯) (°) (±) (²) (³) (´) (µ) (¶) (·) (¸) (¹) (º) (») (¼) (½) (¾) (¿) (À) (Á) (Â) (Ã) (Ä) (Å) (Æ) (Ç) (È) (É) (Ê) (Ë) (Ì) (Í) (Î) (Ï) (Ð) (Ñ) (Ò) (Ó) (Ô) (Õ) (Ö) (×) (Ø) (Ù) (Ú) (Û) (Ü) (Ý) (Þ) (ß) (à) (á) .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. . .. .. . .. . . . . .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 146 146 146 146 146 146 146 146 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 134 134 134 134 134 134 134 134 134 134 134 134 134 134 \ding{226} (â) . . . . . . . 134 \ding{227} (ã) . . . . . . . 134 \ding{228} (ä) . . . . . . . 134 \ding{229} (å) . . . . . . . 134 \ding{230} (æ) . . . . . . . 134 \ding{231} (ç) . . . . . . . . 134 \ding{232} (è) . . . . . . . 134 \ding{233} (é) . . . . . . . . 134 \ding{234} (ê) . . . . . . . . 134 \ding{235} (ë) . . . . . . . 134 \ding{236} (ì) . . . . . . . 134 \ding{237} (í) . . . . . . . . 134 \ding{238} (î) . . . . . . . . 134 \ding{239} (ï) . . . . . . . 134 \ding{241} (ñ) . . . . . . . 134 \ding{242} (ò) . . . . . . . . 134 \ding{243} (ó) . . . . . . . 134 \ding{244} (ô) . . . . . . . . 134 \ding{245} (õ) . . . . . . . 134 \ding{246} (ö) . . . . . . . . 134 \ding{247} (÷) . . . . . . . 134 \ding{248} (ø) . . . . . . . 134 \ding{249} (ù) . . . . . . . 134 \ding{250} (ú) . . . . . . . . 134 \ding{251} (û) . . . . . . . 134 \ding{252} (ü) . . . . . . . 134 \ding{253} (ý) . . . . . . . 134 \ding{254} (þ) . . . . . . . 134 \dingasterisk (✽) . . . . . 121 dingautolist . . . . . . . . . 138 dingbat (package) . . . 136, 146, 207, 220, 239, 240 dingbat symbols . . . 134–147 \dInnocey ( ) . . . . . . . . . 191 \Diple (>) . . . . . . . . . . . 183 \diple (>) . . . . . . . . . . . 183 · ) . . . . . . . . . . 183 \Diple* (> · \diple* (>·· ) . . . . . . . . . . 183 \dipole (𝑉) . . . . . . . . . . 133 Dirac notation . . . . . . . . . 99 \Direct (7) . . . . . . . . . . 128 discount . see \textdiscount discretionary hyphen . . . . 235 \Dish () . . . . . . . . . . . . 191 \disin (<) . . . . . . . . . . . 57 \disin (⋲) . . . . . . . . . . . 58 disjoint union . . . . . . . . . 29 \disjquant (⨈) . . . . . . . 45 ⨈ \disjquant ( ) . . . . . . . 46 disjunction . . . . . . . see \vee \displaystyle 225, 226, 228, 232 ditto marks see \textquotedbl \div (÷) . . . . . . . . . . . . 30 \div (|) . . . . . . . . . . . . . 33 \div (÷) . . . . . . . . . . . . . 32 \div (÷) . . . . . . . . . . . . . 32 \div (÷) . . . . . . . . . . . . . 34 \divdot (˜) . . . . . . . . . . 31 \divg (div) . . . . . . . . . . 92 \divideontimes (¸) . . . . 31 \divideontimes (>) . . . . 30 \divideontimes (Ã) . . . . 33 \divideontimes (⋇) . . . . 32 \divideontimes (⋇) . . . . 34 \Divides ([) . . . . . . . . . . 116 \divides () . . . . . . . . . . 52 \divides (Ò) . . . . . . . . . 53 \DividesNot (\) . . . . . . . 116 division . . . . 30, 107, 109, 114 long . . . . . . . . . 107, 109 non-commutative . . . 114 polynomial . . . . . . . . 107 division times . . . . . . . . . see \divideontimes divorced . see \textdivorced \divslash (/) . . . . . . . . . 32 \DJ (Ð) . . . . . . . . . . . . . . 15 \dj (đ) . . . . . . . . . . . . . . 15 \DL () . . . . . . . . . . . . . . 129 \dLaughey ( ) . . . . . . . . . 191 \dlbari (() . . . . . . . . . . . 19 \DLE (␐) . . . . . . . . . . . . . 130 \dlsh (ê) . . . . . . . . . . . . 73 \dlsh (ø) . . . . . . . . . . . . 82 \DM ( ) . . . . . . . . . . . . . . 129 \Dmesonminus (Ý) . . . . . 133 \Dmesonnull (Þ) . . . . . . 133 \Dmesonplus (Ü) . . . . . . 133 \dndtstile ( ) . . . . . . . 60 \dNeutrey ( ) . . . . . . . . . 191 \dNinja ( ) . . . . . . . . . . 191 \dnststile ( ) . . . . . . . 60 \dntstile ( ) . . . . . . . . 60 ) . . . . . . 60 \dnttstile ( \dNursey ( ) . . . . . . . . . . 191 do not enter . . . . see \noway does not divide . . . see \nmid does not exist . see \nexists does not imply . . . . . . . . 224 \Dohne (D / ) . . . . . . . . . . . 160 Dohse, Max . . . . . . . . . . . 225 dollar . . . . . see \textdollar dollar sign . . . . . . . . . . see \$ dominance . . . . . . see \prec negative . . . . see \nprec negative weak . . . . . see \npreccurlyeq strict . . . . . . . see \Prec weak . see \preccurlyeq \Dontwash (Ý) . . . . . . . . 177 \dot ( ̇ ) . . . . . . . . . . . . . 106 \dot ( ˙ ) . . . . . . . . . . . . . 105 \dot (.) . . . . . . . . . . . . . 157 dot accent (ȧ or . ) see accents dot symbols . . . 14, 114–116, 226–227 DotArrow (package) . 112, 239, 240 ≻ ) . . . . . 112 \dotarrow ( ˙ . . . . . . . . . . 55 \dotcong (≅) · . . . . . . . 29, 223 \dotcup (∪) \dotdiv (´) . . . . . . . . . . 31 \Doteq . . . . . . see \doteqdot \Doteq (≑) . . . . . . . . . . . 55 259 \Doteq (≑) . . . . . . . . . . . 53 \Doteq (≑) . . . . . . . . . 58, 59 \doteq () . . . . . . . . . . . 50 \doteq () . . . . . . . . . . . 57 \doteq (≐) . . . . . . . . . . . 55 \doteq (≐) . . . . . . . . . . . 53 \doteq (≐) . . . . . . . . . . . 58 \doteqdot (+) . . . . . . . . 50 \doteqdot (Û) . . . . . . . . . 57 \doteqdot (≑) . . . . . . . . . 55 \doteqdot (≑) . . . . . . . . . 53 \doteqdot (≑) . . . . . . . . . 59 \dotequiv (⩧) . . . . . . . . . 58 dotless 𝑗 (𝚥) text mode . . . . . . . . 20 dotless 𝑖 (𝚤) math mode . . . 105, 118 text mode . . . . . . . . 20 dotless 𝑗 (𝚥) math mode . . . 105, 118 \dotmedvert () . . . . . . . 32 \dotminus () . . . . . . . . . 57 \dotminus (∸) . . . . . . . . . 32 \dotminus () . . . . . . . . . 32 \dotminus (∸) . . . . . . . . . 34 \dotplus (`) . . . . . . . . . 31 \dotplus (u) . . . . . . . . . 30 \dotplus (Þ) . . . . . . . . . 33 \dotplus (∔) . . . . . . . . . 32 \dotplus (∔) . . . . . . . . . 34 \dots . . . . . . . . . . . . . . . 15 \dots (. . . ) . . . . . . . . . . . 237 dots (ellipses) 14, 15, 114–116, 118, 226–227 \dotsb (· · · ) . . . . . . . . . 114 \dotsb (⋯) . . . . . . . . . . . 115 \dotsc (. . .) . . . . . . . . . . 114 \dotseq („) . . . . . . . . . . 52 \dotsi (· · · ) . . . . . . . . . 114 \dotsim () . . . . . . . . . . 57 \dotsim (⩪) ¯ . . . . . . . . . . 58 \dotsint ( ) . . . . . . . . 43 \dotsint (∫⋯∫) . . . . . . . . 45 \dotsm (· · · ) . . . . . . . . . 114 \dotsm (⋯) . . . . . . . . . . . 115 \dotsminusdots (∺) . . . . 55 \dotsminusdots (∺) . . . . 58 \dotso (. . .) . . . . . . . . . . 114 dotted arrows . . . . . . . . . 112 ˙ . . . . . . . 232 dotted union (∪) \dottedcircle (◌) . . . . . 142 \dottedsquare (⬚) . . . . . 142 .. . . . . . . 22 \dottedtilde (ã) \dottimes (ˆ) . . . . . . . . 31 \dottimes () . . . . . . . . . 33 \dottimes (⨰) . . . . . . . . . 33 \dottimes (⨰) . . . . . . . . . 34 \double . . . . . . . . . . . . . 104 double acute (a̋) . see accents \doublebar (") ⨎. . . . . . . . 157 \doublebarint ( ) . . . . . . 48 \doublebarvee (⩢) . . . . . 34 \doublebarwedge (Z) . . . 31 \doublebarwedge ([) . . . 30 \doublebarwedge (Ò) . . . . 33 \doublebarwedge (⩞) . . . 33 \doublebarwedge (⩞) . . . . 34 \doublecap . . . . . . . see \Cap \doublecap (\) . . . . . . . . 31 \doublecap (⋒) . . . . . . . 33 \doublecap (⋒) . . . . . . . . 32 \doublecap (⋒) . . . . . . . . 34 \doublecovbond (Å) . . . 133 \doublecross (%) . . . . . . 157 \doublecup . . . . . . . see \Cup \doublecup (]) . . . . . . . . 31 \doublecup (⋓) . . . . . . . 33 \doublecup (⋓) . . . . . . . . 32 \doublecup (⋓) . . . . . . . . 34 \doublecurlyvee (7) . . . 32 \doublecurlywedge (6) . . 32 \doubledot (:) . . . . . . . . 157 \doubleeye (:) . . . . . . . . 157 \doublefrown () . . . . . . 89 \doublefrowneq (%) . . . . . 89 \doublepawns (d) . . . . . . 181 \doubleplus (,) . . . . . . . 157 \doubleplus (⧺) . . . . . . . 34 \doublesharp ( ) . . . . . . . 163 \doublesmile () . . . . . . 89 \doublesmileeq ($) . . . . . 89 \doublesqcap (⩎) . . . . . . 33 \doublesqcap (⩎) . . . . . . 32 \doublesqcup (⩏) . . . . . . 33 \doublesqcup (⩏) . . . . . . 31 \doublestar (%) . . . . . . . 157 \doublethumb () . . . . . . . 159 \doubletilde (˜ ã) . . . . . . 22 \doublevee (⩖) . . . . . 32, 33 \doublevee (⩔) . . . . . . . . 31 \doublewedge (⩕) . . . . 32, 33 \doublewedge (⩕) . . . . . . 31 \DOWNarrow (L) . . . . . . . . 176 \Downarrow (⇓) . . . . . . 72, 99 \Downarrow (⇓) . . . . . . . . 78 Ë Ë Ë Ë Ë \Downarrow ( ⇓) . . . . . . . 101 \Downarrow (⇓) . . . . . . . . 74 \Downarrow (⇓) . . . . . . . . 84 ⇑ ⇑ ⇑ ⇑ \Downarrow ( ⇑ ⇑) . . . . . . . 103 \downarrow . .⇓. . . . . . . . . 232 y \downarrow (↓) . È È È È È \downarrow ( ↓) \downarrow (↓) . \downarrow (↓) . \downarrow (↓) . ⏐ ⏐ ⏐ \downarrow ( ⏐ ⏐ ⏐) \downarrow (↓)↓ . . . . . . 72, 99 . . . . . . . . . . . . . . . . . . . . . . . . . 101 . 78 . 74 . 87 .... .... \downarrowbar (⤓) . . \downarrowbarred (⤈) \downarrowtail (#) . . \downarrowtail (#) . . \downAssert (⫧) . . . . \downassert (⫟) . . . . . . . . . . . . . . . . . . . . . 103 . 84 . 84 . 84 . 78 . 74 . 55 . 55 \downbkarrow (⇣) . . . . . . 78 \downblackarrow (0) . . . . 82 \downblackspoon (o) . . . . 89 \downbow () . . . . . . . . . . . 159 \downbracketfill . . . . . . 228 \downdasharrow (#) . . . . . 82 \downdasharrow (⇣) . . . . . 84 \downdownarrows (Ó) . . . 73 \downdownarrows () . . . 72 \downdownarrows () . . . 82 \downdownarrows (⇊) . . . 78 \downdownarrows (⇊) . . . 74 \downdownarrows (⇊) . . . 84 \downdownharpoons (Û) . . 74 Downes, Michael J. . . 91, 241 \downfilledspoon (s) . . . 88 \downfishtail (⥿) . . . . . 58 \downfootline ({) . . . . . . 53 \downfree (⫝) . . . . . . . . . 53 \downharpoonccw (⇂) . . . . 77 \downharpooncw (⇃) . . . . . 77 \downharpoonleft (å) . . . 74 \downharpoonleft () . . . 72 \downharpoonleft () . . . 83 \downharpoonleft (⇃) . . . 81 \downharpoonleft (⇃) . . . 86 \downharpoonleftbar (⥙) 86 \downharpoonright (ç) . . 74 \downharpoonright () . . 72 \downharpoonright () . . 83 \downharpoonright (⇂) . . 81 \downharpoonright (⇂) . . 86 \downharpoonrightbar (⥕) 86 \downharpoonsleftright (⥥) . . . . .⨜. . . . 86 \downint ( ) . . . . . . . . . . 48 \downlcurvearrow (⤸) . . . 79 \downleftcurvedarrow (¢) 79 \downlsquigarrow () . . . 79 \downlsquigarrow (£) . . . 74 \Downmapsto (/) . . . . . . . 78 \downmapsto (↧) . . . . . . . 78 \downmapsto (↧) . . . . . . . 74 \downModels (ó) . . . . . . . 53 \downmodels (ï) . . . . . . . 55 \downmodels (ã) . . . . . . . 53 \downp (u) . . . . . . . . . . . . 24 \downparenthfill . . . . . . 228 \downpitchfork (w) . . . . 90 \downpitchfork (⫛) . . . . . 88 \downpropto () . . . . . . . 53 \downrcurvearrow (⤹) . . . 79 \downrightcurvedarrow (⤵) . . . . . . . . . 79 \downrightcurvedarrow (⤵) . . . . . . . . . 84 \downrsquigarrow () . . . 79 \downrsquigarrow («) . . . 74 \downslice (Â) . . . . . . . . 36 \downspoon (⫰) . . . . . . . . 89 \downspoon (⫰) . . . . . . . . 88 \downt (m) . . . . . . . . . . . . 24 \downtherefore (∵) . . . . 115 — 260 \downtherefore (∵) . 31, 115 \downtouparrow (ß) . . . . 73 \downtouparrow (ë) . . . . 82 \downtriangleleftblack (⧨) . . . . . . . 141 \downtrianglerightblack (⧩) . . . . . . . . . . . 141 \downuparrows (Œ) . . . . . 73 \downuparrows (⇵) . . . . . 78 \downuparrows () . . . . . 74 \downuparrows (⇵) . . . . . 84 \downupcurvearrow (§) . . 79 \downupharpoons (ë) . . . . 74 \downupharpoons (⥯) . . . 81 \downupharpoons (⥯) . . . . 77 \downupharpoonsleftright (⥯) . . . . . . . . . . . . 81 \downupharpoonsleftright (⥯) . . . . . . . . . . . . . 86 \downupsquigarrow () . . 79 \downVDash (û) . . . . . . . . 55 \downVdash (⍑) . . . . . . . . 55 \downVdash (⍑) . . . . . . . . 53 \downvDash (⫪) . . . . . . . . 55 \downvdash (⊤) . . . . . . . . 55 \downvdash (⊤) . . . . . . . . 53 \downwavearrow () . . . . . 78 \downwhitearrow (%) . . . . 82 \downwhitearrow (⇩) . . . . 84 \downY (/) . . . . . . . . . . . 32 \downY (+) . . . . . . . . . . . 31 \downzigzagarrow () . . . 82 \downzigzagarrow (↯) . . . 79 \downzigzagarrow (↯) . . . 84 Doyle, Sir Arthur Conan . 213 dozenal (package) . . . 117, 180, 239, 240 dozenal (base 12) numerals . . . . . . . . . 117 tally markers . . . . . . 180 \dprime (″) . . . . . . . . . . 117 \DQ (% ) . . . . . . . . . . . . . . 129 \dracma (Δ) . . . . . . . . . . . 26 \draftingarrow (➛) . . . . 84 \drbkarow (⤐) . . . . . . . 84 \Dreizack ( ) . . . . . . . . . . 191 \droang ( ̚ ) . . . . . . . . . . . 106 \drsh (ë) . . . . . . . . . . . . 73 \drsh (ù) . . . . . . . . . . . . 82 M \drumclef ( ) \drWalley ( ) . \DS (SS) . . . . . . . \Ds (ss) . . . . . . . . . . . . . . . \ds () . . . . . . . . . . . . \dSadey ( ) . . . . . . . \dsaeronautical (a) \dsagricultural (G) \dsarchitectural (A) \dsbiological (B) . . \DSC (2) . . . . . . . . . \dschemical (C) . . . . . . . . ? . . . . . . . . . . . . . . . . . . . . 160 191 160 160 . . . . . .. .. .. . . . . . . . . 159 191 184 184 184 184 128 184 \dscommercial (c) . . . . . 184 \dsdtstile ( ) . . . \dSey ( ) . . . . . . . . dsfont (package) . . . \dsheraldical (H) . \dsjuridical (J) . . \dSleepey ( ) . . . . \dsliterary (L) . . . \dsmathematical (M) \dsmedical (m) . . . . \dSmiley ( ) . . . . . \dsmilitary (X) . . . \dsol (⧶) . . . . . . . . \dsrailways (R) . . . dsserif (package) . . . .... .... 123, .... .... .... .... .... .... .... .... .... .... 123, 60 191 239 184 184 191 184 184 184 191 184 34 184 239 \dsststile ( ) . . . . . . . 60 \dstechnical (T) . . . . . . 184 \dststile ( ) ........ 60 ) ...... \dsttstile ( \dsub (⩤) . . . . . . . . . . . 60 38 ) ....... 60 \dtdtstile ( \dtimes (⨲) . . . . \dtimes (_) . . . . \dtimes (") . . . . \dTongey ( ) . . . . . . . . . . . . . . . . . . . 32, 33 . . 34 . . 31 . . 191 \dtststile ( ) ....... 60 \dttstile ( ) ........ 60 ) ...... 60 \dtttstile ( \DU () . . . . . . . . . . . . . . 129 \dualmap (⧟) . . . . . . . . . 89 \dualmap (⧟) . . . . . . . . . 58 \duevolte () . . . . . . . . . . dunce cap . . . . . . . . . . . . duodecimal (base 12) numerals . . . . . . . . . tally markers . . . . . . DVI . . . . . . . . . 27, 129, .dvi files . . . . . . . . . . . . \dVomey ( ) . . . . . . . . . \dWalley ( ) . . . . . . . . . \dWinkey ( ) . . . . . . . . . \dXey ( ) . . . . . . . . . . . . \dz () . . . . . . . . . . . . . 117 180 230 235 191 191 191 191 19 E E (E) . . . . . . . . . . . . . . e (esvect package option) \e (e ) . . . . . . . . . . . . . . \e (E) . . . . . . . . . . . . . . e (e) . . . . . . . . . . . . . . 𝜀-TEX . . . . . . . . . . . . . . \Earth (C) . . . . . . . . . . \Earth (Ê) . . . . . . . . . . \Earth (Ñ) . . . . . . . . . . \earth (♁) . . . . . . . . . . \eastcross (♱) . . . . . . . \EastPoint (’) . . . . . . \Ecommerce () . . . . . . \eggbeater ( ) . . . . . . . 157 110 97 117 157 99 127 126 128 126 137 128 25 191 N . . . . . . . . . . . . . . 159 107 \egsdot (⪘) . . . . . . . . . . 68 \EightAsterisk (Z) . . . . 139 \EightFlowerPetal (S) . 139 \EightFlowerPetalRemoved (Y) . . . . . . . . . . . 139 eighth note . . . . . see musical symbols \eighthNote ( ) . . . . . . . 161 \eighthnote (♪) . . . . . . . 158 \eighthnote (♪) . . . . . . . 158 \eighthnote ( ) . . . . . . . 158 \eighthNoteDotted ( ) . 161 \eighthNoteDottedDouble ( ) . . . . . . . . . . . 161 \eighthNoteDottedDoubleDown ( ) . . . . . . . . . . . 161 \eighthNoteDottedDown ( ) . . . . . . . . 161 \eighthNoteDown ( ) . . . . 161 \EightStar (H) . . . . . . . 139 \EightStarBold (I) . . . . 139 \EightStarConvex (F) . . 139 \EightStarTaper (E) . . . 139 \ejective (e) . . . . . . . . . 19 electrical impulse . . . . . . . 125 electrical symbols . . . . . . 125 electromotive force . . . . . 126 \electron (𝑎) . . . . . . . . 133 element of . . . . . . . . . see \in elements . . . . . . . . . . . . . 128 \elinters (⏧) . . . . . . . . 121 \ell (ℓ) . . . . . . . . . . . . . 96 \ell (𝓁) . . . . . . . . . . . . . 97 \Ellipse (b) . . . . . . . . . 143 ellipses (dots) 14, 15, 114–116, 118, 226–227 ellipses (ovals) . 143, 144, 169– 173, 199–200, 205, 215– 216 \EllipseShadow (e) . . . . 143 \EllipseSolid (c) . . . . . 143 \elsdot (⪗) . . . . . . . . . . 68 \EM (␙) . . . . . . . . . . . . . . 130 \Email (k) . . . . . . . . . . . 130 \EmailCT (z) . . . . . . . . . 130 emf (package) . . 126, 239, 240 \emf (E) . . . . . . . . . . . . . 126 \emf (E) . . . . . . . . . . . . . 126 \emf E ( ) . . . . . . . . . . . . . 126 \emf (E) . . . . . . . . . . . . . 126 \emf (ℰ) . . . . . . . . . . . . . 126 \emf (E ) . . . . . . . . . . . . . 126 \emf (E) . . . . . . . \emf (E) . . . . . . . \emf (ℰ) . . . . . . . \emgma (M) . . . . . Emmentaler (font) emoticons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 126 126 19 163 191 \empty ( ) . . . . . . . . . . . 183 empty set . . . . . . . . 117–120 \emptyset (∅) . . . . . . . . . 118 261 \emptyset (∅) . . . \emptyset (∅) . . . . \emptyset (∅) . . . . \emptysetoarr (⦳) \emptysetoarrl (⦴) \emptysetobar (⦱) \emptysetocirc (⦲) \EN () . . . . . . . . . \enclosecircle (⃝) \enclosediamond (⃟) \enclosesquare (⃞) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 119 117 117 117 117 117 129 141 141 141 \enclosetriangle (⃤) . . . . 141 \End (End) . . . . . . . . . . . 92 \End ( End ) . . . . . . . . . . 129 end of proof . . . . . . 118, 121 \ending (L) . . . . . . . . . . 181 endofproofwd (package) . 121, 239 \eng (8) . . . . . . . . . . . . . 19 engineering symbols . 121, 125, 131 \engma (n) . . . . . . . . . . . 19 \enleadertwodots (‥) . . . 115 \ENQ (␅) . . . . . . . . . . . . . 130 entails . . . . . . . . see \models \Enter ( Enter ) . . . . . . . 129 enter . . . 129, see also carriage return enumerate . . . . . . . . . . . . 180 \Envelope ( ) . . . . . . . . . 146 envelopes . . . . . . . . 146, 187 \enya (N) . . . . . . . . . . . . 19 \EOafter (§) . . . . . . . . 154 \EOandThen (Ş) . . . . . . 154 \EOAppear (Ť) . . . . . . . 154 \EOBeardMask (t) . . . . 154 \EOBedeck (ą) . . . . . . . 154 \EOBlood (u) . . . . . . . . 155 \EObrace (ć) . . . . . . . . 155 \EObuilding (Æ) . . . . . 155 \EOBundle (v) \EOChop (w) . . . . . . 155 . . . . . . . . 155 \EOChronI (Ř) . . . . . . 155 \EOCloth (x) . . . . . . . . 155 \EODealWith (r) . . . . . 155 \EODeer (Ţ) . . . . . . . . 155 \EOeat (Ű) . . . . . . . . . 155 \EOflint (đ) . . . . . . . 155 \EOflower (č) . . . . . . . 155 \EOFold (Ä) . . . . . . . . 155 \EOGod (ď) \EOGoUp (Â) . . . . . . . . . 155 . . . . . . . . 155 \EOgovernor (ę) . . . . . 155 \EOGuise (z) . . . . . . . . 155 \EOHallow (¡) \EOi ( ) .... \EOii () . . . \EOiii () . . \EOiv () . . . \EOix (˘) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 156 156 156 156 156 \EOofficerII (|) . . . . . 155 \EOofficerIII (}) . . . . 155 \EOofficerIV (~) . . . . 155 \EOpa (3) . . . . . . . . . . 155 \EOpak (n) . . . . . . . . . 155 \EOja (V) . . . . . . . . . . 155 \EOPatron (Ś) . . . . . . 155 \EOjaguar (ĺ) . . . . . . 155 \EOje (U) . . . . . . . . . . 155 \EOJI (-) . . . . . . . . . . . 155 \EOji (T) . . . . . . . . . . 155 \EOjo (Y) . . . . . . . . . . 155 \EOju (X) . . . . . . . . . . 155 \EOkak (m) . . . . . . . . 155 \EOke (D) . . . . . . . . . . 155 \EOki (C) . . . . . . . . . . 155 \EOPatronII (Ů) . . . . . . 155 \EOpe (1) . . . . . . . . . . 155 \EOpenis (ť) . . . . . . . . 155 \EOpi (0) . . . . . . . . . . 155 \EOPierce (Ÿ) \EOPlant (Ę) . \EOPlay (Ğ) . \EOpo (6) . . . \EOpriest (ţ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 155 155 155 155 \EOsu (S) . . . . . . . . . . 154 \EOsun (ž) . . . . . . . . . 154 \EOSuu (K) . . . . . . . . . 155 \EOsuu (Q) . . . . . . . . . . 155 \EOT (␄) . . . . . . . . . . . . . 130 \EOta (:) . . . . . . . . . . 155 \EOte (8) . . . . . . . . . . 155 \EOthrone (ż) . . . . . . 155 \EOti (7) . . . . . . . . . . 155 \EOTime (ij) . . . . . . . . . 155 \EOtime (IJ) . . . . . . . . 155 \EOTitle (£) . . . . . . . . 155 \EOTitleII (Ŋ) . . . . . . 155 \EOTitleIV (ş) . . . . . . 155 \EOto (<) . . . . . . . . . . 155 \EOtu (;) . . . . . . . . . . 155 \EOtuki (Ő) . . . . . . . . . 155 . . . . . . . . . 155 \EOPrince (Ĺ) . . . . . . . 155 \EOKing (Ă) . . . . . . . . . 155 \EOpu (5) . . . . . . . . . . 155 \EOpuu (2) . . . . . . . . . 155 \EOknottedCloth (ł) . . 155 \EOknottedClothStraps (ń) . . . . . . . 156 \EOpuuk (o) . . . . . . . . 155 \EOturtle (À) . . . . . . 155 \EOtuu (9) . . . . . . . . . 155 \EORain (Ä) \EOtza (@) . . . . . . . . . . 155 \EOkij (Ź) \EOko (H) . . . . . . . . . . 156 \EOku (G) . . . . . . . . . . 156 \EOkuu (E) . . . . . . . . . 156 \EOLetBlood (Ã) . . . . . 156 \EOloinCloth (Ą) . . . . 156 . . . . . . . . 155 \EOSa (L) . . . . . . . . . . 155 \EOsa (R) . . . . . . . . . . 155 \EOsacrifice (Å) . . . . 155 \EOSaw (y) . . . . . . . . . 155 \EOlongLipII (Ć) . . . . 156 \EOLord (ň) . . . . . . . . 156 \EOLose (Č) . . . . . . . . 156 \EOma (]) . . . . . . . . . . 156 \EOmacaw (ŋ) . . . . . . . . 156 \EOmacawI (ŕ) . . . . . . . 156 \EOme ([) . . . . . . . . . . 156 \EOScorpius (q) . . . . . 155 \EOset (Â) . . . . . . . . . . 156 \EOSi (I) . . . . . . . . . . 156 \EOsi (O) . . . . . . . . . . 156 \EOsing (ů) . . . . . . . . 156 \EOSini (ľ) . . . . . . . . 156 \EOskin (ÿ) . . . . . . . . 156 \EOmexNew (Ď) . . . . . . . 156 \EOmi (Z) . . . . . . . . . . 156 \EOMiddle (Ě) . . . . . . . 154 \EOSky (Ľ) . . . . . . . . . 156 \EOskyAnimal (ś) . . . . 156 \EOskyPillar (Ł) \EOmonster (ő) . . . . . 154 \EOMountain (ě) . . . . . 154 . . . . 156 \EOmuu (\) . . . . . . . . . 154 \EOsnake (Ż) . . . . . . 156 \EOSo (N) . . . . . . . . . . 156 \EOna (b) . . . . . . . . . . 154 \EOSpan (,) . . . . . . . . . 156 \EOne (‘) . . . . . . . . . . 155 \EOni (^) . . . . . . . . . . 155 \EOSprinkle (Ń) . . . . . 156 \EOstar (Ž) . . . . . . . . . 156 \EOnow (š) . . . . . . . . . . 155 \EOnu (c) . . . . . . . . . . . 155 \EOnuu (a) . . . . . . . . . 155 \EOofficerI ({) . . . . . . 155 \EOStarWarrior (ź) . . 154 \EOstarWarrior (Ň) . . 156 \EOstep (ű) . . . . . . . . . 154 \EOSu (M) . . . . . . . . . . 154 262 \EOtukpa (İ) \EOtze (>) . . . . . . . 155 . . . . . . . . . 155 \EOtzetze (Ŕ) . . . . . . 155 \EOtzi (=) . . . . . . . . . 155 \EOtzu (B) . . . . . . . . . . 155 \EOtzuu (?) . . . . . . . . 155 \EOundef () . . . . . . . . 155 \EOv (¨) . . . . . . . . . . . 156 \EOvarBeardMask (ă) . . 155 \EOvarja (W) . . . . . . . 155 \EOvarji (.) . . . . . . . . 155 \EOvarki (/) . \EOvarkuu (F) \EOvarni (_) . . \EOvarpa (4) . \EOvarSi (J) . \EOvarsi (P) . \EOvartza (A) \EOvarwuu (g) . \EOvarYear (Ã) \EOvi (˝) . . . . \EOvii (˚) . . . \EOviii (ˇ) . . \EOwa (h) . . . . \EOwe (e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 155 155 155 156 156 156 156 156 156 156 156 156 156 \EOwi (d) . . . . . . . . . . 156 \EOwo (i) . . . . . . . . . . 156 \EOwuu (f) . . . . . . . . . 156 \EOx (¯) . . . . . . . . . . . 156 \EOxi (˙) . . . . . . . . . . 156 \EOxii (¸) . . . . . . . . . 156 \EOxiii (˛) . . . . . . . . 156 \EOxiv (‚) . . . . . . . . . 156 \EOxix („) . . . . . . . . . 156 \EOxv (‹) . . . . . . . . . . 156 \EOxvi (›) . . . . . . . . . 156 \EOxvii (“) . . . . . . . . 156 \EOxviii (”) . . . . . . . 156 \EOxx («) . . . . . . . . . . 156 \EOya (l) . . . . . . . . . . . 156 \EOyaj (p) . . . . . . . . . 156 \EOye (j) . . . . . . . . . . 156 \EOYear (s) . . . . . . . . 156 \EOyuu (k) . . . . . . . . . 156 \EOzero () . . . . . . . . 156 \EP () . . . . . . . . . . . . . . 129 \eparsl (⧣) . . . . . . . . . . 58 Epi-Olmec script . . . 154–156 epiolmec (package) . . 154, 156, 239, 240 epsdice (package) 179, 239, 240 ) . . . 179 \epsdice ( \epsi (") . . . . . . . . . . . . 19 \Epsilon (E) . . . . . . . . . 93 \epsilon (𝜖) . . . . . . . . . . 93 \epsilonup () . . . . . . . . 94 \eqbump () . . . . . . . . . . . 53 \eqbumped (‰) . . . . . . . . 52 \eqbumped ( ) . . . . . . . . . 57 \eqcirc (ff) . . . . . . . . . . 52 \eqcirc (P) . . . . . . . . . . 50 \eqcirc (Ú) . . . . . . . . . . 57 \eqcirc (≖) . . . . . . . . . . 55 \eqcirc (≖) . . . . . . . . . . . 53 \eqcirc (≖) . . . . . . . . . . 58 \Eqcolon (I) . . . . . . . . . 51 \Eqcolon (−::) . . . . . . . . 59 \eqcolon (—) . . . . . . . . . 52 \eqcolon (−:) . . . . . . . . . 59 \eqcolon (E) . . . . . . . . . 51 \eqcolon (≕) . . . . . . . . . 55 \eqcolon (≕) . . . . . . . . . 58 \eqdef (≝) . . . . . . . . . . . 58 \eqdot (⩦) . . . . . . . . . . . 55 \eqdot (⩦) . . . . . . . . . . . 53 \eqdot (⩦) . . . . . . . . . . . 58 \eqeq (⩵) . . . . . . . . . . . . 59 \eqeqeq (⩶) . . . . . . . . . 59 \eqfrown (#) . . . . . . . . . . 89 \eqgtr (⋝) . . . . . . . . . . . 68 \eqleftrightarrow (÷) . 82 \eqless (⋜) . . . . . . . . . . 68 \Eqqcolon (G) . . . . . . . . 51 \Eqqcolon (=::) . . . . . . . 59 \eqqcolon (=:) . . . . . . . . 59 \eqqcolon (C) . . . . . . . . 51 \eqqcolon (≕) . . . . . . . . 55 \eqqgtr (⪚) . . . . . . . . . . 68 \eqqless (⪙) . . . . . . . . . 68 \eqqplus (⩱) . . . . . . . . . 34 \eqqsim (⩳) . . . . . . . . . . 59 \eqqslantgtr (⪜) . . . . . . 68 \eqqslantless (⪛) . . . . . 68 \eqsim (h) . . . . . . . . . . . 51 \eqsim (Ò) . . . . . . . . . . . 57 \eqsim (≂) . . . . . . . . . . . 55 \eqsim (≂) . . . . . . . . . . . 53 \eqsim (≂) . . . . . . . . . . . 59 \eqslantgtr (ů) . . . . . . . 65 \eqslantgtr (1) . . . . . . . 64 \eqslantgtr (Ë) . . . . . . . 68 \eqslantgtr (⪖) . . . . . . . 67 \eqslantgtr (⪖) . . . . . . . 66 \eqslantgtr (⪖) . . . . . . . 68 \eqslantless (ű) . . . . . . 65 \eqslantless (0) . . . . . . 64 \eqslantless (Ê) . . . . . . 68 \eqslantless (⪕) . . . . . . 67 \eqslantless (⪕) . . . . . . 66 \eqslantless (⪕) . . . . . . 68 \eqsmile (") . . . . . . . . . . 89 \equal (=) . . . . . . . . . . . 55 \equal (=) . . . . . . . . . . . 53 \equal (j) . . . . . . . . . . . 181 \equalclosed (Ý) . . . . . . 53 \equalleftarrow (⭀) . . . 84 \equalparallel (ô) . . . . 57 \equalparallel (⋕) . . . . 59 \equalrightarrow (⥱) . . 84 \equalscolon (=:) . . . . . 61 \equalscoloncolon (=::) 61 \equalsfill . . . . . . . 29, 227 equidecomposable . . . . . . 223 equilibrium . . . . . . . . . . . see \rightleftharpoons \Equiv (≣) . . . . . . . . . . . 59 \equiv (≡) . . . . . . . . . 29, 50 \equiv (≡) . . . . . . . . . . . 55 \equiv (≡) . . . . . . . . . . . 53 \equiv (≡) . . . . . . . . . . . 59 \Equivalence (?) . . . . . . 116 equivalence . . . . . see \equiv, \leftrightarrow, and \threesim \equivclosed (Þ) . . . . . . 53 \equivDD (⩸) . . . . . . . . . 59 \equivVert (⩨) . . . . . . . . 59 \equivVvert (⩩) . . . . . . . 59 \eqvparsl (⧥) . . . . . . . . . 58 \er () . . . . . . . . . . . . . . 19 \erf (erf ) . . . . . . . . . . . . 92 \Eros (@) . . . . . . . . . . . . 128 \errbarblackcircle (⧳) . 141 \errbarblackdiamond (⧱) 141 \errbarblacksquare (⧯) . 141 \errbarcircle (⧲) . . . . . 141 \errbardiamond (⧰) . . . . 141 \errbarsquare (⧮) . . . . . 141 \errorsym (𝑞) . . . . . . . . 133 263 es-zet . . . . . . . . . . . . see \ss \ESC (␛) . . . . . . . . . . . . . 130 \Esc ( Esc ) . . . . . . . . . . 129 escapable characters . . . . 14 \esh (s) . . . . . . . . . . . . . 19 \esh (M) . . . . . . . . . . . . . 19 esint (package) . . . . . . 43, 239 esrelation (package) . 88, 113, 239 \Estatically (J) . . . . . . 131 estimated see \textestimated \Estonia () . . . . . . . . . . 189 esvect (package) . . . . 110, 239 \Eta (H) . . . . . . . . . . . . . 93 \eta (𝜂) . . . . . . . . . . . . . 93 \etameson (è) . . . . . . . . . 133 \etamesonprime (é) . . . . 133 \etaup (η) . . . . . . . . . . . 94 \ETB (␗) . . . . . . . . . . . . . 130 \eth (ð) . . . . . . . . . . . . . 119 \eth (d) . . . . . . . . . . . . . 19 \eth (ð) . . . . . . . . . . . . . 121 \eth () . . . . . . . . . . . . . 19 \ETX (␃) . . . . . . . . . . . . . 130 euflag (package) . 190, 239, 240 F F F F F \euflag ( ) . . . . . . . . . 190 eufrak (package) . . . . . . . 123 Euler Roman . . . . . . . . . . 94 \Eulerconst (ℇ) . . . . . . . 97 \EUR (e ) . . . . . . . . . . . . . 25 \EURcr (d) . . . . . . . . . . . 25 \EURdig (D) . . . . . . . . . . 25 \EURhv (c) . . . . . . . . . . . 25 \Euro ( ) . . . . . . . . . . . . 26 \euro . . . . . . . . . . . . . . . 26 \euro (€) . . . . . . . . . . . . 25 euro signs . . . . . . . . . . 25, 26 blackboard bold . . . . 124 \eurologo (() . . . . . . . . . 26 European countries . . . . . 188 eurosym (package) 26, 239, 240 \EURtm (e) . . . . . . . . . . . 25 euscript (package) . . 123, 239 evaluated at . . . . . see \vert evil spirits . . . . . . . . . . . . 186 \exciton (𝑖) . . . . . . . . 133 \Exclam (‼) . . . . . . . . . . . 121 exclusive disjunction . . . . . . . . see \nleftrightarrow \nequiv, and \oplus exclusive or . . . . . . . . . . . 222 \exists (D) . . . . . . . . . . . 96 \exists (∃) . . . . . . . . . . 96 \exists (∃) . . . . . . . . . . 97 \exists (∃) . . . . . . . . . . . 96 \exists (∃) . . . . . . . . . . . 97 \exp (exp) . . . . . . . . . . . 91 \experimentalsym (𝑣) . . 132 \Explosionsafe (`) . . . . 131 extarrows (package) . 112, 239, 240 extensible accents . . 107–111, 114, 228–229 F F F F F F F ÿ extensible arrows . . . 107–112 extensible braces . . . 107–110 extensible symbols, creating . . . . . . . . 227–229 extensible tildes . . . . 107, 110 extension characters . . 90, 91 \externalsym (𝛥) . . . . . . 132 extpfeil (package) 112, 239, 240 extraipa (package) . . . 22, 239 \eye (.) . . . . . . . . . . . . . 157 \eye ( ) . . . . . . . . . . . 146 \EyesDollar (¦) . . . . . . . 25 ezh . . . . . . . . . . see \roundz E F F (F) . . . . . . . . . . . . . . . f (esvect package option) . \f ( a) . . . . . . . . . . . . . . . f (f) . . . . . . . . . . . . . . . . \fa (¿) . . . . . . . . . . . . . \faAdjust (è) . . . . . . . . \faAdn (é) . . . . . . . . . . . \faAlignCenter (ê) . . . . \faAlignJustify (ë) . . . \faAlignLeft (ì) . . . . . . \faAlignRight (í) . . . . . \faAmazon (À) . . . . . . . . \faAmbulance (î) . . . . . \faAnchor (ï) . . . . . . . . \faAndroid (ð) . . . . . . . . \faAngellist (h) . . . . . . \faAngleDoubleDown (∠) . \faAngleDoubleLeft (∠) . \faAngleDoubleRight (∠) \faAngleDoubleUp (∠) . . . \faAngleDown (∠) . . . . . . \faAngleLeft (∠) . . . . . . . \faAngleRight (∠) . . . . . . \faAngleUp (∠) . . . . . . . . \faApple () . . . . . . . . . \faArchive (ö) . . . . . . . \faAreaChart (^) . . . . . \faArrowCircleDown (○) . \faArrowCircleLeft (○) . \faArrowCircleODown (H) \faArrowCircleOLeft (○) \faArrowCircleORight ( ) \faArrowCircleOUp (d) . . \faArrowCircleRight (○) \faArrowCircleUp (○) . . \faArrowDown (ø) . . . . . . \faArrowLeft (ù) . . . . . . \faArrowRight (ú) . . . . . \faArrows (È) . . . . . . . . \faArrowsAlt () . . . . . . \faArrowsH (ò) . . . . . . . \faArrowsV (ô) . . . . . . . . \faArrowUp (û) . . . . . . . \faAsterisk (*) . . . . . . . \faAt ([) . . . . . . . . . . . . \faAutomobile ()) . . . . \faBackward (ý) . . . . . . . \faBalanceScale (¤) . . . 157 110 20 157 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 194 194 197 194 194 \faBan (○) . . . . . . . . . . . \faBank () . . . . . . . . . . \faBarChart (|) . . . . . . \faBarChartO (|) . . . . . \faBarcode ( ) . . . . . . . \faBars (í) . . . . . . . . . . \faBattery0 () . . . . . . \faBattery1 () . . . . . . \faBattery2 () . . . . . . \faBattery3 () . . . . . . \faBattery4 () . . . . . . \faBatteryEmpty () . . . \faBatteryFull () . . . \faBatteryHalf () . . . \faBatteryQuarter () . \faBatteryThreeQuarters () . . . . . . . . . . . \faBed () . . . . . . . . . . \faBeer () . . . . . . . . . . \faBehance ($) . . . . . . . \faBehanceSquare (%) . . \faBell () . . . . . . . . . . \faBellO () . . . . . . . . . \faBellSlash (W) . . . . . \faBellSlashO (X) . . . . \faBicycle (e) . . . . . . . \faBinoculars (I) . . . . . \faBirthdayCake (]) . . . \faBitbucket ([) . . . . . . \faBitbucketSquare () . \faBitcoin ( ) . . . . . . . . \faBlackTie (f) . . . . . . . \faBold () . . . . . . . . . . \faBolt () . . . . . . . . . . . \faBomb (F) . . . . . . . . . . \faBook () . . . . . . . . . . \faBookmark ( ) . . . . . . . \faBookmarkO ( ) . . . . . . \faBriefcase ( ) . . . . . . \faBtc ( ) . . . . . . . . . . . \faBtc ( ) . . . . . . . . . . . \faBug ( ) . . . . . . . . . . . \faBuilding () . . . . . . . \faBuildingO () . . . . . . \faBullhorn () . . . . . . \faBullseye (◎) . . . . . . . \faBus (f) . . . . . . . . . . . \faBuysellads (l) . . . . . \faCab (*) . . . . . . . . . . \faCalculator (P) . . . . . \faCalendar () . . . . . . . \faCalendarCheckO (Ä) . \faCalendarMinusO (Â) . \faCalendarO () . . . . . . \faCalendarPlusO (Á) . . \faCalendarTimesO (Ã) . \faCamera () . . . . . . . . \faCameraRetro () . . . . \faCar ()) . . . . . . . . . . \faCaretDown () . . . . . . \faCaretLeft () . . . . . . . \faCaretRight () . . . . . . \faCaretSquareODown (4) 264 194 197 194 197 194 194 197 197 197 197 197 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 25 194 194 195 195 195 195 195 195 25 25 195 195 195 195 195 195 195 197 195 195 195 195 195 195 195 195 195 195 195 195 195 195 \faCaretSquareOLeft ( ) 195 \faCaretSquareORight () 195 \faCaretSquareOUp (5) . . 195 \faCaretUp () . . . . . . . . 195 \faCartArrowDown (t) . . 195 \faCartPlus (s) . . . . . . . 195 \faCc (i) . . . . . . . . . . . 195 \faCcAmex (_) . . . . . . . . 195 \faCcDinersClub (¢) . . . 195 \faCcDiscover (T) . . . . 195 \faCcJcb (¡) . . . . . . . . 195 \faCcMastercard (S) . . . 195 \faCcPaypal (U) . . . . . . 195 \faCcStripe (V) . . . . . . 195 \faCcVisa () . . . . . . . . 195 \faCertificate () . . . . 195 faces . . . . . . . . 121, 130, 148, 176, 177, 184, 186, 190– 197, 201–203 \faChain (®) . . . . . . . . . 197 \faChainBroken (a) . . . . 195 \faCheck (Ë) . . . . . . . . . 138 \faCheckCircle (Í) . . . . 138 \faCheckCircleO (○) . . . 138 \faCheckSquare () . . . . 138 \faCheckSquareO () . . . 138 \faChevronCircleDown (!) 135 \faChevronCircleLeft (") 135 \faChevronCircleRight (#) . . . . . . . . 135 \faChevronCircleUp ($) . 135 \faChevronDown () . . . . 135 \faChevronLeft () . . . . 135 \faChevronRight ( ) . . . 135 \faChevronUp (%) . . . . . . 135 \faChild ( ) . . . . . . . . . 195 \faChrome (¹) . . . . . . . . 195 \faCircle (○) . . . . . . . . 144 \faCircleO (○␣) . . . . . . . 144 \faCircleONotch (;) . . . 144 \faCircleThin (A) . . . . . 144 \faClipboard (Ð) . . . . . . 195 \faClockO (/) . . . . . . . . 195 \faClone (£) . . . . . . . . . 195 \faClose (é) . . . . . . . . . 138 \faCloud (,) . . . . . . . . . 195 \faCloudDownload (-) . . 195 \faCloudUpload (.) . . . . 195 \faCny (£) . . . . . . . . . . . 25 \faCode (/) . . . . . . . . . . 195 \faCodeFork (0) . . . . . . . 196 \faCodepen (8) . . . . . . . 196 \faCoffee (1) . . . . . . . . 196 \faCog (2) . . . . . . . . . . . 196 \faCogs (3) . . . . . . . . . . 196 \faColumns (6) . . . . . . . 196 \faComment (7) . . . . . . . 196 \faCommenting (Ê) . . . . . 196 \faCommentingO (Ë) . . . . 196 \faCommentO (8) . . . . . . 196 \faComments (9) . . . . . . 196 \faCommentsO (:) . . . . . . 196 \faCompass (☼) . . . . . . . 196 \faCompress (ó) . . . . . . . 196 \faConnectdevelop (m) . 196 \faContao (¾) . . . . . . . . 196 \Facontent ( ) . . . . . 116 \faCopy (<) . . . . . . . . . . 197 \faCopyright (Z) . . . . . . 26 \faCreativeCommons (³) 26 \faCreditCard (=) . . . . . 196 \faCrop (>) . . . . . . . . . . 196 \faCrosshairs (û) . . . . . 196 \faCss3 (?) . . . . . . . . . . 196 \faCube (") . . . . . . . . . . 196 \faCubes (#) . . . . . . . . 196 \faCut (@) . . . . . . . . . . . 197 \faCutlery () . . . . . . . . 196 \faDashboard (A) . . . . . . 197 \faDashcube (a) . . . . . . . 196 \faDatabase () . . . . . . . 196 \faDedent () . . . . . . . . 197 \faDelicious () . . . . . . 196 \faDesktop (B) . . . . . . . 196 \faDeviantart (-) . . . . . 196 \faDiamond (u) . . . . . . . 196 \faDigg () . . . . . . . . . . 196 \faDollar (f) . . . . . . . . . 25 \faDotCircleO (○) . . . . . 144 \faDownload (I) . . . . . . . 196 \faDribbble (J) . . . . . . . 196 \faDropbox (K) . . . . . . . 196 \faDrupal () . . . . . . . . 196 \faEdit (L) . . . . . . . . . . 197 \faEject (N) . . . . . . . . . 196 \faEllipsisH (…) . . . . . . 196 \faEllipsisV (…) . . . . . . . 196 \faEmpire () . . . . . . . . 196 \faEnvelope (R) . . . . . . 196 \faEnvelopeO (Q) . . . . . . 196 \faEnvelopeSquare () . . 196 \faEraser () . . . . . . . . 196 \faEur (S) . . . . . . . . . . . 25 \faEur (S) . . . . . . . . . . . 25 \faEuro (S) . . . . . . . . . . . 25 \faExchange (T) . . . . . . 196 \faExclamation (U) . . . . . 196 \faExclamationCircle (V) 196 \faExclamationTriangle (o) . . . . . . . 196 \faExpand (ñ) . . . . . . . . 196 \faExpeditedssl () . . . 196 \faExternalLink (W) . . . 196 \faExternalLinkSquare () . . . . . . . . 196 \faEye (Y) . . . . . . . . . . . 196 \faEyedropper (\) . . . . . 196 \faEyeSlash (X) . . . . . . 196 \faFacebook (g) . . . . . . . 197 \faFacebookF (g) . . . . . . 197 \faFacebookOfficial () 197 \faFacebookSquare (h) . . 197 \faFastBackward (j) . . . 197 \faFastForward (k) . . . . 197 \faFax () . . . . . . . . . . . 197 \faFeed (ø) . . . . . . . . . . \faFemale (♀) . . . . . . . . . \faFighterJet (m) . . . . . \faFile (n) . . . . . . . . . . \faFileArchiveO (3) . . . \faFileAudioO (4) . . . . . \faFileCodeO (6) . . . . . . \faFileExcelO (0) . . . . . \faFileImageO (2) . . . . . \faFileMovieO (5) . . . . . \faFileO (o) . . . . . . . . . \faFilePdfO () . . . . . . . \faFilePhotoO (2) . . . . . \faFilePictureO (2) . . . \faFilePowerpointO (1) . \faFilesO (<) . . . . . . . . \faFileSoundO (4) . . . . . \faFileText (p) . . . . . . . \faFileTextO (q) . . . . . . \faFileVideoO (5) . . . . . \faFileWordO (/) . . . . . . \faFileZipO (3) . . . . . . . \faFilm (r) . . . . . . . . . . \faFilter (s) . . . . . . . . \faFire (t) . . . . . . . . . . \faFireExtinguisher (u) \faFirefox (º) . . . . . . . \faFlag (v) . . . . . . . . . . \faFlagCheckered (x) . . \faFlagO (w) . . . . . . . . . \faFlash () . . . . . . . . . . \faFlask () . . . . . . . . . \faFlickr (y) . . . . . . . . \faFloppyO (ú) . . . . . . . \faFolder (z) . . . . . . . . \faFolderO ({) . . . . . . . \faFolderOpen (|) . . . . . \faFolderOpenO (}) . . . . \faFont (~) . . . . . . . . . . \faFonticons () . . . . . . \faForumbee (n) . . . . . . . \faForward () . . . . . . . \faFoursquare () . . . . . \faFrownO () . . . . . . . . \faFutbolO (G) . . . . . . . \faGamepad () . . . . . . . \faGavel (©) . . . . . . . . . \faGbp ( ) . . . . . . . . . . . \faGe () . . . . . . . . . . . . \faGear (2) . . . . . . . . . . \faGears (3) . . . . . . . . . \faGenderless () . . . . . \faGetPocket (¶) . . . . . . \faGg (c) . . . . . . . . . . . \faGgCircle (d) . . . . . . \faGift () . . . . . . . . . . \faGit (<) . . . . . . . . . . . \faGithub () . . . . . . . . \faGithubAlt () . . . . . . \faGithubSquare () . . . \faGitSquare () . . . . . . \faGittip () . . . . . . . . 265 197 194 194 194 194 194 194 194 194 197 194 194 197 197 194 194 197 194 194 194 194 197 194 194 194 194 194 194 194 194 197 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 25 197 197 197 131 194 194 194 194 194 194 194 194 194 197 \faGlass () . . . . . . . . . \faGlobe () . . . . . . . . . \faGoogle () . . . . . . . . \faGooglePlus (+) . . . . \faGooglePlusSquare (+) \faGoogleWallet (R) . . . \faGraduationCap () . . \faGratipay () . . . . . . . \faGroup () . . . . . . . . . \faHackerNews (=) . . . . . \faHandGrabO (ª) . . . . . . \faHandLizardO (­) . . . . \faHandODown () . . . . . . \faHandOLeft () . . . . . . \faHandORight () . . . . . \faHandOUp () . . . . . . . \faHandPaperO («) . . . . . \faHandPaperO («) . . . . . \faHandPeaceO (°) . . . . . \faHandPointerO (¯) . . . \faHandRockO (ª) . . . . . . \faHandRockO (ª) . . . . . . \faHandScissorsO (¬) . . \faHandSpockO (®) . . . . \faHandStopO («) . . . . . . \faHddO () . . . . . . . . . . \faHeader (B) . . . . . . . . \faHeadphones () . . . . . \faHeart (♥) . . . . . . . . . \faHeartbeat (z) . . . . . . \faHeartO (♥) . . . . . . . . \faHistory (@) . . . . . . . \faHome () . . . . . . . . . . \faHospitalO () . . . . . . \faHotel () . . . . . . . . . \faHourglass (©) . . . . . . \faHourglassEnd (¨) . . . \faHourglassHalf (§) . . \faHourglassO (¥) . . . . . \faHourglassStart (¦) . . \faHouzz (Ì) . . . . . . . . . . \faHSquare (h) . . . . . . . \faHtml5 () . . . . . . . . . \faICursor () . . . . . . . . \faIls (j) . . . . . . . . . . . \faIls (j) . . . . . . . . . . . \faImage (Õ) . . . . . . . . . \faInbox () . . . . . . . . . \faIndent () . . . . . . . . \faIndustry (Å) . . . . . . \faInfo ( ) . . . . . . . . . . . \faInfoCircle () . . . . . \faInr ( ) . . . . . . . . . . . \faInr ( ) . . . . . . . . . . . \faInstagram (¡) . . . . . . \faInstitution () . . . . \faInternetExplorer (¼) \faIntersex (}) . . . . . . . \faIoxhost (g) . . . . . . . \faItalic (¢) . . . . . . . . . \faJoomla () . . . . . . . . \faJpy (£) . . . . . . . . . . . \faJpy (£) . . . . . . . . . . . 194 194 195 195 195 195 195 195 197 195 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 195 195 195 195 195 195 195 195 195 197 195 195 195 195 195 195 195 195 195 25 25 197 195 195 195 195 195 25 25 195 197 195 131 195 195 195 25 25 \faJsfiddle (9) . . . . . . 195 \faKey (¤) . . . . . . . . . . . 195 \faKeyboardO (¥) . . . . . 195 \faKrw (¦) . . . . . . . . . . . 25 \faKrw (¦) . . . . . . . . . . . 25 \faLanguage (^) . . . . . . . 195 \faLaptop (§) . . . . . . . . 195 \faLastfm (a) . . . . . . . . 195 \faLastfmSquare (b) . . . 195 \faLeaf (¨) . . . . . . . . . . 195 \faLeanpub (b) . . . . . . . 195 \faLegal (©) . . . . . . . . . 197 \faLemonO (ª) . . . . . . . . 195 \faLevelDown («) . . . . . . 195 \faLevelUp (¬) . . . . . . . . 195 \faLifeBouy (:) . . . . . . 197 \faLifeRing (:) . . . . . . 195 \faLifeSaver (:) . . . . . . 197 \faLightbulbO (­) . . . . . 195 \faLineChart (`) . . . . . 195 \faLink (®) . . . . . . . . . . 195 \faLinkedin (¯) . . . . . . . 195 \faLinkedinSquare (°) . . 195 \faLinux (±) . . . . . . . . . 196 \faList (²) . . . . . . . . . . 196 \faListAlt (³) . . . . . . . 196 \faListOl (Î) . . . . . . . . 196 \faListUl (9) . . . . . . . . 196 \fallingdotseq (») . . . . 52 \fallingdotseq (;) . . . . 50 \fallingdotseq (Ý) . . . . 57 \fallingdotseq (≒) . . . . 55 \fallingdotseq (≒) . . . . . 53 \fallingdotseq (≒) . . . . 58 \FallingEdge ( ) . . . . . . 125 \faLocationArrow (´) . . 196 \faLock (µ) . . . . . . . . . . 196 \faLongArrowDown (¶) . . . 135 \faLongArrowLeft (·) . . 135 \faLongArrowRight (¸) . 135 \faLongArrowUp (¹) . . . . . 135 falsum . . . . . . . . . . see \bot \faMagic (º) . . . . . . . . . 196 \faMagnet (») . . . . . . . . 196 \faMailForward (þ) . . . . 197 \faMailReply (ï) . . . . . . 197 \faMailReplyAll (ð) . . . 197 \faMale (♂) . . . . . . . . . . . 196 \faMap (É) . . . . . . . . . . . 196 \faMapMarker (½) . . . . . . 196 \faMapO (È) . . . . . . . . . . 196 \faMapPin (Æ) . . . . . . . . . 196 \faMapSigns (Ç) . . . . . . 196 \faMars ({) . . . . . . 127, 131 \faMarsDouble () . . . . . 131 \faMarsStroke () . . . . . 131 \faMarsStrokeH () . . . . 131 \faMarsStrokeV () . . . . 131 \faMaxcdn (¾) . . . . . . . . 196 \faMeanpath (k) . . . . . . . 196 \faMedium () . . . . . . . . 196 \faMedkit (¿) . . . . . . . . 196 \faMehO (À) . . . . . . . . . . 196 ! \faMercury (|) . . . . . . . . 127 \faMicrophone (Á) . . . . . 196 \faMicrophoneSlash (Â) . 196 \faMinus (−) . . . . . . . . . 196 \faMinusCircle (−) . . . . 196 \faMinusSquare (−) . . . . 196 \faMinusSquareO (−) . . . 196 \faMobile (Æ) . . . . . . . . . 196 \faMobilePhone (Æ) . . . . . 197 \faMoney (Ç) . . . . . . . . . 196 \faMoonO () . . . . . . . . . 127 \faMortarBoard () . . . 197 \faMotorcycle (x) . . . . 196 \faMousePointer () . . . 196 \faMusic (É) . . . . . . . . . 196 \faNavicon (í) . . . . . . . 197 \Fancontent ( ) . . . . 116 fancy borders . . . . . 204–210 \faNeuter ( ) . . . . . . . . . 131 \faNewspaperO (N) . . . . 196 \Fanncontent ( ) . . . 116 \Fannquant ( ) . . . . . 116 ) . . . . 116 \Fannquantn ( ) . . . 116 \Fannquantnn ( \Fanoven () . . . . . . . . . 191 \Fanquant ( ) . . . . . . 116 ) . . . . . 116 \Fanquantn ( \Fanquantnn ( ) . . . . 116 \faObjectGroup () . . . . 196 \faObjectUngroup () . . 196 \faOdnoklassniki (e) . . . 196 \faOdnoklassnikiSquare (µ) . . . . . . . 196 \faOpencart () . . . . . . 196 \faOpenid () . . . . . . . . 196 \faOpera (») . . . . . . . . . 196 \faOptinMonster () . . . 196 \faOutdent () . . . . . . . 196 \faPagelines ( ) . . . . . . 196 \faPaintBrush (`) . . . . . 196 \faPaperclip (Ï) . . . . . . 196 \faPaperPlane (>) . . . . . 196 \faPaperPlaneO (?) . . . . 196 \faParagraph (C) . . . . . . 196 \faPaste (Ð) . . . . . . . . . 197 \faPause (Ñ) . . . . . . . . . 196 \faPaw () . . . . . . . . . . . 196 \faPaypal (Q) . . . . . . . . 196 \faPencil (Ò) . . . . . . . . 136 \faPencilSquare (M) . . . 136 \faPencilSquareO (L) . . 136 \faPhone (Ó) . . . . . . . . . 196 \faPhoneSquare (Ô) . . . . 196 \faPhoto (Õ) . . . . . . . . . 197 \faPictureO (Õ) . . . . . . 196 \faPieChart (_) . . . . . . 197 \faPiedPiper () . . . . . 197 \faPiedPiperAlt () . . . 197 \faPinterest (Ö) . . . . . . 197 \faPinterestP () . . . . . 197 \faPinterestSquare (×) . 197 266 \faPlane (Ø) . . . . . . . \faPlay (Ù) . . . . . . . . \faPlayCircle (Û) . . . \faPlayCircleO (○) . . \faPlug (J) . . . . . . . . \faPlus (+) . . . . . . . . \faPlusCircle (+) . . . \faPlusSquare (Z) . . . \faPlusSquareO (+o) . . \faPowerOff (Ê) . . . . . \faPrint (ß) . . . . . . . \faPuzzlePiece (á) . . \faQq () . . . . . . . . . . \faQrcode (â) . . . . . . \Faquant ( ) ..... \Faquantn ( ) .... \Faquantnn ( ) ... \faQuestion (?) . . . . . \faQuestionCircle (?) \faQuoteLeft (å) . . . . \faQuoteRight (æ) . . . \faRa () . . . . . . . . . . \faRandom (ç) . . . . . . \faRebel () . . . . . . . \faRecycle (() . . . . . \faReddit (\) . . . . . . \faRedditSquare () . \faRefresh (è) . . . . . \faRegistered (²) . . . \faRemove (é) . . . . . . \faRenren (ì) . . . . . . \faReorder (í) . . . . . \faRepeat (î) . . . . . . \faRepeat (î) . . . . . . \faReply (ï) . . . . . . . \faReplyAll (ð) . . . . \faRetweet (õ) . . . . . \faRmb (£) . . . . . . . . . \faRoad (ö) . . . . . . . . \faRocket (÷) . . . . . . \faRotateLeft (<) . . . \faRotateRight (î) . . \faRouble (ù) . . . . . . . \faRss (ø) . . . . . . . . . \faRssSquare () . . . . \faRub (ù) . . . . . . . . . \faRub (ù) . . . . . . . . . \faRuble (ù) . . . . . . . \faRupee ( ) . . . . . . . . \faSafari (¸) . . . . . . \faSave (ú) . . . . . . . . \faScissors (@) . . . . \faSearch (ü) . . . . . . \faSearchMinus (y) . . \faSearchPlus (x) . . . \faSellsy (o) . . . . . . \faSend (>) . . . . . . . . \faSendO (?) . . . . . . . \faServer () . . . . . . \faShare (þ) . . . . . . . \faShareAlt () . . . . . \faShareAltSquare (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 194 194 194 194 194 194 194 194 194 194 194 194 194 116 116 116 194 194 194 194 197 194 194 194 194 194 194 26 138 194 197 135 135 194 194 194 25 194 194 135 135 25 194 194 25 25 25 25 194 197 194 194 194 194 194 197 197 194 194 194 194 \faShareSquare (ÿ) . . . . \faShareSquareO (ý) . . . \faShekel (j) . . . . . . . . \faSheqel (j) . . . . . . . . \faShield ( ) . . . . . . . . . \faShip (v) . . . . . . . . . . \faShirtsinbulk (p) . . . \faShoppingCart () . . . \faSignal () . . . . . . . . \faSignIn () . . . . . . . . \faSignOut () . . . . . . . \faSimplybuilt (q) . . . . \faSitemap () . . . . . . . \faSkyatlas (r) . . . . . . \faSkype () . . . . . . . . . \faSlack () . . . . . . . . . \faSliders (D) . . . . . . . \faSlideshare (K) . . . . . \faSmileO () . . . . . . . . \faSoccerBallO (G) . . . . \faSort ( ) . . . . . . . . . . . \faSortAlphaAsc ( ) . . . \faSortAlphaDesc () . . \faSortAmountAsc ( ) . . \faSortAmountDesc ( ) . \faSortAsc () . . . . . . . . \faSortDesc () . . . . . . . \faSortDown () . . . . . . . \faSortNumericAsc ( ) . . \faSortNumericDesc () . \faSortUp () . . . . . . . . . \faSoundcloud (.) . . . . \faSpaceShuttle () . . . \faSpinner () . . . . . . . \faSpoon (!) . . . . . . . . . . \faSpotify (,) . . . . . . . \faSquare (␣) . . . . . . . . \faSquareO () . . . . . . . . \faStackExchange () . . . \faStackOverflow () . . \faStar () . . . . . . . . . . \faStarHalf () . . . . . . . \faStarHalfEmpty () . . \faStarHalfFull () . . . \faStarHalfO () . . . . . . \faStarHalfO () . . . . . . \faStarO () . . . . . . . . . \faSteam (&) . . . . . . . . . \faSteamSquare (') . . . . \faStepBackward () . . . . \faStepForward () . . . . . \faStethoscope () . . . . \faStickyNote () . . . . . \faStickyNoteO ( ) . . . . \faStop () . . . . . . . . . . \faStreetView (y) . . . . . \faStrikethrough () . . \faStumbleupon (]) . . . . \faStumbleuponCircle () \faSubscript () . . . . . . \faSubway () . . . . . . . . \faSuitcase () . . . . . . 194 194 25 25 194 194 194 194 194 194 194 195 195 195 195 195 195 195 195 197 195 195 195 195 195 195 195 197 195 195 197 195 195 195 195 195 144 144 195 195 140 140 140 140 140 140 140 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 \faSunO (☼) . . . . . . . . \faSuperscript ( ) . . \faSupport (:) . . . . . \faTable (!) . . . . . . . \faTablet (") . . . . . . . \faTachometer (A) . . . \faTag (#) . . . . . . . . . \faTags ($) . . . . . . . . \faTasks (%) . . . . . . . \faTaxi (*) . . . . . . . . \fatbslash ()) . . . . . . \fatbslash (?) . . . . . . \faTelevision (½) . . \faTencentWeibo () . \faTerminal (&) . . . . . \faTextHeight (') . . . \faTextWidth (() . . . . \faTh ()) . . . . . . . . . . \faThLarge (*) . . . . . \faThList (+) . . . . . . \faThumbsDown () . . . \faThumbsODown (,) . . \faThumbsOUp (-) . . . . \faThumbsUp () . . . . . \faThumbTack (à) . . . . \faTicket (.) . . . . . . \faTimes (é) . . . . . . . \faTimes (é) . . . . . . . \faTimesCircle (ë) . . \faTimesCircleO (○) . \faTint (0) . . . . . . . . . \faToggleDown (4) . . . \faToggleLeft ( ) . . . \faToggleOff (c) . . . \faToggleOn (d) . . . . \faToggleRight () . . \faToggleUp (5) . . . . . \faTrademark (±) . . . \faTrain () . . . . . . . \faTransgender (}) . . \faTransgender (}) . . \faTransgenderAlt (~) \faTrash (Y) . . . . . . . \faTrashO (1) . . . . . . \faTree (+) . . . . . . . . \faTrello (2) . . . . . . \faTripadvisor (´) . \faTrophy (3) . . . . . . \faTruck (4) . . . . . . . \faTry ( ) . . . . . . . . . \faTry ( ) . . . . . . . . . \fatsemi (#) . . . . . . . . \fatsemi (ý) . . . . . . . . \fatslash (() . . . . . . . \fatslash (>) . . . . . . . \faTty (H) . . . . . . . . . \faTumblr (5) . . . . . . . \faTumblrSquare (6) . \faTurkishLira ( ) . . \faTv (½) . . . . . . . . . \faTwitch (L) . . . . . . \faTwitter (7) . . . . . \faTwitterSquare (8) 267 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 195 197 195 195 195 195 195 195 195 30 57 195 195 195 195 195 195 196 196 137 137 137 137 196 196 138 138 138 138 196 197 197 196 196 197 197 26 196 131 131 131 196 196 196 196 196 196 196 25 25 30 33 30 57 196 196 196 25 197 196 196 196 \faUmbrella (:) . . . . . . . 196 \faUnderline (;) . . . . . . 196 \faUndo (<) . . . . . . . . . . 135 \faUndo (<) . . . . . . . . . . 135 \faUniversity () . . . . 196 \faUnlink (a) . . . . . . . . 197 \faUnlock (b) . . . . . . . . 196 \faUnlockAlt (c) . . . . . . 196 \faUnsorted ( ) . . . . . . . 197 \faUpload (e) . . . . . . . . 196 \faUsd (f) . . . . . . . . . . . 25 \faUsd (f) . . . . . . . . . . . 25 \faUser (g) . . . . . . . . . . 196 \faUserMd (h) . . . . . . . . 196 \faUserPlus () . . . . . . 196 \faUsers () . . . . . . . . . 196 \faUserSecret (w) . . . . . 196 \faUserTimes () . . . . . 196 \faVenus (♀) . . . . . 127, 131 \faVenusDouble () . . . . 131 \faVenusMars () . . . . . 131 \faViacoin () . . . . . . . 25 \faVideoCamera (i) . . . . 196 \faVimeo (Í) . . . . . . . . . 196 \faVimeoSquare (j) . . . . 196 \faVine (7) . . . . . . . . . . 196 \faVk (k) . . . . . . . . . . . 196 \faVolumeDown (l) . . . . . 196 \faVolumeOff (m) . . . . . . 196 \faVolumeUp (n) . . . . . . . 196 \faWarning (o) . . . . . . . 197 \faWechat () . . . . . . . . 197 \faWeibo (p) . . . . . . . . . 196 \faWeixin () . . . . . . . . 196 \faWhatsapp () . . . . . . . 196 \faWheelchair ( ) . . . . . 196 \faWifi (O) . . . . . . . . . . 196 \faWikipediaW (·) . . . . 196 \faWindows (q) . . . . . . . 196 \faWon (¦) . . . . . . . . . . . 25 \faWordpress () . . . . . . 196 \faWrench (r) . . . . . . . . 196 \FAX (u) . . . . . . . . . . . . 130 \fax (t) . . . . . . . . . . . . . 130 \faXing (s) . . . . . . . . . . 196 \faXingSquare (t) . . . . . 196 \Faxmachine (v) . . . . . . 130 \faYahoo () . . . . . . . . . 196 \faYc () . . . . . . . . . . . . 197 \faYCombinator () . . . . 197 \faYCombinatorSquare (=) 197 \faYcSquare (=) . . . . . . . 197 \faYelp (M) . . . . . . . . . . 197 \faYen (£) . . . . . . . . . . . 25 \faYoutube (u) . . . . . . . 197 \faYoutubePlay (v) . . . . 197 \faYoutubeSquare (w) . . 197 \fbowtie (⧓) . . . . . . . . . 58 fc (package) . . . . . . . . 16, 20 ) . . 179 \fcdice ( fclfont (package) . . . . . . . 239 \fcmp (⨾) . . . . . . . . . . . . . 34 \Fcontent ( ) . . . . . . 116 \fcscore ( ) . . . . 180 .fd files . . . . . . 12, 231, 238 \fdiagovnearrow (⤯) . . . 84 \fdiagovrdiag (⤬) . . . . . 121 fdsymbol (package) . 32, 33, 36, 44, 45, 55, 56, 63, 67, 71, 78–82, 89, 90, 95, 97, 101, 102, 106, 108, 115, 118, 120, 141, 145, 158, 239, 240 feet . . . . . . . . see \prime and \textquotesingle \FEMALE () . . . . . . . . . . . 131 \Female (~) . . . . . . . . . . . 131 female . . . . . 18, 126–128, 131, 192–197, 201–203 \female (♀) . . . . . . . . . . 131 \female (♀) . . . . . . . . . . . 131 \FemaleFemale () . . . . . 131 \FemaleMale ( ) . . . . . . . 131 . a \Ferli (a) . . . . . . . . . . . 161 \fermata . . . . . . . . . . . . 165 \fermata ( ) . . . . . . . . . 164 \fermatadown () . . . . . . . 159 \fermataup () . . . . . . . . . 159 . a \Fermi (a) . . . . . . . . . . . 161 \fermiDistrib (𝑐) . . . . . 132 \fermion (𝛤) . . . . . . . . . 132 fermions . . . . . . . . . 132–133 feyn (package) . . 132, 239, 240 Feynman slashed character notation . . . . . . . . . . 224 Feynman-diagram symbols 132 \feyn{a} () . . . . . . . . . . . 132 \feyn{c} ( ) . . . . . . . . . 132 \feyn{fd} ( ) . . . . . . . . . 132 \feyn{flS} () . . . . . . . . . 132 \feyn{fl} () . . . . . . . . . . 132 \feyn{fs} ( ) . . . . . . . . . 132 \feyn{fu} ( ) . . . . . . . . . 132 \feyn{fv} () . . . . . . . . . . 132 \feyn{f} ( ) . . . . . . . . . 132 \feyn{g1} () . . . . . . . . . . 132 \feyn{gd} ( ) . . . . . . . . . 132 Q P ⊣ ⌋ ⌈ ≀ ↕ → ⌉ ⌊ { ⨿ ⊑ \feyn{glB} ()¶ . . . . . . . . . 132 \feyn{glS} ()♣ . . . . . . . . . 132 \feyn{glu} ()‡ . . . . . . . . . 132 \feyn{gl} ()† . . . . . . . . . . 132 \feyn{gu} (⊓) . . . . . . . . . 132 \feyn{gvs} ()♢∫ . . . . . . . . . 132 \feyn{gv} ()♢ . . . . . . . . . . 132 \feyn{g} (}) . . . . . . . . . 132 \feyn{hd} (|) . . . . . . . . . 132 \feyn{hs} (↑) . . . . . . . . . 132 \feyn{hu} (⟩) . . . . . . . . . 132 \feyn{h} (⟨) . . . . . . . . . 132 \feyn{ms} (↓) . . . . . . . . . 132 \feyn{m} (⇕) . . . . . . . . . 132 \feyn{P} (𝒫) . . . . . . . . . 132 \feyn{p} (√) . . . . . . . . . 132 \feyn{x} ()S . . . . . . . . . . . 132 fez . . . . . . . . . . . . . . . . . 107 \FF (␌) . . . . . . . . . . . . . . 130 fge (package) 87, 97, 106, 117, 122, 239, 240 \fgeA (A) . . . . . . . . . . . . 97 \fgebackslash (K) . . . . . . 122 \fgebaracute (M) . . . . . . 122 \fgebarcap (O) . . . . . . . . 122 \fgec (c) . . . . . . . . . . . . 97 \fgecap (S) . . . . . . . . . . 122 \fgecapbar (Q) . . . . . . . . 122 \fgecup (N) . . . . . . . . . . 122 \fgecupacute (R) . . . . . . 122 \fgecupbar (P) . . . . . . . . 122 \fged (p) . . . . . . . . . . . . 97 \fgee (e) . . . . . . . . . . . . 97 \fgeeszett (ı) . . . . . . . . 97 \fgeeta (”) . . . . . . . . . . 97 \fgeF (F) . . . . . . . . . . . . 97 \fgef (f) . . . . . . . . . . . . 97 \fgeinfty (i) . . . . . . . . 122 \fgelangle (h) . . . . . . . . 122 \fgelb . . . . . . . . . . . . . . 97 \fgelb (”) . . . . . . . . . . . 97 \fgeleftB (D) . . . . . . . . . 97 \fgeleftC (C) . . . . . . . . . 97 \fgeN (”) . . . . . . . . . . . . 97 \fgeoverU (”) . . . . . . . . . 97 \fgerightarrow (!) . . . 87 \fgerightB (B) . . . . . . . . 97 \fges (s) . . . . . . . . . . . . . 97 \fgestruckone (1) . . . . . . 117 \fgestruckzero (0) . . . . . 117 \fgeU (U) . . . . . . . . . . . . 97 \fgeuparrow (") . . . . . . . 87 \fgeupbracket (L) . . . . . 122 field (F) see alphabets, math \file (H) . . . . . . . . . . . . 181 file extensions .dvi . . . . . . . . . . . . 235 .fd . . . . . . 12, 231, 238 .mf . . . . . . 12, 199, 229 .otf . . . . . . . . . . . . 158 .pdf . . . . . . . . . . . . 235 .sty . . . . . . . . . . . . 12 .tex . . . . . . . . 235, 237 .tfm . 12, 123, 199, 219, 238 file symbols . . . . . . . 194–197 \FilledBigCircle ( ) . . 143 \FilledBigDiamondshape ( ) . . . . . . . 143 \FilledBigSquare ( ) . . 143 \FilledBigTriangleDown ( ) . . . . . . . 143 \FilledBigTriangleLeft ( ) . . . . . . . 143 \FilledBigTriangleRight ( ) . . . . . . . 143 \FilledBigTriangleUp ( ) . . . . . . . . . 143 \FilledCircle ( ) . . . . . 143 U V P S R T Q e 268 \FilledCloud ( ) . . . . . . 178 \filleddiamond (◆) . . . . . 36 \FilledDiamondShadowA ( ) . . . . . . . . 143 \FilledDiamondShadowC ( ) . . . . . . . . 143 f \FilledDiamondshape ( ) 143 \FilledHut ( ) . . . . . . . . 178 \filledlargestar (☀) . . 140 \filledlozenge (⧫) . . . . . 140 \filledmedlozenge (⧫) . . 140 \filledmedsquare (∎) . . . 36 \filledmedtriangledown (▼) . . . . . . 36, 70 \filledmedtriangleleft (◀) . . . . . . 36, 70 \filledmedtriangleright (▶) . . . . . . 36, 70 \filledmedtriangleup (▲) 36, 70 \FilledRainCloud ( ) . . 178 \FilledSectioningDiamond ( ) . . . . . . . . . . . 178 ! u 143 \FilledSmallCircle (u) 143 \FilledSmallDiamondshape (v) . . . . . . . . . . . 143 \FilledSmallSquare (p) 143 \FilledSmallTriangleDown (s) . . . . . . . . . . . 143 \FilledSmallTriangleLeft (r) . . . . . . . . . . . 143 \FilledSmallTriangleRight (t) . . . . . . . . . . . 143 \FilledSmallTriangleUp (q) . . . . . . . 143 \FilledSnowCloud ($) . . 178 \FilledSquare (`) . . . . . 143 \filledsquare (◾) . . . . . . 36 \FilledSquareShadowA () . . . . . . . . . 143 \FilledSquareShadowC () . . \FilledSmallCircle ( ) ....... 143 \filledsquarewithdots (C) . . . . . . . . 146 \filledstar (★) . . . . . . . 36 # \FilledSunCloud ( ) . . . 178 c \FilledTriangleDown ( ) 143 \filledtriangledown (▾) 36, 70 \FilledTriangleLeft ( ) 143 \filledtriangleleft (◂) 36, 70 \FilledTriangleRight ( ) . . . . . . . . . 143 \filledtriangleright (▸) 36, 70 \FilledTriangleUp ( ) . 143 \filledtriangleup (▴) 36, 70 b d a " \FilledWeakRainCloud ( ) . . . . . . . . . 178 finger, pointing . . . . see fists finite field (F) . see alphabets, math \Finland () . . . . . . . . . . 189 \finpartvoice (a») . . . . . 22 ˇ (a) . . 22 \finpartvoiceless » > ˚ \fint (⨏ ) . . . . . . . . . . . . 42 \fint (ffl) . . . . . . . . . . . . 48 \fint ( ) . . . . . . . . . . . . 43 \fint (⨏) . . . . . . . . . . . . 45 \fint (⨏) . . . . . . . . . . . . 46 \fintsl (⨏) . . . . . . . . . . . 47 \fintup (⨏) . . . . . . . . . . . 47 \Finv (F) . . . . . . . . . . . . 96 \Finv (`) . . . . . . . . . . . . 96 \Finv (û) . . . . . . . . . . . . 97 \Finv (Ⅎ) . . . . . . . . . . . . 97 \Finv (Ⅎ) . . . . . . . . . . . . 97 \Fire ( ) . . . . . . . . 178, 192 \Fire (Ð) . . . . . . . . . . . 128 fish . . . . . . . . . . . . . . . . . 205 fish hook . . . . . see \strictif \fisheye (◉) . . . . . . . . . 141 fists . . . . . . . . . 136, 137, 199 \fivedots () . . . . . . 31, 115 \FiveFlowerOpen (R) . . . 139 \FiveFlowerPetal (P) . . 139 \FiveStar (8) . . . . . . . . 139 \FiveStarCenterOpen (;) 139 \FiveStarConvex (?) . . . 139 \FiveStarLines (7) . . . . 139 \FiveStarOpen (9) . . . . . 139 \FiveStarOpenCircled (:) . . . . . . . . . 139 \FiveStarOpenDotted (<) 139 \FiveStarOutline (=) . . 139 \FiveStarOutlineHeavy (>) . . . . . . . . 139 \FiveStarShadow (@) . . . 139 \Fixedbearing (%) . . . . . 131 . \fixedddots ( . . ) . . . . . . 114 . \fixedvdots (..) . . . . . . . . 114 fixmath (package) . . . . . . 233 \fj (F) . . . . . . . . . . . . . . 19 \FL () . . . . . . . . . . . . . . 129 \fl ( ) . . . . . . . . . . . . . . 160 \Flag ( ) . . . . . . . . . . . . 178 \flageolett () . . . . . . . . 159 flags . . . . . 178, 190, 192–197, 213–215 \flap (f) . . . . . . . . . . . . 19 \flapr (D) . . . . . . . . . . . . 19 \Flasche ( ) . . . . . . . . . . 191 \flat (♭) . . . . . . . . . . . . 158 \flat (ù) . . . . . . . . . . . . . 158 \flat (♭) . . . . . . . . . . . . 158 \flat ( ) . . . . . . . . . . . . . 163 Z x \flat (♭) . . . . . . . . . . . . . 158 \flat (♭) . . . . . . . . . . . . 158 \flatflat ( ) . . . . . . . . . 163 \Flatsteel () . . . . . . . . 131 fletched arrows . . . . . 87, 134 fleurons . . . . . . . 140, 146, 204 \Florin (í) . . . . . . . . . . 25 florin . . . . . see \textflorin flourishes . . . . . 146, 147, 207 \floweroneleft (B) . . . . 140 \floweroneright (C) . . . 140 flowers . . . 139, 140, 192–193, 204–205 \fltns (⏥) . . . . . . . . . . . 141 Flynn, Peter . . . . . . . . . . 223 \FM ( ) . . . . . . . . . . . . . . 129 ) . . . . . 116 \Fncontent ( \Fnncontent ( ) . . . . 116 \Fnnquant ( ) . . . . . . 116 ) . . . . . 116 \Fnnquantn ( ) . . . . 116 \Fnnquantnn ( \Fnquant ( ) . . . . . . . 116 \Fnquantn ( ) . . . . . . 116 ) . . . . . 116 \Fnquantnn ( \fnsymbol . . . . . . . . . . . . 180 \Fog ( ) . . . . . . . . . . . . 178 \font . . . . . . . . . . . . . . . 12 font encodings . 12, 14–16, 20, 23, 222, 227, 233–235, 239 7-bit . . . . . . . . . . . . 12 8-bit . . . . . . . . . . . . 12 ASCII . . . . . . . . . . . 239 Cyrillic . . . . . . . . . . 20 document . . . . . . . . . 235 Latin 1 . . . . . . . . . . 239 limiting scope of . . . . 12 LY1 . . . . . . . . . . . . . 12 OT1 . . . 12, 15, 20, 227, 233–235 OT2 . . . . . . . . . . . . 222 T1 12, 14–16, 20, 234, 235 T2A . . . . . . . . . 20, 222 T2B . . . . . . . . . . . . 20 T2C . . . . . . . . . . . . 20 T4 . . . . . . . . . 16, 20, 23 T5 . . . . . . . . . . . . 16, 20 TS1 . . . . . . . . . 222, 235 U . . . . . . . . . . . . . . 222 X2 . . . . . . . . . . . . . . 20 fontawesome (package) . . . . . . 25, 26, 127, 131, 135–138, 140, 144, 194, 197, 239, 240 fontdef.dtx (file) . . 223, 226 fontenc (package) . . 12, 15, 16, 20, 235 \fontencoding . . . . . . . . 12 fonts Calligra . . . . . . . . . . 123 Charter . . . . . . . . 25, 49 Computer Modern . . 87, 219, 221, 234 269 CountriesOfEurope . . 190 Courier . . . . . . . . . . 25 Emmentaler . . . . . . . 163 Garamond . . . . . . 25, 49 Helvetica . . . . . . . . . 25 “pi” . . . . . . . . . . . . . 222 Soyombo . . . . . . . . . 187 Symbol . . . . . . . 94, 222 Times Roman . . 25, 221 Type 1 . . . . . . . . . . 232 Utopia . . . . . . . . . 25, 49 Zapf Chancery . . . . . 123 Zapf Dingbats . 134, 138 \fontsize . . . . . . . . 219, 221 fontspec (package) . . 158, 238 \Football (o) . . . . . . . . 177 \forall (∀) . . . . . . . . . . 96 \forall (∀) . . . . . . . . . . 97 \forall (∀) . . . . . . . . . . 96 \forall (∀) . . . . . . . . . . . 97 \Force (l) . . . . . . . . . . . 131 \Fork () . . . . . . . . . . . . . 191 \forks (⫝̸) . . . . . . . . . . . 59 \forksnot (⫝) . . . . . . . . . 58 \forkv (þ) . . . . . . . . . . . 57 \forkv (⫙) . . . . . . . . . . . 58 forte ( ) . . . . . . . . . 163, 175 \Fortune (K) . . . . . . . . . 128 \Forward (·) . . . . . . . . . . 177 \ForwardToEnd (¸) . . . . . 177 \ForwardToIndex (¹) . . 177 \FourAsterisk (1) . . . . . 139 \FourClowerOpen (V) . . . 139 \FourClowerSolid (W) . . 139 \Fourier ( ) . . . . . . . 61 fourier (package) . . . . 26, 61, 94, 98, 104, 109, 137, 140, 177, 239 fourier (emf package option) 126 ) . . . . . . . 61 \fourier ( Fourier transform (ℱ) . . . see alphabets, math \FourStar (5) . . . . . . . . 139 \FourStarOpen (6) . . . . . 139 \fourth (4) . . . . . . . . . . 119 \fourvdots (⦙) . . . . . . . . . 115 \Fquantn ( ) . . . . . . . 116 \Fquantnn ( ) . . . . . . 116 \fracslash (⁄) . . . . . . . . . 34 fractions . . . . . . . . . . . . . 121 fraktur . see alphabets, math \France () . . . . . . . . . . 189 frcursive (emf package option) . . . . . . . . 126 Freemason’s cipher . . . . . 186 frege (package) . 116, 239, 240 Frege logic symbols . . 87, 97, 116, 117, 122 Frege, Gottlob . . . . . . . . . 116 \frown (⌢) . . . . . . . . . . 50 \frown (ý) . . . . . . . . . . . 57 \frown (⌢) . . . . . . . . . 55, 90 \frown (⌢) . . . . . . . . . . . 89 \frown (⌢) . . . . . . . . . . . 58 frown symbols . . . . . . . 89, 90 \frowneq (≘) . . . . . . . . 55, 90 \frowneq (!) . . . . . . . . . . 89 \frowneqsmile (') . . . . . 89 \frownie (/) . . . . . . . . . 176 \frownsmile (⁐) . . . . . 55, 90 \frownsmile () . . . . . . . 89 \frownsmileeq ()) . . . . . 89 \Frowny (§) . . . . . . . . . . 177 frowny faces . . 130, 176, 177, 190–197 ) . . . . . . 191 \fryingpan ( \FS (␜) . . . . . . . . . . . . . . 130 \fullmoon (M) . . . . . . . . 127 \fullmoon (#) . . . . . . . . 126 \fullnote () . . . . . . . . . 158 \fullouterjoin (⟗) . . . 121 G \G (a ) . . . . . . . . . . . . . . . 20 g (esvect package option) . 110 g (g) . . . . . . . . . . . . . . . 157 gaffing hook . . see \strictif \Game (G) . . . . . . . . . . . . 96 \Game (a) . . . . . . . . . . . . 96 \Game (ü) . . . . . . . . . . . . 97 \Game (⅁) . . . . . . . . . . . . 97 \Game (⅁) . . . . . . . . . . . . 97 game-related symbols 145, 146, 178, 179, 181–183, 194– 197, 216–218 \Gamma (Γ) . . . . . . . . . . . 93 \gamma (𝛾) . . . . . . . . . . . 93 \gammaup (γ) . . . . . . . . . . 94 \Ganz (¯ ) . . . . . . . . . . . . 160 \GaPa (<) . . . . . . . . . . . . 160 Garamond (font) . . . . . 25, 49 \garlicpress ( ) . . . . 191 \Gasstove () . . . . . . . . . 191 \gcd (gcd) . . . . . . . . . . . 91 \GD (| ) . . . . . . . . . . . . . . 129 \GE ( ) . . . . . . . . . . . . . . 129 \ge . . . . . . . . . . . . . see \geq \ge (≥) . . . . . . . . . . . . . . 67 \ge (≥) . . . . . . . . . . . . . . 69 \Gemini (R) . . . . . . . . . . 127 \Gemini (â) . . . . . . . . . . 126 \Gemini (v) . . . . . . . . . . 128 \gemini (^) . . . . . . . . . . 126 genealogical symbols . . . . 176 \geneuro (A C) . . . . . . . . . 26 \geneuronarrow (B C) . . . . 26 \geneurowide (C C) . . . . . . 26 gensymb (package) . . . . . . 125 \Gentsroom (x) . . . . . . . . 177 geometric shapes 128, 140–145, 169–173, 182, 183, 194– 197, 199–200, 215–216 \geq (ě) . . . . . . . . . . . . . 65 \geq (≥) . . . . . . . . . . 64, 65 \geq (≥) . . . . . . . . . . . . . 67 \geq (≥) . . . . . . . . . . . . . 66 \geq (≥) . . . . . . . . . . . 68, 69 \geqclosed (⊵) . . . . . . 67, 71 \geqclosed (⊵) . . . . . . 66, 70 \geqdot (c) . . . . . . . . . . 67 \geqdot (u) . . . . . . . . . . . 66 \geqq (ŕ) . . . . . . . . . . . . 65 \geqq (=) . . . . . . . . . . . . 64 \geqq (Á) . . . . . . . . . . . . 68 \geqq (≧) . . . . . . . . . . . . 67 \geqq (≧) . . . . . . . . . . . . 66 \geqq (≧) . . . . . . . . . . . . 68 \geqqslant (⫺) . . . . . . . . 68 \geqslant (>) . . . . . 64, 226 \geqslant (É) . . . . . . . . . 68 \geqslant (⩾) . . . . . . . . . 67 \geqslant (⩾) . . . . . . . . . 66 \geqslant (⩾) . . . . . . . . . 68 \geqslantdot (⪀) . . . . . . 67 \geqslantdot (⪀) . . . . . . 66 \geqslcc (⪩) . . . . . . . . . 67 german (keystroke package option) . . . . . . . . . . 129 Germanic runes . . . . . . . . 157 \Germany () . . . . . . . . . . 189 \gescc (⪩) . . . . . . . . . . . 67 \gescc (⪩) . . . . . . . . . . . 68 \gesdot (⪀) . . . . . . . . . . 67 \gesdot (⪀) . . . . . . . . . . 68 \gesdoto (⪂) . . . . . . . . . 68 \gesdotol (⪄) . . . . . . . . . 68 \gesl (⋛) . . . . . . . . . . . . 67 \gesles (⪔) . . . . . . . . . . 69 \gets . . . . . . see \leftarrow \gets (←) . . . . . . . . . . . . 79 \gg (") . . . . . . . . . . . . . . 65 \gg (≫) . . . . . . . . . . . . . 64 \gg (≫) . . . . . . . . . . . . . 67 \gg (≫) . . . . . . . . . . . . . 66 \gg (≫) . . . . . . . . . . . . . 69 \ggcurly (Ï) . . . . . . . . . 52 \ggcurly (ë) . . . . . . . . . 57 \ggg (Ï) . . . . . . . . . . . . . 65 \ggg (≫) . . . . . . . . . . . . 64 \ggg (≫ vs. Ï) . . . . . . . 220 \ggg (×) . . . . . . . . . . . . 68 \ggg (⋙) . . . . . . . . . . . . 67 \ggg (⋙) . . . . . . . . . . . . 66 \ggg (⋙) . . . . . . . . . . . . 69 \gggnest (⫸) . . . . . . . . . 69 \gggtr . . . . . . . . . . see \ggg \gggtr (⋙) . . . . . . . . . . 67 \gggtr (⋙) . . . . . . . . . . 66 \gggtr (⋙) . . . . . . . . . . 69 ghosts . . . . . . . . 38, 114, 186 Gibbons, Jeremy . . . . . . . 241 \gimel ( )ג. . . . . . . . . . . 95 \gimel (ù) . . . . . . . . . . . 95 \gimel (ℷ) . . . . . . . . . . . 95 \gimel (ℷ) . . . . . . . . . . . . 95 \gimel (ℷ) . . . . . . . . . . . 96 \girl (B) . . . . . . . . . . . . 127 \gla (⪥) . . . . . . . . . . . . . 69 270 \glE (⪒) . . . . . . . . . . . . . 69 \gleichstark (⧦) . . . . . . 58 \glj (ú) . . . . . . . . . . . . . 68 \glj (⪤) . . . . . . . . . . . . . 69 globe . . . . . . . . . . . . . . . 177 \glotstop (b) . . . . . . . . . 19 \glottal (?) . . . . . . . . . . 19 \Gloves ( ) . . . . . . . . . . 191 \Gluon (ð) . . . . . . . . . . . 132 \gluon (QPPPPPPR) . . . . . . . . 125 gluons . . . . . . . . . . . . . . . 132 \gnapprox (Ë) . . . . . . . . 65 \gnapprox () . . . . . . . . 64 \gnapprox () . . . . . . . . . 68 \gnapprox (⪊) . . . . . . . . . 67 \gnapprox (⪊) . . . . . . . . . 66 \gnapprox (⪊) . . . . . . . . . 69 \gneq (ŋ) . . . . . . . . . . . . 65 \gneq ( ) . . . . . . . . . . . . 64 \gneq () . . . . . . . . . . . . 68 \gneq (⪈) . . . . . . . . . . . . 67 \gneq (⪈) . . . . . . . . . . . . 69 \gneqq (ş) . . . . . . . . . . . 65 \gneqq ( ) . . . . . . . . . . . 64 \gneqq () . . . . . . . . . . . 68 \gneqq (≩) . . . . . . . . . . . 67 \gneqq (≩) . . . . . . . . . . . 66 \gneqq (≩) . . . . . . . . . . . 69 \gnsim (Å) . . . . . . . . . . . 65 \gnsim () . . . . . . . . . . . 64 \gnsim () . . . . . . . . . . . 68 \gnsim (⋧) . . . . . . . . . . . 67 \gnsim (≵) . . . . . . . . . . . 66 \gnsim (⋧) . . . . . . . . . . . 69 \GO () . . . . . . . . . . . . . . 129 go (package) . . . . . . 183, 239 Go boards . . . . . . . . 182, 183 Go stones . . . . . . . . 182, 183 goban . . . . . . . . . . . 182, 183 \Goofy . . . . . . . . . . . . . . 184 # » \grad (grad) . . . . . . . . . . 92 \graphene (𝑠) . . . . . . . . 132 graphics (package) . . . 87, 222 graphicx (package) . . 24, 219, 222, 226 \grater ( ) . . . . . . . . . . . 191 \grave ( ̀ ) . . . . . . . . . . . 106 \grave (`) . . . . . . . . . . . 105 grave (à) . . . . . . . see accents \gravis (à) . . . . . . . . . . . 23 \graviton (÷) . . . . . . . . . 132 \GreatBritain () . . . . . 189 greater-than signs . . . . . . see inequalities greatest lower bound . . . . see \sqcap \greatpumpkin ( ) . . . . 38 \Greece () . . . . . . . . . . 189 Greek . . . . . . . . . . 15, 93, 94 blackboard bold . . . . 124 bold . . . . . . . . . 93, 233 coins . . . . . . . . . . . . 26 letters . . 15, 93, 94, 124, 154, 233 numerals . . . . . . . . . 154 polytonic . . . . 15, 93, 94 upright . . . . . . . . 15, 94 greek (babel package option) 15, 93, 94, 154 Green Dot . . see \Greenpoint and \PackingWaste \Greenpoint ( ) . . . . . . . 186 greenpoint (package) 199, 239 Gregorian music . . . . . . . 160 ¨ b) . . 160 \gregorianFclef (z) . . 160 \gregorianCclef ( Gregorio, Enrico 105, 223, 224 Griffith’s separation vector (r) . . . . . . . 123 \grimace (-) . . . . . . . . . 177 Grüne Punkt see \Greenpoint and \PackingWaste \GS (␝) . . . . . . . . . . . . . . 130 \gsime (⪎) . . . . . . . . . . . 69 \gsiml (⪐) . . . . . . . . . . . 69 \Gt (Ï) . . . . . . . . . . . . . . 68 \Gt (⪢) . . . . . . . . . . . . . . 69 \gtcc (⪧) . . . . . . . . . . . . 67 \gtcc (⪧) . . . . . . . . . . . . 69 \gtcir (ù) . . . . . . . . . . . 68 \gtcir (⩺) . . . . . . . . . . . 69 \gtlpar (⦠) . . . . . . . . . . 118 \gtlpar (⦠) . . . . . . . . . . 118 \gtquest (⩼) . . . . . . . . . 68 \gtr (>) . . . . . . . . . . . . . 67 \gtr (>) . . . . . . . . . . . . . 66 \gtrapprox (Ç) . . . . . . . . 65 \gtrapprox (') . . . . . . . 64 \gtrapprox (¿) . . . . . . . . 68 \gtrapprox (⪆) . . . . . . . . 67 \gtrapprox (⪆) . . . . . . . . 66 \gtrapprox (⪆) . . . . . . . . 68 \gtrarr (⥸) . . . . . . . . . . 68 \gtrcc (⪧) . . . . . . . . . . . 67 \gtrclosed (⊳) . . . . . . 67, 71 \gtrclosed (⊳) . . . . . . 66, 70 \gtrdot (Í) . . . . . . . . . . 65 \gtrdot (m) . . . . . . . . . . 64 \gtrdot (Å) . . . . . . . . . . 33 \gtrdot (⋗) . . . . . . . . . . 67 \gtrdot (⋗) . . . . . . . . . . . 66 \gtrdot (⋗) . . . . . . . . . . 68 \gtreqless (¡) . . . . . . . . 65 \gtreqless (R) . . . . . . . 64 \gtreqless (Å) . . . . . . . . 68 \gtreqless (⋛) . . . . . . . . 67 \gtreqless (⋛) . . . . . . . . 66 \gtreqless (⋛) . . . . . . . . 68 \gtreqlessslant (⋛) . . . . 67 \gtreqlessslant (O) . . . . 66 \gtreqqless (£) . . . . . . . 65 \gtreqqless (T) . . . . . . . 64 \gtreqqless (Ç) . . . \gtreqqless (⪌) . . . \gtreqqless (⪌) . . . \gtreqqless (⪌) . . . \gtreqslantless (⋛) \gtrless (ż) . . . . . \gtrless (≷) . . . . . \gtrless (Ã) . . . . . \gtrless (≷) . . . . . . \gtrless (≷) . . . . . . \gtrless (≷) . . . . . . . . . . . . . . . . 68 67 66 68 67 65 64 68 67 66 68 \gtrneqqless (ó) . . . . . . 66 \gtrsim (Á) . . . . . . . . . . \gtrsim (&) . . . . . . . 64, \gtrsim (½) . . . . . . . . . . \gtrsim (≳) . . . . . . . . . . \gtrsim (≳) . . . . . . . . . . . \gtrsim (≳) . . . . . . . . . . \gtrsimslant (>) . . . . . . ∼ \GU (| ) . . . . . . . . . . . . . . \guillemetleft («) . . 16, \guillemetright (») . 16, \guillemotleft . . . . . . . \guillemetleft \guillemotright . . . . . . \guillemetright \guilsinglleft (‹) . . 16, \guilsinglright (›) . 16, \gvcropped ( ) . . . . . . . \gvertneqq (ţ) . . . . . . . . \gvertneqq () . . . . . . . \gvertneqq () . . . . . . . . \gvertneqq (≩) . . . . . . . . \gvertneqq (≩) . . . . . . . . \gvertneqq (≩) . . . . . . . . 65 226 68 67 66 68 226 ∓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 236 236 see see 237 237 132 65 64 68 67 66 68 H H (H) . . . . . . . . . . . . . . . 157 \H (a̋) . . . . . . . . . . . . . . . 20 h (esvect package option) . 110 \h (è) . . . . . . . . . . . . . . . 157 \h (ả) . . . . . . . . . . . . . . . 20 h (h) . . . . . . . . . . . . . . . 157 Hälsinge runes . . see staveless runes \HA (A) . . . . . . . . . . . . 149 \Ha (a) . . . . . . . . . . . . . 149 háček (ǎ) . . . . . . see accents \Hades (Ü) . . . . . . . . . . . 128 \Hail ( ) . . . . . . . . . . . . 178 \Halb (˘ “ ) . . . . . . . . . . . . 160 half note see musical symbols \HalfCircleLeft (s) . . . . 143 \HalfCircleRight (r) . . . 143 \HalfFilledHut ( ) . . . . 178 \halflength (p) . . . . . . . 24 \halfNote ( ,) . . . . . . . . . 161 \halfnote ( ) . . . . . . . . . 158 \halfNoteDotted ( u) . . . . 161 \halfNoteDottedDouble ( u u) . . . . . . . . 161 271 \halfNoteDottedDoubleDown uu ( ) . . . . . . . . . . . 161 u \halfNoteDottedDown ( ) 161 , \halfNoteDown ( ) . . . . . . 161 \halfNoteRest ( ) . . . . . 163 \halfNoteRestDotted ( ) . . . . . . . . . 163 \HalfSun ( ) . . . . . . . . . 178 Halloween symbols 38, 113, 114 halloweenmath (package) . 38, 90, 106, 112–114, 239, 240 Hamiltonian (ℋ) . . . . . . . see alphabets, math \HandCuffLeft () . . . . . 136 \HandCuffLeftUp () . . . 136 \HandCuffRight ( ) . . . . 136 \HandCuffRightUp () . . 136 \HandLeft () . . . . . . . . 136 \HandLeftUp () . . . . . . 136 \HandPencilLeft () . . . 136 \HandRight () . . . . . . . 136 \HandRightUp () . . . . . 136 hands . . . . . . . . . . . see fists hands (package) . . . . 199, 239 \Handwash (Ü) . . . . . . . . 177 \HaPa (<) . . . . . . . . . . . . 160 harmony (package) . . 160, 161, 239, 240 harpoon (package) 87, 239, 240 harpoons . . 72, 74, 77, 81–83, 86–88, 215–216 \hash (#) . . . . . . . . . . . . 119 \hash (>) . . . . . . . . . . . . 57 hash mark . see \# and \hash \hat ( ̂ ) . . . . . . . . . . . . . 106 \hat (^) . . . . . . . . . . . . . 105 \hat[ash] ( ) . . . . . . . . 107 \hat[beret] ( ) . . . . . . 107 \hat[cowboy] ( ) . . . . . . 107 \hat[crown] ( ) . . . . . . 107 D \hat[dunce] ( ) . . . . . . . 107 \hat[fez] ( ) . . . . . . . . . 107 \hat[santa] ( ) . . \hat[sombrero] ( ) \hat[tophat] ( ) . . \hat[witch] ( ) . . . \hatapprox (⩯) . . . . \hateq (≙) . . . . . . . \hateq (≙) . . . . . . . \hausaB (B) . . . . . . \hausab (b) . . . . . . \hausaD (T) . . . . . . \hausad (D) . . . . . . \hausaK (K) . . . . . . \hausak (k) . . . . . . \HB (B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 107 107 107 58 55 52 19 19 19 19 19 19 149 \Hb (b) . . . . . . . . . . . . . 149 \HBar ( ) . . . . . . . . . . . . 143 \hbar (~) . . . . . . . . . 96, 223 \hbar ( ) . . . . ̵) . . . . \hbar (h \hbar (ℏ) . . . . \hbipropto () \hbond (Ë) . . \HC (C) . . . . . . .... .... .... ... .... .... . . . . . . . . . . . . . . . . . . . 97 . 97 . 97 . 31 . 132 . 149 \Hc (c) . . . . . . . . . . . . . . 149 \hcrossing () . . . . . . . . 52 \HCthousand (6) . . . . . . 149 \HD (D) . . . . . . . . . . . . . 149 \Hd (d) . . . . . . . . . . . . . 149 \hdotdot () . . . . . . 32, 115 \hdotdot () . . . . . . . 31, 115 \hdots (⋯) . . . . . . . . . . . 115 \hdots (⋯) . . . . . . . . . . . 115 \Hdual (ff) . . . . . . . . . . . 149 \HE (E) . . . . . . . . . . . . . 149 \He (e) . . . . . . . . . . . . . 149 heads . . . . . . . . . . . see faces \Heart () . . . . . . . . . . . 177 heartctrbull (bullcntr package option) . . . . . . . . . . 180 \heartctrbull . . . . . . . . 180 hearts . 128, 145, 146, 192–197 \heartsuit (♡) . . . . . . . 145 \heartsuit (ö) . . . . . . . . 145 \heartsuit (♡) . . . . . . . . 145 \heartsuit (♡) . . . . . . . . 145 \heartsuit (♡) . . . . . . . . 146 \heavyqtleft (❝) . . . . . . 190 \heavyqtright (❞) . . . . . 190 Hebrew . . . . . . . . 95, 96, 124 Helvetica (font) . . . . . . . . 25 \hemiobelion (Α) . . . . . . 26 \Herd ( ) . . . . . . . . . . . . 191 \HERMAPHRODITE () . . . . 131 \Hermaphrodite (}) . . . . 131 \Hermaphrodite (⚥) . . . . 131 \hermitmatrix (ò) . . . . . 120 \hermitmatrix (⊹) . . . . . 121 \Heta ([) . . . . . . . . . . . . 154 \heta (() . . . . . . . . . . . . . 154 \hexago ( ) . . . . . . . . . . 144 \hexagocross ( ) . . . . . . 144 \hexagodot ( ) . . . . . . . . 144 \hexagofill ( ) . . . . . . . 144 \hexagofillha ( ) . . . . . 144 \hexagofillhb ( ) . . . . . 144 \hexagofillhl ( ) . . . . . 144 \hexagofillhr ( ) . . . . . 144 \hexagolineh ( ) . . . . . . 145 \hexagolinev ( ) . . . . . . 145 \hexagolinevh ( ) . . . . . 145 \hexagon (⎔) . . . . . . . . . 141 \hexagon (7) . . . . . . . . . 140 \hexagonblack (⬣) . . . . . 141 hexagons . . . . . . . . . 144–145 \Hexasteel () . . . . . . . . 131 \hexstar (A) . . . . . . . . . 139 \HF ( : : ) . . . . . . . . . . . . . . 125 \HF (F) . . . . . . . . . . . . 149 \Hf (f) . . . . . . . . . . . . 149 ‖ \hfermion () \hfil . . . . . \HG (G) . . . . \Hg (g) . . . \HH . . . . . . . . . . . . . . . . . . . . . . . . . . . \HH (H) . . . . . . . . \Hh (h) . . . . . . . hhcount (package) 239, 240 \Hhundred (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 224 149 149 161 . . . . . . 149 . . . . . . 149 . . 179, 180, . . . . . . 149 \HI (I) . . . . . . . . . . . . . 149 \Hi (i) . . . . . . . . . . . . . . 149 \hiatus (H ) . . . . . . . . . . 184 \Hibl (Π) . . . . . . . . . . 149 \Hibp (Θ) . . . . . . . . . . . 149 \Hibs (Ξ) . . . . . . . . . . . 149 \Hibw (Λ) . . . . . . . . . . . \Hidalgo (%) . . . . . . . . . . hieroglf (package) 149, 239, hieroglyphics . . . . . . . . . . \Higgsboson (ñ) . . . . . . Hilbert space (ℋ) . . . . . . alphabets, math \hill (a) . . . . . . . . . . . . { 149 128 240 149 132 see 23 Hirst, Daniel . . . . . . . . . . 158 \HJ (J) . . . . . . \Hj (j) . . . . . \HK (K) . . . . . . \Hk (k) . . . . . \hknearrow (⤤) \hknearrow (⤤) \hknwarrow (⤣) \hknwarrow (⤣) \hksearow (⤥) \hksearrow (⤥) √ \hksqrt ( ) . \hkswarow (⤦) \hkswarrow (⤦) \HL (L) . . . . . \Hl (l) . . . . . \HM (M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 149 149 149 79 84 79 84 84 79 225 84 79 149 149 149 \Hm (m) . . . . . . . . . . . . . 149 \Hman (ϒ) . . . . . . . . . . . 149 \Hmillion (7) . . . . . . . . 149 \hmleftpitchfork (−−∈) . 90 \hmrightpitchfork (∋−−) 90 \Hms (Δ) \HN (N) \Hn (n) \HO (O) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 149 149 149 \Ho (o) . . . . . . \hole (ℎ) . . . . . \HollowBox (O) . Holmes, Sherlock Holt, Alexander . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 149 132 138 213 238 \hom (hom) . . . . . . . . . . 91 \Home ( Home ) . . . . . . . 129 \Homer ( ) . . . . . . 184 \Hone (—) . . . . . . . . . . . . . 149 hook accent (ả) . . see accents \hookb () . . . . . . . . . . . 19 \hookd (D) . . . . . . . . . . . 19 \hookd () . . . . . . . . . . . 19 \hookdownarrow (;) . . . . . 78 \hookdownminus (⌐) . . . . 120 \hookdownminus (⌐) . . . . 119 \hookg () . . . . . . . . . . . 19 \hookh ($) . . . . . . . . . . . 19 \hookheng (%) . . . . . . . . . 19 \hookleftarrow (←˒) . . . 72 \hookleftarrow () . . . . 82 \hookleftarrow (↩) . . . . 78 \hookleftarrow (↩) . . . . 75 \hookleftarrow (←˒) . . . . 87 \hookleftarrow (↩) . . . . 84 \hooknearrow (⤤) . . . . . . 78 \hooknwarrow (⤣) . . . . . . 78 \hookrevepsilon () . . . . 19 \hookrightarrow (˓→) . . 72 \hookrightarrow ( ) . . . 82 \hookrightarrow (↪) . . . 78 \hookrightarrow (↪) . . . 75 \hookrightarrow (˓→) . . . 87 \hookrightarrow (↪) . . . 84 \hooksearrow (⤥) . . . . . . 78 \hookswarrow (⤦) . . . . . . 78 \hookuparrow (1) . . . . . . 78 \hookupminus (⨽) . . . . . . 33 \hookupminus (⨽) . . . . . . 119 Horn, Berthold . . . . . . . . 124 \hoshi ( ) . . . \hourglass (⧖) \hourglass (⧖) \house (⌂) . . . \HP (P) . . . . \Hp (p) . . . . . . \hpause ( ) . . \Hplural (Ω) < . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 33 38 141 149 149 159 149 \Hplus (+) . . . . . . . . . . . 149 \HQ (Q) . . . . . . . . . . . . . 149 \Hq (q) . . . . . . . . . . . . . . 149 \Hquery (?) . . . . . . . . . \HR (R) . . . . . . . . . . . \Hr (r) . . . . . . . . . . \hrectangle (▭) . . . . \hrectangleblack (▬) \HS (S) . . . . . . . . . . . . . . . . . . . . . . . 149 149 149 141 141 149 \Hs (s) . . . . . . . . . . . . . . 149 A \hs () . . . . . . . . . . . . . . . 159 \Hscribe (Ψ) . . . . . . . . . 149 \holter ( ) . . . . . . . . . 114 holtpolt (package) 272 . . 114, 239 \Hslash (/) . . . . . . . . . . . 149 \hslash (}) . . . . . . . . . . 96 \hslash () ̷) \hslash (h \hslash (ℏ) \Hsv (Σ) . \HT (␉) . . . \HT (T) . . \Ht (t) . . \Hten (2) . . .. . .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 97 97 149 130 149 149 149 \Hthousand (4) . . . . . . . . 149 \Htongue (Φ) . . . . . . . . 149 \HU (U) . . . . . . . . . . . . . . 149 \Hu (u) . . . . . . . . . . Hungarian umlaut (a̋) accents \Hungary () . . . . . . \Hut ( ) . . . . . . . . . . . . . 149 . . . see \HV (V) . . \Hv (v) . \hv (") . . \Hvbar (—) \HW (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 . . . . 178 . . . . . . . . . . . . . . . 149 149 19 149 149 \Hw (w) . . . . . . . . . . . . . 149 \HX (X) . . . . . . . . . . . . . . 149 \Hx (x) . . . . . . . . . . . . . . 149 \HXthousand (5) . . . . . . . 149 \HY (Y) . . . . . . . . . . . . . 149 \Hy (y) . . . . . . . . . \Hygiea (½) . . . . . . hyphen, discretionary \hyphenbullet (⁃) . . . . . . . . . . . . . . . . . . 149 128 235 121 \HZ (Z) . . . . . . . . . . . . . 149 \Hz (z) . . . . . . . . . . . . 149 \hzigzag (〰) . . . . . . . . 121 I I (I) . . . . . . . . . . . . . . . ï . . . . . . . . . . . . . . . . . . . \i (Á) . . . . . . . . . . . . . . \i (ı) . . . . . . . . . . . . . . . i (i) . . . . . . . . . . . . . . . . \ialign . . . . . . 224, 226, \IB ( ) . . . . . . . . . . . . . . \ibar (¯i ) . . . . . . . . . . . . IBM PC . . . . . . 130, 185, \IC (4) . . . . . . . . . . . . . . \Iceland () . . . . . . . . . . Icelandic staves . . . . . . . . \IceMountain ( ) . . . . . . \Id (Id) . . . . . . . . . . . . . \id (id) . . . . . . . . . . . . . . \iddots ( . . ) . . . . . . . . . \iddots () ∫︀. . . .∫︀. . . . . . . \idotsint (' ··· ) . . . . . \idotsint ( ) ...... ∫ ∫ \idotsint (∬ ··· ) . . . . . . \idotsint ( ) . . . . . . . \idotsint (∫⋯∫) . . . . . . . 157 20 157 20 157 228 129 19 234 128 190 185 178 92 92 115 227 40 42 49 49 45 \idotsint (∫…∫) . . . . . . . . 44 \iff see \Longleftrightarrow ifsym (package) 125, 143, 178, 220, 222, 239, 240 igo (package) . . . . . . 182, 239 \igocircle ( ) . . . . . . . 182 \igocircle ( ) . . . . . . . 182 \igocross ( ) . . . . . . . . 182 \igocross ( ) . . . . . . . . 182 \igonone ( ) . . . . . . . . . 182 \igonone ( ) . . . . . . . . . 182 \igosquare ( ) . . . . . . . 182 \igosquare ( ) . . . . . . . 182 \igotriangle ( ) . . . . . . 182 \igotriangle ∫︀∫︀∫︀∫︀ ( ) . . . . . . 182 \iiiint (% ) . . . . . . . . 40 \iiiint (⨌ ) . . . . . . . . . 42 \iiiint (ˇ) . . . . . . . . . 49 \iiiint ( ) . . . . . . . . . 43 \iiiint (⨌) . . . . . . . . . 45 \iiiint (⨌) . . . . . . . . . 44 \iiiint (⨌) . . . . . . . . . . 46 \iiiintsl (⨌) . . . . . . . . 47 \iiiintup ţ (⨌) . . . . . . . . 47 \iiint (∫︀∫︀∫︀) . . . . . . . . . . 41 \iiint (t ) . . . . . . . . . . 40 \iiint (#) . . . . . . . . . . 40 \iiint (∭ ) . . . . . . . . . . 42 \iiint (˝) . . . . . . . . . . 49 \iiint ( ) . . . . . . . . . . 43 \iiint (∭) . . . . . . . . . . . 45 \iiint (∭) . . . . . . . . . . . 44 \iiint (∭) . . . . . . . . . . . 46 \iiintsl (∭) . . . . . . . . . 47 \iiintup (∭) . . . . . . . . . 47 \iinfin (÷) . . . . . . . . . . 120 \iinfinť(⧜) . . . . . . . . . . 117 \iint (∫︀∫︀) . . . . . . . . . . . . 41 \iint (s ) . . . . . . . . . . . 40 \iint (!) . . . . . . . . . . . . 40 \iint (∬ ) . . . . . . . . . . . 42 \iint (˜) . . . . . . . . . . . . 49 \iint ( ) . . . . . . . . . . . . 43 \iint (∬) . . . . . . . . . . . . 45 \iint (∬) . . . . . . . . . . . . 44 \iint (∬) . . . . . . . . . . . . 46 \iintsl (∬) . . . . . . . . . . 47 \iintup (∬) . . . . . . . . . . 47 \IJ (IJ) . . . . . . . . . . . . . 15 \ij (ij) . . . . . . . . . . . . . . 15 \Im (ℑ) . . . . . . . . . . . 92, 96 \Im (Im) . . . . . . . . . . . . . 92 \Im (ℑ) . . . . . . . . . . . . . . 97 \im (im) . . . . . . . . . . . . . 92 \im (j) . . . . . . . . . . . . . . 97 \imageof (⊷) . . . . . . . . . 89 \imageof (⊷) . . . . . . . . . 58 \imath (𝚤) . . . . . . . . . 96, 105 \imath ({) . . . . . . . . . . . . 97 \imath (𝚤) . . . . . . . . . . . . 97 \impliedby . . . . . . . . . . . see \Longleftarrow } } | | ~ ~ 273 \implies see \Longrightarrow and \vdash impulse train . . . . . . . see sha \in (P) . . . . . . . . . . . . . . 96 \in (∈) . . . . . . . . . . . . . 96 \in (∈) . . . . . . . . . . . . 55, 97 \in (∈) . . . . . . . . . . . . . . 97 \in (∈) . . . . . . . . . . . . . . 96 \in (∈) . . . . . . . . . . . . . . 58 inches . . . . . see \second and \textquotedbl \incoh (˚) . . . . . . . . . . . 61 \increment (∆) . . . . . . . . 121 independence probabilistic . . . . . . . 225 statistical . . . . . . . . . 225 stochastic . . . . see \bot \independent (⊥ ⊥) . . . . . 225 \Industry (I) . . . . . . . . 177 inequalities . . . . . . 14, 64–69 inexact differential . see \dbar \inf (inf ) . . . . . . . . . . . . 91 infimum see \inf and \sqcap infinity . . . 117–120, 122, 225 \Info (i) . . . . . . . . . . . . 177 \Info ( ) . . . . . . . . . . . . 187 information symbols . . . . 177 informator symbols . . . . . 181 \infty (8) . . . . . . . . . . . 119 \infty (∞) . . . . . . . . . . 118 \infty (∞) . . . . . . . . . . . 120 \infty (∞) . . . . . . . . . . . 119 \infty (∞) . . . . . . . . . . . 117 \ING (İ) . . . . . . . . . . . . . 157 \Ing (¡) . . . . . . . . . . . . . 157 \ing (ţ) . . . . . . . . . . . . . 157 \inipartvoice (a –ˇ) . . . . . 22 \inipartvoiceless (a – ) . . 22 ˚ \injlim (inj lim) . . . . . . 91 \Innocey ( ) . . . . . . . . . 191 \inplus (A) . . . . . . . . . . 51 \inplus (¶) . . . . . . . . . . . 57 inputenc (package) . . . . . . 237 \Ins ( Ins ) . . . . . . . . . . 129 ş \int (r) . . . . . . . . . . . . . 41 \int (r) . . . . . . . . . . . . . 40 \int (∫︀) . . . . . . . . . . . . . 40 \int (∫ ) . . . . . . . . . . . . . 40 \int ( ) . . . . . . . . . . . . . 49 \int (∫) . . . . . . . . . . . . . 45 \int (∫) . . . . . . . . . . . . . 44 \int (∫) . . . . . . . . . . . . . 46 \intBar (⨎) . . . . . . . . . . 45 \intBar (⨎) . . . . . . . . . . . 46 \intbar (⨍) . . . . . . . . . . 45 \intbar (⨍) . . . . . . . . . . . 46 \intBarsl (⨎) . . . . . . . . . 47 \intbarsl (⨍) . . . . . . . . . 47 \intBarup (⨎) . . . . . . . . . 47 \intbarup⨙(⨍) . . . . . . . . . 47 \intcap ( ) . . . . . . . . . . 49 \intcap (⨙) . . . . . . . . . . . 46 ¡ \intcapsl (⨙) . . . . . . . . . 48 \intcapup (⨙) . . . . . . . . . 48 ∱ \intclockwise ( ) . . . . . . 49 \intclockwise (∱) . . . . . 45 \intclockwise ( ) . . . . . 49 \intclockwise (∱) . . . . . . 46 \intclockwisesl (∱) . . . . 47 \intclockwiseup (∱) . . . . 47 \intctrclockwise (⨑) . . . 45 ⨚ \intcup ( ) . . . . . . . . . . 49 \intcup (⨚) . . . . . . . . . . . 46 \intcupsl (⨚) . . . . . . . . . 48 \intcupup (⨚) . . . . . . . . . 48 \INTEGER ( ) . . . . . . . . . . 92 \Integer ( ) . . . . . . . . . . 92 integers (Z) . . . see alphabets, math integrals 39–50, 119, 120, 225 product . . . . . . . . . . 50 integrals (wasysym package option) . . . . . . . . . . . 40 \interaction (Ó) . . . . . . 132 \intercal (|) . . . . . . . . . 30 \intercal (þ) . . . . . . . 33, 97 \intercal (⊺) . . . . . . . . . 32 \intercal (⊺) . . . . . . . . . 96 \intercal (⊺) . . . . . . . 34, 97 interior . . . . . . see \mathring \interleave (9) . . . . . . . 30 \interleave (⫴) . . . . . . . 34 \internalsym (𝛩) . . . . . . 132 intersection . . . . . . . see \cap ¿ Ú \Interval ( ) . ⨗ \intlarhk ( ) . . \intlarhk (⨗) . . \intlarhksl (⨗) \intlarhkup (⨗) \intprod (⨼) . . \intprod (⨼) . . . \intprodr (⨽) . . \intprodr (⨽) . . \intsl (∫) . . . . . \intup ( ) . . . . . \intup (∫) . . . . . \intx (⨘) . . . . . \intxsl (⨘) . . . . \intxup (⨘) . . . . \inva ( ) . . . . . \invamp (M) . . . \invamp (`) . . . \invbackneg (⨽) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... ..... ..... ..... ..... 32, 33, ..... 32, 33, ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... 178 49 46 48 48 120 34 120 34 47 45 47 46 48 48 19 31 35 119 \INVd () . . . . . . . . . . 130 \invdiameter () . . . . . . 176 \inve (U) . . . . . . . . . . . . 19 inverse limit see \varprojlim \inversebullet (◘) . . . . 121 \inversewhitecircle (◙) 141 \InversTransformHoriz ( ) . . . . . . . . 61 \InversTransformVert ( ) 61 inverted symbols 222 inverters . . . . . . \invf (,) . . . . . . \invglotstop (d) \invh (&) . . . . . ... ... .. ... . . . . . . . . . . . . . 130 . 19 . 19 . 19 \INVl () . \invlazys (∾) \invlegr (I) . \invm (5) . . . \invneg () . \invneg (⌐) . \invneg (⨼) . \invnot () . \invnot (⌐) . \invnot (⌐) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–19, 24, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 34 19 19 51 120 119 120 120 121 \INVr () . . . . . \invr (G) . . . . . . . \invscr (K) . . . . . \invscripta () . . \invsmileface (☻) . . . . . . . . . . . . . . . . . . . . . 130 . 19 . 19 . 19 . 190 \INVu () . . . . . . . . . . 130 \invv () . . . . . . . . . . . . 19 \invw (Z) . . . . . . . . . . . . 19 \invwhitelowerhalfcircle (◛) . . . . . . . . . . . 141 \invwhiteupperhalfcircle (◚) . . . . . . . . . . . 141 \invy (\) . . . . . . . . . . . . 19 \IO ( ) . . . . . . . . . . . . . . 129 \ion (𝑓) . . . . . . . . . . . . . 132 \ionicbond (Î) . . . . . . . 132 \Iota (I) . . . . . . . . . . . . . 93 \iota (𝜄) . . . . . . . . . . . . 93 iota, upside-down . . . . . . 222 \iotaup (ι) . . . . . . . . . . . 94 \ipagamma ( ) . . . . . . . . . 19 \ipercatal (η) . . . . . . . . 184 \Ireland () . . . . . . . . . . 190 \IroningI (¯) . . . . . . . . 177 \IroningII (°) . . . . . . . 177 \IroningIII (±) . . . . . . 177 irony mark (? ) . . . . . . . . . 222 irrational numbers (J) . . . see alphabets, math \Irritant ( ) . . . . . . . . 178 \isindot (⋵) . . . . . . . . . 58 \isinE (⋹) . . . . . . . . . . . 58 \isinobar (⋷) . . . . . . . . . 58 \isins (⋴) . . . . . . . . . . . 58 \isinvb (⋸) . . . . . . . . . . 58 \ismodeledby (=|) . . . . . 223 ISO character entities . . . 235 isoent (package) . . . . . . . . 235 Isthmian script . . . . 154–156 italic 14, 15, 26, 229, 231, 233, 235 \Italy () . . . . . . . . . . . 190 J J (J) . . . . . . . . . . . . . . . . 157 274 \j (ł) . . . . . . . . . . . . . . 157 \j (ȷ) . . . . . . . . . . . . . . . 20 j (j) . . . . . . . . . . . . . . . . 157 \JackStar (2) . . . . . . . . 139 \JackStarBold (3) . . . . . 139 Jewish star . . . . . . . . . . . 139 \jmath (𝚥) . . . . . . . . 96, 105 \jmath (|) . . . . . . . . . . . . 97 \jmath (𝚥) . . . . . . . . . . . . 97 \Joch ( ) . . . . . . . . . . . . 178 \Join (Z) . . . . . . . . . . 50, 51 \Join (⋈) . . . . . . . . . . 33, 55 \Join (&) . . . . . . . . . . . . 32 \Join (⨝) . . . . . . . . . . . 121 \joinrel . . . . . . . . . . . . 223 joint denial . . see \downarrow \Jpsimeson (ö) . . . . . . . 132 junicode (package) . . 238, 239 Junicode.ttf (file) . . . . . 238 \Juno (;) . . . . . . . . . . . . 128 \Jupiter (E) . . . . . . . . . 127 \Jupiter (Å) . . . . . . . . . . 126 \Jupiter (j) . . . . . . . . . 128 \jupiter (X) . . . . . . . . . 126 K \K (Č) . . . . . . . . . . . . . . . 157 \k (ń) . . . . . . . . . . . . . . . 157 \k (a) . . . . . . . . . . . . . . . 24 ˓ \k (a) ˛ . . . . . . . . . . . . . . . 20 k (k) . . . . . . . . . . . . . . . . 157 \Kaonminus (î) . . . . . . . 132 \Kaonnull (ï) . . . . . . . . 132 \Kaonplus (í) . . . . . . . . 132 \Kappa (K) . . . . . . . . . . . 93 \kappa (𝜅) . . . . . . . . . . . 93 \kappaup (κ) . . . . . . . . . . 94 \ker (ker) . . . . . . . . . . . 91 \kernelcontraction () . 57 \kernelcontraction (∻) . 58 ket . . . . . . . . . . . . . . . . . 99 \Keyboard (Ï) . . . . . . . . 129 keyboard symbols . . . . . . 129 keys, computer . . . . . . . . 129 keystroke (package) . 129, 239, 240 \keystroke ( ) . . . . . . 129 king . . . . . . . . . 182, 217–218 \Knife () . . . . . . . . . . . . 191 knight . . . . . . . . 182, 217–218 knitting (package) 188, 239, 240 knitting symbols . . . . . . . 188 \Knoblauchpresse ( ) . 191 knot (package) . . 207, 210, 239 knots . . . . . . . . . . . 207–210 Knuth, Donald E. 12, 87, 233, 241 symbols by . . . . . . . . 176 \Kochtopf ( ) . . . . . . . . 191 \Koppa (Ϙ) . . . . . . . . . . . 154 \koppa (ϟ) . . . . . . . . . . . . 154 \Kr ( l ) . . . . . . . . . . . . 161 \kreuz (6) . . . . . . . . . . . 176 Kronecker product Kronecker sum . . \Kronos (Ä) . . . . kroužek (å) . . . . . \kside (O) . . . . . see \otimes see \oplus . . . . . . 128 see accents . . . . . . 181 L \L (L) . . . . . . . . . . . . . . . 15 \l (l) . . . . . . . . . . . . . . . 15 l (l) . . . . . . . . . . . . . . . . 157 \labdentalnas (4) . . . . . 19 \labvel . . . . . . . . . . . . . 23 \Ladiesroom (y) . . . . . . . 177 Lagrangian (ℒ) see alphabets, math \Lambda (Λ) . . . . . . . . . . 93 \lambda (𝜆) . . . . . . . . . . 93 \lambdabar (o) . . . . . . . . 119 \lambdabar () . . . . . . . . 120 \lambdaslash (n) . . . . . . 119 \lambdaslash () . . . . . . 120 \lambdaup (λ) . . . . . . . . . 94 Lamport, Leslie . . . . 238, 241 \land . . . . . . . . . see \wedge \land (∧) . . . . . . . . . . . . 33 \land (∧) . . . . . . . . . . . . 34 land masses . . ∫. . . . . . . . . 188 \landdownint (%) . . . . . . 49 \landdownint ( ) . . . . . . 43 \landdownint (⨑) . . . . . . 45 \landdownint∫ (⨚) . . . . . . 44 \landupint (#) . . . . . . . . 49 \landupint ( ) . . . . . . . . 43 \landupint (∱) . . . . . . 44, 45 \landupint (⨙) . . . . . . . . 44 \Langle (<) . . . . . . . . . . 124 \lAngle (⟨⟨) . . . . . . . . . . . 104 \lAngle (⟪) . . . . . . . . . . 101 ⟪ \lAngle ( ) . . . . . . . . . 102 \langle (⟨) . . . . . . . . . 29, 99 \langle (⟨) . . . . . . . . . . . 101 \langle (⟨) . . . . . . . . . . . 101 ⟨ \langle ( ) . . . . . . . . . . 103 \langlebar (n) . . . . . . . . 101 \langledot (⦑) . . . . . . . . 101 \langledot (⦑) . . . . . . . . 98 \laplac (⧠) . . . . . . . . . . 121 \Laplace ( ) ....... 61 \laplace ( ) . . . . . . . 61 Laplace transform (ℒ) . . . see alphabets, math Laplacian (Δ) . . . see \Delta Laplacian (∇2 ) . . see \nabla \largeblackcircle (⬤) . 141 \largeblacksquare (⬛) . 141 \largeblackstar (★) . . . 141 \largecircle (◯) . . . . . 141 \largecircle (◯) . . . . . . 140 largectrbull (bullcntr package option) . . . . . . . . . . 180 \largectrbull . . . . . . . . 180 \largediamond (◇) . . . . 140 \largelozenge (◊) . . . . . 140 \largepencil ( W) . . . . . 136 \largepentagram ( ) . . . 140 \LargerOrEqual (>) . . . . 116 \largesquare (⬜) . . . . . . 141 \largesquare (◻) . . . . . . 140 \largestar (☆) . . . . . . . 140 \largestarofdavid (✡) . 140 \largetriangledown (_) 71, 141 \largetriangledown (▽) 70 \largetriangleleft (◁) 70 \largetriangleright (▷) 70 \largetriangleup (^) . . 71, 141 \largetriangleup (△) . . 70 \largewhitestar (☆) . . . 141 \LArrow ( ← ) . . . . . . . . 129 \larrowfill . . . . . . . . . . 111 \Laserbeam (a) . . . . . . 131 \lat (⪫) . . . . . . . . . . . . . 68 \late (⪭) . . . . . . . . . . . . 68 LATEX . . . . . 1, 12, 16, 20, 50, 91, 99, 114, 118, 134, 180, 190, 199, 218, 219, 222– 227, 229, 232–235, 237– 241 LATEX 2𝜀 . . . 1, 12, 14, 15, 26, 30, 50, 61, 72, 106, 114, 118, 124, 145, 158, 199, 218–220, 222, 223, 225– 227, 231–237, 241 latexsym (package) . 30, 50, 61, 72, 118, 219, 239 \latfric (/) . . . . . . . . . . 19 Latin 1 . . . . 12, 235–236, 239 \Latvia () . . . . . . . . . . . 188 \Laughey ( ) . . . . . . . . . 191 laundry symbols . . . . . . . 177 \LB ({) . . . . . . . . . . . . . . 129 \lb (lb) . . . . . . . . . . . . . 92 \Lbag (P) . . . . . . . . . . . . 98 \lbag (N) . . . . . . . . . . . . 98 \lbag (Þ) . . . . . . . . . . . . . 33 \lbag (⟅) . . . . . . . . . . . . 98 \lblackbowtie (ì) . . . . . 33 \lblkbrbrak (⦗) . . . . . . . 98 ⦃ \lBrace ( ) . . . . . . . . . 102 275 \lbrace ({) . . . . . . . . . . 101 \lbrace ({) . . . . . . . . . . . 102 ⎧ ⎪ ⎪ \lbrace ( ⎨) . . . . . . . . . 100 {⎪ ⎩ \lbrace ( ) . . . . . . . . . . 102 \Lbrack ([) . . . . . . . . . . . 124 \lBrack ([[) . . . . . . . . . . . 104 \lBrack (⟦) . . . . . . . . . . 101 \lBrack (⟦) . . . . . . . . . . . 102 ⟦ \lBrack ( ) . . . . . . . . . . 102 \lbrack ([) . . . . . . . . . . . 101 \lbrack ([) . . . . . \lbracklltick (⦏) \lbrackubar (⦋) . \lbrackultick (⦍) \Lbrbrak (⟬) . . . . ❲ \lbrbrak ( . . . . . . . . . . . . . . . . . . . . . . . . . . 102 . 98 . 98 . 98 . 98 ) . . . . . . . . . 102 LCD numerals . . . . . . . . . 125 \lCeil (⌈⌈) . . . . . . . . . . . 104 \lceil (⌈) . . . . . . . . . . . 99 \lceil (⌈) . . . . . . . . . . . 102 ⎡⎢ \lceil ( ⎢⎢⎢) . . . . . . . . . . . 100 ⌈⎢ \lceil ( ) . . . . . . . . . . . 103 \lcirclearrowdown (ÿ) . 74 \lcirclearrowleft (⤾) . 74 \lcirclearrowright (⟳) 74 \lcirclearrowup (↻) . . . 74 \lcircleleftint (∲) . 44, 45 \lcircleleftint (∲) . . . . 44 \lcirclerightint (∲) . . . 45 \lcirclerightint (∲) . . . 44 \lcm (lcm) . . . . . . . . . . . 92 \lcm (lcm) . . . . . . . . . . . 232 \lcorners (v) . . . . . . . . . 98 \lcurvearrowdown (⤸) . . . 74 \lcurvearrowleft (º) . . 74 \lcurvearrowne (¼) . . . . 74 \lcurvearrownw (½) . . . . 74 \lcurvearrowright (↷) . . 74 \lcurvearrowse (¿) . . . . 74 \lcurvearrowsw (¾) . . . . 74 \lcurvearrowup (¹) . . . . . 74 \lcurvyangle (⧼) . . . . . . 98 \LD () . . . . . . . . . . . . . . 129 \ldbrack (v) . . . . . . . . . . 100 \ldotp (.) . . . . . . . . . . . . 114 \ldotp (.) . . . . . . . . . . . . 115 \ldots (. . .) . . . . . . . . . . 114 \Ldsh (↲) . . . . . . . . . . . . 78 \Ldsh (↲) . . . . . . . . . . . . 84 \LE ( ) . . . . . . . . . . . . . . 129 \le . . . . . . . . . . . . . see \leq \le (≤) . . . . . . . . . . . . . . 68 \le (≤) . . . . . . . . . . . . . . 69 \leadsto ({) . . . . . . . 51, 72 \leadsto (↝) . . . . . . . . . 79 \leadsto (↝) . . . . . . . . . 75 \leadsto (⇝) . . . . . . . . . 85 leaf . . . . . . . . . see \textleaf \leafleft (J) . . . . . . . . 140 \leafNE (F) . . . . . . . . . . 140 \leafright (K) . . . . . . . 140 leaves . . . . . . . . 140, 146, 204 Lefschetz motive (ℒ) . . . . see alphabets, math \Left . . . . . . . . . . . . . . . 184 \left . 99, 103, 104, 219, 221 \LEFTarrow () . . . . . . . . 176 \Leftarrow (⇐) . . . . . 29, 72 \Leftarrow (⇐) . . . . . . . 79 \Leftarrow (⇐) . . . . . . . 74 \Leftarrow (⇐) . . . . . . . 85 \leftarrow (Ð) . . . . . . . 73 \leftarrow (←) . . . . . . . 72 \leftarrow (←) . . . . . . . 78 \leftarrow (←) . . . . . . . . 75 \leftarrow (←) . . . . . . . 87 \leftarrow (←) . . . . . . . 85 \leftarrowaccent (⃖) . . . 106 \leftarrowapprox (⭊) . . 85 \leftarrowbackapprox (⭂) 85 \leftarrowbsimilar (⭋) . 85 \leftarrowless (⥷) . . . . 68 \leftarrowonoplus (⬲) . 85 \leftarrowplus (⥆) . . . . 85 \leftarrowshortrightarrow (⥃) . . . . . . . . . . . . 85 \leftarrowsimilar (⥳) . 85 \leftarrowsubset (⥺) . . 64 \leftarrowtail () . . . 72 \leftarrowtail () . . . . 82 \leftarrowtail (↢) . . . . 78 \leftarrowtail (↢) . . . . 75 \leftarrowtail (↢) . . . . 85 \leftarrowTriangle (ú) . 82 \leftarrowtriangle (^) 73 \leftarrowtriangle (ý) . 83 \leftarrowtriangle (⇽) . 85 \leftarrowx (⬾) . . . . . . . 85 \leftAssert (⫣) . . . . . . . 55 \leftassert (⫞) . . . . . . . 55 \leftbarharpoon (Ü) . . . 74 \leftbkarrow (⇠) . . . . . . 78 \leftbkarrow (⤌) . . . . . . 85 \leftblackarrow (-) . . . 83 \leftblackspoon (n) . . . 89 \leftbroom (−−< −) . . . . . 90 \LEFTCIRCLE (G) . . . . . . . 140 \LEFTcircle (G #) . . . . . . . 140 \Leftcircle (I) . . . . . . . 140 \leftcurvedarrow (↜) . . 79 \leftcurvedarrow (⬿) . . 85 \leftdasharrow ( ) . \leftdasharrow (⇠) . \leftdbkarrow (⤎) . . \leftdbltail (⤛) . . . \leftdotarrow (⬸) . . \leftdowncurvedarrow \leftdowncurvedarrow Ñ Ñ \leftevaw ( ÑÑ) . . . . . ... ... ... ... ... (⤶) (⤶) . . . 103 \leftfilledspoon (r) . . \leftfishtail (⥼) . . . . . \leftfootline (¬) . . . . . \leftfootline (z) . . . . . \leftfree () . . . . . . . . \lefthalfcap (⌜) . . . . . . \lefthalfcup (⌞) . . . . . . \lefthand (T) . . . . . . . . \leftharpoonaccent (⃐) . \leftharpoonccw (↽) . . . \leftharpooncw (↼) . . . . \leftharpoondown (â) . . \leftharpoondown (↽) . . \leftharpoondown () . . \leftharpoondown (↽) . . \leftharpoondown (↽) . . \leftharpoondownbar (⥞) \leftharpoonsupdown (⥢) \leftharpoonup (à) . . . . \leftharpoonup (↼) . . . \leftharpoonup () . . . . \leftharpoonup (↼) . . . . \leftharpoonup (↼) . . . . \leftharpoonupbar (⥚) . \leftharpoonupdash (⥪) . \leftlcurvearrow () . . \leftleftarrows (Ð) . . . \leftleftarrows (⇔) . . . \leftleftarrows () . . . \leftleftarrows (⇇) . . . \leftleftarrows (⇇) . . . \leftleftarrows (⇇) . . . \leftleftharpoons (Ø) . \leftlsquigarrow (↜) . . \leftlsquigarrow (¢) . . \Leftmapsto (⤆) . . . . . . \leftmapsto (↤) . . . . . . . \leftmapsto (↤) . . . . . . . \leftModels (ò) . . . . . . . \leftmodels (î) . . . . . . . \leftmodels (â) . . . . . . . \leftmoon (K) . . . . . . . . . \leftmoon (☾) . . . . . . . . . \leftmoon ($) . . . . . . . . \leftouterjoin (⟕) . . . . \leftp (v) . . . . . . . . . . . . \leftpitchfork (v) . . . . \leftpitchfork () . . . . \leftpointright ( ) .. \leftpropto (∝) . . . . . . . \leftrcurvearrow (⤺) . . \Leftrightarrow (⇔) . . . \Leftrightarrow (⇔) . . . \Leftrightarrow (⇔) . . . R 276 83 85 85 58 85 79 85 88 58 55 52 52 31 32 137 106 77 77 74 72 83 81 86 86 86 74 72 83 81 86 86 86 79 73 72 83 78 75 85 74 79 75 78 78 75 52 55 52 127 127 126 121 24 90 88 136 52 79 72 78 75 \Leftrightarrow (⇔) . . . 85 \leftrightarrow (Ø) . . . 73 \leftrightarrow (↔) . . . 72 \leftrightarrow (↔) . . . 78 \leftrightarrow (↔) . . . 75 \leftrightarrow (↔) . . . 87 \leftrightarrow (↔) . . . 85 \leftrightarrowaccent (⃡) . . . . . . . . . 106 \leftrightarrowcircle (⥈) . . . . . . . . . 85 \leftrightarroweq (-) . . 73 \leftrightarroweq (ö) . 83 \leftrightarrows (Ô) . . 73 \leftrightarrows () . . 72 \leftrightarrows () . . 83 \leftrightarrows (⇆) . . 78 \leftrightarrows (⇆) . . 75 \leftrightarrows (⇆) . . 85 \leftrightarrowTriangle (ü) . . . . . . . . 83 \leftrightarrowtriangle (]) . . . . . . . . 73 \leftrightarrowtriangle (ÿ) . . . . . . . . 83 \leftrightarrowtriangle (⇿) . . . . . . . . 85 \leftrightblackarrow (1) 83 \leftrightblackspoon (q) 89 \leftrightcurvearrow (¤) 79 \leftrightharpoon (à) . 74 \leftrightharpoondowndown (⥐) . . . . . . . . . . . . 86 \leftrightharpoondownup (⥊) . . . . . . . . 81 \leftrightharpoondownup (⥊) . . . . . . . . 77 \leftrightharpoondownup (⥋) . . . . . . . . 86 \leftrightharpoons (è) 74 \leftrightharpoons ( ) 72 \leftrightharpoons () . 83 \leftrightharpoons (⇋) . 81 \leftrightharpoons (⇋) . 77 \leftrightharpoons (⇋) . 86 \leftrightharpoonsdown (⥧) . . . . . . . . 86 \leftrightharpoonsfill . 111 \leftrightharpoonsup (⥦) 86 \leftrightharpoonupdown (⥋) . . . . . . . . 81 \leftrightharpoonupdown (⥋) . . . . . . . . 77 \leftrightharpoonupdown (⥊) . . . . . . . . 86 \leftrightharpoonupup (⥎) . . . . . . . . . 86 \Leftrightline (Ô) . . . . 52 \leftrightline (Ð) . . . . 52 \leftrightspoon (⧟) . . . 89 \leftrightsquigarrow (ú) . . . . . . . . 73 \leftrightsquigarrow (!) . . . . . . . . . 72 \leftrightsquigarrow () 83 \leftrightsquigarrow (↭) 79 \leftrightsquigarrow (↭) 75 \leftrightsquigarrow (↭) 85 \leftrightwavearrow (↭) 78 \leftrsquigarrow (↜) . . 79 \leftrsquigarrow (↜) . . 75 \LeftScissors (Q) . . . . . 135 \leftslice (2) . . . . . . . . 30 \leftslice (Ð) . . . . . . . . 33 \leftslice (⪦) . . . . . . . . 52 \leftspoon (⟜) . . . . . . . 89 \leftspoon (⟜) . . . . . . . 88 \leftsquigarrow (ø) . . 73 \leftsquigarrow (f) . . . 73 \leftsquigarrow () . . . 83 \leftsquigarrow (↜) . . . 79 \leftsquigarrow (⇜) . . . 85 \leftt (n) . . . . . . . . . . . . 24 \lefttail (⤙) . . . . . . . . 58 \lefttherefore ( ) . . . . 115 \lefttherefore ( ) . 32, 115 \leftthreearrows (⬱) . . 85 \leftthreetimes ($) . . . 119 \leftthreetimes (h) . . . 30 \leftthreetimes (Ó) . . . 33 \leftthreetimes (⋋) . . . 32 \leftthreetimes (⋋) . . . . 32 \leftthreetimes (⋋) . . . 34 \leftthumbsdown ( ) . . 136 \leftthumbsup ( ) . . . . 136 \lefttorightarrow (ü) . 73 \lefttorightarrow (ç) . . 83 \Lefttorque (&) . . . . . . 131 \leftturn (") . . . . . . . . 176 \leftupcurvedarrow (¡) 79 \leftVDash (⫥) . . . . . . . 55 \leftVdash (⫣) . . . . . . . 55 \leftVdash (ê) . . . . . . . . 52 \leftvDash (⫤) . . . . . . . . 55 \leftvdash (⊣) . . . . . . . . 55 \leftvdash (⊣) Ð . . . . . . . . 53 Ð \leftwave ( ÐÐ) . . . . . . . . 103 D U \leftwavearrow (↜) . . . . 78 \leftwavearrow (↜) . . . . 85 \leftwhitearrow (â) . . . 83 \leftwhitearrow (⇦) . . . 85 \leftwhiteroundarrow (ä) 83 \leftY (.) . . . . . . . . . . . 32 \leftY (*) . . . . . . . . . . . 32 \leftzigzagarrow () . . 83 legal symbols . . 14, 15, 26, 27, 236 \legm (6) . . . . . . . . . . . . 19 \legr (E) . . . . . . . . . . . . 19 \length (q) . . . . . . . . . . . 24 \Leo (ä) . . . . . . . . . . . . . 126 \Leo (n) . . . . . . . . . . . . 128 \leo () . . . . . . . . . . . . . 126 \leq (ď) . . . . . . . . . . . . . 65 \leq (≤) . . . . . . . . . . 64, 65 \leq (≤) . . . . . . . . . . . . . 67 \leq (≤) . . . . . . . . . . . . . 66 \leq (≤) . . . . . . . . . . . 68, 69 \leqclosed (⊴) . . . . . . 67, 71 \leqclosed (⊴) . . . . . . 66, 70 \leqdot (b) . . . . . . . . . . 67 \leqdot (t) . . . . . . . . . . . 66 \leqq (ő) . . . . . . . . . . . . 65 \leqq (5) . . . . . . . . . . . . 64 \leqq (À) . . . . . . . . . . . . 68 \leqq (≦) . . . . . . . . . . . . 67 \leqq (≦) . . . . . . . . . . . . 66 \leqq (≦) . . . . . . . . . . . . 68 \leqqslant (⫹) . . . . . . . . 68 \leqslant (6) . . . . . . . . 64 \leqslant (È) . . . . . . . . . 68 \leqslant (⩽) . . . . . . . . . 67 \leqslant (⩽) . . . . . . . . . 66 \leqslant (⩽) . . . . . . . . . 68 \leqslantdot (⩿) . . . . . . 67 \leqslantdot (⩿) . . . . . . 66 \leqslcc (⪨) . . . . . . . . . 67 \lescc (⪨) . . . . . . . . . . . 68 \lescc (⪨) . . . . . . . . . . . 68 \lesdot (⩿) . . . . . . . . . . 67 \lesdot (⩿) . . . . . . . . . . 68 \lesdoto (⪁) . . . . . . . . . 69 \lesdotor (⪃) . . . . . . . . . 69 \lesg (⋚) . . . . . . . . . . . . 67 \lesges (⪓) . . . . . . . . . . 69 \less (<) . . . . . . . . . . . . 67 \less (<) . . . . . . . . . . . . 66 less-than signs see inequalities \lessapprox (Æ) . . . . . . . 65 \lessapprox (/) . . . . . . . 64 \lessapprox (¾) . . . . . . . 68 \lessapprox (⪅) . . . . . . . 67 \lessapprox (⪅) . . . . . . . 66 \lessapprox (⪅) . . . . . . . 69 \lesscc (⪦) . . . . . . . . . . 67 \lessclosed (⊲) . . . . . 67, 71 \lessclosed (⊲) . . . . . 66, 70 \lessdot (Ì) . . . . . . . . . 65 \lessdot (l) . . . . . . . . . 64 \lessdot (Ä) . . . . . . . . . 33 \lessdot (⋖) . . . . . . . . . . 67 \lessdot (⋖) . . . . . . . . . . 66 \lessdot (⋖) . . . . . . . . . 69 \lesseqgtr (ij) . . . . . . . . 65 \lesseqgtr (Q) . . . . . . . 64 \lesseqgtr (Ä) . . . . . . . . 68 \lesseqgtr (⋚) . . . . . . . . 67 \lesseqgtr (⋚) . . . . . . . . 66 \lesseqgtr (⋚) . . . . . . . . 69 \lesseqgtrslant (⋚) . . . . 67 \lesseqgtrslant (N) . . . . 66 \lesseqqgtr (¿) . . . . . . . 65 \lesseqqgtr (S) . . . . . . . 64 \lesseqqgtr (Æ) . . . . . . . \lesseqqgtr (⪋) . . . . . . . \lesseqqgtr (⪋) . . . . . . . 68 67 66 277 \lesseqqgtr (⪋) . . . \lesseqslantgtr (⋚) \lessgtr (ž) . . . . . \lessgtr (≶) . . . . . \lessgtr (Â) . . . . . \lessgtr (≶) . . . . . . \lessgtr (≶) . . . . . . \lessgtr (≶) . . . . . . . . . . . . . 69 67 65 64 68 67 66 69 \lessneqqgtr (ò) . . . . . . 66 \LessOrEqual (<) . \lesssim (À) . . . . \lesssim (.) . . . . \lesssim (¼) . . . . \lesssim (≲) . . . . . \lesssim (≲) . . . . . \lesssim (≲) . . . . \lesssimslant (< ∼) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ... 64, ... ... ... ... ... 116 65 226 68 67 66 69 226 \Letter (B) . . . . . . . . . . 130 \Letter ( ) . . . . . . . . . . 178 \Letter (B vs. ) . . . . . 220 letter-like symbols . . . 96–98, 194–197 letters see alphabets, 223, 224 barred . . . . . . . . . . . 223 non-ASCII . . . . . . . . 15 slashed . . . . . . . . . . 224 variant Greek . . . . . . 95 variant Latin . . . . . . 95 Ñ Ñ \levaw ( ÑÑ) . . . . . . . . . . . 103 \LF (␊) . . . . . . . . . . . . . . 130 \lfbowtie (⧑) . . . . . . . . 58 7 7 \lfilet (77) . . . . . . . . . . . 100 \lFloor (⌊⌊) . . . . . . . . . . . 104 \lfloor (⌊) . . . . . . . . . . 99 \lfloor (⌊) . . . . . . . . . . . 102 ⎢⎢ \lfloor ( ⎢⎢⎢) . . . . . . . . . . 100 ⌊⎣ \lfloor ( ) . . . . . . . . . . 103 \lftborder ( ) . . . . . . . 183 \lfttopcorner () . . . . . 183 \lftbotcorner ( ) . . . . . 183 \lftimes (⧔) . . . . . . . . . 58 \LG ( *) . . . . . . . . \lg (lg) . . . . . . . \lgblkcircle (⬤) \lgblkcircle (⬤) \lgblksquare (⬛) \lgblksquare (⬛) \lgE (⪑) . . . . . . . ⎧ \lgroup (⎩) . . . . ... ... .. .. ... .. ... . . . . . . . . . . . . . . . . . . . . . 129 91 141 142 141 142 69 . . . . . . 99 ⎧ ⎪ ⎪ ⎪ \lgroup ( ⎪ ⎩) . . . . . . . . . . 102 ⎧ ⎪ ⎪ ⎪ \lgroup ( ⎪ ⎩) . . . . . . . . . 100 ⎫ \lgroup ( ⎪) . . . . . . . . . 103 ⎭ \lgwhtcircle (◯) . . . . . 141 \lgwhtcircle (◯) . . . . . 142 \lgwhtsquare (⬜) . . . . . . 141 \lgwhtsquare (⬜) . . . . . 142 \LHD () . . . . . . . . . . . . . 31 \lhd (C) . . . . . . . . . . . 30, 31 \lhd (⊲) . . . . . . . . . . . . . 67 \lhd (⊲) . . . . . . . . . . . 66, 70 \lhd (⊲) . . . . . . . . . . 34, 142 \lhdbend (~) . . . . . . . . 176 \lhook () . . . . . . . . . . . . 91 \lhookdownarrow (3) . . . . 79 \lhookdownarrow (3) . . . . 75 \lhookleftarrow (↩) . . . 79 \lhookleftarrow (2) . . . 75 \lhooknearrow (⤤) . . . . . 79 \lhooknearrow (4) . . . . . 75 \lhooknwarrow (⤣) . . . . . 79 \lhooknwarrow (⤣) . . . . . 75 \lhookrightarrow (↪) . . 79 \lhookrightarrow (↪) . . 75 \lhooksearrow (⤥) . . . . . 79 \lhooksearrow (⤥) . . . . . 75 \lhookswarrow (⤦) . . . . . 79 \lhookswarrow (6) . . . . . 75 \lhookuparrow (1) . . . . . 79 \lhookuparrow (1) . . . . . . 75 \Libra (æ) . . . . . . . . . . . 126 \Libra (X) . . . . . . . . . . . 128 \libra (a) . . . . . . . . . . 126 Lie derivative (ℒ) . . . . . . see alphabets, math \Liechtenstein () . . . . . 188 life-insurance symbols . . 111, 227–228 \lightbulb (A) . . . . . . . . 231 lightbulb.mf (file) . 229, 230 lightbulb.sty (file) 231, 232 lightbulb10.2602gf (file) 230 lightbulb10.dvi (file) . . 230 lightbulb10.mf (file) 229, 231 lightbulb10.tfm (file) . . 231 \Lightning (E) . . . . . . . . 130 \Lightning ( ) . . . . . . . 178 \Lightning (E vs. ) . \lightning ( ) . . . . . . \lightning ( vs. ) . . \lightning (↯) . . . . . . \lightning (☇) . . . . . . \lightning () . . . . . . \Lilith (Ø) . . . . . . . . \lilyAccent ( ) . . . . . \lilyDynamics{f} ( ) \lilyDynamics{m} ( ) . \lilyDynamics{p} ( ) . \lilyDynamics{r} ( ) . \lilyDynamics{s} ( ) . \lilyDynamics{z} ( ) . \lilyEspressivo ( ) \lilyGlyph{. . . } ( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 220 73 220 78 75 176 128 164 163 163 163 163 163 163 164 174 \lilyGlyph{. . . } ( ) . . . . 174 \lilyGlyph{. . . } ( ) . . . . 174 \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } ( ) ( ) ( ) ( ) ( ) () () . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 174 174 174 174 174 174 \lilyGlyph{. . . } ( ) . . . . 174 \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } () () . () . () () . ( ) ( ) () . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 174 174 174 174 174 174 174 \lilyGlyph{. . . } ( ) . . . . 174 \lilyGlyph{. . . } ( ) . . . 168 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . 168 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) \lilyGlyph{. . . } ( ) . . . 168 . . . . 168 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } ( ( ( ( ( ) ) ) ) ) . . . . 168 . . . . . . . . . . . . . . . . . . . . 168 168 168 168 168 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . 174 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . 174 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . . 174 \lilyGlyph{. . . } ( ) . . . . . 174 \lilyGlyph{. . . } ( ) \lilyGlyph{. . . } ( ) . . . . 174 \lilyGlyph{. . . } ( ) . . . . 174 \lilyGlyph{. . . } ( ) . . . . 174 . . . . 168 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . 174 \lilyGlyph{. . . } ( ) . . . . . 174 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) \lilyGlyph{. . . } ( ) \lilyGlyph{. . . } ( ) . . . 168 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . 168 . . . . 174 . . . . 174 \lilyGlyph{. . . } ( ) . . . . 174 \lilyGlyph{. . . } ( ) . . . . . 174 \lilyGlyph{. . . } ( ) . . . . . 174 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . 173 \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } ( ) () . . ( ) . ( ) . () . () . \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } ( ( ( ( ( ( ( ( ( ( ( ) ) ) ) ) ) ) ) ) ) ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 173 173 173 173 173 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 174 174 174 174 174 174 174 174 175 175 \lilyGlyph{. . . } ( ) . . . . 168 278 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . . 167 \lilyGlyph{. . . } ( ) . . . . . 167 \lilyGlyph{. . . } ( ) . . . . 168 \lilyGlyph{. . . } ( ) . . . . . 167 \lilyGlyph{. . . } ( ) . . . . . 167 \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } ( ) . . . . . 167 ( ) () . () . () () () . ( ) ( ) ( ) ( ) ( ) ( ) () . () . () . () . () . () . ( ) \lilyGlyph{. . . } ( \lilyGlyph{. . . } ( \lilyGlyph{. . . } ( \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 168 168 168 168 175 167 167 167 167 167 167 167 167 167 167 167 167 167 ) . . . 167 ) . . . 167 ) . . . 167 ( ) ( ) () . . () . . () . . () . . () . . () . . () . () . . () . . ( ) . ( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 167 167 167 167 167 167 167 175 175 175 175 175 \lilyGlyph{. . . } ( ) . . . . 167 \lilyGlyph{. . . } ( ) . . . . 167 \lilyGlyph{. . . } ( ) . . . . 167 \lilyGlyph{. . . } ( ) . . . . 167 \lilyGlyph{. . . } ( ) . . . . 167 \lilyGlyph{. . . } ( ) . . . . 167 \lilyGlyph{. . . } ( ) . . . . . 167 \lilyGlyph{. . . } ( ) . . . . . 167 \lilyGlyph{. . . } ( ) . . . . . 167 \lilyGlyph{. . . } ( ) . . . . . 167 \lilyGlyph{. . . } ( ) . . . . . 167 \lilyGlyph{. . . } ( ) . . . . . 167 \lilyGlyph{. . . } ( ) . . . . . 167 \lilyGlyph{. . . } ( ) . . . . . 167 \lilyGlyph{. . . } ( ) . . . . . 167 \lilyGlyph{. . . } ( ) . . . . . 167 \lilyGlyph{. . . } ( ) . . . . . 167 \lilyGlyph{. . . } ( ) . . . . . 167 \lilyGlyph{. . . } ( ) . . . . . 167 \lilyGlyph{. . . } ( ) . . . . . 167 \lilyGlyph{. . . } ( ) . . . . . 167 \lilyGlyph{. . . } ( ) . . . . . 167 \lilyGlyph{. . . } ( ) . . . . . 167 \lilyGlyph{. . . } ( ) . . . . . 167 \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } ( ( ( ( ( ) ) ) ) ) . . . . . . . . . . . . . . . . . . . . 169 169 169 169 169 \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } ( ( ( ( ( ( ( ( ( ( ) ) ) ) ) ) ) ) ) ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 169 169 169 169 169 169 169 169 169 \lilyGlyph{. . . } ( ) . . . . 169 \lilyGlyph{. . . } ( ) . . . . 169 \lilyGlyph{. . . } ( ) . . . . . 167 \lilyGlyph{. . . } ( ) . . . . 169 \lilyGlyph{. . . } ( ) . . . . 169 \lilyGlyph{. . . } ( ) . . . . 167 \lilyGlyph{. . . } ( ) \lilyGlyph{. . . } ( ) . . . . 167 \lilyGlyph{. . . } ( ) \lilyGlyph{. . . } ( ) . . . . 167 \lilyGlyph{. . . } ( ) . . . . 169 \lilyGlyph{. . . } ( ) . . . . 167 \lilyGlyph{. . . } ( ) . . . . 170 \lilyGlyph{. . . } ( ) . . . 170 \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 () ( ) ( ) ( ) () . ( ) ( ) () () ( ) ( ) ( ) () () () ( ) () ( ) () ( ) () ( ) ( ) () ( ) () ( ) () ( ) () ( ) ( ) () ( ) () . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 167 175 175 175 175 175 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 . . . . 169 . . . 169 \lilyGlyph{. . . } ( ) . . . . 170 \lilyGlyph{. . . } ( ) . . . . 170 \lilyGlyph{. . . } ( ) . . . . 170 \lilyGlyph{. . . } ( ) . . . . 170 \lilyGlyph{. . . } ( ) . . . . 170 \lilyGlyph{. . . } ( ) . . . 170 \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } ( ) . () . . ( ) . ( ) . ( ) . ( ) . () . ( ) . () . ( ) . () . () . ( ) . () . ( ) . () . . ( ) . ( ) . ( ) . ( ) . () . ( ) . ( ) . () . ( ) . ( ) () . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } ( ) .. ( ) .. () .. ( ) .. ( ) .. ( ) .. ( ) .. ( ) .. ( ) .. () .. () .. ( ) .. () .. ( ) .. () . . . ( ) .. ( ) .. ( ) .. ( ) .. () .. ( ) .. ( ) .. () .. ( ) .. ( ) .. ( ) .. ( ) .. ( ) .. ( ) .. () .. ( ) .. () .. ( ) .. () . . . ( ) .. ( ) .. ( ) .. ( ) .. ( ) .. () .. ( ) .. ( ) .. () .. ( ) .. ( ) .. ( ) .. () .. ( ) . ( ) () .. ( ) .. () .. ( ) . \lilyGlyph{. . . } ( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 171 171 170 171 171 171 171 171 170 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 171 . . . . 171 \lilyGlyph{. . . } ( ) . . . . 171 \lilyGlyph{. . . } ( ) . . . . 171 \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } . . . . . . ( ( ( ( ( ( ) ) ) ) ) ) . . . . . . . . . . . . . . . . . . 171 171 171 171 171 171 \lilyGlyph{. . . } ( ) . . . . 171 \lilyGlyph{. . . } ( ) . . . . 171 \lilyGlyph{. . . } ( ) . . . . 171 \lilyGlyph{. . . } ( ) . . . . 171 \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } . . . . . () () () ( ) () \lilyGlyph{. . . } ( ) \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } 280 () ( ) ( ) () . () . () . () . () . () . () . () . () . () . () . () () () . () . () . () . () . () . () . () . () . () . () . () . () () ( ) ( ) ( ) () () () ( ) () ( ) () ( ) () ( ) ( ) () ( ) () ( ) () ( ) () ( ) . . . . . . . . . . . . . . . 171 171 171 171 171 . . . . 172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } ( ( ( ( ( ( ( ( ( ) ) ) ) ) ) ) ) ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 173 173 173 173 173 173 173 173 \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } ( ( ( ( ( ( ( ( ( ( ) ) ) ) ) ) ) ) ) ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 173 173 173 173 173 173 173 173 173 \lilyGlyph{. . . } ( ) . . . . 173 \lilyGlyph{. . . } ( ) . . . . 173 \lilyGlyph{. . . } ( ) . . . . 173 \lilyGlyph{. . . } ( ) . . . . 173 \lilyGlyph{. . . } ( ) . . . . 173 \lilyGlyph{. . . } ( ) . . . 173 \lilyGlyph{. . . } ( ) . . . . 173 \lilyGlyph{. . . } ( ) . . . . 173 \lilyGlyph{. . . } ( ) . . . 173 \lilyGlyph{. . . } ( ) . . . . 173 \lilyGlyph{. . . } ( ) . . . . 173 \lilyGlyph{. . . } ( ) . . . . 173 \lilyGlyph{. . . } ( ) . . . . 173 \lilyGlyph{. . . } ( ) . . . . 173 \lilyGlyph{. . . } ( ) . . . 173 \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } ( ) . ( ) . ( ) . () . . () . ( ) ( ) . ( ) . () . () . . () . ( ) . () . . () . . ( ) ( ) . () . . () . . ( ) ( ) . () . () . () . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 175 166 166 166 166 166 166 166 175 175 175 166 166 166 166 166 166 166 166 166 166 166 \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } () () () () () () . . . . . . . . . . . . . . . . . . . . . . . . 166 166 166 166 166 166 \lilyGlyph{. . . } ( ) . . . . 166 \lilyGlyph{. . . } ( ) . . . . 166 \lilyGlyph{. . . } ( ) . . . . 166 \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } ( ) () . () . ( ) () . () . () . () . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 166 166 166 166 166 166 166 \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } () . ( ) ( ) ( ) ( ) ( ) () () . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 166 166 175 165 165 165 165 \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } ( ) ( ) ( ) () . . . . . . . . . . . . . . . . . 165 165 165 165 \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } ( ) . () . . ( ) ( ) () . ( ) . ( ) ( ) () . () . ( ) . () . . ( ) . ( ) . () . . ( ) ( ) () . () . ( ) . () . . () . . ( ) () .. ( ) . () . ( ) ( ) ( ) ( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } ( ) () . ( ) () . . . . . . . . . . . . . . . . . 165 165 165 165 \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } ( ) ( ) () () . ( ) ( ) () ( ) () ( ) ( ) ( ) () . ( ) ( ) () ( ) () () ( ) ( ) ( ) () . ( ) ( ) () . ( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 . . . . . . . . . \lilyGlyph{. . . } ( ) . . . . 165 \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } ( ( ( ( ( ( ( ) ) ) ) ) ) ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 175 175 175 175 175 175 \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } \lilyGlyph{. . . } ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 164 164 164 164 164 164 164 164 164 164 164 164 164 164 164 164 164 164 164 164 281 \lilyGlyph{. . . } ( ) \lilyGlyph{. . . } ( ) \lilyGlyph{. . . } ( ) \lilyGlyph{. . . } ( ) \lilyGlyph{. . . } ( ) \lilyGlyph{. . . } ( ) lilyglyphs (package) . . . . . . . . . . . . .. 161–169, 173–175 lilyglyphs (package) . . . \lilyPrintMoreDots . . \lilyRF ( ) . . . . . . . . \lilyRFZ ( ) . . . . . . \lilyStaccato ( ) . . . . \lilyText . . . . . . . . . . \lilyThumb ( ) . . . . . . . \lilyTimeC ( ) . . . . . . . . . . . . . . . . . . 164 164 164 175 175 175 . 158, . . . . . . . . . . . . . . . . 239 163 163 163 164 175 164 163 \lilyTimeCHalf ( ) . . . . 163 \lilyTimeSignature . . . . 163 \lim (lim) . . . . . . . . 91, 232 \liminf (lim inf ) . . . 91, 232 limits . . . . . . . . . . . . . . . 91 \limsup (lim sup) . . . 91, 232 \linbfamily . . . . . . 152, 153 Linear A . . . . . . . . . . . . . 149 Linear B . . . . . . . . . 152, 153 linear implication . . . . . . see \multimap linear logic symbols 29–31, 35, 36, 40, 44–45, 50, 61, 96, 97 linearA (package) 149, 239, 240 \LinearAC (c) . . . . . . . . . 149 \LinearACC () . . . . . . . . 149 \LinearACCC (y) . . . . . . . 149 \LinearACCCI (z) . . . . . . . 149 \LinearACCCII ({) . . . . . 149 \LinearACCCIII (|) . . . . 149 \LinearACCCIV (}) . . . . . 149 \LinearACCCIX () . . . . . 150 \LinearACCCL («) . . . . . . 150 \LinearACCCLI (¬) . . . . . 150 \LinearACCCLII (­) . . . . 150 \LinearACCCLIII (®) . . . . 150 \LinearACCCLIV (¯) . . . . . 150 \LinearACCCLIX (´) . . . . 150 \LinearACCCLV (°) . . . . . 150 \LinearACCCLVI (±) . . . . 150 \LinearACCCLVII (²) . . . 150 \LinearACCCLVIII (³) . . . 150 \LinearACCCLX (µ) . . . . . 150 \LinearACCCLXI (¶) . . . . 151 \LinearACCCLXII (·) . . . . 151 \LinearACCCLXIII (¸) . . . 151 \LinearACCCLXIV (¹) . . . 151 \LinearACCCLXIX (¾) . . . . 151 \LinearACCCLXV (º) . . . . 151 \LinearACCCLXVI (») . . . . 151 \LinearACCCLXVII (¼) . . . 151 \LinearACCCLXVIII (½) . . 151 \LinearACCCLXX (¿) . . . . . 151 \LinearACCCLXXI (À) . . . 151 \LinearACCCLXXII (Á) . . 151 \LinearACCCLXXIII (Â) . \LinearACCCLXXIV (Ã) . . . \LinearACCCLXXIX (È) . . \LinearACCCLXXV (Ä) . . . . \LinearACCCLXXVI (Å) . . \LinearACCCLXXVII (Æ) . . \LinearACCCLXXVIII (Ç) . \LinearACCCLXXX (É) . . . . \LinearACCCLXXXI (Ê) . . . \LinearACCCLXXXII (Ë) . . \LinearACCCLXXXIII (Ì) . \LinearACCCLXXXIV (Í) . \LinearACCCLXXXIX (Ò) . \LinearACCCLXXXV (Î) . . . \LinearACCCLXXXVI (Ï) . . \LinearACCCLXXXVII (Ð) . \LinearACCCLXXXVIII (Ñ) \LinearACCCV (~) . . . . . . . \LinearACCCVI () . . . . . \LinearACCCVII () . . . . \LinearACCCVIII () . . . \LinearACCCX () . . . . . . \LinearACCCXI () . . . . . \LinearACCCXII ( ) . . . . \LinearACCCXIII () . . . \LinearACCCXIV () . . . . \LinearACCCXIX () . . . . \LinearACCCXL (¡) . . . . . \LinearACCCXLI (¢) . . . . \LinearACCCXLII (£) . . . . \LinearACCCXLIII (¤) . . . \LinearACCCXLIV (¥) . . . \LinearACCCXLIX (ª) . . . . \LinearACCCXLV (¦) . . . . \LinearACCCXLVI (§) . . . \LinearACCCXLVII (¨) . . . \LinearACCCXLVIII (©) . . \LinearACCCXV () . . . . . \LinearACCCXVI () . . . . . \LinearACCCXVII () . . . . \LinearACCCXVIII () . . \LinearACCCXX () . . . . . \LinearACCCXXI () . . . . \LinearACCCXXII () . . . . \LinearACCCXXIII () . . . \LinearACCCXXIV () . . . . \LinearACCCXXIX () . . . . \LinearACCCXXV () . . . . \LinearACCCXXVI () . . . . \LinearACCCXXVII () . . . \LinearACCCXXVIII () . . \LinearACCCXXX () . . . . \LinearACCCXXXI () . . . . \LinearACCCXXXII () . . \LinearACCCXXXIII () . . \LinearACCCXXXIV () . . . \LinearACCCXXXIX ( ) . . . \LinearACCCXXXV () . . . . \LinearACCCXXXVI () . . . \LinearACCCXXXVII () . \LinearACCCXXXVIII () . \LinearACCI () . . . . . . . \LinearACCII () . . . . . . 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 149 149 149 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 149 149 \LinearACCIII () . . . . \LinearACCIV () . . . . \LinearACCIX () . . . . . \LinearACCL (G) . . . . . . \LinearACCLI (H) . . . . . \LinearACCLII (I) . . . . \LinearACCLIII (J) . . . . \LinearACCLIV (K) . . . . . \LinearACCLIX (P) . . . . . \LinearACCLV (L) . . . . . \LinearACCLVI (M) . . . . . \LinearACCLVII (N) . . . . \LinearACCLVIII (O) . . \LinearACCLX (Q) . . . . . \LinearACCLXI (R) . . . . . \LinearACCLXII (S) . . . . \LinearACCLXIII (T) . . . \LinearACCLXIV (U) . . . \LinearACCLXIX (Z) . . . \LinearACCLXV (V) . . . . \LinearACCLXVI (W) . . . . \LinearACCLXVII (X) . . . \LinearACCLXVIII (Y) . . \LinearACCLXX ([) . . . . \LinearACCLXXI (\) . . . . \LinearACCLXXII (]) . . . \LinearACCLXXIII (^) . \LinearACCLXXIV (_) . . . \LinearACCLXXIX (d) . . . \LinearACCLXXV (`) . . . \LinearACCLXXVI (a) . . . \LinearACCLXXVII (b) . . \LinearACCLXXVIII (c) . \LinearACCLXXX (e) . . . \LinearACCLXXXI (f) . . . \LinearACCLXXXII (g) . . \LinearACCLXXXIII (h) . \LinearACCLXXXIV (i) . \LinearACCLXXXIX (n) . . \LinearACCLXXXV (j) . . \LinearACCLXXXVI (k) . . \LinearACCLXXXVII (l) . \LinearACCLXXXVIII (m) \LinearACCLXXXX (o) . . \LinearACCV () . . . . . . \LinearACCVI () . . . . . \LinearACCVII () . . . . \LinearACCVIII () . . . . \LinearACCX () . . . . . . \LinearACCXCI (p) . . . . \LinearACCXCII (q) . . . \LinearACCXCIII (r) . . . \LinearACCXCIV (s) . . . \LinearACCXCIX (x) . . . \LinearACCXCV (t) . . . . \LinearACCXCVI (u) . . . \LinearACCXCVII (v) . . . \LinearACCXCVIII (w) . \LinearACCXI ( ) . . . . . \LinearACCXII (!) . . . . \LinearACCXIII (") . . . \LinearACCXIV (#) . . . . \LinearACCXIX (() . . . . 282 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 149 149 150 150 150 150 150 150 150 150 150 150 150 150 150 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 149 149 149 149 150 151 151 151 151 149 149 149 149 149 150 150 150 150 150 \LinearACCXL (=) . . . . \LinearACCXLI (>) . . . \LinearACCXLII (?) . . . \LinearACCXLIII (@) . \LinearACCXLIV (A) . . . \LinearACCXLIX (F) . . \LinearACCXLV (B) . . . \LinearACCXLVI (C) . . \LinearACCXLVII (D) . . \LinearACCXLVIII (E) . \LinearACCXV ($) . . . . \LinearACCXVI (%) . . . . \LinearACCXVII (&) . . . \LinearACCXVIII (') . . \LinearACCXX ()) . . . . \LinearACCXXI (*) . . . \LinearACCXXII (+) . . \LinearACCXXIII (,) . . \LinearACCXXIV (-) . . . \LinearACCXXIX (2) . . \LinearACCXXV (.) . . . \LinearACCXXVI (/) . . \LinearACCXXVII (0) . \LinearACCXXVIII (1) \LinearACCXXX (3) . . . \LinearACCXXXI (4) . . . \LinearACCXXXII (5) . . \LinearACCXXXIII (6) . \LinearACCXXXIV (7) . \LinearACCXXXIX (<) . \LinearACCXXXV (8) . . . \LinearACCXXXVI (9) . . \LinearACCXXXVII (:) \LinearACCXXXVIII (;) \LinearACI (d) . . . . . . \LinearACII (e) . . . . . \LinearACIII (f) . . . . \LinearACIV (g) . . . . . \LinearACIX (l) . . . . . \LinearACL () . . . . . . \LinearACLI () . . . . . \LinearACLII () . . . . \LinearACLIII () . . . \LinearACLIV () . . . . \LinearACLIX () . . . . \LinearACLV () . . . . . \LinearACLVI () . . . . \LinearACLVII () . . . \LinearACLVIII () . . \LinearACLX () . . . . . \LinearACLXI ( ) . . . . \LinearACLXII (¡) . . . \LinearACLXIII (¢) . . . \LinearACLXIV (£) . . . \LinearACLXIX (¨) . . . \LinearACLXV (¤) . . . . \LinearACLXVI (¥) . . \LinearACLXVII (¦) . . \LinearACLXVIII (§) . \LinearACLXX (©) . . . . \LinearACLXXI (ª) . . . \LinearACLXXII («) . . \LinearACLXXIII (¬) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 149 149 149 149 149 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 151 151 151 151 151 151 151 151 151 \LinearACLXXIV (­) . . \LinearACLXXIX ( ) . . . \LinearACLXXV (®) . . . \LinearACLXXVI (¯) . . \LinearACLXXVII (°) . . \LinearACLXXVIII (±) . \LinearACLXXX () . . . \LinearACLXXXI () . . \LinearACLXXXII () . . \LinearACLXXXIII () . \LinearACLXXXIV () . \LinearACLXXXIX ( ) . . \LinearACLXXXV () . . . \LinearACLXXXVI () . \LinearACLXXXVII () . \LinearACLXXXVIII ( ) \LinearACLXXXX ( ) . . \LinearACV (h) . . . . . . \LinearACVI (i) . . . . . \LinearACVII (j) . . . . \LinearACVIII (k) . . . \LinearACX (m) . . . . . . \LinearACXCI ( ) . . . . \LinearACXCII ( ) . . . \LinearACXCIII () . . . \LinearACXCIV () . . . \LinearACXCIX () . . . \LinearACXCV () . . . . . \LinearACXCVI () . . . \LinearACXCVII () . . \LinearACXCVIII () . . \LinearACXI (n) . . . . . \LinearACXII (o) . . . . \LinearACXIII (p) . . . \LinearACXIV (q) . . . . \LinearACXIX (v) . . . . \LinearACXL () . . . . . \LinearACXLI () . . . . \LinearACXLII () . . . \LinearACXLIII () . . \LinearACXLIV () . . . \LinearACXLIX () . . . \LinearACXLV () . . . . \LinearACXLVI () . . . \LinearACXLVII () . . \LinearACXLVIII () . \LinearACXV (r) . . . . . \LinearACXVI (s) . . . . \LinearACXVII (t) . . . \LinearACXVIII (u) . . . \LinearACXX (w) . . . . . \LinearACXXI (x) . . . . \LinearACXXII (y) . . . \LinearACXXIII (z) . . \LinearACXXIV ({) . . . \LinearACXXIX () . . . \LinearACXXV (|) . . . . \LinearACXXVI (}) . . . \LinearACXXVII (~) . . \LinearACXXVIII () . \LinearACXXX () . . . . \LinearACXXXI () . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 149 149 149 149 149 151 151 151 151 149 151 151 149 149 149 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 \LinearACXXXII () . \LinearACXXXIII () . \LinearACXXXIV ( ) . . \LinearACXXXIX () . \LinearACXXXV () . . \LinearACXXXVI () . \LinearACXXXVII () . \LinearACXXXVIII () \LinearAI ( ) . . . . . . \LinearAII () . . . . . \LinearAIII () . . . . \LinearAIV () . . . . . \LinearAIX () . . . . . \LinearAL (1) . . . . . . \LinearALI (2) . . . . . \LinearALII (3) . . . . \LinearALIII (4) . . . \LinearALIV (5) . . . . \LinearALIX (:) . . . . \LinearALV (6) . . . . . \LinearALVI (7) . . . . \LinearALVII (8) . . . \LinearALVIII (9) . . \LinearALX (;) . . . . . \LinearALXI (<) . . . . \LinearALXII (=) . . . \LinearALXIII (>) . . \LinearALXIV (?) . . . \LinearALXIX (D) . . . \LinearALXV (@) . . . . \LinearALXVI (A) . . . \LinearALXVII (B) . . \LinearALXVIII (C) . . \LinearALXX (E) . . . . \LinearALXXI (F) . . . \LinearALXXII (G) . . \LinearALXXIII (H) . \LinearALXXIV (I) . . \LinearALXXIX (N) . . \LinearALXXV (J) . . . \LinearALXXVI (K) . . \LinearALXXVII (L) . \LinearALXXVIII (M) . \LinearALXXX (O) . . . \LinearALXXXI (P) . . \LinearALXXXII (Q) . . \LinearALXXXIII (R) . \LinearALXXXIV (S) . \LinearALXXXIX (X) . \LinearALXXXV (T) . . . \LinearALXXXVI (U) . \LinearALXXXVII (V) . \LinearALXXXVIII (W) \LinearALXXXX (Y) . . \LinearAV () . . . . . . \LinearAVI () . . . . . \LinearAVII () . . . . \LinearAVIII () . . . \LinearAX ( ) . . . . . . \LinearAXCI (Z) . . . . \LinearAXCII ([) . . . 283 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 150 150 150 150 150 150 150 149 149 149 149 149 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 151 150 150 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 149 149 149 149 149 151 151 \LinearAXCIII (\) . . . . . 151 \LinearAXCIV (]) . . . . . . 151 \LinearAXCIX (b) . . . . . . 149 \LinearAXCV (^) . . . . . . . 151 \LinearAXCVI (_) . . . . . . 151 \LinearAXCVII (`) . . . . . . 151 \LinearAXCVIII (a) . . . . . 151 \LinearAXI ( ) . . . . . . . . 149 \LinearAXII ( ) . . . . . . . 149 \LinearAXIII ( ) . . . . . . 149 \LinearAXIV ( ) . . . . . . . 150 \LinearAXIX () . . . . . . . 150 \LinearAXL (') . . . . . . . . 150 \LinearAXLI (() . . . . . . . 150 \LinearAXLII ()) . . . . . . 150 \LinearAXLIII (*) . . . . . 150 \LinearAXLIV (+) . . . . . . 150 \LinearAXLIX (0) . . . . . . 150 \LinearAXLV (,) . . . . . . . 150 \LinearAXLVI (-) . . . . . . 150 \LinearAXLVII (.) . . . . . 150 \LinearAXLVIII (/) . . . . 150 \LinearAXV () . . . . . . . . 150 \LinearAXVI () . . . . . . . 150 \LinearAXVII () . . . . . . 150 \LinearAXVIII () . . . . . 150 \LinearAXX () . . . . . . . . 150 \LinearAXXI () . . . . . . . 150 \LinearAXXII () . . . . . . 150 \LinearAXXIII () . . . . . 150 \LinearAXXIV () . . . . . . 150 \LinearAXXIX () . . . . . . 150 \LinearAXXV () . . . . . . . 150 \LinearAXXVI () . . . . . . 150 \LinearAXXVII () . . . . . 150 \LinearAXXVIII () . . . . . 150 \LinearAXXX () . . . . . . . 150 \LinearAXXXI () . . . . . . 150 \LinearAXXXII () . . . . . 150 \LinearAXXXIII ( ) . . . . 150 \LinearAXXXIV (!) . . . . . 150 \LinearAXXXIX (&) . . . . . 150 \LinearAXXXV (") . . . . . . 150 \LinearAXXXVI (#) . . . . . 150 \LinearAXXXVII ($) . . . . 150 \LinearAXXXVIII (%) . . . . 150 linearb (package) 152, 153, 239, 240 \linefeed () . . . . . . . . . 83 \linefeed (↴) . . . . . . . . 85 \lineh ( ) . . . . . . . . . . . 146 \Lineload (L) . . . . . . . . 131 \linev () . . . . . . . . . . . . 146 \linevh ( ) . . . . . . . . . . 146 linguistic symbols . . . . 17–20 \Lisa ( ) \Lithuania () \lito (o) . . . . liturgical music ... .... .... .... . . . . . . . . . . . . . 184 . 188 . 92 . 160 \lJoin (X) \lJoin (⋉) \LK () . . . \ll (!) . . . \ll (≪) . . \ll (≪) . . \ll (≪) . . \ll (≪) . . . . . . . . . . . . . . . . . . \llangle (⟪) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 . 33 . 129 . 65 . 64 . 67 . 66 . 69 . . . . . . . . . 100 \llangle (⦉) . . . . . . . . . . \llap . . . . . . . . . 24, 25, \llarc (◟) . . . . . . . . . . . \llblacktriangle (◣) . . \llbracket (~) . . . . . . . . 98 226 121 142 99 \llbracket ( ) . . . . . . . . 104 \llceil (V) . . \llcorner (z) \llcorner (x) \llcorner (à) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 98 98 98 \llcorner (⌞) . . . . . . . . . 102 \llcorner (⌞) . . . . . . . . . 100 \llcorner (⌞) . . . . \llcurly (Î) . . . . \llcurly (ê) . . . . \LLeftarrow (⭅) . . \Lleftarrow (W) . \Lleftarrow (®) . . \Lleftarrow (⇚) . \Lleftarrow (⇚) . \Lleftarrow (⇚) . . \llfloor (T) . . . . . \lll (Î) . . . . . . . . \lll (≪) . . . . . . . \lll (≪ vs. Î) . . \lll (Ö) . . . . . . . \lll (⋘) . . . . . . . \lll (⋘) . . . . . . . \lll (⋘) . . . . . . . \llless . . . . . . . . \llless (⋘) . . . . \llless (⋘) . . . . \llless (⋘) . . . . \lllnest (⫷) . . . . \llparenthesis (L) \llparenthesis (⦇) \lltriangle (◺) . . \LMex . . . . . .⎧. . . . \lmoustache (⎭) . . \lmoustache ( \lmoustache ( \lmoustache ( \ln (ln) . . . . \lnapprox (Ê) \lnapprox () ⎧ ⎪ ⎪ ⎪ ⎪ ⎭) ⎧ ⎪ ⎪ ⎪ ⎪ ⎭) ⎧ ⎪) ⎭ ... .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 . . . 52 . . . 57 . . . 85 . . . 72 . . . 83 . . . 78 . . . 75 . . . 85 . . . 98 . . . 65 . . . 64 . . . 220 . . . 68 . . . 67 . . . 66 . . . 69 see \lll . . . . 67 . . . . 66 . . . . 69 . . . . 69 . . . . 98 . . . . 98 . . . . 142 . . . . 226 ..... 99 . . . . . . 102 . . . . . . 100 . . . . . . 103 ...... ...... ...... 91 65 64 \lnapprox () . . . . . . . . . 68 \lnapprox (⪉) . . . . . . . . . 67 \lnapprox (⪉) . . . . . . . . . 66 \lnapprox (⪉) . . . . . . . . . 69 \lneq (ň) . . . . . . . . . . . . 65 \lneq ( ) . . . . . . . . . . . . 64 \lneq () . . . . . . . . . . . . 68 \lneq (⪇) . . . . . . . . . . . . 67 \lneq (⪇) . . . . . . . . . . . . 69 \lneqq (š) . . . . . . . . . . . 65 \lneqq () . . . . . . . . . . . 64 \lneqq () . . . . . . . . . . . 68 \lneqq (≨) . . . . . . . . . . . 67 \lneqq (≨) . . . . . . . . . . . 66 \lneqq (≨) . . . . . . . . . . . 69 \lnot . . . . . . . . . . . see \neg \lnot (¬) . . . . . . . . . . . . 120 \lnot (¬) . . . . . . . . . . . . 119 \lnot (¬) . . . . . . . . . . . . 121 \lnsim (Ä) . . . . . . . . . . . 65 \lnsim () . . . . . . . . . . . 64 \lnsim () . . . . . . . . . . . 68 \lnsim (⋦) . . . . . . . . . . . 67 \lnsim (≴) . . . . . . . . . . . 66 \lnsim (⋦) . . . . . . . . . . . 68 \LO () . . . . . . . . . . . . . . 129 local ring (𝒪) . see alphabets, math \log (log) . . . . . . . . . 91, 232 log-like symbols . . 91, 92, 232 logic (package) . . . . . . . . . 130 logic gates . . . . . . . . . . . . 130 logical operators and . . . . . . . see \wedge not . . see \neg and \sim or . . . . . . . . . . see \vee \logof () . . . . . . . . . . . 51 lollipop . . . . . . see \multimap long division . . . . . . 107, 109 long s (ſ) . . . . . . . . . . . . . 222 long s (ſ) . . . . . . . . . . . . . 27 long-branch runes see normal runes \longa () . . . . . . . . . . . . 159 \longa (λ) . . . . . . . . . . . 184 \longcastling (O-O-O) . 181 \longdashv (⟞) . . . . . . 55 \longdashv (⟞) . . . . . . 58 longdiv (package) . . . . . . . 107 longdiv.tex (file) . . . . . . 107 ⟌ \longdivision ( ⃖⃖⃖⃖) . 107, 109 ’ \longhookrightarrow (˓−→) ∬ \longiint ∫( ) . . . . . . . . \longint ( ) . . . . . . . . . . \longleadsto (⟿) . . . . \Longleftarrow (⇐=) . . \Longleftarrow (⇐Ô) . . . \Longleftarrow (⟸) . . . \Longleftarrow (⟸) . . . \longleftarrow (←Ð) . . . \longleftarrow (←−) . . \longleftarrow (⟵) . . . \longleftarrow (←−) . . . 284 87 49 49 79 72 74 78 85 74 72 78 87 \longleftarrow (⟵) . . . 85 \longleftfootline (⟝) 55 \longleftharpoondown (↽−) . . . . . . . . 88 \longleftharpoonup (↼−) 88 \Longleftrightarrow (⇐⇒) . . . . . . . . 72 \Longleftrightarrow (⇐⇒) 74 \Longleftrightarrow (⟺) 78 \Longleftrightarrow (⟺) 85 \longleftrightarrow (←→) 74 \longleftrightarrow (←→) . . . . . . . . 72 \longleftrightarrow (⟷) 78 \longleftrightarrow (←→) 87 \longleftrightarrow (⟷) 85 \longleftsquigarrow (⬳) 79 \longleftsquigarrow (⬳) 85 \longleftwavearrow (⬳) 78 \Longmapsfrom (⇐=\) . . . 73 \Longmapsfrom (⟽) . . 55, 78 \Longmapsfrom (⟽) . . . . 85 \longmapsfrom (←−[) . . . 73 \longmapsfrom (⟻) . . 55, 78 \longmapsfrom (←−[) . . . . 87 \longmapsfrom (⟻) . . . . 85 \Longmapsto (=⇒) . . . . . 73 \Longmapsto (⟾) . . . . . 78 \Longmapsto (⟾) . . . . . 84 \longmapsto (z→) . . . . . . 74 \longmapsto (↦−→) . . . . . 72 \longmapsto (⟼) . . . . . 78 \longmapsto (↦−→) . . . . . 87 \longmapsto ∯ (⟼) . . . . . 84 \longoiint ∮( ) . . . . . . . . 49 \longoint ( ) . . . . . . . . . 49 \LongPulseHigh ( ) . . . 125 \LongPulseLow ( ) . . . 125 \Longrightarrow (=⇒) . 72 \Longrightarrow (Ô⇒) . . 74 \Longrightarrow (⟹) . . 78 \Longrightarrow (⟹) . . 84 \longrightarrow (Ð→) . . 74 \longrightarrow (−→) . 72 \longrightarrow (⟶) . . 78 \longrightarrow (−→) . . 87 \longrightarrow (⟶) . . 84 \longrightfootline (⟞) 55 \longrightharpoondown (−⇁) . . . . . . . . 88 \longrightharpoonup (−⇀) . . . . . . . . . 88 \longrightsquigarrow (⟿) . . . . . . . . . 79 \longrightsquigarrow (⟿) . . . . . . . . . 84 \longrightwavearrow (⟿) 78 \longs (ſ) . . . . . . . . . 27, 222 \looparrowdownleft (î) 73 \looparrowdownleft (è) . 83 \looparrowdownright (ï) 73 \looparrowdownright (é) 83 \looparrowleft (ì) . . . . 73 & ' \looparrowleft (") . . . . 72 \looparrowleft ( ) . . . . 83 \looparrowleft (↫) . . . . 78 \looparrowleft (↫) . . . . 74 \looparrowleft (↫) . . . . 84 \looparrowright (í) . . . 73 \looparrowright (#) . . . 72 \looparrowright (¡) . . . 83 \looparrowright (↬) . . . 78 \looparrowright (↬) . . . 74 \looparrowright (↬) . . . 84 \Loosebearing ($) . . . . . 131 \lor . . . . . . . . . . . . see \vee \lor (∨) . . . . . . . . . . . . . 33 \lor (∨) . . . . . . . . . . . . . 34 \LowerDiamond ( ) . . . . . 143 lowering . see \textlowering \lowint (⨜) . . . . . . . . . . . 46 \lowintsl (⨜) . . . . . . . . . 48 \lowintup (⨜) . . . . . . . . . 48 \lozenge (♦) . . . . . 118, 119 \lozenge (â) . . . . . . . . . . 141 \lozenge (◊) . . . . . . . . . 141 \lozenge (◊) . . . . . . . . . . 140 \lozenge (◊) . . . . . . . . . 142 \lozengedot (ç) . . . . . . . 141 \lozengeminus (⟠) . . . . . 141 \lozengeminus (⟠) . . . . . 38 lozenges . . . . . see rhombuses \Lparen (() . . . . . . . . . . . 124 ⦅ o \lParen ( ) . . . . . . . . . . 103 \lparen (() . . . . . . . . . . . 102 \lparen (() . . . . . . . . \Lparengtr (⦕) . . . . . \lparenless (⦓) . . . . \lrarc (◞) . . . . . . . . \lrblacktriangle (◢) \lrcorner ({) . . . . . . \lrcorner (y) . . . . . . \lrcorner (á) . . . . . . . . . . . . . . . .. .. .. . 102 . 98 . 98 . 121 . 142 . 98 . 98 . 98 \lrcorner (⌟) . . . . . . . . . 101 \lrcorner (⌟) . . . . . . . . . 100 \lrcorner (⌟) . . . . . . . . . 98 \lrJoin . . . . . . . . see \Join \lrtimes (\) . . . . . . . . . . 51 \lrtimes (⋈) . . . . . . . . . 33 \lrtriangle (◿) . . . . . . . 142 \lrtriangleeq (⧡) . . . . . 71 \lsem (⟦) . . . . . . . . . . . . 102 L P \lsem ( P ) . . . . . . . . . . . 100 P P N . . . see \ldbrack \lsemantic \lsf () . . . . . . . . . . . . . . 159 \lsfz () . . . . . . . . . . . . . 159 \Lsh (è) . . . . . . . . . . . . . 73 \Lsh () . . . . . . . . . . . . . 72 \Lsh () . . . . . . . . . . . . . 82 ffl – \Lsh (↰) . . . . . . . \Lsh (↰) . . . . . . . \Lsh (↰) . . . . . . . \lsime (⪍) . . . . . \lsimg (⪏) . . . . . \lsqhook (⫍) . . \Lsteel () . . . . \Lt (Î) . . . . . . . . \Lt (⪡) . . . . . . . . \ltcc (⪦) . . . . . . \ltcc (⪦) . . . . . . \ltcir (ø) . . . . . \ltcir (⩹) . . . . . \ltimes (˙) . . . . \ltimes (n) . . . . \ltimes (Ô) . . . . \ltimes (⋉) . . . . \ltimes (⋉) . . . . \ltimes (⋉) . . . . \ltimesblack (é) \ltlarr (⥶) . . . . \ltquest (⩻) . . . \ltriple . . . . . . \ltrivb (⧏) . . . . \LU () . . . . . . . . LuaLATEX . . . . . . Luecking, Dan . . . \Luxembourg () . . \lVert (‖) . . . . . \lVert (||) . . . . . . ∥ ∥ ∥ ∥ \lVert ( ∥ ∥) . . . . \lvert (|) . . . . . . ∣∣ ∣ \lvert ( ∣∣∣) . . . . . \lvertneqq (ť) . . \lvertneqq ( ) . \lvertneqq () . . \lvertneqq (≨) . . \lvertneqq (≨) . . \lvertneqq (≨) . . Å Å Å Å Å \lVvert ( Å) . . . \Lvzigzag (⧚) . . . \lvzigzagÐ (⧘) . . . Ð \lwave ( ÐÐ) . . . . . _ _ \lWavy ( _ _ _) . . . . ^^_ \lwavy ( ^^^) . . . . . \lz (1) .^. . . . . . . M \M . . . . . . . . . . \M (´) . . . . . . . \m .¯. . . . . . . . . \m ( ) . . . . . . . ¯ ....... m (m) \ma (¯ ×) . . . . . . \Macedonia () . \macron (ā) . . . macron (ā) . . . 285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 . 74 . 84 . 68 . 68 . 58 . 131 . 68 . 68 . 67 . 68 . 68 . 68 . 31 . 30 . 33 32, 33 . . 32 . . 34 . . 33 . . 68 . . 68 . . 104 . . 71 . . 129 . . 158 . . 225 . . 188 . . 99 . . 104 . . . . . . 101 . . . . . . 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 . 65 . 64 . 68 . 67 . 66 . 68 . . . . . . 101 . . . . . . 98 . . . . . . 98 . . . . . . 103 . . . . . . 100 . . . . . . 100 . . . . . . 19 . . . . . . . . . . . . . 16 . . . . . 183 . . . . . 16 . . . . . 183 . . . . . 157 . . . . . 183 . . . . . 188 . . . . . 23 see accents \Maggie ( ) . . . . . . . 184 magic (package) . . . . 217, 239 Magic: The Gathering symbols . . . . . . . 217 magical signs . . . . . . . . . . 185 \magnon (Í) . . . . . . . . . 132 majuscules . . . . . . . . . . . 93 \makeatletter . . . . . . . . 226 \makeatother . . . . . . . . . 226 \MALE () . . . . . . . . . . . . 131 \Male (|) . . . . . . . . . . . . 131 male . 126–128, 131, 192–197, 201–203 \male (♂) . . . . . . . . . . . . 131 \male (♂) . . . . . . . . . . . . 131 \MaleMale () . . . . . . . . 131 \Malta () . . . . . . . . . . . . 188 \maltese (z) . . . . . . . . . 15 \maltese (î) . . . . . . . . . 120 \maltese (✠) . . . . . . . . . 120 \maltese (✠) . . . . . . . . . 119 \maltese (✠) . . . . . . . . . 121 man . 148, 177, 192, 199–200, 211–215 \manboldkidney () . . . . . 176 \manconcentriccircles ($) . . . . . . . . 176 \manconcentricdiamond (%) . . . . . . . . 176 \mancone (#) . . . . . . . . . 176 \mancube () . . . . . . . . . 176 \manerrarrow (y) . . . . . 176 \ManFace (ÿ) . . . . . . . . . . 177 \manfilledquartercircle (!) . . . . . . . 176 manfnt (package) . . . 176, 239 \manhpennib () . . . . . . . 176 \manimpossiblecube () . 176 \mankidney () . . . . . . . . 176 \manlhpenkidney () . . . . 176 \manpenkidney () . . . . . 176 \manquadrifolium (&) . . 176 \manquartercircle ( ) . . 176 \manrotatedquadrifolium (') . . . . . . . . . . . 176 \manrotatedquartercircle (") . . . . . . . 176 \manstar () . . . . . . . . . 176 \mantiltpennib () . . . . 176 \mantriangledown (7) . . . 176 \mantriangleright (x) . . 176 \mantriangleup (6) . . . . 176 \manvpennib () . . . . . . . . 176 map symbols . . . . . . 199–200 \Mappedfromchar () . . . . . 90 \mappedfromchar () . . . . . 90 maps . . . . . . . . . . . . . . . 188 \Mapsdown (/) . . . . . . . . . 79 \mapsdown () . . . . . . . . . 82 \mapsdown (↧) . . . . . . . . . 79 \mapsdown (↧) . . . . . . . . . 84 \Mapsfrom (⇐\) . \Mapsfrom (à) . \Mapsfrom (⤆) . \Mapsfrom (⤆) . \mapsfrom (←[) . \mapsfrom () . \mapsfrom (↤) . \mapsfrom (←[) . \mapsfrom (↤) . \Mapsfromchar (û) \Mapsfromchar (\) \mapsfromchar (ß) \mapsfromchar ([) \mapsfromchar (:) \Mapsto (⇒) . . \Mapsto (á) . . . \Mapsto (⤇) . . . \Mapsto (⤇) . . . \mapsto (↦→) . . \mapsto () . . . \mapsto (↦) . . . \mapsto (↦) . . . \mapsto (↦→) . . . \mapsto (↦) . . . \Mapstochar (ú) . \Mapstochar () . \mapstochar (Þ) . \mapstochar () . \Mapsup (-) . . . \mapsup () . . . . \mapsup (↥) . . . . \mapsup (↥) . . . . \marcato ( ) . . . \marcatoDown ( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 . 82 . 79 . 84 . 73 . 82 . 79 . 87 . 84 . 91 . 90 . 91 . 90 . 91 . 73 . 82 . 79 . 84 . 72 . 82 . 79 . 75 . 87 . 84 . 91 . 90 . 91 . 91 . 79 . 82 . 79 . 84 . 164 . 164 \Marge ( ) . . . . . . . 184 \markera (x) . . . . . . . . . 181 \markerb (y) . . . . . . . . . 181 married . . . see \textmarried \Mars (D) . . . . . . . . . . . . 127 \Mars (Ä) . . . . . . . . . . . . 126 \Mars (h) . . . . . . . . . . . . 128 \mars (♂) . . . . . . . . . . . . 126 marvosym (package) . . . . . . . . . 25, 116, 117, 126, 129– 131, 135, 138, 177, 187, 220 masonic cipher . . . . . . . . 186 \mate (m) . . . . . . . . . . . . 181 material biconditional . . . . . . . . see \leftrightarrow and \equiv material conditional . . . . . see \rightarrow and \supset material equivalence . . . . . . . . . see \leftrightarrow and \equiv material implication . . . . . see \rightarrow and \supset material nonimplication . . . . . . . see \nrightarrow and \nsupset math alphabets . . . . . . . . 123 mathabx (package) . 29, 31, 35, 41, 52, 62, 65, 69, 73, 74, 91, 96, 98–100, 105, 109, 117, 119, 127, 181, 219, 220, 239, 240 \mathaccent . . . . . . . . . . 223 \mathbat ( ) . . . . . . . . 38 \mathbb . . . . . . . . . 123, 124 \mathbbb . . . . . . . . . . . . 123 \mathbbm . . . . . . . . . . . . 123 \mathbbmss . . . . . . . . . . . 123 \mathbbmtt . . . . . . . . . . . 123 mathbbol (package) . 123, 124 \mathbf . . . . . . . . . . . . . 233 \mathbin . . . . . . . . . . . . 232 \mathbold . . . . . . . . . . . . 233 mathcal (euscript package option) . . . . . . . . . . 123 \mathcal . . . . . . . . 123, 126 \mathcent (¢) . . . . . . . . . 96 \mathchoice . . . . . . . . . . 225 \mathclose . . . . . . . . . . . 232 \mathcloud ( ) . . . . . . 38 \mathcolon (∶) . . . . . . . . 115 mathcomp (package) . . . . 116 mathdesign (package) . 25, 34, 49, 97, 103, 122, 239 \mathdollar ($) . . . . . . . 29 \mathdollar ($) . . . . . . . 97 mathdots (package) . 105, 114, 115, 227, 239, 240 \mathds . . . . . . . . . . . . . 123 \mathellipsis (. . .) . . . . 29 \mathellipsis (…) . . . . . 115 mathematical symbols 29–124 \mathfrak . . . . . . . . . . . . 123 \mathghost ( ) . . . . . . . . 38 \mathit . . . . . . . . . . . . . 123 \mathleftbat ( ) . . . . . 38 \mathleftghost ( ) . . . . 38 \mathnormal . . . . . . . . . . 123 \mathop . . . . . . . . . . . . . 232 \mathopen . . . . . . . . . . . . 232 \mathord . . . . . . . . . . . . 232 \mathpalette . . . . . 225, 226 \mathparagraph (¶) . . . . 29 \mathparagraph (¶) . . . . . 97 \mathpunct . . . . . . . . . . . 232 \mathratio (∶) . . . . . . . . 115 \mathrel . . . . . . . . 223, 232 ) . . . . 38 \mathrightbat ( \mathrightghost ( ) . . . 38 \mathring ( ̊ ) . . . . . . . . . 106 \mathring (˚) . . . . . 105, 106 \mathrm . . . . . . . . . . . . . 123 mathrsfs (package) . . 123, 239 mathscr (euscript package option) . . . . . . . . . . 123 286 mathscr (urwchancal package option) . . . . . . . . . . 123 \mathscr . . . . . . . . . . . . 123 \mathsection (S) . . . . . . 29 \mathsection (§) . . . . . . 121 \mathslash (/) . . . . . . . 101 \mathslash (/) . . . . . . . . 102 mathspec (package) . . . . . 93 mathspec.sty (file) . . . . . 93 \mathsterling (£) . . . . . . 96 \mathsterling (£) . . . . . 29 \mathsterling (£) . . . . . . 97 mathtools (package) 29, 59, 87, 109, 111, 239, 240 \mathunderscore ( ) . . . . 29 \mathvisiblespace (␣) . . 121 \mathwitch ( ) . . . . . . 38 \mathwitch* ( ) . . . . . . 38 \max (max) . . . . . . . . . . 91 \maxima () . . . . . . . . . . . 159 Maxwell-Stefan diffusion coefficient . . . . . . . . . . . see \DH \maxwellDistrib (𝛬) . . . 133 \maya . . . . . . . . . . . . . . . 117 Mayan numerals . . . . . . . 117 \Mb (´ ˘¯) . . . . . . . . . . . . . . 183 \mb (¯) . . . . . . . . . . . . . . 183 ˘ ) . . . . . . . . . . . . 183 \Mbb (¯´ ˘¯˘) . . . . . . . . . . . . 183 \mBb (¯ ˘´¯˘) . . . . . . . . . . . . 183 \mbB (¯¯ ˘˘´ \mbb (¯¯) . . . . . . . . . . . . 183 ˘˘ mbboard (package) . . 123, 124, 239 \mbbx (¯¯ ) . . . . . . . . . . . 183 ˘˘˘ \mbox .¯.¯. . . . . . . . . 225, 226 \MC (3) . . . . . . . . . . . . . 128 \mdblkcircle (⚫) . . . . . . 142 \mdblkdiamond (◆) . . . . . 37 \mdblkdiamond (⬥) . . . . . 142 \mdblklozenge (⧫) . . . . . 141 \mdblklozenge (⬧) . . . . . 142 \mdblksquare (■) . . . . . . 37 \mdblksquare (◼) . . . . . . 142 \mdlgblkcircle (●) . . . . 37 \mdlgblkcircle (●) . . . . 142 \mdlgblkdiamond (◆) . . . 37 \mdlgblkdiamond (◆) . . . 142 \mdlgblklozenge (⧫) . . . 141 \mdlgblklozenge (⧫) 38, 142 \mdlgblksquare (■) . . . . 37 \mdlgblksquare (■) . . . . 142 \mdlgwhtcircle (○) . . . . 37 \mdlgwhtcircle (○) . . . . 38 \mdlgwhtdiamond (◇) . . . 37 \mdlgwhtdiamond (◇) . . . 142 \mdlgwhtlozenge (◊) . . . 141 \mdlgwhtlozenge (◊) . . . 142 \mdlgwhtsquare (□) . . . . 37 \mdlgwhtsquare (□) . . . . 142 \mdsmblkcircle (⦁) . . . . . 142 \mdsmblksquare (◾) . . . . 142 $ \mdsmwhtcircle (⚬) . . . . . 142 \mdsmwhtsquare (◽) . . . . 142 \mdwhtcircle (⚪) . . . . . . 142 \mdwhtdiamond (◇) . . . . . 37 \mdwhtdiamond (⬦) . . . . . 142 \mdwhtlozenge (◊) . . . . . 141 \mdwhtlozenge (⬨) . . . . . 142 \mdwhtsquare (□) . . . . . . 37 \mdwhtsquare (◻) . . . . . . 142 mdwmath (package) . 110, 239, 240 \measangledltosw (⦯) . . . 118 \measangledrtose (⦮) . . . 118 \measangleldtosw (⦫) . . . 118 \measanglelutonw (⦩) . . . 118 \measanglerdtose (⦪) . . . 118 \measanglerutone (⦨) . . . 118 \measangleultonw (⦭) . . . 118 \measangleurtone (⦬) . . . 118 \measeq (≞) . . . . . . . . . . 58 \measuredangle (>) . . . . 119 \measuredangle (]) . . . . 117 \measuredangle (Ö) . . . . 118 \measuredangle (∡) . . . . 118 \measuredangle (∡) . . . . 117 \measuredangle (∡) . . . . 118 \measuredangleleft (⦛) . 118 \measuredangleleft (⦛) . 118 \measuredrightangle (á) 118 \measuredrightangle (⊾) 118 \measuredrightangle (⊾) 118 \measuredrightangledot (⦝) . . . . . . . 118 mechanical scaling . . 229, 231 \medbackslash (∖) . . . 32, 33 \medbackslash (∖) . . . . . 32 \medblackcircle (●) . . . 36 \medblackdiamond (◆) . . 36 \medblacklozenge (⧫) . . . 141 \medblacksquare (■) . . . 36 \medblackstar (⭑) . . . . . 36 \medblackstar (⭑) . . . . . 142 \medblacktriangledown (▼) . . . . . . . 36, 71 \medblacktriangleleft (◀) . . . . . . . 36, 71 \medblacktriangleright (▶) . . . . . . 36, 71 \medblacktriangleup (▲) 36, 71 \medbullet () . . . . . . . . 31 \medcirc () . . . . . . . . . 31 \medcircle (○) . . . . . . . . 36 \medcircle (◯) . . . . . . . . 32 \meddiamond (◇) . . . . . . . 36 \meddiamond (◇) . . . . . . . 36 media control symbols . . 177, 194–197 medieval runes . . . . . . . . 157 \medlozenge (◊) . . . . . . . 141 \medlozenge (◊) . . . . . . . 140 \medslash (∕) . . . . 32, 33, 36 \medslash (∕) . . . . . . . . . 32 \medsquare (□) . . . . . . . . 36 \medsquare (◻) . . . . . . . . 36 \medstar (⭑) . . . . . . . . . 37 \medstar (☆) . . . . . . . . . 36 \medstarofdavid (✡) . . . 140 \medtriangledown (▽) 36, 71 \medtriangledown (▽) 36, 70 \medtriangleleft (◁) 36, 71 \medtriangleleft (◁) 36, 70 \medtriangleright (▷) 36, 71 \medtriangleright (▷) 36, 70 \medtriangleup (△) . . 36, 71 \medtriangleup (△) . . 36, 70 \medvert (∣) . . . . . . . . . . 32 \medvertdot () . . . . . . . 32 \medwhitestar (⭐) . . . . . 36 \medwhitestar (⭐) . . . . . 142 Mellin transform (ℳ) . . . see alphabets, math membership . . . . . . . see \in \Mercury (A) . . . . . . . . . . 127 \Mercury (Â) . . . . . . . . . . 126 \Mercury (f) . . . . . . . . . . 128 \mercury (') . . . . . . . . . . 126 \merge (!) . . . . . . . . . . . 30 \merge () . . . . . . . . . . . 33 METAFONT 12, 124, 229, 230, 232 METAFONTbook symbols . 176 \metalbond (Ç) . . . . . . . 133 \meterC (S ) . . . . . . . . . . 161 \meterCThree (S 3) . . . . . 161 \meterCThreeTwo (S 3 2) . . . 161 \meterCutC (R ) . . . . . . . . 161 \meterCZ (S Z) . . . . . . . . . 161 \meterO (○ ) . . . . . . . . . 161 \meterplus ( ) . . . . . . . 159 \method (𝐴) . . . . . . . . . . 133 metre (package) . 23, 105, 183, 239, 240 metre . . . . . . . . . . . . . . . 183 metrical symbols . . . 183, 184 mezzo ( ) . . . . . . . . 163, 175 .mf files . . . . . . 12, 199, 229 \mglgwhtcircle (○) . . . . 142 \mglgwhtlozenge (◊) . . . 142 \mho (f) . . . . . . . . . 118, 119 \mho (℧) . . . . . . . . . . . . . 95 miama (emf package option) 126 micro . . . . . . . . see \textmu \micro (µ) . . . . . . . . . . . 125 Microsoft® Windows® . . 235 \mid (|) . . . . . . . . . . 50, 101 \mid (∣) . . . . . . . . . . . . . 55 \mid (∣) . . . . . . . . . . . . . . 58 \midbarvee (⩝) . . . . . . . . 34 \midbarwedge (⩜) . . . . . . 34 \midcir (⫰) . . . . . . . . . . . 89 \midcir (⫰) . . . . . . . . . . . 58 \middle . . . . . . . . . . . . . 99 \middlebar ( ̵ ) . . . . . . . . 106 \middleslash ( ̷ ) . . . . . . 106 9 287 \midtilde ({) . . . . . . . . . 24 MIL-STD-806 . . . . . . . . . 130 millesimal sign . . . . . . . . see \textperthousand milstd (package) . 130, 239, 240 \min (min) . . . . . . . . 91, 232 \MineSign (³) . . . . . . . . 177 minim . . see musical symbols \minim ( ,) . . . . . . . . . . . . 162 \minimDotted ( u) . . . . . . 162 \minimDottedDouble ( u u) . 162 uu \minimDottedDoubleDown ( ) . . . . . . . 162 u \minimDottedDown ( ) . . . 162 , \minimDown ( ) . . . . . . . . 162 Minkowski space (M) . . . . see alphabets, math minus . . . . . . see \textminus \minus (−) . . . . . . . . . . . 32 \minus (−) . . . . . . . . . . . 32 minus, double-dotted (÷) see \div \minuscolon (−:) . . . . . . 61 \minuscoloncolon (−::) . 61 \minusdot (⨪) . . . . . . . . . 32 \minusdot () . . . . . . . . . 32 \minusdot (⨪) . . . . . . . . . 34 \minusfdots (⨫) . . . . . . . 32 \minusfdots (⨫) . . . . . . . 34 \minushookdown (¬) . . . . 120 \minushookdown (¬) . . . . 119 \minushookup (⨼) . . . . . . 33 \minushookup (⨼) . . . . . . 119 \minuso ( ) . . . . . . . 30, 224 \minuso (é) . . . . . . . . . . 33 \minusrdots (⨬) . . . . . . . 32 \minusrdots (⨬) . . . . . . . 34 minutes, angular . see \prime miscellaneous symbols . . 118– 120, 122, 146, 147, 176– 193, 198 mismath (package) . . . 92, 239 “Missing $ inserted” . . 29 \mlcp (⫛) . . . . . . . . . . . . 58 \Mmappedfromchar () . . . 90 \mmappedfromchar () . . . 90 \Mmapstochar () . . . . . . . 90 \mmapstochar () . . . . . . . 90 MnSymbol (package) 29, 31, 32, 36, 44, 52–54, 63, 66, 70, 74–77, 88, 89, 95, 96, 100, 105, 107, 108, 115, 117, 119, 120, 140, 145, 158, 239, 240 \Moai ( ) . . . . . . . . . . . . 192 \Mobilefone (H) . . . . . . . 130 \mod . . . . . . . . . . . . . . . . 91 \models (|=) . . . . . . . 50, 223 \models (⊧) . . . . . . . . . . 55 \models (⊧) . . . . . . . . . . 53 \models (⊧) . . . . . . . . . . . 58 \modtwosum (⨊) . . . . . . . 45 ⨊ \modtwosum ( ) . . . . . . . 46 moduli space . . see alphabets, math \Moldova () . . . . . . . . . . 189 monetary symbols 25, 26, 124 \Montenegro () . . . . . . . . 189 monus . . . . . . . . see \dotdiv \moo () . . . . . . . . . . . . . 30 \moo (æ) . . . . . . . . . . . . . 33 \Moon (K) . . . . . . . . . . . . 127 \Moon (Á) . . . . . . . . . . . . 126 \Moon (d) . . . . . . . . . . . . 128 moon . 126–128, 186, 201–203 \MoonPha . . . . . . . . . . . . 186 moonphase (package) 201, 239 \Mordent () . . . . . . . . . . . 159 \mordent () . . . . . . . . . . . 159 \morepawns (S) . . . . . . . . 181 \moreroom (U) . . . . . . . . 181 \Mountain ( ) . . . . . . . . 178 mouse . . see \ComputerMouse \MoveDown (») . . . . . . . . . 177 \moverlay . . . . . . . . . . . . 226 \MoveUp (º) . . . . . . . . . . 177 \mp (∓) . . . . . . . . . . . . . 30 \mp (ÿ) . . . . . . . . . . . . . . 33 \mp (∓) . . . . . . . . . . . . . . 32 \mp (∓) . . . . . . . . . . . . . . 32 \mp (∓) . . . . . . . . . . . . . . 34 \Mu (M) . . . . . . . . . . . . . 93 \mu (𝜇) . . . . . . . . . . . . . . 93 multiline braces . . . . . . . . 110 \multimap (() . . . . . . 50, 51 \multimap (³) . . . . . . . . 57 \multimap (⊸) . . . . . . . . 89 \multimap (⊸) . . . . . . . . 88 \multimap (⊸) . . . . . . . . 58 \multimapboth () . . . . 51 \multimapboth (À) . . . . . 57 \multimapboth (˛) . . . . 61 \multimapbothvert () . . 51 \multimapbothvert (Æ) . . 57 \multimapdot () . . . . . . 51 \multimapdot (´) . . . . . . 57 \multimapdotboth () . . 51 \multimapdotboth (Á) . . 57 \multimapdotbothA () . 51 \multimapdotbothA (Ã) . 57 \multimapdotbothAvert () 51 \multimapdotbothAvert (É) 57 \multimapdotbothB () . 51 \multimapdotbothB (Â) . 57 \multimapdotbothBvert () 51 \multimapdotbothBvert (È) 57 \multimapdotbothvert () 51 \multimapdotbothvert (Ç) 57 \multimapdotinv () . . . 51 \multimapdotinv (Å) . . . 57 \multimapinv () . . . . . . 51 \multimapinv (Ä) . . . . . . 57 \multimapinv (⟜) . . . . . . 89 \multimapinv (⟜) . . . . . . 58 multiple accents per character . . . . . . . 227 w Y \MultiplicationDot (÷) . 116 multiplicative disjunction . see \bindnasrepma, \invamp, and \parr \Mundus (m) . . . . . . . . . . 177 \muon (𝑥) . . . . . . . . . . . . 133 \musCorchea (ˇ “( ) . . . . . . . 160 \musCorcheaDotted (ˇ “( ‰ ) . . 160 \musDoubleFlat ( ) . . . . 160 \musDoubleSharp ( ) . . . . 160 \musEighth (ˇ “( ) . . . . . . . . 160 \musEighthDotted (ˇ “( ‰ ) . . 160 Museum of Icelandic Sorcery and Witchcraft . . . 186 \musFlat ( ) . . . . . . . . . . 160 \musFusa (ˇ “( ) . . . . . . . . . . 160 \musFusaDotted (ˇ “( ‰ ) . . . . 160 \musHalf (˘ “ ) . . . . . . . . . . 160 \musHalfDotted (˘ “‰ ) . . . . . 160 musical symbols . . . 158–175, 192–197 musicography (package) . 160, 161, 239, 240 musixgre (package) . . . . . . 160 musixlit (package) . . . . . . 160 musixper (package) . . . . . . 160 MusiXTEX . . . . . . . 159–161 musixtex (package) . . 239, 240 \musMeter . . . . . . . . . . . . 161 \musMinim (˘ “ ) . . . . . . . . . 160 \musMinimDotted (˘ “‰ ) . . . . 160 \musNatural ( ) . . . . . . . 160 musNatural (musNatural) 160 \musQuarter (ˇ “ ) . . . . . . . 160 \musQuarterDotted (ˇ “‰ ) . . 160 \musSegno ( V ) . . . . . . . . . 160 \musSemibreve (¯ ) . . . . . . 160 \musSemibreveDotted (¯ ‰ ) 160 \musSemiminim (ˇ “ ) . . . . . . 160 \musSeminiminimDotted (ˇ “‰ ) . . . . . . . . . 160 \musSharp ( ) . . . . . . . . . 160 \musSixteenth (ˇ “) ) . . . . . 160 \musSixteenthDotted (ˇ “) ‰ ) 160 \MVMinus (-) . . . . . . . . \MVMultiplication (*) \MVNine (9) . . . . . . . . \MVOne (1) . . . . . . . . . \MVPeriod (.) . . . . . . . \MVPlus (+) . . . . . . . . \MVRightArrow (:) . . . \MVRightBracket ()) . . \MVSeven (7) . . . . . . . . \MVSix (6) . . . . . . . . . \MVThree (3) . . . . . . . . \MVTwo (2) . . . . . . . . . \MVZero (0) . . . . . . . . \musSixtyFourth (ˇ “+ ) . . . . 160 \NANDu () . . \napprox (ff) . . . \napprox (≉) . . . . \napprox (≉) . . . . \napprox (≉) . . . \napproxeq (6) . . \napproxeq (≊̸) . . \napproxeq (≊̸) . . \napproxeqq () . \napproxident (≋̸) \narceq (≘̸) . . . . \nAssert (⊮) . . . \nassert (⊦̸) . . . . \nasymp (-) . . . . \nasymp (≭) . . . . \nasymp (≭) . . . . . \nasymp (≭) . . . . [ ] Z ^ \ \musSixtyFourthDotted (ˇ “+ ‰ ) . . . . . . . . 160 \musThirtySecond (ˇ “* ) . . . 160 \musThirtySecondDotted (ˇ “* ‰ ) . . . . . . . 160 \musWhole (¯ ) . . . . . . . . . 160 \musWholeDotted (¯ ‰ ) . . . . 160 \muup (µ) . . . . . . . . . . . . 94 \MVAt (@) . . . . . . . . . . . . 177 \MVComma (,) . . . . . . . . . . 116 \MVDivision (/) . . . . . . . 116 \MVEight (8) . . . . . . . . . . 117 \MVFive (5) . . . . . . . . . . 117 \MVFour (4) . . . . . . . . . . 117 \MVLeftBracket (() . . . . 116 288 . . . . . . . . . . . . . . . . . . . . . . . . . . 116 116 117 117 116 116 116 116 117 117 117 117 117 N n (n) . . . . . . . . . . . . . . . . 157 \na ( ) . . . . . . . . . . . . . . 160 \nabla (∇) . . . . . . . . . . . 118 \nabla (∇) . . . . . . . . . . . 119 \nabla (∇) . . . . . . . . . . . 121 \nacwcirclearrowdown (⟲̸) 79 \nacwcirclearrowleft (↺̸) 79 \nacwcirclearrowright (̸) . . . . . . . . 79 \nacwcirclearrowup (̸) 79 \nacwgapcirclearrow (⟲̸) 80 \nacwleftarcarrow (⤹̸) . . 79 \nacwnearcarrow (̸) . . . 79 \nacwnwarcarrow (̸) . . . 79 \nacwopencirclearrow (↺̸) 80 \nacwoverarcarrow (⤺̸) . 79 \nacwrightarcarrow (̸) . 80 \nacwsearcarrow (⤴̸) . . . 80 \nacwswarcarrow (⤷̸) . . . 80 \nacwunderarcarrow (⤻̸) . 80 \NAK (␕) . . . . . . . . . . . . . 130 NAND gates . . . . . . . . . . 130 ^ \NANDd () . . . . . . . . 130 \NANDl () . . . . . . . 130 \NANDr () . . . . . . . 130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 . 52 . 56 . 54 . 59 . 51 . 56 . 54 . 59 . 56 56, 90 . . 56 . . 56 . . 51 56, 90 . . 89 . . 59 \Natal (0) . . nath (package) \NATURAL ( ) . \Natural ( ) . \natural (♮) . \natural (ú) . \natural (♮) . ¼ Î . . . . . . . . . . . . . . ....... 98, 104, ....... ....... ....... ....... ....... 128 239 92 92 158 158 158 \natural ( ) . . . . . . . . . . 163 \natural (♮) . . . . . . . . . . 158 \natural (♮) . . . . . . . . . . 158 natural numbers (N) . . . . see alphabets, math \nbackapprox (̸) . . . . . . 54 \nbackapproxeq (̸) . . . . . 54 \nbackcong (≌̸) . . . . . . . . 56 \nbackcong (≌̸) . . . . . . . . 54 \nbackeqsim (̸) . . . . . . . 54 \nbacksim (*) . . . . . . . . . 51 \nbacksim (∽̸) . . . . . . . . . 56 \nbacksim (∽̸) . . . . . . . . . 54 \nbacksimeq (+) . . . . . . . 51 \nbacksimeq (⋍̸) . . . . . . . 56 \nbacksimeq (⋍̸) . . . . . . . 54 \nbacktriplesim (̸) . . . . 54 \nBarv (⫧̸) . . . . . . . . . . . 56 \nbarV (⫪̸) . . . . . . . . . . . 56 \nbdleftarcarrow (̸) . . . 80 \nbdnearcarrow (̸) . . . . 80 \nbdnwarcarrow (̸) . . . . 80 \nbdoverarcarrow (̸) . . 80 \nbdrightarcarrow (̸) . . 80 \nbdsearcarrow (̸) . . . . 80 \nbdswarcarrow (̸) . . . . 80 \nbdunderarcarrow (̸) . 80 \nblackwhitespoon (⊷̸) . 89 \NBSP ( ) . . . . . . . . . . . . 130 \NBSP ( ) . . . . . . . . . . . . 130 \nBumpeq ()) . . . . . . . . . 51 \nBumpeq (≎̸) . . . . . . . . . . 56 \nBumpeq (≎̸) . . . . . . . . . . 54 \nBumpeq () . . . . . . . . . 59 \nbumpeq (() . . . . . . . . . 51 \nbumpeq (≏̸) . . . . . . . . . . 56 \nbumpeq (≏̸) . . . . . . . . . . 54 \nbumpeq () . . . . . . . . . 59 \nbumpeqq (⪮̸) . . . . . . . . . 56 \ncirceq (≗̸) . . . . . . . . . . 56 \ncirceq (≗̸) . . . . . . . . . . 54 \ncirclearrowleft (↺̸) . 80 \ncirclearrowleft (↺̸) . 77 \ncirclearrowright (↻̸) 80 \ncirclearrowright (↻̸) 77 \ncirmid (⫯̸) . . . . . . . . . 89 \nclosedequal (̸) . . . . . 54 \nclosure (⁐̸) . . . . . . . 56, 90 \ncong (fl) . . . . . . . . . . . 52 \ncong () . . . . . . . . . . . 51 \ncong () . . . . . . . . . . . 57 \ncong (≇) . . . . . . . . . . . 56 \ncong (≇) . . . . . . . . . . . 54 \ncong (≇) . . . . . . . . . . . 59 \ncongdot () . . . . . . . . . 59 \ncurlyeqprec (ÿ) . . . . . 52 \ncurlyeqprec (⋞̸) . . . . . \ncurlyeqprec (⋞̸) . . . . . \ncurlyeqsucc (ź) . . . . . \ncurlyeqsucc (⋟̸) . . . . . \ncurlyeqsucc (⋟̸) . . . . . \ncurvearrowdownup (̸) . \ncurvearrowleft (⤺̸) . . \ncurvearrowleft (↶̸) . . \ncurvearrowleftright (̸) \ncurvearrownesw (̸) . . \ncurvearrownwse (̸) . . \ncurvearrowright (̸) . \ncurvearrowright (↷̸) . . \ncurvearrowrightleft (̸) \ncurvearrowsenw (̸) . . \ncurvearrowswne (̸) . . \ncurvearrowupdown (̸) . \ncwcirclearrowdown (⟳̸) \ncwcirclearrowleft (̸) \ncwcirclearrowright (↻̸) \ncwcirclearrowup (̸) . \ncwgapcirclearrow (⟳̸) \ncwleftarcarrow (̸) . . . \ncwnearcarrow (⤵̸) . . . . \ncwnwarcarrow (̸) . . . . \ncwopencirclearrow (↻̸) \ncwoverarcarrow (̸) . . \ncwrightarcarrow (⤸̸) . . \ncwsearcarrow (⤶̸) . . . . \ncwswarcarrow (̸) . . . . \ncwunderarcarrow (̸) . \ndasharrow (⇢̸) . . . . . . . \ndasharrow (⇢̸) . . . . . . . \ndasheddownarrow (⇣̸) . . \ndashedleftarrow (⇠̸) . . \ndashednearrow (̸) . . . \ndashednwarrow (̸) . . . \ndashedrightarrow (⇢̸) . \ndashedsearrow (̸) . . . \ndashedswarrow (̸) . . . \ndasheduparrow (⇡̸) . . . . \ndashleftarrow (⇠̸) . . . \ndashleftarrow (⇠̸) . . . \ndashrightarrow (⇢̸) . . \ndashrightarrow (⇢̸) . . \nDashV (+) . . . . . . . . . . \nDashV (⫥̸) . . . . . . . . . . \nDashv (+) . . . . . . . . . . \nDashv (⫤̸) . . . . . . . . . . \ndashV (/) . . . . . . . . . . \ndashV (⫣̸) . . . . . . . . . . \ndashv (’) . . . . . . . . . . \ndashv (⊣̸) . . . . . . . . . . \ndashv (⊣̸) . . . . . . . . . . \ndashVv (/) . . . . . . . . . \ndashVv (̸) . . . . . . . . . \nDdashv (̸) . . . . . . . . . \nDdownarrow (⤋̸) . . . . . . 56 54 52 56 54 75 80 77 75 75 75 80 77 75 75 75 75 80 80 80 80 80 80 80 80 80 80 80 80 80 80 81 77 76 76 76 76 76 76 76 76 81 77 81 77 52 56 52 56 52 56 52 56 54 52 56 56 80 \nddtstile ( ) \ndiagdown (̸) \ndiagup (̸) . . \ndivides (∤) . . \nDoteq (≑̸) . . . 60 54 54 54 56 289 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \nDoteq (≑̸) . . . . . . . . . . . 54 \ndoteq (≐̸) . . . . . . . . . . 56 \ndoteq (≐̸) . . . . . . . . . . . 54 \ndoublefrown (̸) . . . . . 89 \ndoublefrowneq (̸) . . . . 89 \ndoublesmile (̸) . . . . . 89 \ndoublesmileeq (̸) . . . . 89 \nDownarrow (⇓̸) . . . . . . . 80 \nDownarrow (⇓̸) . . . . . . . 76 \ndownarrow (↓̸) . . . . . . . 80 \ndownarrow (↓̸) . . . . . . . 76 \ndownarrowtail (̸) . . . 80 \ndownarrowtail (̸) . . . . 76 \ndownAssert (⫧̸) . . . . . . 56 \ndownassert (⫟̸) . . . . . . 56 \ndownbkarrow (⇣̸) . . . . . 80 \ndownblackspoon (̸) . . . 89 \ndowndownarrows (⇊̸) . . 80 \ndowndownarrows (⇊̸) . . . 76 \ndownfilledspoon (̸) . . 88 \ndownfootline (̸) . . . . . 54 \ndownfree (⫝̸) . . . . . . . . 54 \ndownharpoonccw (⇂̸) . . . 77 \ndownharpooncw (⇃̸) . . . . 77 \ndownharpoonleft (⇃̸) . . 82 \ndownharpoonright (⇂̸) . 82 \ndownlcurvearrow (⤸̸) . . 81 \ndownleftcurvedarrow (̸) . . . . . . . . . 81 \ndownlsquigarrow (̸) . . 81 \ndownlsquigarrow (̸) . . 76 \nDownmapsto (̸) . . . . . . 80 \ndownmapsto (↧̸) . . . . . . 80 \ndownmapsto (↧̸) . . . . . . 76 \ndownModels (̸) . . . . . . 54 \ndownmodels (̸) . . . . . . 56 \ndownmodels (̸) . . . . . . 54 \ndownpitchfork (̸) . . . 90 \ndownpitchfork (⫛̸) . . . 88 \ndownrcurvearrow (⤹̸) . . 81 \ndownrightcurvedarrow (⤵̸) . . . . . . . . 81 \ndownrsquigarrow (̸) . . 81 \ndownrsquigarrow (̸) . . 76 \ndownspoon (⫰̸) . . . . . . . 89 \ndownspoon (⫰̸) . . . . . . . 88 \ndownuparrows (⇵̸) . . . . 80 \ndownuparrows (̸) . . . . 76 \ndownupcurvearrow (̸) . 81 \ndownupharpoons (⥯̸) . . 82 \ndownupharpoons (⥯̸) . . . 77 \ndownupharpoonsleftright (⥯̸) . . . . . . . . . . . . 82 \ndownupsquigarrow (̸) . 81 \ndownVDash (̸) . . . . . . . 56 \ndownVdash (⍑̸) . . . . . . . 56 \ndownVdash (⍑̸) . . . . . . . 54 \ndownvDash (⫪̸) . . . . . . . 56 \ndownvdash (⊤̸) . . . . . . . 56 \ndownvdash (⊤̸) . . . . . . . 54 \ndownwavearrow (̸) . . . 80 \ndststile ( ) ....... 60 \ndtstile ( ) . . . . . . . . 60 \ndttstile ( ) . . . \ndualmap (⧟̸) . . . . \NE () . . . . . . . . . . \ne . . . . . . . . . . . . . \ne (≠) . . . . . . . . . . \ne (≠) . . . . . . . . . . \ne (≠) . . . . . . . . . . \Nearrow (t) . . . . . \Nearrow () . . . . . \Nearrow (⇗) . . . . . \Nearrow (⇗) . . . . . \Nearrow (⇗) . . . . . \nearrow (Õ) . . . . . \nearrow (↗) . . . . \nearrow (↗) . . . . . \nearrow (↗) . . . . . \nearrow (↗) . . . . . \nearrow (↗) . . . . . \nearrowcorner ( ) \nearrowtail ($) . . \nearrowtail ($) . . \nebkarrow (d) . . . \nefilledspoon (t) \nefootline (|) . . . \nefree () . . . . . . \neg (¬) . . . . . . . . . \neg (¬) . . . . . . . . . \neg (¬) . . . . . . . . . \neg (¬) . . . . . . . . . negation . . see \neg \neharpoonccw (D) . \neharpooncw (L) . . \neharpoonnw (D) . . \neharpoonse (L) . . \nelcurvearrow () \nelsquigarrow (¤) \nemapsto (,) . . . . \neModels (ô) . . . . \nemodels (ä) . . . . \nenearrows (|) . . \nenearrows () . . \neovnwarrow (⤱) . . \neovsearrow (⤮) . . \nepitchfork () . . \Neptune (H) . . . . . \Neptune (È) . . . . . \Neptune (G) . . . . . \neptune ([) . . . . . . \neq (‰) . . . . . . . . . \neq (,) . . . . . . . . . \neq (ä) . . . . . . . . . \neq (≠) . . . . . . . . . \neq (≠) . . . . . . . . . \neq (≠) . . . . . . . . . \neqbump (̸) . . . . . . \neqcirc (≖̸) . . . . . . \neqcirc (≖̸) . . . . . . \neqdot (⩦̸) . . . . . . \neqdot (⩦̸) . . . . . . . \neqfrown (̸) . . . . . \neqsim (≂̸) . . . . . . \neqsim (≂̸) . . . . . . . \neqsim () . . . . . . . . . . 60 . . . . 89 . . . . 129 see \neq . . . . 56 . . . . 54 . . . . 59 . . . . 73 . . . . 82 . . . . 78 . . . . 74 . . . . 84 . . . . 73 . 72, 226 . . . . 78 . . . . 74 . . . . 87 . . . . 84 . . . . 82 . . . . 78 . . . . 74 . . . . 78 . . . . 88 . . . . 53 . . . . 53 . . . . 118 . . . . 120 . . . . 119 . . . . 121 and \sim . . . . 77 . . . . 77 . . . . 81 . . . . 81 . . . . 79 . . . . 74 . . . . 74 . . . . 53 . . . . 53 . . . . 78 . . . . 74 . . . . 84 . . . . 84 . . . . 88 . . . . 127 . . . . 126 . . . . 128 . . . . 126 . . . . 52 . . . . 64 . . . . 57 . . . . 56 . . . . 54 . . . . 59 . . . . 54 . . . . 56 . . . . 54 . . . . 56 . . . . 54 . . . . 89 . . . . 56 . . . . 54 . . . . 59 \neqslantgtr (ź) . . . . . . 65 \neqslantgtr (⪖̸) . . . . . . 67 \neqslantgtr (⪖̸) . . . . . . 66 \neqslantgtr () . . . . . . 68 \neqslantless (ÿ) . . . . . 65 \neqslantless (⪕̸) . . . . . 67 \neqslantless (⪕̸) . . . . . 66 \neqslantless () . . . . . 68 \neqsmile (̸) . . . . . . . . . 89 \nequal (≠) . . . . . . . . . . 56 \nequal (≠) . . . . . . . . . . . 54 \nequalclosed (̸) . . . . . 54 \nequiv (.) . . . . . . . . . . 51 \nequiv (@) . . . . . . . . . . 57 \nequiv (≢) . . . . . . . . . . 56 \nequiv (≢) . . . . . . . . . . . 54 \nequiv (≢) . . . . . . . . . . 59 \nequivclosed (̸) . . . . . 54 \nercurvearrow (⤴) . . . . 79 \nersquigarrow (¬) . . . . 74 \nespoon (l) . . . . . . . . . 88 \Neswarrow () . . . . . . . 78 \Neswarrow () . . . . . . . 74 \neswarrow (↗ ↘) . . . . . . . 226 \neswarrow (⤡) . . . . . . . 78 \neswarrow (⤡) . . . . . . . 74 \neswarrow (⤢) . . . . . . . 84 \neswarrows () . . . . . . 78 \neswarrows () . . . . . . 74 \neswbipropto () . . . . . 32 \neswcrossing () . . . . . 54 \neswcurvearrow (¨) . . . 79 \neswharpoonnwse (R) . . 81 \neswharpoonnwse (R) . . 77 \neswharpoons (Z) . . . . . 81 \neswharpoons (Z) . . . . . 77 \neswharpoonsenw (V) . . 81 \neswharpoonsenw (V) . . 77 \Neswline (Ö) . . . . . . . . 53 \neswline (Ò) . . . . . . . . 53 \Netherlands () . . . . . . . 189 neumes . . . . . . . . . . . . . . 160 \neuter (⚲) . . . . . . . . . . 131 \Neutral ({) . . . . . . . . . . 131 \Neutrey ( ) . . . . . . . . . 191 \neutrino (𝑁) . . . . . . . . . 133 \neutron (𝑔) . . . . . . . . . 133 \neVdash (ì) . . . . . . . . . 53 \nevdash (Ü) . . . . . . . . . 53 new (old-arrows package option) . . . . . . 87, 88 \newextarrow . . . . . . . . . 112 \newmetrics . . . . . . . . . . 184 \newmoon (N) . . . . . . . . . 127 \newmoon ( ) . . . . . . . . . 126 \newtie ( a) . . . . . . . . . . . 20 \nexists (E) . . . . . . . . . . 96 \nexists (@) . . . . . . . . . . 96 \nexists (â) . . . . . . . . . . 97 \nexists (∄) . . . . . . . . . . 97 \nexists (∄) . . . . . . . . . . 96 \nexists (∄) . . . . . . . . . . 97 \nfallingdotseq (≒̸) . . . . 56 290 \nfallingdotseq (≒̸) \nforksnot (⫝̸) . . . . \nfrown (⌢̸) . . . . . . \nfrown (⌢̸) . . . . . . . \nfrowneq (≘̸) . . . . . \nfrowneq (̸) . . . . . \nfrowneqsmile (̸) . \nfrownsmile (⁐̸) . . \nfrownsmile (̸) . . \nfrownsmileeq (̸) . \NG () . . . . . . . . . . \NG (Ŋ) . . . . . . . . . . \NG (Ŋ) . . . . . . . . . . \ng (ŋ) . . . . . . . . . . \ng (ŋ) . . . . . . . . . . \nge (≱) . . . . . . . . . \ngeq (ğ) . . . . . . . . \ngeq () . . . . . . . . \ngeq () . . . . . . . . \ngeq (≱) . . . . . . . . \ngeq (≱) . . . . . . . . \ngeq (≱) . . . . . . . . \ngeqclosed (⋭) . . . \ngeqclosed (⋭) . . . \ngeqdot (̸) . . . . . . \ngeqdot (̸) . . . . . . \ngeqq (ś) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 . . 59 56, 90 . . 89 56, 90 . . 89 . . 89 56, 90 . . 89 . . 89 . . 129 . . 157 . . 15 . . 157 . . 15 . . 69 . . 65 64, 65 . . 68 . . 67 . . 66 68, 69 67, 71 66, 70 . . 67 . . 66 . . 65 \ngeqq () . . . . . \ngeqq () . . . . . \ngeqq (≧̸) . . . . . \ngeqq (≧̸) . . . . . \ngeqq () . . . . . \ngeqslant ( ) . \ngeqslant () . . \ngeqslant (⩾̸) . . \ngeqslant (≱) . . \ngeqslant () . . \ngeqslantdot (⪀̸) \ngeqslantdot (⪀̸) \ngeqslcc (⪩̸) . . . \ngescc (⪩̸) . . . . \ngesdot (⪀̸) . . . . \ngesl (⋛̸) . . . . . \ngets (↚) . . . . . \ngets (↚) . . . . . \ngets (↚) . . . . . \ngg (4) . . . . . . \ngg (≫̸) . . . . . . \ngg (≫̸) . . . . . . . \ngg () . . . . . . \nggg (⋙̸) . . . . . \nggg (⋙̸) . . . . . \ngtcc (⪧̸) . . . . . \ngtr (č) . . . . . . \ngtr (≯) . . . . . . \ngtr ( ) . . . . . . \ngtr (≯) . . . . . . \ngtr (≯) . . . . . . \ngtr (≯) . . . . . . \ngtrapprox (É) . \ngtrapprox (#) . \ngtrapprox (⪆̸) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 68 67 66 68 64 68 67 66 68 67 66 67 67 68 68 81 77 86 65 67 66 68 67 66 67 65 64 68 67 66 68 65 65 67 \ngtrcc (⪧̸) . . . \ngtrclosed (⋫) \ngtrclosed (⋫) \ngtrdot (⋗̸) . . . \ngtrdot (⋗̸) . . . \ngtreqless (⋛̸) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 67, 66, .. .. .. 67 71 70 67 66 67 \ngtreqless (⋛̸) . . . . \ngtreqlessslant (⋛̸) \ngtreqlessslant (̸) \ngtreqqless (⪌̸) . . . . . . . . . . . . . . . 66 67 66 67 \ngtreqqless (⪌̸) . . . . . . 66 \ngtreqslantless (⋛̸) . . . 67 \ngtrless (&) . . . . . . . . . 65 \ngtrless (≹) . . . . . . . . . 67 \ngtrless (≹) . . . . . . . . . 66 \ngtrless (≹) . . . . . . . . . 68 \ngtrsim (Ã) . . . . . . . . . 65 \ngtrsim (!) . . . . . . . . . 65 \ngtrsim (≵) . . . . . . . . . . 67 \ngtrsim (≵) . . . . . . . . . 68 \nhateq (≙̸) . . . . . . . . . . 56 \nhateq (≙̸) . . . . . . . . . . . 54 \nHdownarrow () . . . . . . 83 \nHdownarrow (⇟) . . . . . . 86 \nhknearrow (⤤̸) . . . . . . 81 \nhknwarrow (⤣̸) . . . . . . 81 \nhksearrow (⤥̸) . . . . . . 81 \nhkswarrow (⤦̸) . . . . . . 81 \nhookdownarrow (̸) . . . 80 \nhookleftarrow (↩̸) . . . 80 \nhookleftarrow (↩̸) . . . 77 \nhooknearrow (⤤̸) . . . . . 80 \nhooknwarrow (⤣̸) . . . . . 80 \nhookrightarrow (↪̸) . . 80 \nhookrightarrow (↪̸) . . 77 \nhooksearrow (⤥̸) . . . . . 80 \nhookswarrow (⤦̸) . . . . . 80 \nhookuparrow (̸) . . . . . 80 \nhpar (⫲) . . . . . . . . . . . 59 \nHuparrow () . . . . . . . . 83 \nHuparrow (⇞) . . . . . . . . 86 \nhVvert (⫵) . . . . . . . . . 34 \ni (∋) . . . . . . . . . . 96, 224 \ni (∋) . . . . . . . . . . . . . . 55 \ni (∋) . . . . . . . . . . . . . . 97 \ni (∋) . . . . . . . . . . . . . . 96 \ni (∋) . . . . . . . . . . . . 58, 59 \nialpha () . . . . . . . . . . 19 \nibar . . . . . . see \ownsbar \nibeta ( ) . . . . . . . . . . . 19 \NibLeft () . . . . . . . . . 136 \NibRight () . . . . . . . . 136 nibs . . . . . . . . . . . . . . . . 136 \NibSolidLeft ( ) . . . . . 136 \NibSolidRight () . . . . 136 nicefrac (package) 121, 239, 240 niceframe (package) . 204–207, 210 \NiceReapey ( ) . . . . . . 191 \nichi ([) . . . . . . . . . . . 19 \niepsilon () . . . . . . . . 19 \nigamma () . . . . . . . . . . 19 \niiota ()) . . . . . . . . . . . 19 \nilambda (2) . . . . . . . . . 19 \nimageof (⊷̸) . . . . . . . . 89 \nin (∉) . . . . . . . . . . . 56, 97 \nin (∉) . . . . . . . . . . . . . 96 \Ninja ( ) . . . . . . . . . . . 191 \niobar (⋾) . . . . . . . . . . . 58 \niomega (>) . . . . . . . . . . 19 \niphi (C) . . . . . . . . . . . 19 \niplus (B) . . . . . . . . . . 51 \niplus (·) . . . . . . . . . . . 57 \nis (⋼) . . . . . . . . . . . . . 58 \nisd (=) . . . . . . . . . . . . 57 \nisd (⋺) . . . . . . . . . . . . 58 \nisigma (O) . . . . . . . . . . 19 \nitheta (S) . . . . . . . . . . 19 \niupsilon (V) . . . . . . . . 19 \niv ( ) . . . . . . . . . . . . . 98 \nj (7) . . . . . . . . . . . . . . 19 nkarta (package) . . . 199, 239 \nlcirclearrowdown (̸) 76 \nlcirclearrowleft (⤾̸) 76 \nlcirclearrowright (⟳̸) 76 \nlcirclearrowup (↻̸) . . 76 \nlcurvearrowdown (⤸̸) . . 76 \nlcurvearrowleft (̸) . . 76 \nlcurvearrowne (̸) . . . 76 \nlcurvearrownw (̸) . . . 76 \nlcurvearrowright (↷̸) . 76 \nlcurvearrowse (̸) . . . 76 \nlcurvearrowsw (̸) . . . 76 \nlcurvearrowup (̸) . . . . 76 \nle (≰) . . . . . . . . . . . . . 69 \nleadsto (↝̸) . . . . . . . . 81 \nleadsto (↝̸) . . . . . . . . 77 \nLeftarrow (ö) . . . . . . 73 \nLeftarrow (:) . . . . . . 72 \nLeftarrow («) . . . . . . . 83 \nLeftarrow (⇍) . . . . . . 79 \nLeftarrow (⇍) . . . . . . 76 \nLeftarrow (⇍) . . . . . . . 86 \nleftarrow (Ú) . . . . . . 73 \nleftarrow (8) . . . . . . 72 \nleftarrow (¨) . . . . . . . 83 \nleftarrow (↚) . . . . . . . 79 \nleftarrow (↚) . . . . . . . 76 \nleftarrow (↚) . . . . . . . 86 \nleftarrowtail (↢̸) . . . 79 \nleftarrowtail (↢̸) . . . 76 \nleftAssert (⫣̸) . . . . . . 56 \nleftassert (⫞̸) . . . . . . 56 \nleftbkarrow (⇠̸) . . . . . 79 \nleftblackspoon (̸) . . 89 \nleftcurvedarrow (↜̸) . 81 \nleftdowncurvedarrow (⤶̸) . . . . . . . . . 80 \nleftfilledspoon (̸) . 88 \nleftfootline (̸) . . . . 56 \nleftfootline (̸) . . . . 54 \nleftfree (̸) . . . . . . . . 54 \nleftharpoonccw (↽̸) . . 77 \nleftharpooncw (↼̸) . . . 77 291 \nleftharpoondown (↽̸) . 82 \nleftharpoonup (↼̸) . . . 82 \nleftlcurvearrow (̸) . 80 \nleftleftarrows (⇇̸) . . 79 \nleftleftarrows (⇇̸) . . 76 \nleftlsquigarrow (↜̸) . 80 \nleftlsquigarrow (̸) . . 76 \nLeftmapsto (⤆̸) . . . . . 79 \nleftmapsto (↤̸) . . . . . . 79 \nleftmapsto (↤̸) . . . . . . 76 \nleftModels (̸) . . . . . . 54 \nleftmodels (̸) . . . . . . 56 \nleftmodels (̸) . . . . . . 54 \nleftpitchfork (̸) . . . 90 \nleftpitchfork (̸) . . . 88 \nleftrcurvearrow (⤺̸) . 80 \nLeftrightarroW (°) . . 83 \nLeftrightarrow (ø) . . 73 \nLeftrightarrow (<) . . 72 \nLeftrightarrow (­) . . 83 \nLeftrightarrow (⇎) . . 80 \nLeftrightarrow (⇎) . . 76 \nLeftrightarrow (⇎) . . 86 \nleftrightarrow (Ü) . . 73 \nleftrightarrow (=) 29, 72 \nleftrightarrow (ª) . . 83 \nleftrightarrow (↮) . . 79 \nleftrightarrow (↮) . . 76 \nleftrightarrow (↮) . . 86 \nleftrightarrows (⇆̸) . 80 \nleftrightarrows (⇆̸) . . 76 \nleftrightblackspoon (̸) . . . . . . . . . 89 \nleftrightcurvearrow (̸) . . . . . . . . . 80 \nleftrightharpoondownup (⥊̸) . . . . . . . . . . . . 82 \nleftrightharpoondownup (⥊̸) . . . . . . . . . . . . 77 \nleftrightharpoons (⇋̸) 82 \nleftrightharpoons (⇋̸) 77 \nleftrightharpoonupdown (⥋̸) . . . . . . . . . . . . 82 \nleftrightharpoonupdown (⥋̸) . . . . . . . . . . . . 77 \nLeftrightline (̸) . . . 54 \nleftrightline (̸) . . . 54 \nleftrightspoon (⧟̸) . . 89 \nleftrightsquigarrow (↭̸) . . . . . . . . . 80 \nleftrightsquigarrow (̸) . . . . . . . . . 77 \nleftrightwavearrow (↭̸) 80 \nleftrsquigarrow (↜̸) . 80 \nleftrsquigarrow (↜̸) . . 76 \nleftspoon (⟜̸) . . . . . . . 89 \nleftspoon (⟜̸) . . . . . . 88 \nleftsquigarrow (↜̸) . . 80 \nleftupcurvedarrow (̸) 81 \nleftVDash (⫥̸) . . . . . . 56 \nleftVdash (⫣̸) . . . . . . 56 \nleftVdash (̸) . . . . . . . 54 \nleftvDash (⫤̸) . . . . . . . 56 \nleftvdash (⊣̸) . . . . \nleftvdash (⊣̸) . . . . \nleftwavearrow (↜̸) \nleq (ę) . . . . . . . . . \nleq () . . . . . . . . . \nleq () . . . . . . . . . \nleq (≰) . . . . . . . . . \nleq (≰) . . . . . . . . . \nleq (≰) . . . . . . . . . \nleqclosed (⋬) . . . . \nleqclosed (⋬) . . . . \nleqdot (̸) . . . . . . . \nleqdot (̸) . . . . . . . \nleqq (ř) . . . . . . . . \nleqq () . . . . . . . . \nleqq () . . . . . . . . \nleqq (≦̸) . . . . . . . . \nleqq (≦̸) . . . . . . . . \nleqq () . . . . . . . . \nleqslant ( ) . . . . \nleqslant () . . . . . \nleqslant (⩽̸) . . . . . \nleqslant (≰) . . . . . \nleqslant () . . . . . \nleqslantdot (⩿̸) . . \nleqslantdot (⩿̸) . . \nleqslcc (⪨̸) . . . . . . \nlescc (⪨̸) . . . . . . . \nlesdot (⩿̸) . . . . . . . \nlesg (⋚̸) . . . . . . . . \nless (ć) . . . . . . . . \nless (≮) . . . . . . . . \nless () . . . . . . . . \nless (≮) . . . . . . . . \nless (≮) . . . . . . . . \nless (≮) . . . . . . . . \nlessapprox (È) . . . \nlessapprox (") . . . \nlessapprox (⪅̸) . . . \nlesscc (⪦̸) . . . . . . \nlessclosed (⋪) . . . \nlessclosed (⋪) . . . \nlessdot (⋖̸) . . . . . . \nlessdot (⋖̸) . . . . . . \nlesseqgtr (⋚̸) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64, .. .. .. .. 67, 66, .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 67, 66, .. .. .. 56 54 80 65 65 68 67 66 69 71 70 67 66 65 64 68 67 66 69 64 68 67 66 69 67 66 67 67 67 67 65 64 68 67 66 69 65 65 67 67 71 70 67 66 67 \nlesseqgtr (⋚̸) . . . . . . . \nlesseqgtrslant (⋚̸) . . . \nlesseqgtrslant (̸) . . . 66 67 66 \nlesseqqgtr (⪋̸) . . . . . . 67 \nlesseqqgtr (⪋̸) . . . . . . 66 \nlesseqslantgtr (⋚̸) \nlessgtr (') . . . . . . \nlessgtr (≸) . . . . . . \nlessgtr (≸) . . . . . . \nlessgtr (≸) . . . . . . \nlesssim (Â) . . . . . \nlesssim ( ) . . . . . . \nlesssim (≴) . . . . . . \nlesssim (≴) . . . . . . \nlhookdownarrow (̸) \nlhookleftarrow (̸) 67 65 67 66 69 65 65 67 69 76 76 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \nlhooknearrow (̸) . . . . 76 \nlhooknwarrow (⤣̸) . . . . 75 \nlhookrightarrow (↪̸) . . 75 \nlhooksearrow (⤥̸) . . . . 75 \nlhookswarrow (̸) . . . . 75 \nlhookuparrow (̸) . . . . . 75 \nll (3) . . . . . . . . . . . . 65 \nll (≪̸) . . . . . . . . . . . . 67 \nll (≪̸) . . . . . . . . . . . . . 66 \nll () . . . . . . . . . . . . 69 \nLleftarrow (⇚̸) . . . . . 80 \nLleftarrow (⇚̸) . . . . . . 75 \nlll (⋘̸) . . . . . . . . . . . 67 \nlll (⋘̸) . . . . . . . . . . . 66 \nlongdashv (⟞̸) . . . . . 56 \nlongleadsto (⟿̸) . . . . 81 \nLongleftarrow (⟸̸) . . 80 \nlongleftarrow (⟵̸) . . 80 \nlongleftfootline (⟝̸) 56 \nLongleftrightarrow (⟺̸) . . . . . . . . . 80 \nlongleftrightarrow (⟷̸) . . . . . . . . . 80 \nlongleftsquigarrow (⬳̸) . . . . . . . . . 81 \nlongleftwavearrow (⬳̸) 80 \nLongmapsfrom (⟽̸) . 56, 80 \nlongmapsfrom (⟻̸) . 56, 80 \nLongmapsto (⟾̸) . . . . 80 \nlongmapsto (⟼̸) . . . . 80 \nLongrightarrow (⟹̸) . 80 \nlongrightarrow (⟶̸) . 80 \nlongrightfootline (⟞̸) 56 \nlongrightsquigarrow (⟿̸) . . . . . . . . 81 \nlongrightwavearrow (⟿̸) . . . . . . . . . 80 \nltcc (⪦̸) . . . . . . . . . . . 67 \nMapsdown (̸) . . . . . . . . 81 \nmapsdown (↧̸) . . . . . . . . 81 \nMapsfrom (⤆̸) . . . . . . . 81 \nmapsfrom (↤̸) . . . . . . . 81 \nMapsto (⤇̸) . . . . . . . . . 81 \nmapsto (↦̸) . . . . . . . . . 81 \nmapsto (↦̸) . . . . . . . . . 77 \nMapsup (̸) . . . . . . . . . 81 \nmapsup (↥̸) . . . . . . . . . 81 \nmid (-) . . . . . . . . . . . . . 51 \nmid (­) . . . . . . . . . . . . . 57 \nmid (∤) . . . . . . . . . . . . 56 \nmid (∤) . . . . . . . . . . . . 54 \nmid (∤) . . . . . . . . . . . . 59 \nmidcir (⫰̸) . . . . . . . . . 89 \nmodels (⊧̸) . . . . . . . . . . 56 \nmodels (⊭) . . . . . . . . . . 54 \nmultimap (⊸̸) . . . . . . . 89 \nmultimap (⊸̸) . . . . . . . 88 \nmultimapinv (⟜̸) . . . . . 89 \NN ( &) . . . . . . . . . . . . . . 129 \nndtstile ( ) . . . . . . . 60 \nNearrow (⇗̸) . . . . . . . . 80 \nNearrow (⇗̸) . . . . . . . . 75 \nnearrow (1) . . . . . . . . . 73 292 \nnearrow (ì) . . . . . . . \nnearrow (↗̸) . . . . . . \nnearrow (↗̸) . . . . . . \nnearrowtail (̸) . . . \nnearrowtail (̸) . . . \nnebkarrow (̸) . . . . \nnefilledspoon (̸) . \nnefootline (̸) . . . . \nnefree (̸) . . . . . . . \nneharpoonccw (̸) . . \nneharpooncw (̸) . . . \nneharpoonnw (̸) . . . \nneharpoonse (̸) . . . \nnelcurvearrow (̸) . \nnelsquigarrow (̸) . \nnemapsto (̸) . . . . . \nneModels (̸) . . . . . \nnemodels (̸) . . . . . \nnenearrows (̸) . . . \nnenearrows (̸) . . . \nnepitchfork (̸) . . . \nnercurvearrow (⤴̸) . \nnersquigarrow (̸) . \nnespoon (̸) . . . . . . \nNeswarrow (̸) . . . . \nNeswarrow (̸) . . . . \nneswarrow (⤡̸) . . . . \nneswarrow (⤡̸) . . . . \nneswarrows (̸) . . . \nneswarrows (̸) . . . \nneswcurvearrow (̸) \nneswharpoonnwse (̸) \nneswharpoonnwse (̸) \nneswharpoons (̸) . \nneswharpoons (̸) . . \nneswharpoonsenw (̸) \nneswharpoonsenw (̸) \nNeswline (̸) . . . . . \nneswline (̸) . . . . . \nneVdash (̸) . . . . . . \nnevdash (̸) . . . . . . \nni (∌) . . . . . . . . . . . \nni (∋) . . . . . . . . . . . \nni (∌) . . . . . . . . . . . \nnststile ( ) . . . . . \nntstile ( ) . . . . . . \nnttstile ( ) . . . . . \nNwarrow (⇖̸) . . . . . . \nNwarrow (⇖̸) . . . . . . \nnwarrow (0) . . . . . . . \nnwarrow (î) . . . . . . . \nnwarrow (↖̸) . . . . . . \nnwarrow (↖̸) . . . . . . \nnwarrowtail (̸) . . . \nnwarrowtail (̸) . . . \nnwbkarrow (̸) . . . . \nnwfilledspoon (̸) . \nnwfootline (̸) . . . . \nnwfree (̸) . . . . . . . \nnwharpoonccw (̸) . . \nnwharpooncw (̸) . . . \nnwharpoonne (̸) . . . \nnwharpoonsw (̸) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 80 75 80 76 80 88 54 54 77 77 82 82 81 76 76 54 54 80 76 88 81 76 88 80 76 80 76 80 76 81 82 77 82 77 82 77 54 54 54 54 56 97 59 60 60 60 80 76 73 82 80 76 80 76 80 88 54 54 77 77 82 82 \nnwlcurvearrow (̸) . . . 81 \nnwlsquigarrow (̸) . . . 76 \nnwmapsto (̸) . . . . . . . 76 \nnwModels (̸) . . . . . . . 54 \nnwmodels (̸) . . . . . . . 54 \nnwnwarrows (̸) . . . . . 80 \nnwnwarrows (̸) . . . . . 76 \nnwpitchfork (̸) . . . . . 88 \nnwrcurvearrow (̸) . . . 81 \nnwrsquigarrow (̸) . . . 76 \nNwsearrow (̸) . . . . . . 80 \nNwsearrow (̸) . . . . . . 76 \nnwsearrow (⤢̸) . . . . . . 80 \nnwsearrow (⤢̸) . . . . . . 76 \nnwsearrows (̸) . . . . . 80 \nnwsearrows (̸) . . . . . 76 \nnwsecurvearrow (̸) . . 81 \nnwseharpoonnesw (̸) . 82 \nnwseharpoonnesw (̸) . 77 \nnwseharpoons (̸) . . . 82 \nnwseharpoons (̸) . . . . 77 \nnwseharpoonswne (̸) . 82 \nnwseharpoonswne (̸) . 77 \nNwseline (̸) . . . . . . . 54 \nnwseline (̸) . . . . . . . 54 \nnwspoon (̸) . . . . . . . . 88 \nnwVdash (̸) . . . . . . . . 54 \nnwvdash (̸) . . . . . . . . 54 no entry . . . . . . . see \noway \NoBleech (Ì) . . . . . . . . 177 \NoChemicalCleaning (¨) 177 noeuro (wasysym package option) . . . . . . . . . . . 25 nointegrals (wasysym package option) . . . . . . . . . . . 40 \NoIroning (²) . . . . . . . 177 non-commutative division 114 nonbreaking space . . . . . . 130 NOR gates . . . . . . . . . . . 130 \NORd () . . . . . . . . . 130 \norigof (⊶̸) . . . . . . . . . 89 \NORl () . . . . . . . . 130 norm see \lVert and \rVert normal runes . . . . . . . . . . 157 \NORr ( ) . . . . . . . . 130 \NorthNode (k) . . . . . . . 128 \NORu () . . . . . . . . . 130 \Norway () . . . . . \NoSun ( ) . . . . . . \Not (⫬) . . . . . . . . not . . . . . . . . . . . . \not . . . . . . . . . . . not equal (­= vs. ­=) \notasymp (ffi) . . . \notbackslash (−) ∖ \notbot (M) . . . . . . . . . . . . . . 189 . . . . 178 . . . . 58 see \neg . 52, 224 . . . . 52 . . . . . 52 . . . . . 128 . . . . . 96 \notbot (Ý) . . . . . . . . . . 120 \notchar (̸) . . . . . . . . . . . 58 \NotCongruent (^) . . . . . 116 \notdivides (ffl) . . . . . . . 52 \notequiv (ı) . . . . . . . . 52 \notin (R) . . . . . . . . . . . 96 \notin (<) . . . . . . . . . . . 96 \notin (∉) . . . . . . . . . . . 97 \notin (∉) . . . . . . . . . . . 56 \notin (6∈) . . . . . . . . . . . 97 \notin (∉) . . . . . . . . . . . . 96 \notin (∉) . . . . . . . . . . . 59 \notni (=) . . . . . . . . . . . 96 \notowner (S) . . . . . . . . . 96 \notowns see \notowner and \notni \notperp (M) . . . . . . . . . 52 \notslash (−) / . . . . . . . . 128 \notsmallin () . . . . . . . 97 \notsmallowns () . . . . . . 97 \nottop (L) . . . . . . . . . . 96 \nottop (Ü) . . . . . . . . . . 120 \NoTumbler () . . . . . . . . 177 \novelty (N) . . . . . . . . . 181 \noway (!) . . . . . . . . . . . 177 \nowns (∌) . . . . . . . . . 56, 97 \nowns (∋) . . . . . . . . . . . 97 \nowns (∌) . . . . . . . . . . . . 96 \nparallel (∦) . . . . . . . . 51 \nparallel (¬) . . . . . . . . 57 \nparallel (∦) . . . . . . . . 56 \nparallel (∦) . . . . . . . . 54 \nparallel (∦) . . . . . . . . 59 \nparallelslant (Ô) . . . 61 \nperp (⊥̸) . . . . . . . . . . . 56 \nperp (⊥̸) . . . . . . . . . . . 54 \npitchfork (⋔̸) . . . . . . 90 \npitchfork (⋔̸) . . . . . . . 88 \nplus (`) . . . . . . . . . . . 30 \nplus (¾) ⨔ . . . . . . . . . . . 33 \npolint ( ) . . . . . . . . . . 48 \npolint (⨔) . . . . . . . . . . 46 \npolintsl (⨔) . . . . . . . . 47 \npolintup (⨔) . . . . . . . . 47 \nprec (ć) . . . . . . . . . . . 52 \nprec (⊀) . . . . . . . . . . . 51 \nprec () . . . . . . . . . . . 57 \nprec (⊀) . . . . . . . . . . . 56 \nprec (⊀) . . . . . . . . . . . 54 \nprec (⊀) . . . . . . . . . . . 59 \nprecapprox (È) . . . . . . 52 \nprecapprox (7) . . . . . . 51 \nprecapprox (⪷̸) . . . . . . 56 \nprecapprox (⪷̸) . . . . . . 54 \npreccurlyeq (ę) . . . . . 52 \npreccurlyeq ($) . . . . . 51 \npreccurlyeq (⋠) . . . . . 56 \npreccurlyeq (⋠) . . . . . 54 \npreccurlyeq (⋠) . . . . . 59 \npreceq (ł) . . . . . . . . . 52 \npreceq () . . . . . . . . . 51 \npreceq () . . . . . . . . . 57 \npreceq (⪯̸) . . . . . . . . . . 56 293 \npreceq (⪯̸) . . . . . . . . . . 54 \npreceq () . . . . . . . . . 59 \npreceqq (9) . . . . . . . . . 51 \npreceqq (⪳̸) . . . . . . . . . 56 \nprecsim (Â) . . . . . . . . 52 \nprecsim () . . . . . . . . . 51 \nprecsim (≾̸) . . . . . . . . . 56 \nprecsim (≾̸) . . . . . . . . . 54 \NR ( ) . . . . . . . . . . . . . . 129 \nrcirclearrowdown (̸) 76 \nrcirclearrowleft (⟲̸) 76 \nrcirclearrowright (⤿̸) 76 \nrcirclearrowup (↺̸) . . 76 \nrcurvearrowdown (⤹̸) . . 76 \nrcurvearrowleft (↶̸) . . 76 \nrcurvearrowne (̸) . . . 76 \nrcurvearrownw (̸) . . . 76 \nrcurvearrowright (̸) . 76 \nrcurvearrowse (̸) . . . 76 \nrcurvearrowsw (̸) . . . 76 \nrcurvearrowup (̸) . . . . 76 \nRelbar (̸) . . . . . . . . . 54 \nrelbar (̸) . . . . . . . . . 54 \nrestriction (↾̸) . . . . . 82 \nrestriction (↾̸) . . . . . 77 \nrhookdownarrow (̸) . . . 76 \nrhookleftarrow (↩̸) . . 76 \nrhooknearrow (⤤̸) . . . . 76 \nrhooknwarrow (̸) . . . . 76 \nrhookrightarrow (̸) . . 76 \nrhooksearrow (̸) . . . . 76 \nrhookswarrow (⤦̸) . . . . 76 \nrhookuparrow (̸) . . . . . 76 \nRightarrow (œ) . . . . . . 73 \nRightarrow (;) . . . . . 72 \nRightarrow (¬) . . . . . . 83 \nRightarrow (⇏) . . . . . 80 \nRightarrow (⇏) . . . . . . 76 \nRightarrow (⇏) . . . . . . 86 \nrightarrow (Û) . . . . . . 73 \nrightarrow (9) . . . . . 72 \nrightarrow (©) . . . . . . 83 \nrightarrow (↛) . . . . . . 80 \nrightarrow (↛) . . . . . . 76 \nrightarrow (↛) . . . . . . 86 \nrightarrowtail (↣̸) . . 80 \nrightarrowtail (↣̸) . . 76 \nrightAssert (⊮) . . . . . 56 \nrightassert (⊦̸) . . . . . 56 \nrightbkarrow (⇢̸) . . . . 80 \nrightblackspoon (̸) . 89 \nrightcurvedarrow (↝̸) . 80 \nrightdowncurvedarrow (⤷̸) . . . . . . . . 80 \nrightfilledspoon (̸) . 88 \nrightfootline (̸) . . . 56 \nrightfootline (̸) . . . 54 \nrightfree (̸) . . . . . . . 54 \nrightharpoonccw (⇀̸) . . 77 \nrightharpooncw (⇁̸) . . 77 \nrightharpoondown (⇁̸) . 82 \nrightharpoonup (⇀̸) . . 82 \nrightlcurvearrow (̸) . 80 \nrightleftarrows (⇄̸) . 80 \nrightleftarrows (⇄̸) . . 75 \nrightleftcurvearrow (̸) . . . . . . . . . 80 \nrightleftharpoons (⇌̸) 82 \nrightleftharpoons (⇌̸) 77 \nrightleftsquigarrow (↭̸) . . . . . . . . . 80 \nrightlsquigarrow (↝̸) . 80 \nrightlsquigarrow (↝̸) . 75 \nRightmapsto (⤇̸) . . . . . 80 \nrightmapsto (↦̸) . . . . . 80 \nrightmapsto (↦̸) . . . . . 75 \nrightModels (⊯) . . . . . 54 \nrightmodels (⊧̸) . . . . . 56 \nrightmodels (⊭) . . . . . 54 \nrightpitchfork (̸) . . 90 \nrightpitchfork (̸) . . 88 \nrightrcurvearrow (⤻̸) . 80 \nrightrightarrows (⇉̸) . 80 \nrightrightarrows (⇉̸) . 75 \nrightrsquigarrow (↝̸) . 80 \nrightrsquigarrow (̸) . 75 \nrightspoon (⊸̸) . . . . . . 89 \nrightspoon (⊸̸) . . . . . . 88 \nrightsquigarrow (↝̸) . 81 \nrightsquigarrow (↝̸) . . 77 \nrightupcurvedarrow (̸) 81 \nrightVDash (⊯) . . . . . 56 \nrightVdash (⊮) . . . . . 56 \nrightVdash (⊮) . . . . . . 54 \nrightvDash (⊭) . . . . . . 56 \nrightvdash (⊬) . . . . . . 56 \nrightvdash (⊬) . . . . . . 54 \nrightwavearrow (↝̸) . . 80 \nrisingdotseq (≓̸) . . . . 56 \nrisingdotseq (≓̸) . . . . . 54 \nRrightarrow (⇛̸) . . . . . 79 \nRrightarrow (⇛̸) . . . . . 75 \nsdtstile ( ) . . . . . \nSearrow (⇘̸) . . . . . . \nSearrow (⇘̸) . . . . . . \nsearrow (↘̸) . . . . . . \nsearrow (↘̸) . . . . . . \nsearrowtail (̸) . . . \nsearrowtail (̸) . . . \nsebkarrow (̸) . . . . \nsefilledspoon (̸) . \nsefootline (̸) . . . . \nsefree (̸) . . . . . . . \nseharpoonccw (̸) . . \nseharpooncw (̸) . . . \nseharpoonne (̸) . . . \nseharpoonsw (̸) . . . \nselcurvearrow (⤵̸) . \nselsquigarrow (̸) . \nsemapsto (̸) . . . . . \nseModels (̸) . . . . . \nsemodels (̸) . . . . . \nsenwarrows (̸) . . . \nsenwarrows (̸) . . . \nsenwcurvearrow (̸) \nsenwharpoons (̸) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 79 75 79 75 79 76 79 88 54 54 77 77 82 82 81 76 76 54 54 79 76 81 82 \nsenwharpoons (̸) . . \nsepitchfork (̸) . . . \nsercurvearrow (⤷̸) . \nsersquigarrow (̸) . \nsesearrows (̸) . . . \nsesearrows (̸) . . . \nsespoon (̸) . . . . . . \nseVdash (̸) . . . . . . \nsevdash (̸) . . . . . . \nshortdowntack (⫟̸) . \nshortlefttack (⫞̸) . . \nshortmid (.) . . . . . . \nshortmid (®) . . . . . . \nshortmid (∤) . . . . . . \nshortmid (∤) . . . . . . \nshortmid (∤) . . . . . . \nshortparallel (/) . . \nshortparallel (¯) . . \nshortparallel (∦) . \nshortparallel (∦) . . \nshortparallel (∦) . . \nshortrighttack (⊦̸) . \nshortuptack (⫠̸) . . . \nsim () . . . . . . . . . . \nsim (/) . . . . . . . . . . \nsim () . . . . . . . . . . \nsim (≁) . . . . . . . . . . \nsim (≁) . . . . . . . . . . \nsim (≁) . . . . . . . . . . \nsime (≄) . . . . . . . . . \nsime (≄) . . . . . . . . . \nsimeq (fi) . . . . . . . . \nsimeq (;) . . . . . . . . \nsimeq (≄) . . . . . . . . \nsimeq (≄) . . . . . . . . . \nsimeq (≄) . . . . . . . . \nsmile (⌣̸) . . . . . . . . \nsmile (⌣̸) . . . . . . . . . \nsmileeq (̸) . . . . . . . \nsmileeq (̸) . . . . . . . \nsmileeqfrown (̸) . . . \nsmilefrown (≭) . . . . \nsmilefrown (≭) . . . . \nsmilefrowneq (̸) . . . \nsqdoublefrown (̸) . . \nsqdoublefrowneq (̸) \nsqdoublesmile (̸) . . \nsqdoublesmileeq (̸) \nsqeqfrown (̸) . . . . . \nsqeqsmile (̸) . . . . . \nsqfrown (̸) . . . . . . . \nsqfrowneq (̸) . . . . . \nsqfrowneqsmile (̸) . \nsqfrownsmile (̸) . . . \nsqsmile (̸) . . . . . . . \nsqsmileeq (̸) . . . . . \nsqsmileeqfrown (̸) . \nsqsmilefrown (̸) . . . \nSqsubset (̸) . . . . . . \nSqsubset (̸) . . . . . . \nsqSubset (Ű) . . . . . . \nsqsubset (Ć) . . . . . . \nsqsubset (a) . . . . . . 294 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56, .. 56, .. .. 56, .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 77 88 81 76 79 76 88 54 54 56 56 51 57 56 54 59 51 57 56 54 59 56 56 52 51 57 56 54 59 56 59 52 51 56 54 59 90 89 90 89 89 90 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 63 63 62 62 62 \nsqsubset (⊏̸) . . . . . . . . 63 \nsqsubset (⊏̸) . . . . . . . . 63 \nsqsubset () . . . . . . . . 64 \nsqsubseteq (Ę) . . . . . . 62 \nsqsubseteq (@) . . . . . . 62 \nsqsubseteq (⋢) . . . . . . 63 \nsqsubseteq (⋢) . . . . . . 63 \nsqsubseteq (⋢) . . . . . . 64 \nsqsubseteqq (Ő) . . . . . 62 \nsqsubseteqq (̸) . . . . . 63 \nsqsubseteqq (̸) . . . . . 63 \nSqsupset (̸) . . . . . . . . 63 \nSqsupset (̸) . . . . . . . . 63 \nsqSupset (Ů) . . . . . . . . 62 \nsqsupset (Č) . . . . . . . . 62 \nsqsupset (b) . . . . . . . . 62 \nsqsupset (⊐̸) . . . . . . . . 63 \nsqsupset (⊐̸) . . . . . . . . 63 \nsqsupset () . . . . . . . . 64 \nsqsupseteq (Ğ) . . . . . . 62 \nsqsupseteq (A) . . . . . . 62 \nsqsupseteq (⋣) . . . . . . 63 \nsqsupseteq (⋣) . . . . . . 63 \nsqsupseteq (⋣) . . . . . . 64 \nsqsupseteqq (Ŕ) . . . . . 62 \nsqsupseteqq (̸) . . . . . 63 \nsqsupseteqq (̸) . . . . . 63 \nsqtriplefrown (̸) . . . . 89 \nsqtriplesmile (̸) . . . . 89 \nsquigarrowdownup (̸) 76 \nsquigarrowleftright (̸) . . . . . . . . . 76 \nsquigarrownesw (̸) . . 76 \nsquigarrownwse (̸) . . . 76 \nsquigarrowrightleft (̸) . . . . . . . . . 76 \nsquigarrowsenw (̸) . . 76 \nsquigarrowswne (̸) . . 76 \nsquigarrowupdown (̸) . 76 \nsststile ( ) . . . . . . . \nstareq (≛̸) . . . . . . . . . . 60 56 \nststile ( ) . . . . . . . . 60 \nsttstile ( ) \nSubset (Ű) . . \nSubset (>) . . \nSubset (⋐̸) . . . \nSubset (⋐̸) . . . \nsubset (Ć) . . \nsubset () . . \nsubset (⊄) . . . \nsubset (⊄) . . . \nsubset (⊄) . . \nsubseteq (Ę) . \nsubseteq (*) \nsubseteq (ª) . \nsubseteq (⊈) . \nsubseteq (⊈) . \nsubseteq (⊈) . \nsubseteqq (Ő) \nsubseteqq (") \nsubseteqq (¢) \nsubseteqq (⫅̸) 60 62 62 63 63 62 63 63 63 64 62 62 63 63 63 64 62 62 63 63 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \nsubseteqq (⫅̸) . . . . \nsubseteqq () . . . . \nsucc (č) . . . . . . . . \nsucc () . . . . . . . . \nsucc () . . . . . . . . \nsucc (⊁) . . . . . . . . \nsucc (⊁) . . . . . . . . \nsucc (⊁) . . . . . . . . \nsuccapprox (É) . . . \nsuccapprox (8) . . . \nsuccapprox (⪸̸) . . . \nsuccapprox (⪸̸) . . . \nsucccurlyeq (ğ) . . \nsucccurlyeq (%) . . \nsucccurlyeq (⋡) . . \nsucccurlyeq (⋡) . . \nsucccurlyeq (⋡) . . \nsucceq (ń) . . . . . . \nsucceq () . . . . . . \nsucceq () . . . . . . \nsucceq (⪰̸) . . . . . . . \nsucceq (⪰̸) . . . . . . . \nsucceq () . . . . . . \nsucceqq (:) . . . . . . \nsucceqq (⪴̸) . . . . . . \nsuccsim (Ã) . . . . . \nsuccsim () . . . . . . \nsuccsim (≿̸) . . . . . . \nsuccsim (≿̸) . . . . . . \nSupset (Ů) . . . . . . \nSupset (?) . . . . . . \nSupset (⋑̸) . . . . . . . \nSupset (⋑̸) . . . . . . . \nsupset (Č) . . . . . . \nsupset () . . . . . . \nsupset (⊅) . . . . . . . \nsupset (⊅) . . . . . . . \nsupset (⊅) . . . . . . \nsupseteq (Ğ) . . . . . \nsupseteq (+) . . . . \nsupseteq («) . . . . . \nsupseteq (⊉) . . . . . \nsupseteq (⊉) . . . . . \nsupseteq (⊉) . . . . . \nsupseteqq (Ŕ) . . . . \nsupseteqq (#) . . . . \nsupseteqq (£) . . . . \nsupseteqq (⫆̸) . . . . \nsupseteqq (⫆̸) . . . . \nsupseteqq () . . . . \nSwarrow (⇙̸) . . . . . \nSwarrow (⇙̸) . . . . . \nswarrow (↙̸) . . . . . \nswarrow (↙̸) . . . . . \nswarrowtail (̸) . . \nswarrowtail (̸) . . \nswbkarrow (̸) . . . \nswfilledspoon (̸) \nswfootline (̸) . . . \nswfree (̸) . . . . . . \nswharpoonccw (̸) . \nswharpooncw (̸) . . \nswharpoonnw (̸) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 64 52 51 57 56 54 59 52 51 56 54 52 51 56 54 59 52 51 57 56 54 59 51 56 52 51 56 54 62 62 63 63 62 63 63 63 64 62 62 63 63 63 64 62 62 63 63 63 64 80 76 79 76 80 76 80 88 54 54 77 77 82 \nswharpoonse (̸) . . . \nswlcurvearrow (⤶̸) . \nswlsquigarrow (̸) . \nswmapsto (̸) . . . . . \nswModels (̸) . . . . . \nswmodels (̸) . . . . . \nswnearrows (̸) . . . \nswnearrows (̸) . . . \nswnecurvearrow (̸) \nswneharpoons (̸) . \nswneharpoons (̸) . . \nswpitchfork (̸) . . . \nswrcurvearrow (̸) . \nswrsquigarrow (̸) . \nswspoon (̸) . . . . . . \nswswarrows (̸) . . . \nswswarrows (̸) . . . \nswVdash (̸) . . . . . . \nswvdash (̸) . . . . . . \NT () . . . . . . . . . . . . \ntdtstile ( . . . . . . . . . . . . . . . . . . . . . 82 . 81 . 76 . 76 . 54 . 54 . 80 . 76 . 81 . 82 . 77 . 88 . 81 . 76 . 88 . 80 . 76 . 54 . 54 . 129 ) ....... 60 ntheorem (package) . . . . . 118 \nthickapprox (5) . . . . . 51 \nto (↛) . . . . . . . . . . . . 81 \nto (↛) . . . . . . . . . . . . . 77 \ntriangleeq (≜̸) . . . . . . 71 \ntriangleeq (≜̸) . . . . . . 70 \ntriangleleft (Ž) . . . . 69 \ntriangleleft (6) . . . . 69 \ntriangleleft (¶) . . . . 71 \ntriangleleft (⋪) . . . . 71 \ntriangleleft (⋪) . . . 66, 70 \ntrianglelefteq (đ) . . 69 \ntrianglelefteq (5) . . 69 \ntrianglelefteq (µ) . . . 71 \ntrianglelefteq (⋬) . . . 71 \ntrianglelefteq (⋬) . 66, 70 \ntrianglelefteq (⋬) . . . 71 \ntrianglelefteqslant (R) 69 \ntriangleright (Ż) . . . 69 \ntriangleright (7) . . . 69 \ntriangleright (·) . . . 71 \ntriangleright (⋫) . . . . 71 \ntriangleright (⋫) . . 66, 70 \ntrianglerighteq (§) . . 69 \ntrianglerighteq (4) . 69 \ntrianglerighteq (´) . . 71 \ntrianglerighteq (⋭) . . 71 \ntrianglerighteq (⋭) 66, 70 \ntrianglerighteq (⋭) . . 71 \ntrianglerighteqslant (S) . . . . . . . . 69 \ntriplefrown (̸) . . . . . 89 \ntriplesim (≋̸) . . . . . . . 56 \ntriplesim (≋̸) . . . . . . . 54 \ntriplesmile (̸) . . . . . 89 \ntststile ( ) ....... 60 \nttstile ( ) . . . . . . . . 60 \ntttstile ( ) ....... 60 \ntwoheaddownarrow (↡̸) . \ntwoheaddownarrow (↡̸) . 80 76 295 \ntwoheadleftarrow (h) . 51 \ntwoheadleftarrow (↞̸) 80 \ntwoheadleftarrow (↞̸) 76 \ntwoheadnearrow (̸) . . 80 \ntwoheadnearrow (̸) . . 76 \ntwoheadnwarrow (̸) . . 80 \ntwoheadnwarrow (̸) . . 76 \ntwoheadrightarrow (g) 51 \ntwoheadrightarrow (↠̸) 80 \ntwoheadrightarrow (↠̸) 76 \ntwoheadsearrow (̸) . . 80 \ntwoheadsearrow (̸) . . 76 \ntwoheadswarrow (̸) . . 80 \ntwoheadswarrow (̸) . . 76 \ntwoheaduparrow (↟̸) . . . 80 \ntwoheaduparrow (↟̸) . . . 76 \Nu (N) . . . . . . . . . . . . . . 93 \nu (𝜈) . . . . . . . . . . . . . . 93 nuclear power plant see \SNPP \nucleus (𝑒) . . . . . . . . . 133 ) . . . . . . 191 \Nudelholz ( \NUL (␀) . . . . . . . . . . . . . 130 \NUL (␀) . . . . . . . . . . . . . 130 null infinity . . . see alphabets, math null set . . . . . . . . . . 117–120 number sets . . see alphabets, math number sign see \textnumero numbers . . . . . . see numerals numerals 27, 117, 125, 138, 175, 182, 183, 199–200, 217 circled 138, 182, 183, 217 Epi-Olmec . . . . . . . . 156 Isthmian . . . . . . . . . 156 LCD . . . . . . . . . . . . 125 Linear B . . . . . . . . . 152 Mayan . . . . . . . . . . . 117 old-style . . . . . . . . . . 27 segmented . . . . . . . . 125 \NumLock ( Num ) . . . . . . 129 \nUparrow (⇑̸) . . . . . . . . 80 \nUparrow (⇑̸) . . . . . . . . . 76 \nuparrow (↑̸) . . . . . . . . . 80 \nuparrow (↑̸) . . . . . . . . . 76 \nuparrowtail (̸) . . . . . 80 \nuparrowtail (̸) . . . . . 76 \nupAssert (⫨̸) . . . . . . . . 56 \nupassert (⫠̸) . . . . . . . . 56 \nupbkarrow (⇡̸) . . . . . . . 80 \nupblackspoon (̸) . . . . 89 \nUpdownarrow (⇕̸) . . . . . 80 \nUpdownarrow (⇕̸) . . . . . 76 \nupdownarrow (↕̸) . . . . . 80 \nupdownarrow (↕̸) . . . . . 76 \nupdownarrows (⇅̸) . . . . 80 \nupdownarrows (̸) . . . . 76 \nupdowncurvearrow (̸) . 81 \nupdownharpoonleftright (⥍̸) . . . . . . . . . . . . . 82 \nupdownharpoonleftright (̸) . . . . . . . . . . . . . 77 \nupdownharpoonrightleft (⥌̸) . . . . . . . . . . . . . 82 \nupdownharpoonrightleft (̸) . . . . . . . . . . . . . 77 \nupdownharpoons (⥮̸) . . 82 \nupdownharpoons (⥮̸) . . . 77 \nupdownharpoonsleftright (⥮̸) . . . . . . . . . . . . 82 \nUpdownline (∦) . . . . . . 54 \nupdownline (∤) . . . . . . 54 \nupdownsquigarrow (̸) . 81 \nupdownwavearrow (̸) . . 80 \nupfilledspoon (̸) . . . . 88 \nupfootline (̸) . . . . . . 54 \nupfree (̸) . . . . . . . . . . 54 \nupharpoonccw (↿̸) . . . . . 77 \nupharpooncw (↾̸) . . . . . 77 \nupharpoonleft (↿̸) . . . 82 \nupharpoonright (↾̸) . . . 82 \nuplcurvearrow (̸) . . . 81 \nupleftcurvedarrow (̸) 81 \nuplsquigarrow (̸) . . . 81 \nuplsquigarrow (̸) . . . . 76 \nUpmapsto (̸) . . . . . . . . 80 \nupmapsto (↥̸) . . . . . . . . 80 \nupmapsto (↥̸) . . . . . . . . 76 \nupModels (̸) . . . . . . . 54 \nupmodels (̸) . . . . . . . . 56 \nupmodels (̸) . . . . . . . . 54 \nuppitchfork (⋔̸) . . . . . 90 \nuppitchfork (⋔̸) . . . . . 88 \nuprcurvearrow (̸) . . . 81 \nuprightcurvearrow (⤴̸) 81 \nuprsquigarrow (̸) . . . 81 \nuprsquigarrow (̸) . . . . 76 \nupspoon (⫯̸) . . . . . . . . . 89 \nupspoon (⫯̸) . . . . . . . . . 88 \nupuparrows (⇈̸) . . . . . . 80 \nupuparrows (⇈̸) . . . . . . 76 \nupVDash (̸) . . . . . . . . 56 \nupVdash (⍊̸) . . . . . . . . 56 \nupVdash (⍊̸) . . . . . . . . 54 \nupvDash (⫫̸) . . . . . . . . 56 \nupvdash (⊥̸) . . . . . . . . 56 \nupvdash (⊥̸) . . . . . . . . . 54 \nupwavearrow (̸) . . . . . 80 \Nursey ( ) . . . . . . . . . . 191 \nuup (ν) . . . . . . . . . . . . 94 \nUuparrow (⤊̸) . . . . . . . 80 \nvardownwavearrow (̸) . 80 \nvargeq (ń) . . . . . . . . . 65 \nvarhookdownarrow (̸) . 80 \nvarhookleftarrow (↩̸) . 80 \nvarhooknearrow (⤤̸) . . 80 \nvarhooknwarrow (⤣̸) . . 80 \nvarhookrightarrow (↪̸) 80 \nvarhooksearrow (⤥̸) . . 80 \nvarhookswarrow (⤦̸) . . 80 \nvarhookuparrow (̸) . . . 80 \nvarisinobar () . . . . . 59 \nvarleftrightwavearrow (↭̸) . . . . . . . . 80 \nvarleftwavearrow (↜̸) . 80 \nvarleq (ł) . . . . . . . . . 65 \nvarniobar () . . . . . . . 59 \nvarparallel ( ) . . . . . 51 \nvarparallelinv ( ) . . . 51 \nvarrightwavearrow (↝̸) 80 \nvartriangleleft (⋪) . . 71 \nvartriangleright (⋫) . 71 \nvarupdownwavearrow (̸) 80 \nvarupwavearrow (̸) . . . 80 \nVbar (⫫̸) . . . . . . . . . . . 56 \nvBar (⫨̸) . . . . . . . . . . . 56 \nVDash (*) . . . . . . . . . . 52 \nVDash (3) . . . . . . . . . . 51 \nVDash (³) . . . . . . . . . . 57 \nVDash (⊯) . . . . . . . . . . 56 \nVDash (⊯) . . . . . . . . . . 54 \nVDash (⊯) . . . . . . . . . . 59 \nVdash (.) . . . . . . . . . . 52 \nVdash (1) . . . . . . . . . . 51 \nVdash (±) . . . . . . . . . . 57 \nVdash (⊮) . . . . . . . . . . 56 \nVdash (⊮) . . . . . . . . . . 54 \nVdash (⊮) . . . . . . . . . . 59 \nvDash (*) . . . . . . . . . . 52 \nvDash (2) . . . . . . . . . . 51 \nvDash (²) . . . . . . . . . . 57 \nvDash (⊭) . . . . . . . . . . 56 \nvDash (⊭) . . . . . . . . . . 54 \nvDash (⊭) . . . . . . . . . . 59 \nvdash (&) . . . . . . . . . . 52 \nvdash (0) . . . . . . . . . . 51 \nvdash (°) . . . . . . . . . . 57 \nvdash (⊬) . . . . . . . . . . 56 \nvdash (⊬) . . . . . . . . . . 54 \nvdash (⊬) . . . . . . . . . . 59 \nvDdash (⫢̸) . . . . . . . . . 56 \nveeeq (≚̸) . . . . . . . . . . 56 \nvinfty (⧞) . . . . . . . . . 117 \nVleftarrow () . . . . . . 83 \nVleftarrow (⇺) . . . . . . 86 \nvLeftarrow (⤂) . . . . . . 86 \nvleftarrow (⇷) . . . . . . 86 \nVleftarrowtail (⬺) . . 86 \nvleftarrowtail (⬹) . . 86 \nVleftrightarrow (⇼) . 86 \nvLeftrightarrow (⤄) . 86 \nvleftrightarrow (⇹) . 86 \nvlongdash (⟝̸) . . . . . 56 \nVrightarrow () . . . . . 83 \nVrightarrow (⇻) . . . . . 86 \nvRightarrow (⤃) . . . . . 86 \nvrightarrow (⇸) . . . . . 86 \nVrightarrowtail (⤕) . 86 \nvrightarrowtail (⤔) . 86 \nVtwoheadleftarrow (⬵) 86 \nvtwoheadleftarrow (⬴) 86 \nVtwoheadleftarrowtail (⬽) . . . . . . . . 86 \nvtwoheadleftarrowtail (⬼) . . . . . . . . 86 \nVtwoheadrightarrow (⤁) 86 \nvtwoheadrightarrow (⤀) 86 296 \nVtwoheadrightarrowtail (⤘) . . . . . . . . . . . . 86 \nvtwoheadrightarrowtail (⤗) . . . . . . . . . . . . 86 \nVvash (.) . . . . . . . . . . 52 \nVvdash (⊪̸) . . . . . . . . . 56 \Nwarrow (v) . . . . . . . . . 73 \Nwarrow () . . . . . . . . . 82 \Nwarrow (⇖) . . . . . . . . . 78 \Nwarrow (⇖) . . . . . . . . . 74 \Nwarrow (⇖) . . . . . . . . . 84 \nwarrow (Ô) . . . . . . . . . 73 \nwarrow (↖) . . . . . 72, 226 \nwarrow (↖) . . . . . . . . . 78 \nwarrow (↖) . . . . . . . . . 74 \nwarrow (↖) . . . . . . . . . 87 \nwarrow (↖) . . . . . . . . . 84 \nwarrowcorner ( ) . . . . 82 \nwarrowtail (%) . . . . . . 78 \nwarrowtail (%) . . . . . . 74 \nwbkarrow (e) . . . . . . . 78 \nwedgeq (≙̸) . . . . . . . . . . 56 \nwfilledspoon (u) . . . . 88 \nwfootline (}) . . . . . . . 53 \nwfree ( ) . . . . . . . . . . 53 \nwharpoonccw (E) . . . . . 77 \nwharpooncw (M) . . . . . . 77 \nwharpoonne (M) . . . . . . 81 \nwharpoonsw (E) . . . . . . 81 \nwhiteblackspoon (⊶̸) . 89 \nwlcurvearrow () . . . . 79 \nwlsquigarrow (¥) . . . . 74 \nwmapsto (-) . . . . . . . . 74 \nwModels (õ) . . . . . . . . 53 \nwmodels (å) . . . . . . . . 53 \nwnwarrows (}) . . . . . . 78 \nwnwarrows () . . . . . . 74 \nwovnearrow (⤲) . . . . . . 84 \nwpitchfork () . . . . . . 88 \nwrcurvearrow (¡) . . . . 79 \nwrsquigarrow (­) . . . . 74 \Nwsearrow () . . . . . . . 78 \Nwsearrow () . . . . . . . 74 \nwsearrow (↖ ↘) . . . . . . . 226 \nwsearrow (⤢) . . . . . . . 78 \nwsearrow (⤢) . . . . . . . 74 \nwsearrow (⤡) . . . . . . . 84 \nwsearrows () . . . . . . 78 \nwsearrows () . . . . . . 74 \nwsebipropto () . . . . . 32 \nwsecrossing () . . . . . 53 \nwsecurvearrow (©) . . . 79 \nwseharpoonnesw (S) . . 81 \nwseharpoonnesw (S) . . 77 \nwseharpoons (_) . . . . . 81 \nwseharpoons (_) . . . . . 77 \nwseharpoonswne (W) . . 81 \nwseharpoonswne (W) . . 77 \Nwseline (×) . . . . . . . . 53 \nwseline (Ó) . . . . . . . . 53 \nwspoon (m) . . . . . . . . . 88 \nwVdash (í) . . . . . . . . . 53 \nwvdash (Ý) . . . . . . . . . 53 O \O (Ø) . . . . . . . . . . . . . . 15 \o (ø) . . . . . . . . . . . . . . . 15 o (𝑜) . . . . . . . . . . . . . . . 93 o (o) . . . . . . . . . . . . . . . 157 \oast (⊛) . . . . . . . . . . . . 36 \oast (⊛) . . . . . . . . . . . . 36 \oasterisk (f) . . . . . . . . 35 \obackslash (n) . . . . . . . 35 \obackslash (⦸) . . . . . . . 36 \obackslash (⦸) . . . . . . . 36 \obar (:) . . . . . . . . . . . . 30 \obar () . . . . . . . . . . . . 37 \obar (⌽) . . . . . . . . . . . . 38 \Obelus ( ) . . . . . . . . . 183 \obelus ( ) . . . . . . . . . 183 \Obelus* ( ·· ) . . . . . . . . . 183 \obelus* ( ·· ) . . . . . . . . . 183 \oblong (@) . . . . . . . . . . 30 \oblong (:) . . . . . . . . . . 37 \obot (k) . . . . . . . . . . . . 35 \obot () . . . . . . . . . . . . 37 \obot (⦺) . . . . . . . . . . . . 38 \obrbrak (⏠) . . . . . . . . . 121 \obslash (;) . . . . . . . . . 30 \obslash () . . . . . . . . . 37 \obslash (⦸) . . . . . . . . . 37 \obslash (⦸) . . . . . . . . . 38 \oc () . . . . . . . . . . . . . . . 29 \ocirc (e) . . . . . . . . . . . 35 \ocirc (⊚) . . . . . . . . . . . 36 \ocirc (⊚) . . . . . . . . . . . 36 \ocircle (#) . . . . . . . . . 31 \ocoasterisk (g) . . . . . . 35 \ocommatopright ( ̕ ) . . . . 106 \octagon (8) . . . . . . . . . 140 octonions (O) . see alphabets, math \Octosteel () . . . . . . . . 131 \od (a) . . . . . . . . . . . . . . 23 ˚ (⊝) . . . . . . . . . . . 36 \odash \odiv (c) . . . . . . . . . . . . 35 \odiv (⨸) . . . . . . . . . . . . 38 \odot (d) . . . . . . . . . . . . 35 \odot (⊙) . . . . . . . . . . . 30 \odot (⊙) . . . . . . . . . . . . 36 \odot (⊙) . . . . . . . . . . . . 36 \odot (⊙) . . . . . . . . . . . . 38 \odotslashdot (⦼) . . . . . 38 \odplus ( ) . . . . . . . . . . 35 \OE (Œ) . . . . . . . . . . 15, 237 \oe (œ) . . . . . . . . . . . 15, 237 \oequal (⊜) . . . . . . . . . . 36 \Ofen ( ) . . . . . . . . . . . . 191 \officialeuro (e) . . . . . 26 \offinterlineskip . . . . . 224 ogonek (package) 24, 239, 240 ogonek ( ˛) . . . . . see accents \ogreaterthan (=) . . . . . 30 \ogreaterthan () . . . . . 37 \ogreaterthan (⧁) . . . . . 38 { \ohill (a) . . . . . . . . . . . 23 ohm . . . . . . . . see \textohm \ohm (Ω) . . . . . . . . . . . . . \Ohne (a /) . . . . . . . . . . . . \OHORN (Ơ) . . . . . . . . . . . \ohorn (ơ)) . . . . . . . . . . . \oiiint (∰ ) . . . . . . . . . \oiiint ( ) . . . . . . . . . . \oiiint (∰) . . . . . . . . . \oiiint ( ) . . . . . . . . . \oiiint (∰) . . . . .L ..... \oiiintclockwise ( )D. . \oiiintctrclockwise ( ) \oiiintsl (∰) . . . . . . . . \oiiintup ů (∰) . . . . . . . . \oiint (v) . . . . . . . . . . . \oiint () . . . . . . . . . . . \oiint (∯ ) . . . . . . . . . . . \oiint (‚) . . . . . . . . . . . \oiint ( ) . . . . . . . . . . . \oiint (∯) . . . . . . . . . . . \oiint ( ) . . . . . . . . . . . 125 161 16 16 42 48 45 49 46 42 42 47 47 41 40 42 48 43 45 49 \oiint (∯) . . . . . . . . . . . \oiint (∯) . . . . .H. . . . . . \oiintclockwise ( ) @. . . \oiintctrclockwise ( ) \oiintsl (∯) . . . . . . . . . \oiintup ű (∯) . . . . . . . . . . \oint (u) . . . . . . . . . . . . \oint (u) . . . . . . . . . . . . \oint (∮︀ ) . . . . . . . . . . . . \oint (∮ ) . . . . . . . . . . . . \oint ( ) . . . . . . . . . . . . \oint (∮) . . . . . . . . . . . . \oint (∮) . . . . . . . . . . . . \oint (∮) . . . . . . . . . . . . \ointclockwise (∲ ) . . . . \ointclockwise (ı) . . . . . \ointclockwise ( ) . . . . . \ointclockwise (∲) . . . . \ointclockwise ( ) . . . . . \ointctrclockwise (∳ ) . . \ointctrclockwise () . . \ointctrclockwise ( ) . . \ointctrclockwise (∳) . . \ointctrclockwise ( ) . . \ointctrclockwise (∳) . . \ointctrclockwisesl (∳) \ointctrclockwiseup (∳) \ointsl (∮) . . . . . . . . . . . \ointup (∮) . . . . . . . . . . . \olcross (⦻) . . . . . . . . . old-arrows (package) 87, 88, old-style numerals . . . . . . \olddWinkey ( ) . . . . . . . 44 46 42 42 47 47 41 40 40 40 48 45 44 46 42 48 43 45 49 42 48 43 45 49 46 47 47 47 47 38 239 27 191 g) \oldGclef ( \oldIm (ℑ) . . . \oldRe (ℜ) . . . \oldstylenums \oldWinkey ( ) 297 \oleft (h) . . . . . . . . . . . 35 \oleft () . . . . . . . . . . . 37 \olessthan (<) . . . . . . . . 30 \olessthan () . . . . . . . . 37 \olessthan (⧀) . . . . . . . . 38 Olschok, Marc . . . . . . . . . 222 \OM () . . . . . . . . . . . . . . 129 \Omega (Ω) . . . . . . . . . . . 93 \omega (𝜔) . . . . . . . . . . . 93 \omegaup (ω) . . . . . . . . . 94 \Omicron (O) . . . . . . . . . 93 \omicron (o) . . . . . . . . . . 93 \ominus (a) . . . . . . . . . . 35 \ominus (⊖) . . . . . . . . . . 30 \ominus () . . . . . . . . . . 37 \ominus (⊖) . . . . . . . . . . 36 \ominus (⊖) . . . . . . . . . . 36 \ominus (⊖) . . . . . . . . . . 38 \onlymove (F) . . . . . . . . 181 \oo (∘∘) . . . . . . . . . . . . . 183 \oo (@) . . . . . . . . . . . . . 19 \ooalign . . . . . . . . . . . . 224 \open (z) . . . . . . . . . . . . 24 open unit disk (D) . . . . . see alphabets, math \openJoin ([) . . . . . . . . . 51 \openo (c) . . . . . . . . . . . 19 \openo (=) . . . . . . . . . . . . 19 \openo (l) . . . . . . . . . . . 19 \opentimes (]) . . . . . . . . 51 OpenType . . . . . . . . . . . . 158 operators . . . . . 29–31, 34–36 binary . . . . . . . . . 30–38 logical . . . . . . see logical operators set . . . . see set operators unary . . . . . . . . . . . 29 \operp (⦹) . . . . . . . . . . . 38 oplotsymbl (package) 144–146, 239, 240 \oplus (‘) . . . . . . . . . . . 35 \oplus (⊕) . . . . . 29, 30, 222 \oplus () . . . . . . . . . . . 37 \oplus (⊕) . . . . . . . . . . . 36 \oplus (⊕) . . . . . . . . . . . 36 \oplus (⊕) . . . . . . . . . . . 38 \opluslhrim (⨭) . . . . . . . 34 \oplusrhrim (⨮) . . . . . . . 34 \opposbishops (o) . . . . . 181 \Opposition (p) . . . . . . . 128 \opposition (W) . . . . . . 126 optical scaling . . . . . . . . . 229 options . . see package options \OR () . . . . . . . . . . . . . . 129 or . . . . . . . . . . . . . . see \vee OR gates . . . . . . . . . . . . 130 \orbit (𝐵) . . . . . . . . . . 133 . . . . . . . 160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 . 92 . 27 . 191 \ORd ( ) .. \oright (i) . . \oright () . . \origof (⊶) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 . 35 . 37 . 89 \origof (⊶) . . . . . . . . . . 58 oriscus . . . . . . . see musixgre \ORl ( ) . . . . . . . . . 130 \OrnamentDiamondSolid (q) . . . . . . . . 146 ornaments . . . . 139, 140, 146, 204–205, 207–210 \ORr ( ) . . . . . . . . . 130 orthogonal to . . . . . see \bot \ORu ( ) . . . . . . . . . . 130 \oslash (m) . . . . . . . . . . 35 \oslash (⊘) . . . . . . . . . . 30 \oslash () . . . . . . . . . . 37 \oslash (⊘) . . . . . . . . . . 36 \oslash (⊘) . . . . . . . . . . 36 \oslash (⊘) . . . . . . . . . . 38 \ostar (⍟) . . . . . . . . . . . 36 \osum (⨊) . . . . . . . . . . . . 45 .otf files . . . . . . . . . . . . 158 \Otimes (⨷) . . . . . . . . . . 38 \otimes (b) . . . . . . . . . . 35 \otimes (⊗) . . . . . . . . . . 30 \otimes () . . . . . . . . . . 37 \otimes (⊗) . . . . . . . . . . 36 \otimes (⊗) . . . . . . . . . . 36 \otimes (⊗) . . . . . . . . . . 38 \otimeshat (⨶) . . . . . . . . 38 \otimeslhrim (⨴) . . . . . . 34 \otimesrhrim (⨵) . . . . . . 34 \otop (j) . . . . . . . . . . . . 35 \otop () . . . . . . . . . . . . 37 \otriangle () . . . . . . . . 37 \otriangle (d) . . . . . . 36, 70 \otriangleup (o) . . . . . . 35 \oturnedcomma ( ̒ ) . . . . . 106 outer joins . . . . . . . . . . . 121 ovals . 143, 169–173, 199–200, 205, 215–216 \ovee (>) . . . . . . . . . . . . 30 \ovee () . . . . . . . . . . . . 37 \Oven ( ) . . . . . . . . . . . . 191 \oven ( ) . . . . . . . . . . . . 191 ⌢ \overarc (a ) . . . . . . . . . . 23 \overbat ( ) . . . . . . . . . . 106 \overbat* ( ) . . . . . . . . 106 hkkikkj \overbrace ( ) . . . . . 109 \overbrace (ÌÐÎ) . . . . . . . 108 © \overbrace ( ) . . . . . . . . 108 ⏞⏟ \overbrace ( ) . . . . . . 109 ⏞⏞⏞ \overbrace ( ) . . . . 109 ⏞⏟ \overbrace ( ) . . . . . . 107 \overbracket ( ) . . . . . . 109 ⎴ \overbracket ( ) . . . . 109 \overbracket ”( ) . . . . . . 228 \overbridge (a) . . . . . . . 22 hkkkj \overgroup ( ) . . . . . . 109 \overgroup (ÌÎ) . . . . . . . . 108 ³µ \overgroup ( ) . . . . . . . 108 \overleftarrow (⃖⃖) . . . . . 109 −) 87, 107 \overleftarrow (← < − \overleftbroom ( ) . . . . 113 \overleftflutteringbat ( ) . . . . . . . 114 \overleftharp (↼) . . . . . 87 \overleftharpdown (↽) . . 87 ↽) . . . 108 \overleftharpoon (− ↼) . . . 108 \overleftharpoon (Ð \overleftharpoon (⃐⃖) . . . 109 ∈ − \overleftpitchfork ( ) . 113 \overleftrightarrow (⃖⃗) 109 →) 87, \overleftrightarrow (← 108 \overleftswishingghost ( ) . . . . . . . 114 \overring (x) . . . . . . . . 24 − ) .. \overscriptleftarrow (← . . . . . . . 112 \overscriptleftrightarrow → (← ) . . . . . . . . . . . 112 − ) . \overscriptrightarrow (→ . . . . . . . 112 \overset . . . . . . . . . . . . 223 \overt (⦶) . . . . . . . . . . . 36 \overt (⦶) . . . . . . . . . . . 36 \ovhook ( ̉ ) . . . . . . . . . . . 106 \ovoid (l) . . . . . . . . . . . 35 \owedge (?) . . . . . . . . . . 30 \owedge () . . . . . . . . . . 37 \owns . . . . . . . . . . . . see \ni \owns (Q) . . . . . . . . . . . . 96 \owns (∋) . . . . . . . . . . 55, 97 \owns (3) . . . . . . . . . . . . 97 \owns (∋) . . . . . . . . . . . . 96 \owns (∋) . . . . . . . . . . . . 59 \ownsbar (W) . . . . . . . . . . 96 −−− < \overleftwitchonbroom ( ) . . . . . . . 113 \overleftwitchonbroom* −−< − ( ) . . . . . . . . . . 113 \overleftwitchonpitchfork −−∈ ( ) . . . . . . . . . . 113 \overleftwitchonpitchfork* −−∈ ( ) . . . . . . . . . . 113 \overline ( ) . . 29, 105, 107 ¬) . . 108 \overlinesegment (­ x z \overlinesegment ( ) . . . 108 ⏜⏜ ) . . . . 109 \overparen ( ⏞ \overparenthesis ( ) . . 228 ⇒) . . 107 \Overrightarrow (= overrightarrow (package) . 107, 239 \overrightarrow (⃖⃗) . . . . 109 − ) 87, 107 \overrightarrow (→ − > \overrightbroom ( ) . . . 113 \overrightflutteringbat ( ) . . . . . . . . . . 114 \overrightharp (⇀) . . . . . 87 \overrightharpdown (⇁) . 87 −) . . 108 \overrightharpoon (⇀ ⇀ \overrightharpoon (Ð) . . 108 \overrightharpoon (⃖⃑) . . 109 − ∋ \overrightpitchfork ( ) 113 \overrightswishingghost ( ) . . . . . . . . . . . 114 \overrightwitchonbroom >−− − ( ) . . . . . . . . . . 113 \overrightwitchonbroom* >−− − ( ) . . . . . . . . . . 113 \overrightwitchonpitchfork ∋−− ( ) . . . . . . . . . . 113 \overrightwitchonpitchfork* ∋−− ( ) .......... 298 113 P P (P) . . . . . . . . . . . . . . . 157 \P (¶) . . . . . . . . . . . . 15, 236 \P (¶) . . . . . . . . . . . . . . . 15 \p (ă) . . . . . . . . . . . . . . 157 \p ( ) . . . . . . . . . . . . . . . 183 ˙ . . . . . . . . . . . . . . . . 157 p (p) \p@ . . . . . . . . . . . . . . . . . 227 package options a (esvect) . . . . . . . . . 110 arrows (boisik) . . . . . 83 b (esvect) . . . . . . . . . 110 bbgreekl (mathbbol) . 124 boondox (emf) . . . . . 126 c (esvect) . . . . . . . . . 110 cal (emf) . . . . . . . . . 126 calligra (emf) . . . . . . 126 chorus (emf) . . . . . . . 126 cmr (emf) . . . . . . . . 126 crescent (fge) . . . . . . 106 d (esvect) . . . . . . . . . 110 e (esvect) . . . . . . . . . 110 f (esvect) . . . . . . . . . 110 fourier (emf) . . . . . . . 126 frcursive (emf) . . . . . 126 g (esvect) . . . . . . . . . 110 german (keystroke) . . 129 greek (babel) . 15, 93, 94, 154 h (esvect) . . . . . . . . . 110 heartctrbull (bullcntr) . 180 integrals (wasysym) . . 40 largectrbull (bullcntr) . 180 mathcal (euscript) . . . 123 mathscr (euscript) . . . 123 mathscr (urwchancal) . 123 miama (emf) . . . . . . 126 new (old-arrows) . . 87, 88 noeuro (wasysym) . . . 25 nointegrals (wasysym) 40 polutonikogreek (babel) 15, 93, 94 rsfs (emf) . . . . . . . . . 126 sans (dsfont) . . . . . . . 123 scaled (CountriesOfEurope) . . . . . . . 190 scr (rsfso) . . . . . . . . . 123 smallctrbull (bullcntr) 180 smartctrbull (bullcntr) 180 upint (stix) . . . 39, 46, 48 utf8x (inputenc) . . . . 237 varg (txfonts/pxfonts) 95 packages abraces . . . . 110, 239, 240 accents 105, 227, 239, 240 actuarialangle . . 111, 228, 239, 240 actuarialsymbol . . . . . 228 adforn 135, 139, 140, 146, 147, 239, 240 adfsymbols 134, 137, 139, 144, 239 allrunes . . . . . . 157, 239 𝒜ℳ𝒮 . . . . . . . 12, 15, 30, 40, 50, 51, 62, 64, 69, 72, 87, 91, 93, 95, 96, 98, 99, 105, 108, 111, 114, 117– 119, 124, 219, 220, 238 amsbsy . . . . . . . . . . . 233 amsfonts . . . . . 118, 123 amsmath 12, 49, 91, 105, 223, 232 amssymb . . 12, 105, 118, 123, 154, 239 amstext . . . . . . 224, 226 apl . . . . . . . . . . 129, 239 ar . . . . . . . 125, 239, 240 arcs . . . . . . 23, 239, 240 arev . . 135–138, 146, 158, 190, 239 ascii . . 130, 234, 239, 240 astrosym . . . . . 201, 239 babel . . . 15, 93, 94, 154 bartel-chess-fonts 217, 218, 239 bbding 134–137, 139, 143, 146, 220, 239 bbm . . . . . . . . . 123, 239 bbold . . . . . . . . 123, 239 bclogo 192, 193, 239, 240 begriff . . . . . . . 116, 239 bigints . . . . 43, 239, 240 bm . . . . . . 233, 239, 240 boisik . . . . . . . 33, 37, 45, 57, 63, 68, 71, 82, 83, 95, 97, 98, 106, 118, 120, 141, 145, 154, 158, 239, 240 braket . . . . . . . . . . . 99 bullcntr . . . 180, 239, 240 bullenum . . . . . . . . . 180 calligra . . . . 123, 239, 240 calrsfs . . . . . . . . . . . 123 cancel . . . . . . . . . . . 107 ccicons . . . . 27, 239, 240 cclicenses . . 27, 239, 240 centernot . . . . . . . . . 224 chancery . . . . . . . . . . 239 chemarr . . . 111, 239, 240 chemarrow . 87, 111, 239 ChinA2e . 26, 92, 124, 186, 187 china2e . . . 123, 239, 240 clock . . . . . 179, 239, 240 cmll 29, 35, 50, 61, 98, 239 cmupint . 48, 49, 239, 240 colonequals . . 29, 61, 239, 240 combelow . . 24, 239, 240 cookingsymbols . 191, 239, 240 countriesofeurope 188, 239, 240 cryst . . . . . . . . 215, 239 cypriot . . . . 153, 239, 240 dancers . . . . . . 211, 239 dblaccnt . . . . . . . . . . 227 dice . . . . . . . . . 216, 239 dictsym . . . 184, 239, 240 dingbat 136, 146, 207, 220, 239, 240 DotArrow . . 112, 239, 240 dozenal 117, 180, 239, 240 dsfont . . . . . . . 123, 239 dsserif . . . . . . . 123, 239 emf . . . . . . 126, 239, 240 endofproofwd . . 121, 239 epiolmec . . 154, 156, 239, 240 epsdice . . . . 179, 239, 240 esint . . . . . . . . . 43, 239 esrelation . . 88, 113, 239 esvect . . . . . . . 110, 239 euflag . . . . 190, 239, 240 eufrak . . . . . . . . . . . 123 eurosym . . . 26, 239, 240 euscript . . . . . . 123, 239 extarrows . . 112, 239, 240 extpfeil . . . . 112, 239, 240 extraipa . . . . . . . 22, 239 fc . . . . . . . . . . . . 16, 20 fclfont . . . . . . . . . . . 239 fdsymbol 32, 33, 36, 44, 45, 55, 56, 63, 67, 71, 78–82, 89, 90, 95, 97, 101, 102, 106, 108, 115, 118, 120, 141, 145, 158, 239, 240 feyn . . . . . . 132, 239, 240 fge . 87, 97, 106, 117, 122, 239, 240 fixmath . . . . . . . . . . 233 fontawesome . . . . . . . . . . 25, 26, 127, 131, 135–138, 140, 144, 194, 197, 239, 240 fontenc 12, 15, 16, 20, 235 fontspec . . . . . . 158, 238 299 fourier 26, 61, 94, 98, 104, 109, 137, 140, 177, 239 frege . . . . . 116, 239, 240 gensymb . . . . . . . . . . 125 go . . . . . . . . . . 183, 239 graphics . . . . . . . 87, 222 graphicx 24, 219, 222, 226 greenpoint . . . . 199, 239 halloweenmath 38, 90, 106, 112–114, 239, 240 hands . . . . . . . . 199, 239 harmony . . 160, 161, 239, 240 harpoon . . . 87, 239, 240 hhcount 179, 180, 239, 240 hieroglf . . . 149, 239, 240 holtpolt . . . . . . 114, 239 ifsym . 125, 143, 178, 220, 222, 239, 240 igo . . . . . . . . . . 182, 239 inputenc . . . . . . . . . . 237 isoent . . . . . . . . . . . . 235 junicode . . . . . . 238, 239 keystroke . . 129, 239, 240 knitting . . . 188, 239, 240 knot . . . . . . 207, 210, 239 latexsym . . 30, 50, 61, 72, 118, 219, 239 lilyglyphs 158, 161–169, 173–175 lilyglyphs . . . . . . . . . 239 linearA . . . . 149, 239, 240 linearb 152, 153, 239, 240 logic . . . . . . . . . . . . 130 longdiv . . . . . . . . . . . 107 magic . . . . . . . . 217, 239 manfnt . . . . . . . 176, 239 marvosym . . . . . . . . . . . . . 25, 116, 117, 126, 129– 131, 135, 138, 177, 187, 220 mathabx . . . . . 29, 31, 35, 41, 52, 62, 65, 69, 73, 74, 91, 96, 98–100, 105, 109, 117, 119, 127, 181, 219, 220, 239, 240 mathbbol . . . . . 123, 124 mathcomp . . . . . . . . 116 mathdesign 25, 34, 49, 97, 103, 122, 239 mathdots . 105, 114, 115, 227, 239, 240 mathrsfs . . . . . . 123, 239 mathspec . . . . . . . . . 93 mathtools 29, 59, 87, 109, 111, 239, 240 mbboard . . . 123, 124, 239 mdwmath . . 110, 239, 240 metre . 23, 105, 183, 239, 240 milstd . . . . 130, 239, 240 mismath . . . . . . . 92, 239 MnSymbol . . . 29, 31, 32, 36, 44, 52–54, 63, 66, 70, 74–77, 88, 89, 95, 96, 100, 105, 107, 108, 115, 117, 119, 120, 140, 145, 158, 239, 240 moonphase . . . . 201, 239 musicography . . 160, 161, 239, 240 musixgre . . . . . . . . . . 160 musixlit . . . . . . . . . . 160 musixper . . . . . . . . . 160 musixtex . . . . . . 239, 240 nath . . . . . . 98, 104, 239 nicefrac . . . 121, 239, 240 niceframe . . 204–207, 210 nkarta . . . . . . . 199, 239 ntheorem . . . . . . . . . 118 ogonek . . . . 24, 239, 240 old-arrows . . . 87, 88, 239 oplotsymbl 144–146, 239, 240 overrightarrow . . 107, 239 phaistos . . . 148, 239, 240 phonetic . 19, 23, 222, 239 pict2e . . . . . . . . . . . 126 pifont . . 16, 134–139, 144, 146, 199, 204, 215, 222, 239 pigpen . . . . 186, 239, 240 pmboxdraw . 185, 239, 240 polynom . . . . . . . . . . 107 prodint . . . . . . . . 50, 239 protosem . . 148, 239, 240 psnfss . . . . . . . . . . . 138 PSTricks . . . . . . . . . 193 pxfonts . . . 29, 31, 42, 51, 62, 65, 73, 90, 94–96, 118, 119, 123, 145, 219, 234 realhats . . . 107, 239, 240 recycle . . . . . . . 187, 239 relsize . . . . . . . . . . . 23 rotating . . . . . . . 27, 129 rsfso . . . . . . . . 123, 239 rubikcube . . 198, 239, 240 sarabian . . . 154, 239, 240 savesym . . . . . . . . . . 219 scalerel . . . . . . . . . . . 226 scsnowman . 192, 239, 240 semaphor . . 213, 215, 239 semtrans 20, 24, 239, 240 shuffle . . . . 35, 239, 240 simplewick . . . . 228, 229 simpsons . . . . . 184, 239 skak . . 181, 182, 239, 240 skull . . . . . . 181, 239, 240 slashed . . . . . . . . . . . 224 soyombo . . . 187, 239, 240 stackengine . . . . . . . . 226 starfont . . . 128, 239, 240 staves . . . . . . . 185, 239 steinmetz . . 126, 239, 240 stix 34, 38, 39, 46, 47, 58, 59, 64, 68, 69, 71, 84–86, 91, 95–98, 102, 106, 109, 115, 117, 118, 121, 127, 128, 131, 141, 142, 146, 158, 179, 239, 240 stmaryrd . . 30, 40, 51, 62, 69, 73, 87, 90, 98, 99, 220, 224, 238, 239 svrsymbols . 132, 239, 240 t4phonet 20, 23, 239, 240 teubner 26, 116, 154, 184, 239, 240 textcomp . 12, 14, 15, 20, 24–27, 72, 104, 121, 125, 158, 176, 219, 234, 235, 239 textgreek 15, 94, 239, 240 tfrupee . . . . 26, 239, 240 Tik Z . . . . . 12, 145, 146, 191–193, 198 tikzsymbols 191, 192, 239, 240 timing . . . . . . . . . . . 125 tipa . . 17, 18, 20–23, 222, 239, 240 tipx . . . . . . 18, 239, 240 trfsigns . . 61, 97, 112, 239 trsym . . . . . 61, 239, 240 turnstile . . . 60, 239, 240 txfonts . . . . . . . . . . . 29, 31, 42, 51, 62, 65, 73, 90, 94–96, 118, 119, 123, 145, 219, 221, 234, 239, 240 type1cm . . . . . . . . . . 219 ucs . . . . . . . . . . . . . 237 ulsy . . . . 35, 90, 222, 239 umranda . . . . . . 205, 239 umrandb . . . . . . 206, 239 underscore . . . . . . . . 14 undertilde . . 110, 239, 240 units . . . . . . . . . . . . 121 universa 144, 177, 239, 240 upgreek . 15, 94, 239, 240 upquote . . . . . . . . . . 235 url . . . . . . . . . . . . . . 234 urwchancal . . . . 123, 239 ushort . . . . 110, 239, 240 vietnam . . . . . . . . . . 239 vntex . . . . . . . . . . 16, 20 wasysym 19, 25, 27, 31, 40, 51, 62, 65, 115, 118, 119, 125, 126, 128, 131, 138– 140, 158, 176, 220, 222, 239 webomints . . . . 204, 239 wsuipa . . 19, 22, 24, 220, 222, 227, 239, 240 xfakebold . . 233, 239, 240 xfrac . . . . . . . . . . . . 121 yfonts 123, 124, 239, 240 yhmath 106–108, 110, 116, 227, 239 300 \PackingWaste (ß) . . . . . 187 Pakin, Scott . 1, 225, 227, 238 \Pallas (:) . . . . . . . . . . 128 \pan ( ) . . . . . . . . . . . . 191 paperclip . . . . . . . . . 192–193 \PaperLandscape ( ) . . . 178 \PaperPortrait () . . . . . 178 par . . . . . see \bindnasrepma, \invamp, and \parr \Paragraph (M) . . . . . . . . 27 paragraph mark . . . . . . see \P parallel . . . . . . . . . . . see also “texttt“string“varparallel \parallel (‖) . . . . . . 50, 101 \parallel (∥) . . . . . . . . . 55 \parallel (∥) . . . . . . . . . 53 \parallel (∥) . . . . . . . . . 58 \parallelogram (▱) . . . . 142 \parallelogramblack (▰) 142 parallelograms . . . . . 141–142, 215–216 \ParallelPort (Ñ) . . . . . 129 \parallelslant (Ë) . . . . . 61 \parr (`) . . . . . . . . . . . . 35 \parsim (⫳) . . . . . . . . . . 58 \partial (B) . . . . . . . . . . 96 \partial (𝜕) . . . . . . . . . 96 \partial (∂) . . . . . . . . . . 98 \partialmeetcontraction (⪣) . . . . . . . . 69 \partialslash (C) . . . . . 96 \partialvardint (∫…∫) . . 120 \partialvardlanddownint (⨚) . . . . . . . 120 \partialvardlandupint (⨙) . . . . . . . . 120 \partialvardlcircleleftint (∲) . . . . . . . . . . . 120 \partialvardlcircleleftint (∲) . . . . . . . . . . . . 74 \partialvardlcirclerightint (∲) . . . . . . . . . . . 120 \partialvardlcirclerightint (∲) . . . . . . . . . . . . 74 \partialvardoiint (∯) . 120 \partialvardoint (∮) . . . 120 \partialvardrcircleleftint (∳) . . . . . . . . . . . 120 \partialvardrcircleleftint (∳) . . . . . . . . . . . . 74 \partialvardrcirclerightint (∳) . . . . . . . . . . . 120 \partialvardrcirclerightint (∳) . . . . . . . . . . . . 74 \partialvardstrokedint (⨏) . . . . . . . . 120 \partialvardsumint (⨋) . 120 \partialvartint (∫…∫) . . . 120 \partialvartlanddownint (⨚) . . . . . . . 120 \partialvartlandupint (⨙) . . . . . . . . 120 \partialvartlcircleleftint (∲) . . . . . . . . . . . 120 \partialvartlcircleleftint (∲) . . . . . . . . . . . . 74 \partialvartlcirclerightint (∲) . . . . . . . . . . . 120 \partialvartlcirclerightint (∲) . . . . . . . . . . . . 74 \partialvartoiint (∯) . 120 \partialvartoint (∮) . . . 120 \partialvartrcircleleftint (∳) . . . . . . . . . . . 120 \partialvartrcircleleftint (∳) . . . . . . . . . . . . 74 \partialvartrcirclerightint (∳) . . . . . . . . . . . 120 \partialvartrcirclerightint (∳) . . . . . . . . . . . . 75 \partialvartstrokedint (⨏) . . . . . . . 120 \partialvartsumint (⨋) . 120 particle-physics symbols . 132– 133 \partof (3) . . . . . . . . . . 222 parts per thousand . . . . . see \textperthousand \partvoice (a –ˇ») . . . . . . . . 22 \partvoiceless (a – ») . . . . . 22 ˚ \passedpawn (r) . . . . . . . 181 \PAUSe ( ) . . . . . . . . . . . . 159 \PAuse ( ) . . . . . . . . . . . . 159 \pause ( ) . . . . . . . . . . . 159 pawn . . . . . . . . 182, 217–218 \PD ( ) . . . . . . . . . . . . . . 129 PDF . . . . . . . . . . . . . . . . 158 .pdf files . . . . . . . . . . . . 235 pdfLATEX . . . . . . . . . . . . . 238 \Peace () . . . . . . . . . . . 146 \PeaceDove (f) . . . . . . . . 177 \Ped () . . . . . . . . . . . . . . 159 \peeler ( ) . . . . . . . . . . . 191 \pencil (✎) . . . . . . . . . . 136 \PencilLeft () . . . . . . 136 \PencilLeftDown () . . . 136 \PencilLeftUp () . . . . . 136 \PencilRight () . . . . . 136 \PencilRightDown () . . 136 \PencilRightUp () . . . . 136 pencils . . . . . . . . . . . . . . 136 \pentago ( ) . . . . . . . . . 145 \pentagocross ( ) . . . . . 145 \pentagodot ( ) . . . . . . . 145 \pentagofill ( ) . . . . . . 145 \pentagofillha ( ) . . . . 145 \pentagofillhb ( ) . . . . 145 \pentagofillhl ( ) . . . . 145 \pentagofillhr ( ) . . . . 145 \pentagolineh ( ) . . . . . 145 \pentagolinev ( ) . . . . . 145 \pentagolinevh ( ) . . . . 145 \pentagon (⬠) . . . . . . . . 142 \pentagon (D) . . . . . . . . 140 # ; : = \pentagonblack (⬟) . . . . 142 pentagons . . . . . . . . 144–145 \Pentagram (å) . . . . . . . . 128 \pentagram () . . . . . . . . 36 \pentam (λθλθλ||λββλββλ) . . . . . . . 184 \pentdot (=) . . . . . . . . . . 157 \penteye (@) . . . . . . . . . . 157 people . . . . . . . . . . . see faces percent sign . . . . . . . . see \% percussion . . . . . . . . . . . . 160 \permil (h) . . . . . . . . . . 27 \Perp (y) . . . . . . . . . . . . 51 \Perp (å) . . . . . . . . . . . . 57 \Perp (‚) . . . . . . . . . . . . 61 \perp (⊥) . . . . . . . . 50, 225 \perp (⊥) . . . . . . . . . . . . 55 \perp (⊥) . . . . . . . . . . . . 53 \perp (⟂) . . . . . . . . . . . . 58 \perps (⫡) . . . . . . . . . . . 121 \perthousand (‰) . . . . . 125 \Pfanne ( ) . . . . . . . . . 191 \Pfund (£) . . . . . . . . . . . 25 \PgDown ( Page ↓ ) . . . . . 129 \PgUp ( Page ↑ ) . . . . . . 129 phaistos (package) . . 148, 239, 240 Phaistos disk . . . . . . . . . . 148 pharmaceutical prescription see \textrecipe \PHarrow (J) . . . . . . . . . . 148 \phase ( ) . . . . . . . . . . . 126 phasor . . . . . . . . . . . . . . 126 \PHbee (h) . . . . . . . . . . 148 \PHgrater (p) . . . . . . . . 148 \PHhelmet (G) . . . . . . . . 148 \PHhide (a) . . . . . . . . . 148 \PHhorn (Z) . . \Phi (Φ) . . . . \phi (𝜑) . . . . \phimeson (ã) \phimesonnull \phiup (φ) . . .... .... .... .... (ä) .... . . . . . . . . . . . . . . . . . . . . . . . . . 148 . 93 . 93 . 133 . 133 . 94 \PHlid (Q) . . . . . . . . . . . 148 \PHlily (m) . . . . . . . . . . 148 \PHmanacles (N) . . . . . . 148 \PHmattock (O) . . . . . . . 148 \Phone () . . . . . . . . . . . 146 \phone () . . . . . . . . . . . 176 \PhoneHandset ( ) . . . . . 146 phonetic (package) 19, 23, 222, 239 phonetic symbols . . . . . 17–20 \phonon (𝑗) . . . . . . . . . . 133 \photon (::::) . . . . . . . 125 photons . . . . . . 125, 132–133 \PHoxBack (n) . . . . . . . . 148 \PHpapyrus (k) . . . . . . . . 148 \PHpedestrian (A) . . . . 148 \PHplaneTree (i) . . . . . . 148 \PHbeehive (X) . . . . . . 148 \PHplumedHead (B) . . . 148 \PHram (d) . . . . . . . . . . 148 \PHboomerang (R) . . . . . 148 \PHrosette (l) . . . . . . . 148 \PHbow (K) . . . . . . . . . . . . 148 \PHsaw (P) . . . . . . . . . . . 148 \PHbullLeg (b) . . . . . . . . 148 \PHshield (L) . . . . . . . . 148 \PHship (Y) . . . . . . . . . 148 \PHcaptive (D) . . . . . . . 148 \PHsling (V) . . . . . . . . . 148 \PHcarpentryPlane (S) . 148 \PHsmallAxe (r) . . . . . . 148 \PHcat (c) . . . . . . . . . . 148 \PHstrainer (q) \PHchild (E) . . . . . . . . . 148 \PHtattooedHead (C) . . 148 \PHclub (M) . . . . . . . . . . . 148 \PHtiara (I) . . . . . . . . . 148 \PHtunny (g) . . . . . . . . 148 \PHcolumn (W) . . . . . . . . . 148 . . . . . 148 \PHvine (j) . . . . . . . . . . 148 \PHcomb (U) . . . . . . . . . . 148 \PHdolium (T) . . . . . . . . 148 \PHdove (f) . . . . . . . . . 148 \PHeagle (e) . . . . . . . . . 148 \PHflute (o) . . . . . . . . . 148 \PHgaunlet (H) . . . . . . . 148 301 \PHwavyBand (s) . . . . . . . 148 \PHwoman (F) . . physical symbols \Pi (Π) . . . . . . \pi (𝜋) . . . . . . . \pi (π) . . . . . . . “pi” fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 . 125 . 93 . 93 . 94 . 222 piano ( ) . . . . . . . . 163, 175 \Pickup (A) . . . . . . . . . . 130 pict2e (package) . . . . . . . . 126 pifont (package) . 16, 134–139, 144, 146, 199, 204, 215, 222, 239 pigpen (package) 186, 239, 240 pigpen cipher . . . . . . . . . 186 {\pigpenfont A} (A) . . . 186 {\pigpenfont B} (B) . . . 186 {\pigpenfont C} (C) . . . 186 {\pigpenfont D} (D) . . . 186 {\pigpenfont E} (E) . . . 186 {\pigpenfont F} (F) . . . 186 {\pigpenfont G} (G) . . . 186 {\pigpenfont H} (H) . . . 186 {\pigpenfont I} (I) . . . 186 {\pigpenfont J} (J) . . . 186 {\pigpenfont K} (K) . . . 186 {\pigpenfont L} (L) . . . 186 {\pigpenfont M} (M) . . . 186 {\pigpenfont N} (N) . . . 186 {\pigpenfont O} (O) . . . 186 {\pigpenfont P} (P) . . . 186 {\pigpenfont Q} (Q) . . . 186 {\pigpenfont R} (R) . . . 186 {\pigpenfont S} (S) . . . 186 {\pigpenfont T} (T) . . . 186 {\pigpenfont U} (U) . . . 186 {\pigpenfont V} (V) . . . 186 {\pigpenfont W} (W) . . . 186 {\pigpenfont X} (X) . . . 186 {\pigpenfont Y} (Y) . . . 186 {\pigpenfont Z} (Z) . . . 186 pilcrow . . . . . . . . . . . . see \P \pionminus (ë) . . . . . . . 133 \pionnull (ì) . . . . . . . . 133 \pionplus (ê) . . . . . . . . 133 pipe . . . . . . . . see \textpipe \Pisces (ë) . . . . . . . . . . 126 \Pisces (M) . . . . . . . . . . 128 \Pisces (ë) . . . . . . . . . . 126 \pisces (f) . . . . . . . . . . 126 \Pisymbol . . . . . 199–218, 222 \Pisymbol{astrosym}{0} ( ) . . . . . . . 201 \Pisymbol{astrosym}{2} () . . . . . . . 201 \Pisymbol{astrosym}{3} () \Pisymbol{astrosym}{1} ( ) . . . . . . . 201 ....... 201 \Pisymbol{astrosym}{5} () . \Pisymbol{astrosym}{4} ( ) . . . . . . . 201 ....... 201 \Pisymbol{astrosym}{7} () \Pisymbol{astrosym}{6} ( ) . . . . . . . . 201 ....... 201 \Pisymbol{astrosym}{8} ( . . . . . . . 201 ) \Pisymbol{astrosym}{9} ( ) . . . . . . . 201 \Pisymbol{astrosym}{10} ( ) . . . . . . . 201 \Pisymbol{astrosym}{11} ( ) . . . . . . . 201 \Pisymbol{astrosym}{12} ( ) . . . . . . . 201 \Pisymbol{astrosym}{13} ( ) . . . . . . . 201 \Pisymbol{astrosym}{14} ( ) . . . . . . . . . . . 201 \Pisymbol{astrosym}{15} ( ) . . . . . . . 201 \Pisymbol{astrosym}{16} ( ) . . . . . . . . . . 201 \Pisymbol{astrosym}{17} ( ) . . . . . . . 201 \Pisymbol{astrosym}{18} ( ) . . . . . . . . . . 201 \Pisymbol{astrosym}{20} () \Pisymbol{astrosym}{19} ( ) . . . . . . . 201 . . . . . . . 201 \Pisymbol{astrosym}{21} ( ) . . . . . . . . . . . 201 \Pisymbol{astrosym}{23} () \Pisymbol{astrosym}{22} ( ) . . . . . . . 201 . . . . . . . 201 \Pisymbol{astrosym}{24} ) ( .......... 201 ) \Pisymbol{astrosym}{26} () \Pisymbol{astrosym}{25} ( . . . . . . . 201 . . . . . . . 201 \Pisymbol{astrosym}{27} ( ) . . . . . . . . . . . 201 \Pisymbol{astrosym}{28} ( ) . . . . . . . . . . . 201 \Pisymbol{astrosym}{29} ( ) . . . . . . . 201 \Pisymbol{astrosym}{30} ) ( ........... 201 \Pisymbol{astrosym}{31} ( ) . . . . . . . 201 \Pisymbol{astrosym}{32} ( ) . . . . . . . . . . 201 ! \Pisymbol{astrosym}{33} ( ) . . . . . . . 202 302 \Pisymbol{astrosym}{34} " (#) . . . . . . . . . . . \Pisymbol{astrosym}{36} ($) . . . . . . . . . . . \Pisymbol{astrosym}{37} (%) . . . . . . . . . . . ( ) . . . . . . . . . . 202 \Pisymbol{astrosym}{35} 202 202 202 &) ') () )) *) +) ,) -) .) /) \Pisymbol{astrosym}{48} (0) . . . . . . . 202 \Pisymbol{astrosym}{49} (1) . . . . . . . 202 \Pisymbol{astrosym}{50} (2) . . . . . . . 202 \Pisymbol{astrosym}{51} (3) \Pisymbol{astrosym}{38} ( . . . . . . . 202 \Pisymbol{astrosym}{39} ( . . . . . . . 202 \Pisymbol{astrosym}{40} ( . . . . . . . 202 \Pisymbol{astrosym}{41} ( . . . . . . . 202 \Pisymbol{astrosym}{42} ( . . . . . . . 202 \Pisymbol{astrosym}{43} ( . . . . . . . 202 \Pisymbol{astrosym}{44} ( . . . . . . . 202 \Pisymbol{astrosym}{45} ( . . . . . . . 202 \Pisymbol{astrosym}{46} ( . . . . . . . 202 \Pisymbol{astrosym}{47} ( . . . . . . . 202 . . . . . . . 202 \Pisymbol{astrosym}{52} ( ) . . . . . . . . . . 202 4 5 6 \Pisymbol{astrosym}{53} ( ) . . . . . . . 202 \Pisymbol{astrosym}{54} ( ) . . . . . . . 202 7 \Pisymbol{astrosym}{56} (8) \Pisymbol{astrosym}{55} ( ) . . . . . . . 202 . . . . . . . 202 \Pisymbol{astrosym}{57} ( ) . . . . . . . . . 202 \Pisymbol{astrosym}{58} ( ) . . . . . . . . . . . 202 \Pisymbol{astrosym}{59} ( ) . . . . . . . 202 \Pisymbol{astrosym}{60} ( ) . . . . . . . 202 \Pisymbol{astrosym}{61} ( ) . . . . . . . . . . 202 9 : = ; < > \Pisymbol{astrosym}{62} ( ) . . . . . . . 202 \Pisymbol{astrosym}{63} ( ) . . . . . . . . . . . 202 ? \Pisymbol{astrosym}{64} ( . . . . . . . 202 \Pisymbol{astrosym}{65} ( . . . . . . . 202 @) A) B C \Pisymbol{astrosym}{68} (D) . . . . . . . 202 \Pisymbol{astrosym}{69} (E) . . . . . . . 202 \Pisymbol{astrosym}{90} (Z) . . . . . . . 202 \Pisymbol{astrosym}{91} ([) . . . . . . . 202 \Pisymbol{astrosym}{92} (\) . . . . . . . 202 \Pisymbol{astrosym}{93} (]) . . . . . . . 202 \Pisymbol{astrosym}{94} (^) . . . . . . . 203 \Pisymbol{astrosym}{95} (_) \Pisymbol{astrosym}{66} ( ) . . . . . . . 202 \Pisymbol{astrosym}{67} ( ) . . . . . . . 202 . . . . . . . 203 \Pisymbol{astrosym}{100} ( ) . . . . . . . . . . . 203 \Pisymbol{astrosym}{101} d (e) . . . . . . . . . . . 203 \Pisymbol{astrosym}{102} (f) . . . . . . . . . . . 203 \Pisymbol{astrosym}{103} (g) . . . . . . . . . . . 203 \Pisymbol{astrosym}{104} (h) . . . . . . . . . . . 203 \Pisymbol{astrosym}{105} (i) . . . . . . . . . . . . 203 \Pisymbol{astrosym}{106} (j) . . . . . . . . . . . . 203 \Pisymbol{astrosym}{107} (k) . . . . . . . . . . . 203 \Pisymbol{astrosym}{108} (l) . . . . . . . . . . 203 \Pisymbol{astrosym}{109} (m) . . . . . . . . . . . 203 \Pisymbol{astrosym}{110} (n) . . . . . . . . . . . 203 \Pisymbol{astrosym}{111} (o) . . . . . . . . . . . 203 \Pisymbol{astrosym}{112} (p) . . . . . . . . . . . 203 \Pisymbol{astrosym}{113} (q) . . . . . . . . . . . 203 \Pisymbol{astrosym}{114} ( ) . . . . . . . . . . . 203 \Pisymbol{astrosym}{115} r (s) . . . . . . . . . . . 203 \Pisymbol{astrosym}{116} (t) . . . . . . . . . . 203 \Pisymbol{astrosym}{117} (u) . . . . . . . . . . . 203 \Pisymbol{astrosym}{118} (v) . . . . . . . . . . 203 \Pisymbol{astrosym}{119} (w) . . . . . . . . . . . 203 \Pisymbol{astrosym}{120} (x) . . . . . . . . . . . 203 \Pisymbol{astrosym}{121} (y) . . . . . . . . . . . 203 \Pisymbol{astrosym}{122} (z) . . . . . . . . . . . 203 \Pisymbol{astrosym}{123} ({) . . . . . . . . . . . . 203 \Pisymbol{astrosym}{124} (|) . . . . . . . . . . 203 \Pisymbol{astrosym}{125} (}) . . . . . . . . . . . 203 \Pisymbol{astrosym}{126} (~) . . . . . . . . . . . 203 \Pisymbol{astrosym}{127} () . . . . . . . . . . . 203 \Pisymbol{astrosym}{128} () . . . . . . . . . . . 203 \Pisymbol{astrosym}{129} () . . . . . . . . . . . 203 \Pisymbol{astrosym}{130} () . . . . . . . . . . . 203 \Pisymbol{astrosym}{132} () . . . . . . . . . . 201 ( ) . . . . . . . . . . . 203 \Pisymbol{astrosym}{131} \Pisymbol{astrosym}{133} ( ) . . . . . . . . . . . 201 \Pisymbol{astrosym}{134} ( ) . . . . . . . . . . 201 \Pisymbol{astrosym}{135} ( ) . . . . . . . . . . . 201 \Pisymbol{astrosym}{136} ( ) . . . . . . . . . . . 201 \Pisymbol{astrosym}{137} ( ) . . . . . . . . . . . 201 \Pisymbol{astrosym}{138} ( ) . . . . . . . . . . . 201 \Pisymbol{astrosym}{139} ( ) . . . . . . . . . . . 201 \Pisymbol{astrosym}{140} ( ) . . . . . . . . . . . 201 \Pisymbol{astrosym}{141} ( ) . . . . . . . . . . . 201 \Pisymbol{astrosym}{142} ( ) . . . . . . . . . . . 201 303 () . . . . . . . . . . . 201 \Pisymbol{astrosym}{149} () . . . . . . . . . . . 201 \Pisymbol{astrosym}{150} () . . . . . . . . . . . . 201 \Pisymbol{astrosym}{151} () . . . . . . . . . . . 201 \Pisymbol{astrosym}{152} () . . . . . . . . . . 201 \Pisymbol{astrosym}{153} () . . . . . . . . . . . 201 \Pisymbol{astrosym}{154} () . . . . . . . . . . . 201 \Pisymbol{astrosym}{143} ( ) . . . . . . . . . . . 201 \Pisymbol{astrosym}{144} ( ) . . . . . . . . . . . . 201 \Pisymbol{astrosym}{145} ( ) . . . . . . . . . . . . 201 \Pisymbol{astrosym}{146} ( ) . . . . . . . . . . . . 201 \Pisymbol{astrosym}{147} ( ) . . . . . . . . . . . . 201 \Pisymbol{astrosym}{148} \Pisymbol{astrosym}{155} () . . . . . . . . . . . 201 \Pisymbol{astrosym}{157} () . . . . . . . . . 201 \Pisymbol{astrosym}{158} () . . . . . . . . . . . 201 \Pisymbol{astrosym}{159} () . . . . . . . . . . . 201 ( ) . . . . . . . . . . . 201 \Pisymbol{astrosym}{156} \Pisymbol{astrosym}{160} ( ) . . . . . . . . . . . 201 \Pisymbol{astrosym}{161} ( ) . . . . . . . . . . . 201 \Pisymbol{astrosym}{162} ( ) . . . . . . . . . . . 201 \Pisymbol{astrosym}{163} ( ) . . . . . . . . . . . 201 \Pisymbol{astrosym}{164} ¡ ¢ £ (¤) . . . . . . . . . . . 201 \Pisymbol{astrosym}{165} (¥) . . . . . . . . . . . 202 \Pisymbol{astrosym}{166} ¦ § ¨ © (²) . . . . . . . . . . . 202 \Pisymbol{astrosym}{179} (³) . . . . . . . . . 202 ( ) . . . . . . . . . . . 202 \Pisymbol{astrosym}{167} ( ) . . . . . . . . . . . 202 \Pisymbol{astrosym}{168} ( ) . . . . . . . . . . . 202 \Pisymbol{astrosym}{169} ( ) . . . . . . . . . . . 202 \Pisymbol{astrosym}{178} \Pisymbol{astrosym}{180} ( ) . . . . . . . . . . . 202 \Pisymbol{astrosym}{181} ( ) . . . . . . . . . . . 202 \Pisymbol{astrosym}{182} ( ) . . . . . . . . . . . 202 \Pisymbol{astrosym}{183} ( ) . . . . . . . . . . . 202 \Pisymbol{astrosym}{184} ( ) . . . . . . . . . . . 202 \Pisymbol{astrosym}{185} ( ) . . . . . . . . . . . 202 \Pisymbol{astrosym}{186} ´ µ ¶ · ¸ ¹ (º) . . . . . . . . . . . 202 \Pisymbol{astrosym}{187} (») . . . . . . . . . . . 202 \Pisymbol{astrosym}{188} ¼ ½ ¾ ¿ È (É) . . . . . . . . . . . 202 \Pisymbol{astrosym}{202} (Ê) . . . . . . . . . . . 202 \Pisymbol{astrosym}{203} (Ë) . . . . . . . . . . . 202 \Pisymbol{astrosym}{204} (Ì) . . . . . . . . . . . 202 \Pisymbol{astrosym}{205} (Í) . . . . . . . . . . . . 202 \Pisymbol{astrosym}{206} (Î) . . . . . . . . . . . . 202 \Pisymbol{astrosym}{207} (Ï) . . . . . . . . . . . 202 \Pisymbol{astrosym}{208} (Ð) . . . . . . . . . . 202 \Pisymbol{astrosym}{209} (Ñ) . . . . . . . . . . . 202 \Pisymbol{astrosym}{210} (Ò) . . . . . . . . . . . 202 \Pisymbol{astrosym}{211} (Ó) . . . . . . . . . . . 202 \Pisymbol{astrosym}{212} (Ô) . . . . . . . . . . . 202 \Pisymbol{astrosym}{213} (Õ) . . . . . . . . . . . 202 \Pisymbol{astrosym}{214} (Ö) . . . . . . . . . . . 202 \Pisymbol{astrosym}{215} (×) . . . . . . . . . . . 202 \Pisymbol{astrosym}{216} (Ø) . . . . . . . . . . 202 ( ) . . . . . . . . . . . 202 \Pisymbol{astrosym}{189} ( ) . . . . . . . . . . . 202 \Pisymbol{astrosym}{190} ( ) . . . . . . . . . . . 202 \Pisymbol{astrosym}{191} ( ) . . . . . . . . . . . 202 \Pisymbol{astrosym}{200} ( ) . . . . . . . . . . . 202 \Pisymbol{astrosym}{201} Ù Ú (Û) . . . . . . . . . . . 202 \Pisymbol{astrosym}{220} (Ü) . . . . . . . . . . . 202 \Pisymbol{astrosym}{221} (Ý) . . . . . . . . . . . 202 \Pisymbol{astrosym}{222} (Þ) . . . . . . . . . . . 203 \Pisymbol{astrosym}{223} (ß) . . . . . . . . . . . . 203 \Pisymbol{astrosym}{224} (à) . . . . . . . . . . 203 \Pisymbol{astrosym}{225} (á) . . . . . . . . . . . 203 \Pisymbol{astrosym}{226} (â) . . . . . . . . . . . 203 \Pisymbol{astrosym}{227} (ã) . . . . . . . . . . . 203 \Pisymbol{astrosym}{228} (ä) . . . . . . . . . . . 203 \Pisymbol{astrosym}{229} (å) . . . . . . . . . . . 203 \Pisymbol{astrosym}{230} (æ) . . . . . . . . . . . 203 \Pisymbol{astrosym}{231} (ç) . . . . . . . . . . . 203 \Pisymbol{astrosym}{232} (è) . . . . . . . . . . 203 \Pisymbol{astrosym}{233} (é) . . . . . . . . . . . 203 \Pisymbol{astrosym}{234} (ê) . . . . . . . . . . 203 \Pisymbol{astrosym}{235} (ë) . . . . . . . . . . . 203 \Pisymbol{astrosym}{236} (ì) . . . . . . . . . . . 203 \Pisymbol{astrosym}{237} (í) . . . . . . . . . . . 203 \Pisymbol{astrosym}{238} (î) . . . . . . . . . . . 203 \Pisymbol{astrosym}{239} (ï) . . . . . . . . . . . 203 \Pisymbol{astrosym}{240} (ð) . . . . . . . . . . . 203 \Pisymbol{astrosym}{241} (ñ) . . . . . . . . . . . 203 \Pisymbol{astrosym}{242} (ò) . . . . . . . . . . . 203 \Pisymbol{astrosym}{243} (ó) . . . . . . . . . . . 203 \Pisymbol{astrosym}{244} (ô) . . . . . . . . . . . . 203 \Pisymbol{astrosym}{245} (õ) . . . . . . . . . . . . 203 \Pisymbol{astrosym}{246} (ö) . . . . . . . . . . . . 203 \Pisymbol{astrosym}{217} ( ) . . . . . . . . . . . 202 \Pisymbol{astrosym}{218} ( ) . . . . . . . . . . 202 \Pisymbol{astrosym}{219} 304 ÷ (ø) . . . . . . . . . . . 203 \Pisymbol{astrosym}{249} (ù) . . . . . . . . . . . 203 \Pisymbol{astrosym}{250} (ú) . . . . . . . . . . . . 203 \Pisymbol{astrosym}{251} (û) . . . . . . . . . . . 203 \Pisymbol{astrosym}{252} (ü) . . . . . . . . . . 203 \Pisymbol{astrosym}{253} (ý) . . . . . . . . . . . 203 \Pisymbol{astrosym}{254} (þ) . . . . . . . . . . . 203 \Pisymbol{astrosym}{247} ( ) . . . . . . . . . . . . 203 \Pisymbol{astrosym}{248} \Pisymbol{astrosym}{255} ÿ ( ) . . . . . . . . . . . 203 \Pisymbol{cryst}{0} ( ) . 215 \Pisymbol{cryst}{2} () . 215 \Pisymbol{cryst}{3} () 215 \Pisymbol{cryst}{4} () 215 \Pisymbol{cryst}{5} () 215 \Pisymbol{cryst}{6} () 215 \Pisymbol{cryst}{7} () 215 \Pisymbol{cryst}{8} () 215 \Pisymbol{cryst}{9} ( ) 215 \Pisymbol{cryst}{10} ( ) 215 \Pisymbol{cryst}{12} ( ) 215 \Pisymbol{cryst}{15} () 215 \Pisymbol{cryst}{20} () 215 \Pisymbol{cryst}{21} () 215 \Pisymbol{cryst}{22} () 215 \Pisymbol{cryst}{24} () 215 \Pisymbol{cryst}{25} () 215 \Pisymbol{cryst}{27} () 215 \Pisymbol{cryst}{28} () 215 \Pisymbol{cryst}{29} () 215 \Pisymbol{cryst}{30} () 215 \Pisymbol{cryst}{31} () . . . . . . . . . 215 \Pisymbol{cryst}{32} ( ) . . . . . . . . . 215 \Pisymbol{cryst}{35} (#) 215 \Pisymbol{cryst}{36} ($) 215 \Pisymbol{cryst}{37} (%) 215 \Pisymbol{cryst}{38} (&) 215 \Pisymbol{cryst}{39} (') 215 \Pisymbol{cryst}{40} (() 215 \Pisymbol{cryst}{41} ()) . . . . . . . . . 215 \Pisymbol{cryst}{42} (*) 215 \Pisymbol{cryst}{43} (+) . . . . . . . . . 215 \Pisymbol{cryst}{44} (,) 216 \Pisymbol{cryst}{45} (-) 216 \Pisymbol{cryst}{47} (/) 216 \Pisymbol{cryst}{48} (0) 216 \Pisymbol{cryst}{49} (1) 216 \Pisymbol{cryst}{50} (2) 216 \Pisymbol{cryst}{55} (7) 216 \Pisymbol{cryst}{57} (9) 216 \Pisymbol{cryst}{58} (:) 216 \Pisymbol{cryst}{59} (;) 216 \Pisymbol{cryst}{60} (<) 216 \Pisymbol{cryst}{61} (=) . . . . . . . . . 216 \Pisymbol{cryst}{62} (>) . . . . . . . . . 216 \Pisymbol{cryst}{63} (?) 215 \Pisymbol{cryst}{64} (@) . . . . . . . . . 215 \Pisymbol{cryst}{65} (A) . . . . . . . . . 215 \Pisymbol{cryst}{66} (B) 215 \Pisymbol{cryst}{75} (K) 215 \Pisymbol{cryst}{77} (M) 215 \Pisymbol{cryst}{78} (N) 215 \Pisymbol{cryst}{79} (O) 215 \Pisymbol{cryst}{80} (P) . . . . . . . . . 215 \Pisymbol{cryst}{81} (Q) . . . . . . . . . 215 \Pisymbol{cryst}{82} (R) . . . . . . . . . 215 \Pisymbol{cryst}{83} (S) . . . . . . . . . 215 \Pisymbol{cryst}{84} (T) 215 \Pisymbol{cryst}{85} (U) 215 \Pisymbol{cryst}{87} (W) 215 \Pisymbol{cryst}{88} (X) 215 \Pisymbol{cryst}{89} (Y) 215 \Pisymbol{cryst}{95} (_) 215 \Pisymbol{cryst}{97} (a) 215 \Pisymbol{cryst}{98} (b) 215 \Pisymbol{cryst}{99} (c) 215 \Pisymbol{cryst}{102} (f) . . . . . . . . 215 \Pisymbol{cryst}{103} (g) . . . . . . . . 215 \Pisymbol{cryst}{104} (h) 215 \Pisymbol{cryst}{105} (i) . . . . . . . . 215 \Pisymbol{cryst}{107} (k) . . . . . . . . 215 \Pisymbol{cryst}{108} (l) . . . . . . . . 215 \Pisymbol{cryst}{109} (m) . . . . . . . . 215 \Pisymbol{cryst}{112} (p) . . . . . . . . 215 \Pisymbol{cryst}{113} (q) . . . . . . . . 215 \Pisymbol{cryst}{120} (x) . . . . . . . . 215 \Pisymbol{cryst}{121} (y) . . . . . . . . 215 \Pisymbol{cryst}{123} ({) . . . . . . . . 216 \Pisymbol{cryst}{124} (|) 216 \Pisymbol{cryst}{125} (}) . . . . . . . . . 216 \Pisymbol{cryst}{127} () . . . . . . . . 216 \Pisymbol{cryst}{128} () . . . . . . . . . 216 \Pisymbol{cryst}{129} () . . . . . . . . 216 \Pisymbol{cryst}{130} () . . . . . . . . 216 \Pisymbol{cryst}{131} () . . . . . . . . 216 \Pisymbol{cryst}{132} () . . . . . . . . 216 \Pisymbol{cryst}{133} ( ) . . . . . . . . 216 \Pisymbol{cryst}{135} () . . . . . . . . . 216 \Pisymbol{cryst}{136} () . . . . . . . . 216 \Pisymbol{cryst}{137} () . . . . . . . . 216 \Pisymbol{cryst}{138} () . . . . . . . . . 215 \Pisymbol{cryst}{139} () . . . . . . . . 215 \Pisymbol{cryst}{140} () . . . . . . . . . 215 \Pisymbol{cryst}{141} () . . . . . . . . . 215 \Pisymbol{cryst}{142} () . . . . . . . . 215 \Pisymbol{cryst}{143} () . . . . . . . . . 215 \Pisymbol{cryst}{145} () 215 \Pisymbol{cryst}{147} () . . . . . . . . . 215 \Pisymbol{cryst}{148} () 215 \Pisymbol{cryst}{149} () . . . . . . . . . 215 \Pisymbol{cryst}{155} () . . . . . . . . . 215 \Pisymbol{cryst}{157} () . . . . . . . . . 215 \Pisymbol{cryst}{158} () . . . . . . . . . 215 \Pisymbol{cryst}{159} () . . . . . . . . . 215 \Pisymbol{cryst}{175} (¯) . . . . . . . . . 215 \Pisymbol{cryst}{177} (±) . . . . . . . . . 215 \Pisymbol{cryst}{178} (²) 215 \Pisymbol{cryst}{179} (³) . . . . . . . . . 215 \Pisymbol{cryst}{185} (¹) . . . . . . . . . 215 \Pisymbol{cryst}{187} (») . . . . . . . . 215 \Pisymbol{cryst}{188} (¼) . . . . . . . . . 215 \Pisymbol{cryst}{189} (½) . . . . . . . . 215 \Pisymbol{cryst}{195} (Ã) . . . . . . . . . 215 \Pisymbol{cryst}{197} (Å) . . . . . . . . 215 305 \Pisymbol{cryst}{198} (Æ) . . . . . . . . . 215 \Pisymbol{cryst}{199} (Ç) . . . . . . . . 215 \Pisymbol{cryst}{202} (Ê) . . . . . . . . 215 \Pisymbol{cryst}{203} (Ë) . . . . . . . . 215 \Pisymbol{cryst}{204} (Ì) . . . . . . . . 215 \Pisymbol{cryst}{210} (Ò) . . . . . . . . . 215 \Pisymbol{cryst}{212} (Ô) . . . . . . . . 215 \Pisymbol{cryst}{213} (Õ) . . . . . . . . 215 \Pisymbol{cryst}{220} (Ü) . . . . . . . . 216 \Pisymbol{cryst}{221} (Ý) . . . . . . . . 216 \Pisymbol{cryst}{223} (ß) . . . . . . . . 216 \Pisymbol{cryst}{224} (à) . . . . . . . . 216 \Pisymbol{cryst}{230} (æ) . . . . . . . . 216 \Pisymbol{cryst}{231} (ç) . . . . . . . . 216 \Pisymbol{cryst}{232} (è) . . . . . . . . 216 \Pisymbol{cryst}{233} (é) . . . . . . . . 216 \Pisymbol{cryst}{236} (ì) . . . . . . . . 216 \Pisymbol{cryst}{240} (ð) . . . . . . . . 216 \Pisymbol{cryst}{241} (ñ) . . . . . . . . 216 \Pisymbol{cryst}{242} (ò) . . . . . . . . . 216 \Pisymbol{cryst}{243} (ó) . . . . . . . 216 \Pisymbol{dancers}{0} ( ) 211 \Pisymbol{dancers}{1} ( ) 211 \Pisymbol{dancers}{2} ( ) 211 \Pisymbol{dancers}{3} ( ) 211 \Pisymbol{dancers}{4} ( ) 211 \Pisymbol{dancers}{5} ( ) 211 \Pisymbol{dancers}{6} ( ) 211 \Pisymbol{dancers}{7} ( ) 211 \Pisymbol{dancers}{8} ( ) 211 \Pisymbol{dancers}{9} ( ) 211 \Pisymbol{dancers}{10} ( ) . . . . . . . . 211 \Pisymbol{dancers}{11} ( ) . . . . . . . . 211 \Pisymbol{dancers}{12} ( ) . . . . . . . . 211 \Pisymbol{dancers}{13} ( ) . . . . . . . . 211 \Pisymbol{dancers}{14} ( ) . . . . . . . . 211 \Pisymbol{dancers}{15} . . . . . . . 211 \Pisymbol{dancers}{16} . . . . . . . 211 \Pisymbol{dancers}{17} . . . . . . . 211 \Pisymbol{dancers}{18} . . . . . . . 211 \Pisymbol{dancers}{19} . . . . . . . 211 \Pisymbol{dancers}{20} . . . . . . . 211 \Pisymbol{dancers}{21} . . . . . . . 211 \Pisymbol{dancers}{22} . . . . . . . 211 \Pisymbol{dancers}{23} . . . . . . . 211 \Pisymbol{dancers}{24} . . . . . . . 211 \Pisymbol{dancers}{25} . . . . . . . 211 \Pisymbol{dancers}{26} . . . . . . . 211 \Pisymbol{dancers}{27} . . . . . . . 211 \Pisymbol{dancers}{28} . . . . . . . 211 \Pisymbol{dancers}{29} . . . . . . . 211 \Pisymbol{dancers}{30} . . . . . . . 211 \Pisymbol{dancers}{31} . . . . . . . 211 \Pisymbol{dancers}{32} . . . . . . . 211 \Pisymbol{dancers}{33} . . . . . . . 211 \Pisymbol{dancers}{34} . . . . . . . 212 \Pisymbol{dancers}{35} . . . . . . . 212 \Pisymbol{dancers}{36} . . . . . . . 212 \Pisymbol{dancers}{37} . . . . . . . 212 \Pisymbol{dancers}{38} . . . . . . . 212 \Pisymbol{dancers}{39} . . . . . . . 212 \Pisymbol{dancers}{40} . . . . . . . 212 \Pisymbol{dancers}{41} . . . . . . . 212 \Pisymbol{dancers}{42} . . . . . . . 212 \Pisymbol{dancers}{43} . . . . . . . 212 \Pisymbol{dancers}{44} . . . . . . . 212 \Pisymbol{dancers}{45} . . . . . . . 212 () . () . () . () . () . () . () . () . () . () . () . () . () . () . () . () . () . () . () ! . () " . () # . () $ . () % . () & . () ' . () ( . () ) . () * . () + . () , . () . - \Pisymbol{dancers}{46} . . . . . . . 212 \Pisymbol{dancers}{47} . . . . . . . 212 \Pisymbol{dancers}{48} . . . . . . . 212 \Pisymbol{dancers}{49} . . . . . . . 212 \Pisymbol{dancers}{50} . . . . . . . 212 \Pisymbol{dancers}{51} . . . . . . . 212 \Pisymbol{dancers}{52} . . . . . . . 212 \Pisymbol{dancers}{53} . . . . . . . 212 \Pisymbol{dancers}{54} . . . . . . . 212 \Pisymbol{dancers}{55} . . . . . . . 212 \Pisymbol{dancers}{56} . . . . . . . 212 \Pisymbol{dancers}{57} . . . . . . . 212 \Pisymbol{dancers}{58} . . . . . . . 212 \Pisymbol{dancers}{59} . . . . . . . 212 \Pisymbol{dancers}{60} . . . . . . . 212 \Pisymbol{dancers}{61} . . . . . . . 212 \Pisymbol{dancers}{62} . . . . . . . 212 \Pisymbol{dancers}{63} . . . . . . . 212 \Pisymbol{dancers}{64} . . . . . . . 212 \Pisymbol{dancers}{65} . . . . . . . 212 \Pisymbol{dancers}{66} . . . . . . . 212 \Pisymbol{dancers}{67} . . . . . . . 212 \Pisymbol{dancers}{68} . . . . . . . 212 \Pisymbol{dancers}{69} . . . . . . . 213 \Pisymbol{dancers}{70} . . . . . . . 213 \Pisymbol{dancers}{71} . . . . . . . 213 \Pisymbol{dancers}{72} . . . . . . . 213 \Pisymbol{dancers}{73} . . . . . . . 213 \Pisymbol{dancers}{74} . . . . . . . 213 \Pisymbol{dancers}{75} . . . . . . . 213 \Pisymbol{dancers}{76} . . . . . . . 213 306 () . . () / . () 0 . () 1 . () 2 . () 3 . () 4 . () 5 . () 6 . () 7 . () 8 . () 9 . () : . () ; . () < . () = . () > . () ? . () @ . () A . () B . () C . () D . () E . () F . () G . () H . () I . () J . () K . () . L \Pisymbol{dancers}{77} ( ) . . . . . . . 213 \Pisymbol{dancers}{78} ( ) . . . . . . . 213 \Pisymbol{dancers}{79} ( ) . . . . . . . 213 \Pisymbol{dancers}{80} ( ) . . . . . . . 213 \Pisymbol{dancers}{81} ( ) . . . . . . . 213 \Pisymbol{dancers}{82} ( ) . . . . . . . 213 \Pisymbol{dancers}{83} ( ) . . . . . . . 213 \Pisymbol{dancers}{84} ( ) . . . . . . . 213 \Pisymbol{dancers}{85} ( ) . . . . . . . 213 \Pisymbol{dancers}{86} ( ) . . . . . . . 211 \Pisymbol{dancers}{87} ( ) . . . . . . . 211 \Pisymbol{dancers}{88} ( ) . . . . . . . 211 \Pisymbol{dancers}{89} ( ) . . . . . . . 211 \Pisymbol{dancers}{90} ( ) . . . . . . . 211 \Pisymbol{dancers}{91} ( ) . . . . . . . 211 \Pisymbol{dancers}{92} ( ) . . . . . . . 211 \Pisymbol{dancers}{93} ( ) . . . . . . . 211 \Pisymbol{dancers}{94} ( ) . . . . . . . 211 \Pisymbol{dancers}{95} ( ) . . . . . . . 211 \Pisymbol{dancers}{96} ( ) . . . . . . . 211 \Pisymbol{dancers}{97} ( ) . . . . . . . 211 \Pisymbol{dancers}{98} ( ) . . . . . . . 211 \Pisymbol{dancers}{99} ( ) . . . . . . . 211 \Pisymbol{dancers}{100} ( ) . . . . . . . 211 \Pisymbol{dancers}{101} ( ) . . . . . . . 211 \Pisymbol{dancers}{102} ( ) . . . . . . . 211 \Pisymbol{dancers}{103} ( ) . . . . . . . 211 \Pisymbol{dancers}{104} ( ) . . . . . . . 211 \Pisymbol{dancers}{105} ( ) . . . . . . . 211 \Pisymbol{dancers}{106} ( ) . . . . . . . 211 \Pisymbol{dancers}{107} ( ) . . . . . . . 211 M . N . O . P . Q . R . S . T . U . V . W . X . Y . Z . [ . \ . ] . ^ . _ . ` . a . b . c . d . e . f . g . h . i . j . k . \Pisymbol{dancers}{108} . . . . . . . 211 \Pisymbol{dancers}{109} . . . . . . . 211 \Pisymbol{dancers}{110} . . . . . . . 211 \Pisymbol{dancers}{111} . . . . . . . 211 \Pisymbol{dancers}{112} . . . . . . . 211 \Pisymbol{dancers}{113} . . . . . . . 211 \Pisymbol{dancers}{114} . . . . . . . 211 \Pisymbol{dancers}{115} . . . . . . . 211 \Pisymbol{dancers}{116} . . . . . . . 211 \Pisymbol{dancers}{117} . . . . . . . 211 \Pisymbol{dancers}{118} . . . . . . . 211 \Pisymbol{dancers}{119} . . . . . . . 211 \Pisymbol{dancers}{120} . . . . . . . 212 \Pisymbol{dancers}{121} . . . . . . . 212 \Pisymbol{dancers}{122} . . . . . . . 212 \Pisymbol{dancers}{123} . . . . . . . 212 \Pisymbol{dancers}{124} . . . . . . . 212 \Pisymbol{dancers}{125} . . . . . . . 212 \Pisymbol{dancers}{126} . . . . . . . 212 \Pisymbol{dancers}{127} . . . . . . . 212 \Pisymbol{dancers}{128} . . . . . . . 212 \Pisymbol{dancers}{129} . . . . . . . 212 \Pisymbol{dancers}{130} . . . . . . . 212 \Pisymbol{dancers}{131} . . . . . . . 212 \Pisymbol{dancers}{132} . . . . . . . 212 \Pisymbol{dancers}{133} . . . . . . . 212 \Pisymbol{dancers}{134} . . . . . . . 212 \Pisymbol{dancers}{135} . . . . . . . 212 \Pisymbol{dancers}{136} . . . . . . . 212 \Pisymbol{dancers}{137} . . . . . . . 212 \Pisymbol{dancers}{138} . . . . . . . 212 () . l () . m () . n () . o () . p () . q () . r () . s () . t () . u () . v () . w () . x () . y () . z () . { () . | () . } () . ~ () . () . () . () . () . () . () . () . () . () . () . () . \Pisymbol{dancers}{139} . . . . . . . 212 \Pisymbol{dancers}{140} . . . . . . . 212 \Pisymbol{dancers}{141} . . . . . . . 212 \Pisymbol{dancers}{142} . . . . . . . 212 \Pisymbol{dancers}{143} . . . . . . . 212 \Pisymbol{dancers}{144} . . . . . . . 212 \Pisymbol{dancers}{145} . . . . . . . 212 \Pisymbol{dancers}{146} . . . . . . . 212 \Pisymbol{dancers}{147} . . . . . . . 212 \Pisymbol{dancers}{148} . . . . . . . 212 \Pisymbol{dancers}{149} . . . . . . . 212 \Pisymbol{dancers}{150} . . . . . . . 212 \Pisymbol{dancers}{151} . . . . . . . 212 \Pisymbol{dancers}{152} . . . . . . . 212 \Pisymbol{dancers}{153} . . . . . . . 212 \Pisymbol{dancers}{154} . . . . . . . 212 \Pisymbol{dancers}{155} . . . . . . . 213 \Pisymbol{dancers}{156} . . . . . . . 213 \Pisymbol{dancers}{157} . . . . . . . 213 \Pisymbol{dancers}{158} . . . . . . . 213 \Pisymbol{dancers}{159} . . . . . . . 213 \Pisymbol{dancers}{160} . . . . . . . 213 \Pisymbol{dancers}{161} . . . . . . . 213 \Pisymbol{dancers}{162} . . . . . . . 213 \Pisymbol{dancers}{163} . . . . . . . 213 \Pisymbol{dancers}{164} . . . . . . . 213 \Pisymbol{dancers}{165} . . . . . . . 213 \Pisymbol{dancers}{166} . . . . . . . 213 \Pisymbol{dancers}{167} . . . . . . . 213 \Pisymbol{dancers}{168} . . . . . . . 213 \Pisymbol{dancers}{169} . . . . . . . 213 307 () . () . () . () . () . () . () . () . () . () . () . () . () . () . () . () . () . () . () . () . () . () . () . ¡ () . ¢ () . £ () . ¤ () . ¥ () . ¦ () . § () . ¨ () . © \Pisymbol{dancers}{170} . . . . . . . 213 \Pisymbol{dancers}{171} . . . . . . . 213 \Pisymbol{dancers}{172} . . . . . . . 211 \Pisymbol{dancers}{173} . . . . . . . 211 \Pisymbol{dancers}{174} . . . . . . . 211 \Pisymbol{dancers}{175} . . . . . . . 211 \Pisymbol{dancers}{176} . . . . . . . 211 \Pisymbol{dancers}{177} . . . . . . . 211 \Pisymbol{dancers}{178} . . . . . . . 211 \Pisymbol{dancers}{179} . . . . . . . 211 \Pisymbol{dancers}{180} . . . . . . . 211 \Pisymbol{dancers}{181} . . . . . . . 211 \Pisymbol{dancers}{182} . . . . . . . 211 \Pisymbol{dancers}{183} . . . . . . . 211 \Pisymbol{dancers}{184} . . . . . . . 211 \Pisymbol{dancers}{185} . . . . . . . 211 \Pisymbol{dancers}{186} . . . . . . . 211 \Pisymbol{dancers}{187} . . . . . . . 211 \Pisymbol{dancers}{188} . . . . . . . 211 \Pisymbol{dancers}{189} . . . . . . . 211 \Pisymbol{dancers}{190} . . . . . . . 211 \Pisymbol{dancers}{191} . . . . . . . 211 \Pisymbol{dancers}{192} . . . . . . . 211 \Pisymbol{dancers}{193} . . . . . . . 211 \Pisymbol{dancers}{194} . . . . . . . 211 \Pisymbol{dancers}{195} . . . . . . . 211 \Pisymbol{dancers}{196} . . . . . . . 211 \Pisymbol{dancers}{197} . . . . . . . 211 \Pisymbol{dancers}{198} . . . . . . . 211 \Pisymbol{dancers}{199} . . . . . . . 211 \Pisymbol{dancers}{200} . . . . . . . 211 () . ª () . « () . ¬ () . ­ () . ® () . ¯ () . ° () . ± () . ² () . ³ () . ´ () . µ () . ¶ () . · () . ¸ () . ¹ () . º () . » () . ¼ () . ½ () . ¾ () . ¿ () . À () . Á () .  () . à () . Ä () . Å () . Æ () . Ç () . È \Pisymbol{dancers}{201} . . . . . . . 211 \Pisymbol{dancers}{202} . . . . . . . 211 \Pisymbol{dancers}{203} . . . . . . . 211 \Pisymbol{dancers}{204} . . . . . . . 211 \Pisymbol{dancers}{205} . . . . . . . 211 \Pisymbol{dancers}{206} . . . . . . . 212 \Pisymbol{dancers}{207} . . . . . . . 212 \Pisymbol{dancers}{208} . . . . . . . 212 \Pisymbol{dancers}{209} . . . . . . . 212 \Pisymbol{dancers}{210} . . . . . . . 212 \Pisymbol{dancers}{211} . . . . . . . 212 \Pisymbol{dancers}{212} . . . . . . . 212 \Pisymbol{dancers}{213} . . . . . . . 212 \Pisymbol{dancers}{214} . . . . . . . 212 \Pisymbol{dancers}{215} . . . . . . . 212 \Pisymbol{dancers}{216} . . . . . . . 212 \Pisymbol{dancers}{217} . . . . . . . 212 \Pisymbol{dancers}{218} . . . . . . . 212 \Pisymbol{dancers}{219} . . . . . . . 212 \Pisymbol{dancers}{220} . . . . . . . 212 \Pisymbol{dancers}{221} . . . . . . . 212 \Pisymbol{dancers}{222} . . . . . . . 212 \Pisymbol{dancers}{223} . . . . . . . 212 \Pisymbol{dancers}{224} . . . . . . . 212 \Pisymbol{dancers}{225} . . . . . . . 212 \Pisymbol{dancers}{226} . . . . . . . 212 \Pisymbol{dancers}{227} . . . . . . . 212 \Pisymbol{dancers}{228} . . . . . . . 212 \Pisymbol{dancers}{229} . . . . . . . 212 \Pisymbol{dancers}{230} . . . . . . . 212 \Pisymbol{dancers}{231} . . . . . . . 212 () . É () . Ê () . Ë () . Ì () . Í () . Î () . Ï () . Ð () . Ñ () . Ò () . Ó () . Ô () . Õ () . Ö () . × () . Ø () . Ù () . Ú () . Û () . Ü () . Ý () . Þ () . ß () . à () . á () . â () . ã () . ä () . å () . æ () . ç \Pisymbol{dancers}{232} . . . . . . . 212 \Pisymbol{dancers}{233} . . . . . . . 212 \Pisymbol{dancers}{234} . . . . . . . 212 \Pisymbol{dancers}{235} . . . . . . . 212 \Pisymbol{dancers}{236} . . . . . . . 212 \Pisymbol{dancers}{237} . . . . . . . 212 \Pisymbol{dancers}{238} . . . . . . . 212 \Pisymbol{dancers}{239} . . . . . . . 212 \Pisymbol{dancers}{240} . . . . . . . 212 \Pisymbol{dancers}{241} . . . . . . . 213 \Pisymbol{dancers}{242} . . . . . . . 213 \Pisymbol{dancers}{243} . . . . . . . 213 \Pisymbol{dancers}{244} . . . . . . . 213 \Pisymbol{dancers}{245} . . . . . . . 213 \Pisymbol{dancers}{246} . . . . . . . 213 \Pisymbol{dancers}{247} . . . . . . . 213 \Pisymbol{dancers}{248} . . . . . . . 213 \Pisymbol{dancers}{249} . . . . . . . 213 \Pisymbol{dancers}{250} . . . . . . . 213 \Pisymbol{dancers}{251} . . . . . . . 213 \Pisymbol{dancers}{252} . . . . . . . 213 \Pisymbol{dancers}{253} . . . . . . . 213 \Pisymbol{dancers}{254} . . . . . . . 213 \Pisymbol{dancers}{255} . . . . . . . 213 \Pisymbol{dice3d}{49} ( . . . . . . . 216 \Pisymbol{dice3d}{50} ( . . . . . . . 216 \Pisymbol{dice3d}{51} ( . . . . . . . 216 \Pisymbol{dice3d}{52} ( . . . . . . . 216 \Pisymbol{dice3d}{53} ( . . . . . . . 216 \Pisymbol{dice3d}{54} ( . . . . . . . 216 () . è () . é () . 308 \Pisymbol{dice3d}{99} ( . . . . . . . 216 b) . c) . ê () . \Pisymbol{dice3d}{100} ( . . . . . . . 216 () . \Pisymbol{dice3d}{101} ( . . . . . . . 216 () . \Pisymbol{dice3d}{102} ( . . . . . . . 216 ë ì í () . \Pisymbol{dice3d}{103} ( . . . . . . . 216 () . \Pisymbol{dice3d}{104} ( . . . . . . . 216 î ï () . ð () . \Pisymbol{dice3d}{105} ( . . . . . . . 216 () . \Pisymbol{dice3d}{106} ( . . . . . . . 216 () . \Pisymbol{dice3d}{107} ( . . . . . . . 216 ñ ò ó () . \Pisymbol{dice3d}{108} ( . . . . . . . 216 () . \Pisymbol{dice3d}{109} ( . . . . . . . 216 ô õ () . ö () . \Pisymbol{dice3d}{110} ( . . . . . . . 216 () . \Pisymbol{dice3d}{111} ( . . . . . . . 216 () . \Pisymbol{dice3d}{112} ( . . . . . . . 216 ÷ ø ù () . \Pisymbol{dice3d}{113} ( . . . . . . . 216 () . \Pisymbol{dice3d}{114} ( . . . . . . . 216 ú û () . ü () . \Pisymbol{dice3d}{115} ( . . . . . . . 216 () . \Pisymbol{dice3d}{116} ( . . . . . . . 216 () . \Pisymbol{dice3d}{117} ( . . . . . . . 216 ý þ ÿ 1) 2) 3) 4) 5) 6) \Pisymbol{dice3d}{97} ( . . . . . . . 216 \Pisymbol{dice3d}{98} ( . . . . . . . 216 a) . \Pisymbol{dice3d}{118} ( . . . . . . . 216 . \Pisymbol{dice3d}{119} ( . . . . . . . 216 . . \Pisymbol{dice3d}{120} ( . . . . . . . 216 \Pisymbol{dingbat}{69} d) e) f) g) h) i) j) k) l) m) n) o) p) q) r) s) t) u) v) w) x) . . (E) . . . \Pisymbol{dingbat}{70} 207 (F) . . . 207 . \Pisymbol{fselch}{8} ( . . . . . . . 217 \Pisymbol{dingbat}{71} (G) . . . \Pisymbol{dingbat}{72} 207 (H) . . . \Pisymbol{dingbat}{74} 207 (J) . . . \Pisymbol{dingbat}{75} 207 (K) . . . \Pisymbol{dingbat}{76} 207 (L) . . . \Pisymbol{dingbat}{77} 207 (M) . . . \Pisymbol{dingbat}{97} 207 (a) . . . . . . . . . \Pisymbol{dingbat}{98} 207 (b) . . . . . . . . . \Pisymbol{dingbat}{99} 207 (c) . . . . . . . . . 207 \Pisymbol{dingbat}{100} (d) . . . . . . . . . 207 \Pisymbol{dingbat}{101} (e) . . . . . . . . . 207 \Pisymbol{dingbat}{102} (f) . . . . . . . . . 207 \Pisymbol{dingbat}{103} (g) . . . . . . . . . 207 \Pisymbol{dingbat}{104} (h) ......... 207 \Pisymbol{fselch}{0} ( . . . . . . . 217 ) .. \Pisymbol{fselch}{1} ( . . . . . . . 217 .. ) \Pisymbol{fselch}{2} () . . . . . . . 217 \Pisymbol{fselch}{3} () . . . . . . . 217 \Pisymbol{fselch}{4} () . . . . . . . 217 \Pisymbol{fselch}{5} () . . . . . . . 217 \Pisymbol{fselch}{6} () . . . . . . . 217 \Pisymbol{fselch}{7} () ....... 217 .. .. ) .. \Pisymbol{fselch}{9} ( . . . . . . . 217 ) .. \Pisymbol{fselch}{10} ( . . . . . . . 217 ) . \Pisymbol{fselch}{11} ( . . . . . . . 217 ) . \Pisymbol{fselch}{12} ( . . . . . . . 217 ) . \Pisymbol{fselch}{13} ( . . . . . . . 217 ) . \Pisymbol{fselch}{14} ( . . . . . . . 217 . ) \Pisymbol{fselch}{15} () . . . . . . . 217 \Pisymbol{fselch}{16} () . . . . . . . 217 \Pisymbol{fselch}{17} () . . . . . . . 217 \Pisymbol{fselch}{18} () . . . . . . . 217 \Pisymbol{fselch}{19} () . . . . . . . 217 \Pisymbol{fselch}{20} () . . . . . . . 218 \Pisymbol{fselch}{21} () . . . . . . . 218 \Pisymbol{fselch}{22} () . . . . . . . 218 \Pisymbol{fselch}{23} () . . . . . . . 218 \Pisymbol{fselch}{24} () . . . . . . . 218 \Pisymbol{fselch}{25} () . . . . . . . 218 \Pisymbol{fselch}{26} () . . . . . . . 218 \Pisymbol{fselch}{27} () . . . . . . . 218 \Pisymbol{fselch}{28} () . . . . . . . 218 \Pisymbol{fselch}{29} () . . . . . . . 218 \Pisymbol{fselch}{30} () . . . . . . . 218 \Pisymbol{fselch}{31} () ....... . . . . . . . . . . . . . . . . . 218 .. \Pisymbol{fselch}{32} ( . . . . . . . 218 ) . .. \Pisymbol{fselch}{33} ( . . . . . . . 218 . .. .. !) \Pisymbol{fselch}{34} (") . . . . . . . 218 \Pisymbol{fselch}{35} (#) ....... 309 218 . . $) \Pisymbol{fselch}{37} (%) . . . . . . . 218 \Pisymbol{fselch}{38} (&) . . . . . . . 218 \Pisymbol{fselch}{39} (') . . . . . . . 218 \Pisymbol{fselch}{40} (() . . . . . . . 218 \Pisymbol{fselch}{41} ()) . . . . . . . 218 \Pisymbol{fselch}{42} (*) . . . . . . . 218 \Pisymbol{fselch}{43} (+) . . . . . . . 218 \Pisymbol{fselch}{44} (,) . . . . . . . 218 \Pisymbol{fselch}{45} (-) . . . . . . . 218 \Pisymbol{fselch}{46} (.) . . . . . . . 218 \Pisymbol{fselch}{47} (/) . . . . . . . 218 \Pisymbol{fselch}{48} (0) . . . . . . . 218 \Pisymbol{fselch}{49} (1) . . . . . . . 218 \Pisymbol{fselch}{50} (2) . . . . . . . 218 \Pisymbol{fselch}{51} (3) . . . . . . . 218 \Pisymbol{fselch}{52} (4) . . . . . . . 218 \Pisymbol{fselch}{53} (5) . . . . . . . 218 \Pisymbol{fselch}{54} (6) . . . . . . . 218 \Pisymbol{fselch}{55} (7) . . . . . . . 217 \Pisymbol{fselch}{56} (8) . . . . . . . 217 \Pisymbol{fselch}{57} (9) . . . . . . . 217 \Pisymbol{fselch}{58} (:) . . . . . . . 217 \Pisymbol{fselch}{59} (;) . . . . . . . 217 \Pisymbol{fselch}{60} (<) . . . . . . . 217 \Pisymbol{fselch}{61} (=) . . . . . . . 217 \Pisymbol{fselch}{62} (>) . . . . . . . 217 \Pisymbol{fselch}{63} (?) \Pisymbol{fselch}{36} ( . . . . . . . 218 ....... 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . @) \Pisymbol{fselch}{65} (A) . . . . . . . 217 \Pisymbol{fselch}{66} (B) . . . . . . . 217 \Pisymbol{fselch}{67} (C) . . . . . . . 217 \Pisymbol{fselch}{68} (D) . . . . . . . 217 \Pisymbol{fselch}{69} (E) . . . . . . . 217 \Pisymbol{fselch}{70} (F) . . . . . . . 217 \Pisymbol{fselch}{71} (G) . . . . . . . 217 \Pisymbol{fselch}{72} (H) . . . . . . . 217 \Pisymbol{fselch}{73} (I) . . . . . . . 217 \Pisymbol{fselch}{74} (J) . . . . . . . 217 \Pisymbol{fselch}{75} (K) . . . . . . . 218 \Pisymbol{fselch}{76} (L) . . . . . . . 218 \Pisymbol{fselch}{77} (M) . . . . . . . 218 \Pisymbol{fselch}{78} (N) . . . . . . . 218 \Pisymbol{fselch}{79} (O) . . . . . . . 218 \Pisymbol{fselch}{80} (P) . . . . . . . 218 \Pisymbol{fselch}{81} (Q) . . . . . . . 218 \Pisymbol{fselch}{82} (R) . . . . . . . 218 \Pisymbol{fselch}{83} (S) . . . . . . . 218 \Pisymbol{fselch}{84} (T) . . . . . . . 218 \Pisymbol{fselch}{85} (U) . . . . . . . 218 \Pisymbol{fselch}{86} (V) . . . . . . . 218 \Pisymbol{fselch}{87} (W) . . . . . . . 218 \Pisymbol{fselch}{88} (X) . . . . . . . 218 \Pisymbol{fselch}{89} (Y) . . . . . . . 218 \Pisymbol{fselch}{90} (Z) . . . . . . . 218 \Pisymbol{fselch}{91} ([) \Pisymbol{fselch}{64} ( . . . . . . . 217 ....... 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . \) . \Pisymbol{fselch}{93} (]) . . . . . . . . 218 \Pisymbol{fselch}{94} (^) . . . . . . . . 218 \Pisymbol{fselch}{95} (_) . . . . . . . . 218 \Pisymbol{fselch}{96} (`) . . . . . . . . 218 \Pisymbol{fselch}{97} (a) . . . . . . . . 218 \Pisymbol{fselch}{98} (b) . . . . . . . . 218 \Pisymbol{fselch}{99} (c) . . . . . . . . 218 \Pisymbol{fselch}{100} (d) . . . . . . . 218 \Pisymbol{fselch}{101} (e) . . . . . . . 218 \Pisymbol{fselch}{102} (f) . . . . . . . 218 \Pisymbol{fselch}{103} (g) . . . . . . . 218 \Pisymbol{fselch}{104} (h) . . . . . . . 218 \Pisymbol{fselch}{105} (i) . . . . . . . 218 \Pisymbol{fselch}{106} (j) . . . . . . . 218 \Pisymbol{fselch}{107} (k) . . . . . . . 218 \Pisymbol{fselch}{108} (l) . . . . . . . 218 \Pisymbol{fselch}{109} (m) . . . . . . . 218 \Pisymbol{fselch}{110} (n) . . . . . . . 217 \Pisymbol{fselch}{111} (o) . . . . . . . 217 \Pisymbol{fselch}{112} (p) . . . . . . . 217 \Pisymbol{fselch}{113} (q) . . . . . . . 217 \Pisymbol{fselch}{114} (r) . . . . . . . 217 \Pisymbol{fselch}{115} (s) . . . . . . . 217 \Pisymbol{fselch}{116} (t) . . . . . . . 217 \Pisymbol{fselch}{117} (u) . . . . . . . 217 \Pisymbol{fselch}{118} (v) . . . . . . . 217 \Pisymbol{fselch}{119} (w) \Pisymbol{fselch}{92} ( . . . . . . . 218 ....... 310 217 x) \Pisymbol{fselch}{121} (y) . . . . . . . 217 \Pisymbol{fselch}{122} (z) . . . . . . . 217 \Pisymbol{fselch}{123} ({) . . . . . . . 217 \Pisymbol{fselch}{124} (|) . . . . . . . 217 \Pisymbol{fselch}{125} (}) . . . . . . . 217 \Pisymbol{fselch}{126} (~) . . . . . . . 217 \Pisymbol{fselch}{127} () . . . . . . . 217 \Pisymbol{fselch}{128} () . . . . . . . 217 \Pisymbol{fselch}{129} () . . . . . . . 217 \Pisymbol{fselch}{130} () . . . . . . . 218 \Pisymbol{fselch}{131} () . . . . . . . 218 \Pisymbol{fselch}{132} () \Pisymbol{fselch}{120} ( . . . . . . . 217 ....... 218 \Pisymbol{fselch}{133} ( . . . . . . . 218 ) ) \Pisymbol{fselch}{135} () . . . . . . . 218 \Pisymbol{fselch}{136} () . . . . . . . 218 \Pisymbol{fselch}{137} () . . . . . . . 218 \Pisymbol{fselch}{138} () . . . . . . . 218 \Pisymbol{fselch}{139} () . . . . . . . 218 \Pisymbol{fselch}{140} () . . . . . . . 218 \Pisymbol{fselch}{141} () . . . . . . . 218 \Pisymbol{fselch}{142} () . . . . . . . 218 \Pisymbol{fselch}{143} () . . . . . . . 218 \Pisymbol{fselch}{144} () . . . . . . . 218 \Pisymbol{fselch}{145} () . . . . . . . 218 \Pisymbol{fselch}{151} () . . . . . . . 218 \Pisymbol{fselch}{157} () \Pisymbol{fselch}{134} ( . . . . . . . 218 ....... 218 £) \Pisymbol{fselch}{169} (©) . . . . . . . 218 \Pisymbol{fselch}{175} (¯) . . . . . . . 218 \Pisymbol{fselch}{180} (´) . . . . . . . 218 \Pisymbol{fselch}{186} (º) . . . . . . . 218 \Pisymbol{fselch}{192} (À) . . . . . . . 218 \Pisymbol{fselch}{198} (Æ) . . . . . . . 218 \Pisymbol{fselch}{204} (Ì) . . . . . . . 218 \Pisymbol{fselch}{210} (Ò) . . . . . . . 218 \Pisymbol{fselch}{216} (Ø) . . . . . . . 218 \Pisymbol{fselch}{222} (Þ) . . . . . . . 218 \Pisymbol{fselch}{228} (ä) . . . . . . . 218 \Pisymbol{fselch}{234} (ê) . . . . . . . 218 \Pisymbol{fselch}{240} (ð) . . . . . . . 218 \Pisymbol{fselch}{246} (ö) \Pisymbol{fselch}{163} ( . . . . . . . 218 . . . . . . . 218 \Pisymbol{greenpoint}{71} (G) . . . . . . . . . . . 199 \Pisymbol{hands}{65} ( ) . . . . . . . . . 199 \Pisymbol{hands}{66} ( ) . . . . . . . . . 199 \Pisymbol{hands}{67} ( ) . . . . . . . . . 199 \Pisymbol{hands}{68} ( ) . . . . . . . . . 199 A B C D \Pisymbol{knot1}{48} ( . . . . . . . 207 \Pisymbol{knot1}{49} ( . . . . . . . 207 \Pisymbol{knot1}{50} ( . . . . . . . 207 \Pisymbol{knot1}{51} ( . . . . . . . 207 \Pisymbol{knot1}{52} ( . . . . . . . 207 \Pisymbol{knot1}{53} ( . . . . . . . 207 \Pisymbol{knot1}{58} ( . . . . . . . 207 \Pisymbol{knot1}{59} ( . . . . . . . 207 0 1 2 3 4 5 : ; \Pisymbol{knot1}{60} ( . . . . . . . 207 \Pisymbol{knot1}{61} ( . . . . . . . 207 \Pisymbol{knot1}{62} ( . . . . . . . 208 \Pisymbol{knot1}{63} ( . . . . . . . 208 \Pisymbol{knot1}{64} ( . . . . . . . 208 \Pisymbol{knot1}{65} ( . . . . . . . 208 \Pisymbol{knot1}{66} ( . . . . . . . 208 \Pisymbol{knot1}{67} ( . . . . . . . 208 \Pisymbol{knot1}{68} ( . . . . . . . 207 \Pisymbol{knot1}{69} ( . . . . . . . 207 \Pisymbol{knot1}{70} ( . . . . . . . 207 \Pisymbol{knot1}{71} ( . . . . . . . 207 \Pisymbol{knot1}{72} ( . . . . . . . 207 \Pisymbol{knot1}{73} ( . . . . . . . 207 \Pisymbol{knot1}{74} ( . . . . . . . 207 \Pisymbol{knot1}{75} ( . . . . . . . 207 \Pisymbol{knot1}{76} ( . . . . . . . 207 ) . \Pisymbol{knot1}{77} ( . . . . . . . 207 ) . \Pisymbol{knot1}{78} ( . . . . . . . 208 ) . \Pisymbol{knot1}{79} ( . . . . . . . 208 ) . \Pisymbol{knot1}{80} ( . . . . . . . 208 ) . \Pisymbol{knot1}{81} ( . . . . . . . 208 ) . \Pisymbol{knot1}{82} ( . . . . . . . 208 ) . \Pisymbol{knot1}{83} ( . . . . . . . 208 ) . \Pisymbol{knot1}{84} ( . . . . . . . 207 311 < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X ` a b c d e f g h i 0 1 2 3 4 5 : ; < = > ) . \Pisymbol{knot1}{85} ( . . . . . . . 207 ) . ) . \Pisymbol{knot1}{86} ( . . . . . . . 207 ) . \Pisymbol{knot1}{87} ( . . . . . . . 207 ) . \Pisymbol{knot1}{88} ( . . . . . . . 207 ) . \Pisymbol{knot1}{96} ( . . . . . . . 207 ) . \Pisymbol{knot1}{97} ( . . . . . . . 207 ) . \Pisymbol{knot1}{98} ( . . . . . . . 207 ) . \Pisymbol{knot1}{99} ( . . . . . . . 207 ) . \Pisymbol{knot1}{100} ( . . . . . . . 207 ) ) . \Pisymbol{knot1}{101} ( . . . . . . . 208 ) ) . \Pisymbol{knot1}{102} ( . . . . . . . 208 ) ) . \Pisymbol{knot1}{103} ( . . . . . . . 208 ) ) . \Pisymbol{knot1}{104} ( . . . . . . . 208 ) ) . \Pisymbol{knot1}{105} ( . . . . . . . 208 ) ) . \Pisymbol{knot2}{48} ( . . . . . . . 208 ) . ) . \Pisymbol{knot2}{49} ( . . . . . . . 208 ) . \Pisymbol{knot2}{50} ( . . . . . . . 208 ) . \Pisymbol{knot2}{51} ( . . . . . . . 208 ) . \Pisymbol{knot2}{52} ( . . . . . . . 208 ) . \Pisymbol{knot2}{53} ( . . . . . . . 208 ) . \Pisymbol{knot2}{58} ( . . . . . . . 208 ) . \Pisymbol{knot2}{59} ( . . . . . . . 208 ) . \Pisymbol{knot2}{60} ( . . . . . . . 208 ) . \Pisymbol{knot2}{61} ( . . . . . . . 208 ) . \Pisymbol{knot2}{62} ( . . . . . . . 208 ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ? @ A B C D E F G H I J K L M N O P Q R S T U V W X ` a b c d e f g h i 0 1 2 3 4 5 : ; < = > ? @ A \Pisymbol{knot2}{63} ( . . . . . . . 208 ) . \Pisymbol{knot2}{88} ( . . . . . . . 208 ) . \Pisymbol{knot3}{66} ( . . . . . . . 208 \Pisymbol{knot2}{64} ( . . . . . . . 208 ) . \Pisymbol{knot2}{96} ( . . . . . . . 208 ) . \Pisymbol{knot3}{67} ( . . . . . . . 209 \Pisymbol{knot2}{65} ( . . . . . . . 208 ) . \Pisymbol{knot2}{97} ( . . . . . . . 208 ) . \Pisymbol{knot3}{68} ( . . . . . . . 208 \Pisymbol{knot2}{66} ( . . . . . . . 208 ) . \Pisymbol{knot2}{98} ( . . . . . . . 208 ) . \Pisymbol{knot3}{69} ( . . . . . . . 208 \Pisymbol{knot2}{67} ( . . . . . . . 208 ) . \Pisymbol{knot2}{99} ( . . . . . . . 208 ) . \Pisymbol{knot3}{70} ( . . . . . . . 208 \Pisymbol{knot2}{68} ( . . . . . . . 208 ) . \Pisymbol{knot2}{100} ( . . . . . . . 208 ) \Pisymbol{knot3}{71} ( . . . . . . . 208 \Pisymbol{knot2}{69} ( . . . . . . . 208 ) . \Pisymbol{knot2}{101} ( . . . . . . . 208 ) \Pisymbol{knot3}{72} ( . . . . . . . 208 \Pisymbol{knot2}{70} ( . . . . . . . 208 ) . \Pisymbol{knot2}{102} ( . . . . . . . 208 ) \Pisymbol{knot3}{73} ( . . . . . . . 208 \Pisymbol{knot2}{71} ( . . . . . . . 208 ) . \Pisymbol{knot2}{103} ( . . . . . . . 208 ) \Pisymbol{knot3}{74} ( . . . . . . . 208 \Pisymbol{knot2}{72} ( . . . . . . . 208 ) . \Pisymbol{knot2}{104} ( . . . . . . . 208 ) \Pisymbol{knot3}{75} ( . . . . . . . 208 \Pisymbol{knot2}{73} ( . . . . . . . 208 ) . \Pisymbol{knot2}{105} ( . . . . . . . 208 ) \Pisymbol{knot3}{76} ( . . . . . . . 208 \Pisymbol{knot2}{74} ( . . . . . . . 208 ) . \Pisymbol{knot3}{48} ( . . . . . . . 208 ) . \Pisymbol{knot3}{77} ( . . . . . . . 208 \Pisymbol{knot2}{75} ( . . . . . . . 208 ) . \Pisymbol{knot3}{49} ( . . . . . . . 208 ) . \Pisymbol{knot3}{78} ( . . . . . . . 208 \Pisymbol{knot2}{76} ( . . . . . . . 208 ) . \Pisymbol{knot3}{50} ( . . . . . . . 208 ) . \Pisymbol{knot3}{79} ( . . . . . . . 208 \Pisymbol{knot2}{77} ( . . . . . . . 208 ) . \Pisymbol{knot3}{51} ( . . . . . . . 208 ) . \Pisymbol{knot3}{80} ( . . . . . . . 208 \Pisymbol{knot2}{78} ( . . . . . . . 208 ) . \Pisymbol{knot3}{52} ( . . . . . . . 208 ) . \Pisymbol{knot3}{81} ( . . . . . . . 208 \Pisymbol{knot2}{79} ( . . . . . . . 208 ) . \Pisymbol{knot3}{53} ( . . . . . . . 208 ) . \Pisymbol{knot3}{82} ( . . . . . . . 208 \Pisymbol{knot2}{80} ( . . . . . . . 208 ) . \Pisymbol{knot3}{58} ( . . . . . . . 208 ) . \Pisymbol{knot3}{83} ( . . . . . . . 209 \Pisymbol{knot2}{81} ( . . . . . . . 208 ) . \Pisymbol{knot3}{59} ( . . . . . . . 208 ) . \Pisymbol{knot3}{84} ( . . . . . . . 208 \Pisymbol{knot2}{82} ( . . . . . . . 208 ) . \Pisymbol{knot3}{60} ( . . . . . . . 208 ) . \Pisymbol{knot3}{85} ( . . . . . . . 208 \Pisymbol{knot2}{83} ( . . . . . . . 208 ) . \Pisymbol{knot3}{61} ( . . . . . . . 208 ) . \Pisymbol{knot3}{86} ( . . . . . . . 208 \Pisymbol{knot2}{84} ( . . . . . . . 208 ) . \Pisymbol{knot3}{62} ( . . . . . . . 208 ) . \Pisymbol{knot3}{87} ( . . . . . . . 208 \Pisymbol{knot2}{85} ( . . . . . . . 208 ) . \Pisymbol{knot3}{63} ( . . . . . . . 208 ) . \Pisymbol{knot3}{88} ( . . . . . . . 208 \Pisymbol{knot2}{86} ( . . . . . . . 208 ) . \Pisymbol{knot3}{64} ( . . . . . . . 208 ) . \Pisymbol{knot3}{96} ( . . . . . . . 208 \Pisymbol{knot2}{87} ( . . . . . . . 208 ) . \Pisymbol{knot3}{65} ( . . . . . . . 208 ) . \Pisymbol{knot3}{97} ( . . . . . . . 208 312 B C D E F G H I J K L M N O P Q R S T U V W X ` a ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . b c d e f g h i 0 1 2 3 4 5 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X ` a b c d \Pisymbol{knot3}{98} ( . . . . . . . 208 ) . \Pisymbol{knot4}{69} ( . . . . . . . 209 \Pisymbol{knot3}{99} ( . . . . . . . 208 ) . \Pisymbol{knot4}{70} ( . . . . . . . 209 \Pisymbol{knot3}{100} ( . . . . . . . 208 ) \Pisymbol{knot4}{71} ( . . . . . . . 209 \Pisymbol{knot3}{101} ( . . . . . . . 208 ) \Pisymbol{knot4}{72} ( . . . . . . . 209 \Pisymbol{knot3}{102} ( . . . . . . . 208 ) \Pisymbol{knot4}{73} ( . . . . . . . 209 \Pisymbol{knot3}{103} ( . . . . . . . 208 ) \Pisymbol{knot4}{74} ( . . . . . . . 209 \Pisymbol{knot3}{104} ( . . . . . . . 208 ) \Pisymbol{knot4}{75} ( . . . . . . . 209 \Pisymbol{knot3}{105} ( . . . . . . . 208 ) \Pisymbol{knot4}{76} ( . . . . . . . 209 \Pisymbol{knot4}{48} ( . . . . . . . 209 ) . \Pisymbol{knot4}{77} ( . . . . . . . 209 \Pisymbol{knot4}{49} ( . . . . . . . 209 ) . \Pisymbol{knot4}{78} ( . . . . . . . 209 \Pisymbol{knot4}{50} ( . . . . . . . 209 ) . \Pisymbol{knot4}{79} ( . . . . . . . 209 \Pisymbol{knot4}{51} ( . . . . . . . 209 ) . \Pisymbol{knot4}{80} ( . . . . . . . 209 \Pisymbol{knot4}{52} ( . . . . . . . 209 ) . \Pisymbol{knot4}{81} ( . . . . . . . 209 \Pisymbol{knot4}{53} ( . . . . . . . 209 ) . \Pisymbol{knot4}{82} ( . . . . . . . 209 \Pisymbol{knot4}{58} ( . . . . . . . 209 ) . \Pisymbol{knot4}{83} ( . . . . . . . 209 \Pisymbol{knot4}{59} ( . . . . . . . 209 ) . \Pisymbol{knot4}{84} ( . . . . . . . 209 \Pisymbol{knot4}{60} ( . . . . . . . 209 ) . \Pisymbol{knot4}{85} ( . . . . . . . 209 \Pisymbol{knot4}{61} ( . . . . . . . 209 ) . \Pisymbol{knot4}{86} ( . . . . . . . 209 \Pisymbol{knot4}{62} ( . . . . . . . 209 ) . \Pisymbol{knot4}{87} ( . . . . . . . 209 \Pisymbol{knot4}{63} ( . . . . . . . 209 ) . \Pisymbol{knot4}{88} ( . . . . . . . 209 \Pisymbol{knot4}{64} ( . . . . . . . 209 ) . \Pisymbol{knot4}{96} ( . . . . . . . 209 \Pisymbol{knot4}{65} ( . . . . . . . 209 ) . \Pisymbol{knot4}{97} ( . . . . . . . 209 \Pisymbol{knot4}{66} ( . . . . . . . 209 ) . \Pisymbol{knot4}{98} ( . . . . . . . 209 \Pisymbol{knot4}{67} ( . . . . . . . 209 ) . \Pisymbol{knot4}{99} ( . . . . . . . 209 \Pisymbol{knot4}{68} ( . . . . . . . 209 ) . \Pisymbol{knot4}{100} ( . . . . . . . 209 313 e f g h i 0 1 2 3 4 5 : ; < = > ? @ A B C D E F G ) . \Pisymbol{knot4}{101} ( . . . . . . . 209 ) ) . \Pisymbol{knot4}{102} ( . . . . . . . 209 ) ) . \Pisymbol{knot4}{103} ( . . . . . . . 209 ) ) . \Pisymbol{knot4}{104} ( . . . . . . . 209 ) ) . \Pisymbol{knot4}{105} ( . . . . . . . 209 ) ) . \Pisymbol{knot5}{48} ( . . . . . . . 209 ) . ) . \Pisymbol{knot5}{49} ( . . . . . . . 209 ) . \Pisymbol{knot5}{50} ( . . . . . . . 209 ) . \Pisymbol{knot5}{51} ( . . . . . . . 209 ) . \Pisymbol{knot5}{52} ( . . . . . . . 209 ) . \Pisymbol{knot5}{53} ( . . . . . . . 209 ) . \Pisymbol{knot5}{58} ( . . . . . . . 209 ) . \Pisymbol{knot5}{59} ( . . . . . . . 209 ) . \Pisymbol{knot5}{60} ( . . . . . . . 209 ) . \Pisymbol{knot5}{61} ( . . . . . . . 209 ) . \Pisymbol{knot5}{62} ( . . . . . . . 209 ) . \Pisymbol{knot5}{63} ( . . . . . . . 209 ) . \Pisymbol{knot5}{64} ( . . . . . . . 209 ) . \Pisymbol{knot5}{65} ( . . . . . . . 209 ) . \Pisymbol{knot5}{66} ( . . . . . . . 209 ) . \Pisymbol{knot5}{67} ( . . . . . . . 209 ) . \Pisymbol{knot5}{68} ( . . . . . . . 209 ) . \Pisymbol{knot5}{69} ( . . . . . . . 209 ) . \Pisymbol{knot5}{70} ( . . . . . . . 209 ) \Pisymbol{knot5}{71} ( . . . . . . . 209 ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . H I J K L M N O P Q R S T U V W X ` a b c d e f g h i 0 1 2 3 4 5 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X ` a b c d e f g h i 0 \Pisymbol{knot5}{72} ( . . . . . . . 209 ) . \Pisymbol{knot5}{104} ( . . . . . . . 209 ) \Pisymbol{knot6}{75} ( . . . . . . . 210 \Pisymbol{knot5}{73} ( . . . . . . . 209 ) . \Pisymbol{knot5}{105} ( . . . . . . . 209 ) \Pisymbol{knot6}{76} ( . . . . . . . 210 \Pisymbol{knot5}{74} ( . . . . . . . 209 ) . \Pisymbol{knot6}{48} ( . . . . . . . 209 ) . \Pisymbol{knot6}{77} ( . . . . . . . 210 \Pisymbol{knot5}{75} ( . . . . . . . 209 ) . \Pisymbol{knot6}{49} ( . . . . . . . 209 ) . \Pisymbol{knot6}{78} ( . . . . . . . 210 \Pisymbol{knot5}{76} ( . . . . . . . 209 ) . \Pisymbol{knot6}{50} ( . . . . . . . 209 ) . \Pisymbol{knot6}{79} ( . . . . . . . 210 \Pisymbol{knot5}{77} ( . . . . . . . 209 ) . \Pisymbol{knot6}{51} ( . . . . . . . 209 ) . \Pisymbol{knot6}{80} ( . . . . . . . 210 \Pisymbol{knot5}{78} ( . . . . . . . 209 ) . \Pisymbol{knot6}{52} ( . . . . . . . 210 ) . \Pisymbol{knot6}{81} ( . . . . . . . 210 \Pisymbol{knot5}{79} ( . . . . . . . 209 ) . \Pisymbol{knot6}{53} ( . . . . . . . 210 ) . \Pisymbol{knot6}{82} ( . . . . . . . 210 \Pisymbol{knot5}{80} ( . . . . . . . 209 ) . \Pisymbol{knot6}{58} ( . . . . . . . 210 ) . \Pisymbol{knot6}{83} ( . . . . . . . 210 \Pisymbol{knot5}{81} ( . . . . . . . 209 ) . \Pisymbol{knot6}{59} ( . . . . . . . 210 ) . \Pisymbol{knot6}{84} ( . . . . . . . 209 \Pisymbol{knot5}{82} ( . . . . . . . 209 ) . \Pisymbol{knot6}{60} ( . . . . . . . 210 ) . \Pisymbol{knot6}{85} ( . . . . . . . 209 \Pisymbol{knot5}{83} ( . . . . . . . 209 ) . \Pisymbol{knot6}{61} ( . . . . . . . 210 ) . \Pisymbol{knot6}{86} ( . . . . . . . 209 \Pisymbol{knot5}{84} ( . . . . . . . 209 ) . \Pisymbol{knot6}{62} ( . . . . . . . 210 ) . \Pisymbol{knot6}{87} ( . . . . . . . 209 \Pisymbol{knot5}{85} ( . . . . . . . 209 ) . \Pisymbol{knot6}{63} ( . . . . . . . 210 ) . \Pisymbol{knot6}{88} ( . . . . . . . 210 \Pisymbol{knot5}{86} ( . . . . . . . 209 ) . \Pisymbol{knot6}{64} ( . . . . . . . 210 ) . \Pisymbol{knot6}{96} ( . . . . . . . 210 \Pisymbol{knot5}{87} ( . . . . . . . 209 ) . \Pisymbol{knot6}{65} ( . . . . . . . 210 ) . \Pisymbol{knot6}{97} ( . . . . . . . 210 \Pisymbol{knot5}{88} ( . . . . . . . 209 ) . \Pisymbol{knot6}{66} ( . . . . . . . 210 ) . \Pisymbol{knot6}{98} ( . . . . . . . 210 \Pisymbol{knot5}{96} ( . . . . . . . 209 ) . \Pisymbol{knot6}{67} ( . . . . . . . 210 ) . \Pisymbol{knot6}{99} ( . . . . . . . 210 \Pisymbol{knot5}{97} ( . . . . . . . 209 ) . \Pisymbol{knot6}{68} ( . . . . . . . 209 ) . \Pisymbol{knot6}{100} ( . . . . . . . 210 ) \Pisymbol{knot5}{98} ( . . . . . . . 209 ) . \Pisymbol{knot6}{69} ( . . . . . . . 209 ) . \Pisymbol{knot6}{101} ( . . . . . . . 210 ) \Pisymbol{knot5}{99} ( . . . . . . . 209 ) . \Pisymbol{knot6}{70} ( . . . . . . . 209 ) . \Pisymbol{knot6}{102} ( . . . . . . . 210 ) \Pisymbol{knot5}{100} ( . . . . . . . 209 ) \Pisymbol{knot6}{71} ( . . . . . . . 209 ) . \Pisymbol{knot6}{103} ( . . . . . . . 210 ) \Pisymbol{knot5}{101} ( . . . . . . . 209 ) \Pisymbol{knot6}{72} ( . . . . . . . 210 ) . \Pisymbol{knot6}{104} ( . . . . . . . 210 ) \Pisymbol{knot5}{102} ( . . . . . . . 209 ) \Pisymbol{knot6}{73} ( . . . . . . . 210 ) . \Pisymbol{knot6}{105} ( . . . . . . . 210 ) \Pisymbol{knot5}{103} ( . . . . . . . 209 ) \Pisymbol{knot6}{74} ( . . . . . . . 210 ) . \Pisymbol{knot7}{48} ( . . . . . . . 210 ) . 314 ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . ) . 1 2 3 4 5 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X ` a b c d e f g h i 4 \Pisymbol{magic}{53} (5) . . . . . . . 217 \Pisymbol{magic}{54} (6) . . . . . . . 217 \Pisymbol{magic}{55} (7) . . . . . . . 217 \Pisymbol{magic}{56} (8) . . . . . . . 217 \Pisymbol{magic}{57} (9) . . . . . . . 217 \Pisymbol{magic}{66} (B) . . . . . . . 217 \Pisymbol{magic}{71} (G) . . . . . . . 217 \Pisymbol{magic}{82} (R) . . . . . . . 217 \Pisymbol{magic}{84} (T) . . . . . . . 217 \Pisymbol{magic}{85} (U) . . . . . . . 217 \Pisymbol{magic}{87} (W) . . . . . . . 217 \Pisymbol{magic}{88} (X) . . . . . . . 217 \Pisymbol{magic}{90} (Z) \Pisymbol{magic}{52} ( ) . . . . . . . . . 217 \Pisymbol{knot7}{49} ( . . . . . . . 210 ) . \Pisymbol{knot7}{78} ( . . . . . . . 210 ) . \Pisymbol{knot7}{50} ( . . . . . . . 210 ) . \Pisymbol{knot7}{79} ( . . . . . . . 210 ) . \Pisymbol{knot7}{51} ( . . . . . . . 210 ) . \Pisymbol{knot7}{80} ( . . . . . . . 210 ) . \Pisymbol{knot7}{52} ( . . . . . . . 210 ) . \Pisymbol{knot7}{81} ( . . . . . . . 210 ) . \Pisymbol{knot7}{53} ( . . . . . . . 210 ) . \Pisymbol{knot7}{82} ( . . . . . . . 210 ) . \Pisymbol{knot7}{58} ( . . . . . . . 210 ) . \Pisymbol{knot7}{83} ( . . . . . . . 210 ) . \Pisymbol{knot7}{59} ( . . . . . . . 210 ) . \Pisymbol{knot7}{84} ( . . . . . . . 210 ) . \Pisymbol{knot7}{60} ( . . . . . . . 210 ) . \Pisymbol{knot7}{85} ( . . . . . . . 210 ) . \Pisymbol{knot7}{61} ( . . . . . . . 210 ) . \Pisymbol{knot7}{86} ( . . . . . . . 210 ) . \Pisymbol{knot7}{62} ( . . . . . . . 210 ) . \Pisymbol{knot7}{87} ( . . . . . . . 210 ) . \Pisymbol{knot7}{63} ( . . . . . . . 210 ) . \Pisymbol{knot7}{88} ( . . . . . . . 210 ) . \Pisymbol{knot7}{64} ( . . . . . . . 210 ) . \Pisymbol{knot7}{96} ( . . . . . . . 210 ) . \Pisymbol{knot7}{97} ( . . . . . . . 210 ) . \Pisymbol{moonphase}{0} ( ) . . . . . . . 201 \Pisymbol{knot7}{98} ( . . . . . . . 210 ) . \Pisymbol{moonphase}{1} ( ) . . . . . . . 201 \Pisymbol{knot7}{99} ( . . . . . . . 210 ) . \Pisymbol{knot7}{100} ( . . . . . . . 210 ) \Pisymbol{knot7}{101} ( . . . . . . . 210 ) \Pisymbol{knot7}{102} ( . . . . . . . 210 ) \Pisymbol{knot7}{103} ( . . . . . . . 210 ) \Pisymbol{knot7}{104} ( . . . . . . . 210 ) \Pisymbol{knot7}{105} ( . . . . . . . 210 ) \Pisymbol{knot7}{65} ( . . . . . . . 210 ) . \Pisymbol{knot7}{66} ( . . . . . . . 210 ) . \Pisymbol{knot7}{67} ( . . . . . . . 210 ) . \Pisymbol{knot7}{68} ( . . . . . . . 210 ) . \Pisymbol{knot7}{69} ( . . . . . . . 210 ) . \Pisymbol{knot7}{70} ( . . . . . . . 210 ) . \Pisymbol{knot7}{71} ( . . . . . . . 210 ) . \Pisymbol{knot7}{72} ( . . . . . . . 210 ) . \Pisymbol{knot7}{73} ( . . . . . . . 210 ) . \Pisymbol{knot7}{74} ( . . . . . . . 210 ) . \Pisymbol{knot7}{75} ( . . . . . . . 210 ) . \Pisymbol{knot7}{76} ( . . . . . . . 210 ) . \Pisymbol{knot7}{77} ( . . . . . . . 210 ) . 0 \Pisymbol{magic}{49} (1) . . . . . . . 217 \Pisymbol{magic}{50} (2) . . . . . . . 217 \Pisymbol{magic}{51} (3) ....... \Pisymbol{magic}{48} ( ) . . . . . . . . . 217 ....... 315 217 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 217 \Pisymbol{moonphase}{2} () . . . . . . . 201 \Pisymbol{moonphase}{3} () . . . . . . . 201 \Pisymbol{nkarta}{33} (!) . . . . . . . . . 199 \Pisymbol{nkarta}{34} (") . . . . . . . . . 199 \Pisymbol{nkarta}{35} (#) . . . . . . . . . 199 \Pisymbol{nkarta}{36} ($) . . . . . . . . . 199 \Pisymbol{nkarta}{37} (%) . . . . . . . . . 199 \Pisymbol{nkarta}{38} (&) . . . . . . . . 199 \Pisymbol{nkarta}{39} (') . . . . . . . . . 199 \Pisymbol{nkarta}{40} (() 199 \Pisymbol{nkarta}{41} ()) 199 \Pisymbol{nkarta}{42} (*) . . . . . . . 199 \Pisymbol{nkarta}{43} (+) . . . . . . . . . 199 \Pisymbol{nkarta}{44} (,) . . . . . . . . 199 \Pisymbol{nkarta}{45} (-) . . . . . . . . 199 \Pisymbol{nkarta}{46} (.) . . . . . . . . 199 \Pisymbol{nkarta}{47} (/) . . . . . . . . . 199 \Pisymbol{nkarta}{48} (0) 199 \Pisymbol{nkarta}{49} (1) 199 \Pisymbol{nkarta}{50} (2) 200 \Pisymbol{nkarta}{51} (3) 200 \Pisymbol{nkarta}{52} (4) 200 \Pisymbol{nkarta}{53} (5) 200 \Pisymbol{nkarta}{54} (6) 200 \Pisymbol{nkarta}{55} (7) 200 \Pisymbol{nkarta}{56} (8) 200 \Pisymbol{nkarta}{57} (9) 200 \Pisymbol{nkarta}{58} (:) . . . . . . . . . 200 \Pisymbol{nkarta}{59} (;) . . . . . . . . . 200 \Pisymbol{nkarta}{60} (<) . . . . . . . . 200 \Pisymbol{nkarta}{61} (=) . . . . . . . . . 200 \Pisymbol{nkarta}{62} (>) . . . . . . . . 200 \Pisymbol{nkarta}{63} (?) . . . . . . . . . 200 \Pisymbol{nkarta}{64} (@) . . . . . . . . . 200 \Pisymbol{nkarta}{65} (A) . . . . . . . . 200 \Pisymbol{nkarta}{66} (B) . . . . . . . . . 200 \Pisymbol{nkarta}{67} (C) . . . . . . . . 200 \Pisymbol{nkarta}{68} (D) . . . . . . . . 200 \Pisymbol{nkarta}{69} (E) . . . . . . . . 200 \Pisymbol{nkarta}{70} (F) . . . . . . . . 200 \Pisymbol{nkarta}{71} (G) . . . . . . . . . 200 \Pisymbol{nkarta}{72} (H) . . . . . . . . 200 \Pisymbol{nkarta}{73} (I) . . . . . . . . 200 \Pisymbol{nkarta}{74} (J) . . . . . . . . 200 \Pisymbol{nkarta}{75} (K) 200 \Pisymbol{nkarta}{76} (L) . . . . . . . . 200 \Pisymbol{nkarta}{77} (M) . . . . . . . . . 200 \Pisymbol{nkarta}{78} (N) . . . . . . . . 200 \Pisymbol{nkarta}{79} (O) . . . . . . . 200 \Pisymbol{nkarta}{80} (P) . . . . . . . . 200 \Pisymbol{nkarta}{81} (Q) . . . . . . . . 200 \Pisymbol{nkarta}{82} (R) . . . . . . . . 200 \Pisymbol{nkarta}{83} (S) . . . . . . . . 200 \Pisymbol{nkarta}{84} (T) . . . . . . . . 200 \Pisymbol{nkarta}{85} (U) . . . . . . . . 200 \Pisymbol{nkarta}{86} (V) . . . . . . . . . 200 \Pisymbol{nkarta}{87} (W) . . . . . . . . 200 \Pisymbol{nkarta}{88} (X) . . . . . . . . 200 \Pisymbol{nkarta}{89} (Y) . . . . . . . . 200 \Pisymbol{nkarta}{90} (Z) 200 \Pisymbol{nkarta}{91} ([) . . . . . . . . . 200 \Pisymbol{nkarta}{92} (\) . . . . . . . 200 \Pisymbol{nkarta}{93} (]) 200 \Pisymbol{nkarta}{94} (^) . . . . . . . 200 \Pisymbol{nkarta}{95} (_) . . . . . . . . 200 \Pisymbol{nkarta}{96} (`) . . . . . . . . . 199 \Pisymbol{nkarta}{97} (a) . . . . . . . . 199 \Pisymbol{nkarta}{98} (b) . . . . . . . . . 199 \Pisymbol{nkarta}{99} (c) . . . . . . . . 199 \Pisymbol{nkarta}{100} (d) . . . . . . . 199 \Pisymbol{nkarta}{101} (e) . . . . . . . . 199 \Pisymbol{nkarta}{102} (f) . . . . . . . . 199 \Pisymbol{nkarta}{103} (g) . . . . . . . . 199 \Pisymbol{nkarta}{104} (h) . . . . . . . . 199 \Pisymbol{nkarta}{105} (i) . . . . . . . 199 \Pisymbol{nkarta}{106} (j) . . . . . . . . 199 \Pisymbol{nkarta}{107} (k) . . . . . . . . 199 \Pisymbol{nkarta}{108} (l) . . . . . . . 199 \Pisymbol{nkarta}{109} (m) . . . . . . . . 199 \Pisymbol{nkarta}{110} (n) . . . . . . . 199 \Pisymbol{nkarta}{111} (o) . . . . . . . 199 \Pisymbol{nkarta}{112} (p) . . . . . . . 199 316 \Pisymbol{nkarta}{113} (q) . . . . . . . 200 \Pisymbol{nkarta}{114} (r) . . . . . . . . 200 \Pisymbol{nkarta}{115} (s) . . . . . . . 200 \Pisymbol{nkarta}{116} (t) . . . . . . . . 200 \Pisymbol{nkarta}{117} (u) . . . . . . . 200 \Pisymbol{nkarta}{118} (v) . . . . . . . 200 \Pisymbol{nkarta}{119} (w) . . . . . . . 200 \Pisymbol{nkarta}{120} (x) . . . . . . . . 200 \Pisymbol{nkarta}{121} (y) . . . . . . . . 200 \Pisymbol{nkarta}{122} (z) . . . . . . . . 200 \Pisymbol{nkarta}{123} ({) . . . . . . . . . . 200 \Pisymbol{nkarta}{124} (|) . . . . . . . 200 \Pisymbol{nkarta}{125} (}) . . . . . . . 200 \Pisymbol{nkarta}{126} (~) . . . . . . . . 200 \Pisymbol{nkarta}{161} (¡) . . . . . . . 200 \Pisymbol{nkarta}{162} (¢) . . . . . . . . 200 \Pisymbol{nkarta}{163} (£) . . . . . . . . 200 \Pisymbol{nkarta}{164} (¤) . . . . . . . . 200 \Pisymbol{nkarta}{165} (¥) . . . . . . . . . . 200 \Pisymbol{nkarta}{166} (¦) . . . . . . . . . . 200 \Pisymbol{nkarta}{167} (§) . . . . . . . 200 \Pisymbol{nkarta}{168} (¨) . . . . . . . . 200 \Pisymbol{nkarta}{169} (©) . . . . . . . . 200 \Pisymbol{nkarta}{170} (ª) . . . . . . . . 200 \Pisymbol{nkarta}{171} («) . . . . . . . . 200 \Pisymbol{nkarta}{172} (¬) . . . . . . . 200 \Pisymbol{nkarta}{173} (­) . . . . . . . . 200 \Pisymbol{nkarta}{174} (®) . . . . . . . . 200 \Pisymbol{nkarta}{175} (¯) . . . . . . . 200 \Pisymbol{nkarta}{176} (°) . . . . . . . . 200 \Pisymbol{nkarta}{177} (±) . . . . . . . . 200 \Pisymbol{nkarta}{178} . . . . . . . 200 \Pisymbol{nkarta}{179} . . . . . . . 200 \Pisymbol{nkarta}{180} . . . . . . . 200 \Pisymbol{nkarta}{181} . . . . . . . 200 \Pisymbol{nkarta}{182} . . . . . . . 200 \Pisymbol{nkarta}{183} . . . . . . . 200 \Pisymbol{nkarta}{184} . . . . . . . 200 \Pisymbol{nkarta}{185} . . . . . . . 200 \Pisymbol{nkarta}{186} . . . . . . . 200 \Pisymbol{nkarta}{187} . . . . . . . 200 \Pisymbol{nkarta}{188} . . . . . . . 200 \Pisymbol{nkarta}{189} . . . . . . . 200 \Pisymbol{nkarta}{190} . . . . . . . 200 \Pisymbol{nkarta}{191} . . . . . . . 200 \Pisymbol{nkarta}{192} . . . . . . . 200 \Pisymbol{nkarta}{193} . . . . . . . 199 \Pisymbol{nkarta}{194} . . . . . . . 199 \Pisymbol{nkarta}{195} . . . . . . . 199 \Pisymbol{nkarta}{196} . . . . . . . 199 \Pisymbol{nkarta}{197} . . . . . . . 199 \Pisymbol{nkarta}{198} . . . . . . . 199 \Pisymbol{nkarta}{199} . . . . . . . 199 \Pisymbol{nkarta}{200} . . . . . . . 199 \Pisymbol{nkarta}{201} . . . . . . . 199 \Pisymbol{nkarta}{202} . . . . . . . 199 \Pisymbol{nkarta}{203} . . . . . . . 199 \Pisymbol{nkarta}{204} . . . . . . . 199 \Pisymbol{nkarta}{205} . . . . . . . 199 \Pisymbol{nkarta}{206} . . . . . . . 199 \Pisymbol{nkarta}{207} . . . . . . . 199 \Pisymbol{nkarta}{208} . . . . . . . 199 (² ) . (³) . (´ ) . (µ ) . (¶) (·) . ( ¸) (¹) (º) . (») (¼) . (½ ) . (¾) . (¿) (À) . (Á ) . ( ) (Ã) . ( Ä) (Å) . (Æ) (Ç) (È) (É) . (Ê ) (Ë) (Ì) (Í ) (Î ) . (Ï) . (Ð ) \Pisymbol{nkarta}{209} . . . . . . . 199 \Pisymbol{nkarta}{210} . . . . . . . 200 \Pisymbol{nkarta}{211} . . . . . . . 200 \Pisymbol{nkarta}{212} . . . . . . . 200 \Pisymbol{nkarta}{213} . . . . . . . 200 \Pisymbol{nkarta}{214} . . . . . . . 200 \Pisymbol{nkarta}{215} . . . . . . . 200 \Pisymbol{nkarta}{216} . . . . . . . 200 \Pisymbol{nkarta}{217} . . . . . . . 200 \Pisymbol{nkarta}{218} . . . . . . . 200 \Pisymbol{nkarta}{219} . . . . . . . 200 \Pisymbol{nkarta}{220} . . . . . . . 200 \Pisymbol{nkarta}{221} . . . . . . . 200 \Pisymbol{nkarta}{222} . . . . . . . 200 \Pisymbol{nkarta}{223} . . . . . . . 200 \Pisymbol{nkarta}{224} . . . . . . . 200 \Pisymbol{nkarta}{225} . . . . . . . 200 \Pisymbol{nkarta}{226} . . . . . . . 200 \Pisymbol{nkarta}{227} . . . . . . . 200 \Pisymbol{nkarta}{228} . . . . . . . 200 \Pisymbol{nkarta}{229} . . . . . . . 200 \Pisymbol{nkarta}{230} . . . . . . . 200 \Pisymbol{nkarta}{231} . . . . . . . 200 \Pisymbol{nkarta}{232} . . . . . . . 200 \Pisymbol{nkarta}{233} . . . . . . . 200 \Pisymbol{nkarta}{234} . . . . . . . 200 \Pisymbol{nkarta}{235} . . . . . . . 200 \Pisymbol{nkarta}{236} . . . . . . . 200 \Pisymbol{nkarta}{237} . . . . . . . 200 \Pisymbol{nkarta}{238} . . . . . . . 200 \Pisymbol{nkarta}{239} . . . . . . . 200 317 (Ñ) (Ò) (Ó) (Ô) (Õ) (Ö ) . (×) . (Ø) (Ù ) (Ú) . ( Û) (Ü ) (Ý ) (Þ) (ß) (à) (á ) . (â ) . (ã) . (ä) . (å) . (æ) . (ç ) (è) (é ) . (ê ) . (ë ) . (ì) . (í ) . (î ) . (ï ) . \Pisymbol{nkarta}{240} (ð) . . . . . . . 200 \Pisymbol{nkarta}{241} (ñ) . . . . . . . 200 \Pisymbol{nkarta}{242} (ò) . . . . . . . . 200 \Pisymbol{nkarta}{243} (ó) . . . . . . . 200 \Pisymbol{nkarta}{244} (ô) . . . . . . . . 200 \Pisymbol{nkarta}{245} (õ) . . . . . . . . 200 \Pisymbol{nkarta}{246} (ö) . . . . . . . 200 \Pisymbol{nkarta}{247} (÷) . . . . . . . . 200 \Pisymbol{nkarta}{248} (ø) . . . . . . . 200 \Pisymbol{nkarta}{249} (ù) . . . . . . . 200 \Pisymbol{nkarta}{250} (ú) . . . . . . . 200 \Pisymbol{nkarta}{251} (û) . . . . . . . 200 \Pisymbol{nkarta}{252} (ü) . . . . . . . 200 \Pisymbol{nkarta}{253} (ý) . . . . . . . 200 \Pisymbol{nkarta}{254} (þ) . . . . . . . 200 \Pisymbol{smfpr10}{34} () . . . . . . . . . 213 \Pisymbol{smfpr10}{35} (#) . . . . . . . 213 \Pisymbol{smfpr10}{36} ($) . . . . . . . 213 \Pisymbol{smfpr10}{42} (*) . . . . . . . 213 \Pisymbol{smfpr10}{46} (.) . . . . . . . 213 \Pisymbol{smfpr10}{48} ($0#) . . . . . . . . . 213 \Pisymbol{smfpr10}{49} ($1#) . . . . . . . . . 213 \Pisymbol{smfpr10}{50} ($2#) . . . . . . . . . 213 \Pisymbol{smfpr10}{51} ($3#) . . . . . . . . . 213 \Pisymbol{smfpr10}{52} ($4#) . . . . . . . . . . 213 \Pisymbol{smfpr10}{53} ($5#) . . . . . . . . . 213 \Pisymbol{smfpr10}{54} ($6#) . . . . . . . . . 213 \Pisymbol{smfpr10}{55} ($7#) . . . . . . . . . 213 \Pisymbol{smfpr10}{56} ($8#) . . . . . . . . . 213 \Pisymbol{smfpr10}{57} ($9#) . . . . . . . . . 213 \Pisymbol{smfpr10}{65} (A) . . . . . . . . 214 \Pisymbol{smfpr10}{66} (B) . . . . . . . . 214 \Pisymbol{smfpr10}{67} (C) . . . . . . . . 214 \Pisymbol{smfpr10}{68} (D) . . . . . . . . 214 \Pisymbol{smfpr10}{69} (E) . . . . . . . . 214 \Pisymbol{smfpr10}{70} (F) . . . . . . . . 214 \Pisymbol{smfpr10}{71} (G) . . . . . . . . 214 \Pisymbol{smfpr10}{72} (H) . . . . . . . . 214 \Pisymbol{smfpr10}{73} (I) . . . . . . . . 214 \Pisymbol{smfpr10}{74} (J) . . . . . . . 214 \Pisymbol{smfpr10}{75} (K) . . . . . . . . 214 \Pisymbol{smfpr10}{76} (L) . . . . . . . 214 \Pisymbol{smfpr10}{77} (M) . . . . . . . 214 \Pisymbol{smfpr10}{78} (N) . . . . . . . 214 \Pisymbol{smfpr10}{79} (O) . . . . . . . . 214 \Pisymbol{smfpr10}{80} (P) . . . . . . . . 214 \Pisymbol{smfpr10}{81} (Q) . . . . . . . 214 \Pisymbol{smfpr10}{82} (R) . . . . . . . 214 \Pisymbol{smfpr10}{83} (S) . . . . . . . 214 \Pisymbol{smfpr10}{84} (T) . . . . . . . . 214 \Pisymbol{smfpr10}{85} (U) . . . . . . . 214 \Pisymbol{smfpr10}{86} (V) . . . . . . . . 214 \Pisymbol{smfpr10}{87} (W) . . . . . . . . 214 \Pisymbol{smfpr10}{88} (X) . . . . . . . . 214 \Pisymbol{smfpr10}{89} (Y) . . . . . . . 214 \Pisymbol{smfpr10}{90} (Z) . . . . . . . . 214 \Pisymbol{smfpr10}{97} (a) . . . . . . . . 214 \Pisymbol{smfpr10}{98} (b) . . . . . . . . 214 \Pisymbol{smfpr10}{99} (c) . . . . . . . . 214 \Pisymbol{smfpr10}{100} (d) . . . . . . . 214 \Pisymbol{smfpr10}{101} (e) . . . . . . . 214 \Pisymbol{smfpr10}{102} (f) . . . . . . . 214 \Pisymbol{smfpr10}{103} (g) . . . . . . . 214 \Pisymbol{smfpr10}{104} (h) . . . . . . . 214 \Pisymbol{smfpr10}{105} (i) . . . . . . . 214 \Pisymbol{smfpr10}{106} (j) . . . . . . . 214 \Pisymbol{smfpr10}{107} (k) . . . . . . . 214 \Pisymbol{smfpr10}{108} (l) . . . . . . . 214 \Pisymbol{smfpr10}{109} (m) . . . . . . . 214 \Pisymbol{smfpr10}{110} (n) . . . . . . . 214 \Pisymbol{smfpr10}{111} (o) . . . . . . . 214 \Pisymbol{smfpr10}{112} (p) . . . . . . . 214 \Pisymbol{smfpr10}{113} (q) . . . . . . . 214 \Pisymbol{smfpr10}{114} (r) . . . . . . . 214 \Pisymbol{smfpr10}{115} (s) . . . . . . . 214 \Pisymbol{smfpr10}{116} (t) . . . . . . . 213 \Pisymbol{smfpr10}{117} (u) . . . . . . . 213 \Pisymbol{smfpr10}{118} (v) . . . . . . . 213 \Pisymbol{smfpr10}{119} (w) . . . . . . . 213 \Pisymbol{smfpr10}{120} (x) . . . . . . . 213 \Pisymbol{smfpr10}{121} (y) . . . . . . . 213 \Pisymbol{smfpr10}{122} (z) . . . . . . . 213 \Pisymbol{smfpr10}{126} (˜) . . . . . . . 213 \Pisymbol{smfpr10}{128} (Ă) . . . . . . . 213 \Pisymbol{smfpr10}{129} (Ą) . . . . . . . 213 \Pisymbol{smfpr10}{130} (Ć) . . . . . . . 213 \Pisymbol{smfpr10}{131} (Č) . . . . . . . 213 \Pisymbol{smfpr10}{132} (Ď) . . . . . . . 213 \Pisymbol{smfpr10}{133} (Ě) . . . . . . . 213 \Pisymbol{smfpr10}{134} (Ę) . . . . . . . 213 \Pisymbol{smfpr10}{135} (Ğ) . . . . . . . 214 \Pisymbol{smfpr10}{136} (Ĺ) . . . . . . . 214 \Pisymbol{smfpr10}{137} (Ľ) . . . . . . . 214 318 \Pisymbol{smfpr10}{138} (Ł) . . . . . . . 214 \Pisymbol{smfpr10}{139} (Ń) . . . . . . . 214 \Pisymbol{smfpr10}{140} (Ň) . . . . . . . 214 \Pisymbol{smfpr10}{142} (Ő) . . . . . . . 214 \Pisymbol{smfpr10}{143} (Ŕ) . . . . . . . 214 \Pisymbol{smfpr10}{144} (Ř) . . . . . . . 214 \Pisymbol{smfpr10}{145} (Ś) . . . . . . . 214 \Pisymbol{smfpr10}{146} (Š) . . . . . . . 214 \Pisymbol{smfpr10}{147} (Ş) . . . . . . . 214 \Pisymbol{smfpr10}{148} (Ť) . . . . . . . 214 \Pisymbol{smfpr10}{149} (Ţ) . . . . . . . 214 \Pisymbol{smfpr10}{150} (Ű) . . . . . . . 214 \Pisymbol{smfpr10}{151} (Ů) . . . . . . . 214 \Pisymbol{smfpr10}{152} (Ÿ) . . . . . . . 214 \Pisymbol{smfpr10}{153} (Ź) . . . . . . . 214 \Pisymbol{smfpr10}{154} (Ž) . . . . . . . 214 \Pisymbol{smfpr10}{155} (Ż) . . . . . . . 214 \Pisymbol{smfpr10}{157} (İ) . . . . . . . 214 \Pisymbol{smfpr10}{158} (đ) . . . . . . . 214 \Pisymbol{smfpr10}{160} (ă) . . . . . . . 214 \Pisymbol{smfpr10}{161} (ą) . . . . . . . 214 \Pisymbol{smfpr10}{162} (ć) . . . . . . . 214 \Pisymbol{smfpr10}{163} (č) . . . . . . . 214 \Pisymbol{smfpr10}{164} (ď) . . . . . . . 214 \Pisymbol{smfpr10}{165} (ě) . . . . . . . 214 \Pisymbol{smfpr10}{166} (ę) . . . . . . . 214 \Pisymbol{smfpr10}{167} (ğ) . . . . . . . 214 \Pisymbol{smfpr10}{168} (ĺ) . . . . . . . 214 \Pisymbol{smfpr10}{169} (ľ) . . . . . . . 214 \Pisymbol{smfpr10}{170} (ł) . . . . . . . 214 \Pisymbol{smfpr10}{171} (ń) . . . . . . . 214 \Pisymbol{smfpr10}{172} (ň) . . . . . . . 214 \Pisymbol{smfpr10}{174} (ő) . . . . . . . 214 \Pisymbol{smfpr10}{175} (ŕ) . . . . . . . 214 \Pisymbol{smfpr10}{176} (ř) . . . . . . . 214 \Pisymbol{smfpr10}{177} (ś) . . . . . . . 214 \Pisymbol{smfpr10}{178} (š) . . . . . . . 214 \Pisymbol{smfpr10}{179} (ş) . . . . . . . 214 \Pisymbol{smfpr10}{180} (ť) . . . . . . . 214 \Pisymbol{smfpr10}{181} (ţ) . . . . . . . 214 \Pisymbol{smfpr10}{182} (ű) . . . . . . . 214 \Pisymbol{smfpr10}{183} (ů) . . . . . . . 214 \Pisymbol{smfpr10}{184} (ÿ) . . . . . . . 213 \Pisymbol{smfpr10}{185} (ź) . . . . . . . 213 \Pisymbol{smfpr10}{186} (ž) . . . . . . . 213 \Pisymbol{smfpr10}{187} (ż) . . . . . . . 213 \Pisymbol{smfpr10}{192} (À) . . . . . . . 213 \Pisymbol{smfpr10}{193} (Á) . . . . . . . 213 \Pisymbol{smfpr10}{194} (Â) . . . . . . . 213 \Pisymbol{smfpr10}{195} (Ã) . . . . . . . 213 \Pisymbol{smfpr10}{196} (Ä) . . . . . . . 213 \Pisymbol{smfpr10}{197} (Å) . . . . . . . 213 \Pisymbol{smfpr10}{199} (Ç) . . . . . . . 213 \Pisymbol{smfpr10}{200} (È) . . . . . . . 213 \Pisymbol{smfpr10}{201} (É) . . . . . . . 213 \Pisymbol{smfpr10}{202} (Ê) . . . . . . . 213 \Pisymbol{smfpr10}{203} (Ë) . . . . . . . 213 \Pisymbol{smfpr10}{204} (Ì) . . . . . . . 214 \Pisymbol{smfpr10}{205} (Í) . . . . . . . 214 \Pisymbol{smfpr10}{206} (Î) . . . . . . . 214 \Pisymbol{smfpr10}{207} (Ï) . . . . . . . 214 \Pisymbol{smfpr10}{209} (Ñ) . . . . . . . 214 \Pisymbol{smfpr10}{210} (Ò) . . . . . . . 214 \Pisymbol{smfpr10}{211} (Ó) . . . . . . . 214 \Pisymbol{smfpr10}{212} (Ô) . . . . . . . 214 \Pisymbol{smfpr10}{213} (Õ) . . . . . . . 214 \Pisymbol{smfpr10}{214} (Ö) . . . . . . . 214 \Pisymbol{smfpr10}{216} (Ø) . . . . . . . 214 \Pisymbol{smfpr10}{217} (Ù) . . . . . . . 214 \Pisymbol{smfpr10}{218} (Ú) . . . . . . . 214 \Pisymbol{smfpr10}{219} (Û) . . . . . . . 214 \Pisymbol{smfpr10}{220} (Ü) . . . . . . . 214 \Pisymbol{smfpr10}{221} (Ý) . . . . . . . 214 \Pisymbol{smfpr10}{224} (à) . . . . . . . 214 \Pisymbol{smfpr10}{225} (á) . . . . . . . 214 \Pisymbol{smfpr10}{226} (â) . . . . . . . 214 \Pisymbol{smfpr10}{227} (ã) . . . . . . . 214 \Pisymbol{smfpr10}{228} (ä) . . . . . . . 214 \Pisymbol{smfpr10}{229} (å) . . . . . . . 214 \Pisymbol{smfpr10}{231} (ç) . . . . . . . 214 \Pisymbol{smfpr10}{232} (è) . . . . . . . 214 \Pisymbol{smfpr10}{233} (é) . . . . . . . 214 \Pisymbol{smfpr10}{234} (ê) . . . . . . . 214 \Pisymbol{smfpr10}{235} (ë) . . . . . . . 214 \Pisymbol{smfpr10}{236} (ì) . . . . . . . 214 \Pisymbol{smfpr10}{237} (í) . . . . . . . 214 \Pisymbol{smfpr10}{238} (î) . . . . . . . 214 \Pisymbol{smfpr10}{239} (ï) . . . . . . . 214 \Pisymbol{smfpr10}{241} (ñ) . . . . . . . 214 \Pisymbol{smfpr10}{242} (ò) . . . . . . . 214 \Pisymbol{smfpr10}{243} (ó) . . . . . . . 214 \Pisymbol{smfpr10}{244} (ô) . . . . . . . 214 \Pisymbol{smfpr10}{245} (õ) . . . . . . . 214 319 \Pisymbol{smfpr10}{246} (ö) . . . . . . . 214 \Pisymbol{smfpr10}{248} (ø) . . . . . . . 214 \Pisymbol{smfpr10}{249} (ù) . . . . . . . 214 \Pisymbol{smfpr10}{250} (ú) . . . . . . . 214 \Pisymbol{smfpr10}{251} (û) . . . . . . . 214 \Pisymbol{smfpr10}{252} (ü) . . . . . . . 214 \Pisymbol{smfpr10}{253} (ý) . . . . . . . 214 \Pisymbol{umranda}{0} ( ) . . . . . . . . 205 \Pisymbol{umranda}{1} () . . . . . . . . 205 \Pisymbol{umranda}{2} () . . . . . . . . 205 \Pisymbol{umranda}{3} () . . . . . . . . 205 \Pisymbol{umranda}{4} () . . . . . . . . 205 \Pisymbol{umranda}{5} () . . . . . . . . 205 \Pisymbol{umranda}{6} () . . . . . . . . 205 \Pisymbol{umranda}{7} () . . . . . . . . 205 \Pisymbol{umranda}{8} () . . . . . . . . 205 \Pisymbol{umranda}{9} ( ) . . . . . . . . 205 \Pisymbol{umranda}{10} ( ) . . . . . . . 205 \Pisymbol{umranda}{11} ( ) . . . . . . . 205 \Pisymbol{umranda}{12} ( ) . . . . . . . 205 \Pisymbol{umranda}{13} ( ) . . . . . . . 205 \Pisymbol{umranda}{14} () . . . . . . . 205 \Pisymbol{umranda}{15} () . . . . . . . 205 \Pisymbol{umranda}{16} () . . . . . . . 205 \Pisymbol{umranda}{17} () . . . . . . . 205 \Pisymbol{umranda}{18} () . . . . . . . 205 \Pisymbol{umranda}{19} () . . . . . . . 205 \Pisymbol{umranda}{20} () . . . . . . . 205 \Pisymbol{umranda}{21} () . . . . . . . 205 \Pisymbol{umranda}{22} () . . . . . . . 205 \Pisymbol{umranda}{49} (1) . . . . . . . 205 \Pisymbol{umranda}{75} (K) . . . . . . . 205 \Pisymbol{umranda}{23} () . . . . . . . 205 \Pisymbol{umranda}{50} (2) . . . . . . . 205 \Pisymbol{umranda}{76} (L) . . . . . . . 205 \Pisymbol{umranda}{24} () . . . . . . . 205 \Pisymbol{umranda}{25} () . . . . . . . 205 \Pisymbol{umranda}{26} () . . . . . . . 205 \Pisymbol{umranda}{27} () . . . . . . . 205 \Pisymbol{umranda}{28} () . . . . . . . 205 \Pisymbol{umranda}{29} () . . . . . . . 205 \Pisymbol{umranda}{30} () . . . . . . . 205 \Pisymbol{umranda}{31} () . . . . . . . 205 \Pisymbol{umranda}{32} ( ) . . . . . . . 205 \Pisymbol{umranda}{33} (!) . . . . . . . 205 \Pisymbol{umranda}{34} (") . . . . . . . 205 \Pisymbol{umranda}{35} (#) . . . . . . . 205 \Pisymbol{umranda}{36} ($) . . . . . . . 205 \Pisymbol{umranda}{37} (%) . . . . . . . 205 \Pisymbol{umranda}{38} (&) . . . . . . . 205 \Pisymbol{umranda}{39} (') . . . . . . . 205 \Pisymbol{umranda}{40} (() . . . . . . . 205 \Pisymbol{umranda}{41} ()) . . . . . . . 205 \Pisymbol{umranda}{42} (*) . . . . . . . 205 \Pisymbol{umranda}{43} (+) . . . . . . . 205 \Pisymbol{umranda}{44} (,) . . . . . . . 205 \Pisymbol{umranda}{45} (-) . . . . . . . 205 \Pisymbol{umranda}{46} (.) . . . . . . . 205 \Pisymbol{umranda}{47} (/) . . . . . . . 205 \Pisymbol{umranda}{48} (0) . . . . . . . 205 \Pisymbol{umranda}{51} (3) . . . . . . . 205 \Pisymbol{umranda}{52} (4) . . . . . . . 205 \Pisymbol{umranda}{53} (5) . . . . . . . . . 205 \Pisymbol{umranda}{54} (6) . . . . . . . . . . 205 \Pisymbol{umranda}{55} (7) . . . . . . . 205 \Pisymbol{umranda}{56} (8) . . . . . . . . . . 205 \Pisymbol{umranda}{77} (M) . . . . . . . 205 \Pisymbol{umranda}{78} (N) . . . . . . . 205 \Pisymbol{umranda}{79} (O) . . . . . . . 205 \Pisymbol{umranda}{80} (P) . . . . . . . 205 \Pisymbol{umranda}{81} (Q) . . . . . . . 205 \Pisymbol{umranda}{82} (R) . . . . . . . 205 \Pisymbol{umranda}{83} (S) . . . . . . . 205 \Pisymbol{umranda}{57} (9) . . . . . . . 205 \Pisymbol{umranda}{84} (T) . . . . . . . 205 \Pisymbol{umranda}{58} (:) . . . . . . . 205 \Pisymbol{umranda}{85} (U) . . . . . . . 205 \Pisymbol{umranda}{86} (V) . . . . . . . . . 205 \Pisymbol{umranda}{87} (W) . . . . . . . . . 205 \Pisymbol{umranda}{59} (;) . . . . . . . 205 \Pisymbol{umranda}{60} (<) . . . . . . . 205 \Pisymbol{umranda}{61} (=) . . . . . . . 205 \Pisymbol{umranda}{62} (>) . . . . . . . 205 \Pisymbol{umranda}{63} (?) . . . . . . . 205 \Pisymbol{umranda}{64} (@) . . . . . . . 205 \Pisymbol{umranda}{65} (A) . . . . . . . . . 205 \Pisymbol{umranda}{66} (B) . . . . . . . . . 205 \Pisymbol{umranda}{67} (C) . . . . . . . 205 \Pisymbol{umranda}{68} (D) . . . . . . . 205 \Pisymbol{umranda}{69} (E) . . . . . . . . . 205 \Pisymbol{umranda}{70} (F) . . . . . . . . . 205 \Pisymbol{umranda}{71} (G) . . . . . . . 205 \Pisymbol{umranda}{72} (H) . . . . . . . 205 \Pisymbol{umranda}{73} (I) . . . . . . . . . 205 \Pisymbol{umranda}{74} (J) . . . . . . . 205 320 \Pisymbol{umranda}{88} (X) . . . . . . . 205 \Pisymbol{umranda}{89} (Y) . . . . . . . 205 \Pisymbol{umranda}{90} (Z) . . . . . . . . . 205 \Pisymbol{umranda}{91} ([) . . . . . . . . . 205 \Pisymbol{umranda}{92} (\) . . . . . . . 205 \Pisymbol{umranda}{93} (]) . . . . . . . 205 \Pisymbol{umranda}{94} (^) . . . . . . . 205 \Pisymbol{umranda}{95} (_) . . . . . . . 205 \Pisymbol{umranda}{96} (`) . . . . . . . 205 \Pisymbol{umranda}{97} (a) . . . . . . . 205 \Pisymbol{umranda}{98} (b) . . . . . . . 205 \Pisymbol{umranda}{99} (c) . . . . . . . 205 \Pisymbol{umranda}{100} (d) . . . . . . . 205 \Pisymbol{umranda}{101} (e) . . . . . . . 205 \Pisymbol{umrandb}{0} ( ) . . . . . . . . 206 \Pisymbol{umrandb}{28} () . . . . . . . 206 \Pisymbol{umrandb}{56} (8) . . . . . . . 206 \Pisymbol{umrandb}{1} () . . . . . . . . 206 \Pisymbol{umrandb}{29} () . . . . . . . 206 \Pisymbol{umrandb}{57} (9) . . . . . . . 206 \Pisymbol{umrandb}{2} () . . . . . . . . 206 \Pisymbol{umrandb}{30} () . . . . . . . 206 \Pisymbol{umrandb}{58} (:) . . . . . . . 206 \Pisymbol{umrandb}{3} () . . . . . . . . 206 \Pisymbol{umrandb}{31} () . . . . . . . 206 \Pisymbol{umrandb}{59} (;) . . . . . . . 206 \Pisymbol{umrandb}{4} () . . . . . . . . 206 \Pisymbol{umrandb}{32} ( ) . . . . . . . 206 \Pisymbol{umrandb}{60} (<) . . . . . . . 206 \Pisymbol{umrandb}{5} () . . . . . . . . 206 \Pisymbol{umrandb}{33} (!) . . . . . . . 206 \Pisymbol{umrandb}{61} (=) . . . . . . . 206 \Pisymbol{umrandb}{6} () . . . . . . . . 206 \Pisymbol{umrandb}{34} (") . . . . . . . 206 \Pisymbol{umrandb}{62} (>) . . . . . . . 206 \Pisymbol{umrandb}{7} () . . . . . . . . 206 \Pisymbol{umrandb}{35} (#) . . . . . . . 206 \Pisymbol{umrandb}{63} (?) . . . . . . . 206 \Pisymbol{umrandb}{8} () . . . . . . . . 206 \Pisymbol{umrandb}{36} ($) . . . . . . . 206 \Pisymbol{umrandb}{64} (@) . . . . . . . 206 \Pisymbol{umrandb}{9} ( ) . . . . . . . . 206 \Pisymbol{umrandb}{37} (%) . . . . . . . 206 \Pisymbol{umrandb}{65} (A) . . . . . . . 206 \Pisymbol{umrandb}{10} ( ) . . . . . . . 206 \Pisymbol{umrandb}{38} (&) . . . . . . . 206 \Pisymbol{umrandb}{66} (B) . . . . . . . 206 \Pisymbol{umrandb}{11} ( ) . . . . . . . 206 \Pisymbol{umrandb}{39} (') . . . . . . . 206 \Pisymbol{umrandb}{67} (C) . . . . . . . 206 \Pisymbol{umrandb}{12} ( ) . . . . . . . 206 \Pisymbol{umrandb}{40} (() . . . . . . . 206 \Pisymbol{umrandb}{68} (D) . . . . . . . 206 \Pisymbol{umrandb}{13} ( ) . . . . . . . 206 \Pisymbol{umrandb}{41} ()) . . . . . . . 206 \Pisymbol{umrandb}{69} (E) . . . . . . . 206 \Pisymbol{umrandb}{14} () . . . . . . . 206 \Pisymbol{umrandb}{42} (*) . . . . . . . 206 \Pisymbol{umrandb}{70} (F) . . . . . . . 206 \Pisymbol{umrandb}{15} () . . . . . . . 206 \Pisymbol{umrandb}{43} (+) . . . . . . . 206 \Pisymbol{umrandb}{71} (G) . . . . . . . 206 \Pisymbol{umrandb}{16} () . . . . . . . 206 \Pisymbol{umrandb}{44} (,) . . . . . . . 206 \Pisymbol{umrandb}{72} (H) . . . . . . . 206 \Pisymbol{umrandb}{17} () . . . . . . . 206 \Pisymbol{umrandb}{45} (-) . . . . . . . 206 \Pisymbol{umrandb}{73} (I) . . . . . . . 206 \Pisymbol{umrandb}{18} () . . . . . . . 206 \Pisymbol{umrandb}{46} (.) . . . . . . . 206 \Pisymbol{umrandb}{74} (J) . . . . . . . 206 \Pisymbol{umrandb}{19} () . . . . . . . 206 \Pisymbol{umrandb}{47} (/) . . . . . . . 206 \Pisymbol{umrandb}{75} (K) . . . . . . . 206 \Pisymbol{umrandb}{20} () . . . . . . . 206 \Pisymbol{umrandb}{48} (0) . . . . . . . 206 \Pisymbol{umrandb}{76} (L) . . . . . . . 206 \Pisymbol{umrandb}{21} () . . . . . . . 206 \Pisymbol{umrandb}{49} (1) . . . . . . . 206 \Pisymbol{umrandb}{77} (M) . . . . . . . 206 \Pisymbol{umrandb}{22} () . . . . . . . 206 \Pisymbol{umrandb}{50} (2) . . . . . . . 206 \Pisymbol{umrandb}{78} (N) . . . . . . . 206 \Pisymbol{umrandb}{23} () . . . . . . . 206 \Pisymbol{umrandb}{51} (3) . . . . . . . 206 \Pisymbol{umrandb}{79} (O) . . . . . . . 206 \Pisymbol{umrandb}{24} () . . . . . . . 206 \Pisymbol{umrandb}{52} (4) . . . . . . . 206 \Pisymbol{umrandb}{80} (P) . . . . . . . 206 \Pisymbol{umrandb}{25} () . . . . . . . 206 \Pisymbol{umrandb}{53} (5) . . . . . . . 206 \Pisymbol{umrandb}{81} (Q) . . . . . . . 206 \Pisymbol{umrandb}{26} () . . . . . . . 206 \Pisymbol{umrandb}{54} (6) . . . . . . . 206 \Pisymbol{umrandb}{82} (R) . . . . . . . 206 \Pisymbol{umrandb}{27} () . . . . . . . 206 \Pisymbol{umrandb}{55} (7) . . . . . . . 206 \Pisymbol{umrandb}{83} (S) . . . . . . . 206 321 \Pisymbol{umrandb}{84} (T) . . . . . . . 206 \Pisymbol{umrandb}{112} (p) . . . . . . . 206 \Pisymbol{umrandb}{85} (U) . . . . . . . 206 \Pisymbol{umrandb}{113} (q) . . . . . . . 206 \Pisymbol{umrandb}{86} (V) . . . . . . . 206 \Pisymbol{umrandb}{114} (r) . . . . . . . 206 \Pisymbol{umrandb}{87} (W) . . . . . . . 206 \Pisymbol{umrandb}{115} (s) . . . . . . . 206 \Pisymbol{umrandb}{88} (X) . . . . . . . 206 \Pisymbol{umrandb}{116} (t) . . . . . . . 206 \Pisymbol{umrandb}{89} (Y) . . . . . . . 206 \Pisymbol{umrandb}{117} (u) . . . . . . . 206 \Pisymbol{umrandb}{90} (Z) . . . . . . . 206 \Pisymbol{umrandb}{118} (v) . . . . . . . 206 \Pisymbol{umrandb}{91} ([) . . . . . . . 206 \Pisymbol{umrandb}{119} (w) . . . . . . . 206 \Pisymbol{umrandb}{92} (\) . . . . . . . 206 \Pisymbol{umrandb}{120} (x) . . . . . . . 206 \Pisymbol{umrandb}{93} (]) . . . . . . . 206 \Pisymbol{umrandb}{121} (y) . . . . . . . 206 \Pisymbol{umrandb}{94} (^) . . . . . . . 206 \Pisymbol{umrandb}{122} (z) . . . . . . . 206 \Pisymbol{umrandb}{95} (_) . . . . . . . 206 \Pisymbol{umrandb}{123} ({) . . . . . . . 206 \Pisymbol{WebOMintsGD}{47} (/) . . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{48} (0) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{49} (1) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{50} (2) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{51} (3) . . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{52} (4) . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{53} (5) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{54} (6) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{55} (7) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{56} (8) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{57} (9) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{65} (A) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{66} (B) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{67} (C) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{68} (D) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{69} (E) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{70} (F) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{71} (G) . . . . . . . . . . . 204 \Pisymbol{umrandb}{96} (`) . . . . . . . 206 \Pisymbol{umrandb}{97} (a) . . . . . . . 206 \Pisymbol{umrandb}{98} (b) . . . . . . . 206 \Pisymbol{umrandb}{99} (c) . . . . . . . 206 \Pisymbol{umrandb}{100} (d) . . . . . . . 206 \Pisymbol{umrandb}{101} (e) . . . . . . . 206 \Pisymbol{umrandb}{102} (f) . . . . . . . 206 \Pisymbol{umrandb}{103} (g) . . . . . . . 206 \Pisymbol{umrandb}{104} (h) . . . . . . . 206 \Pisymbol{umrandb}{105} (i) . . . . . . . 206 \Pisymbol{umrandb}{106} (j) . . . . . . . 206 \Pisymbol{umrandb}{107} (k) . . . . . . . 206 \Pisymbol{umrandb}{108} (l) . . . . . . . 206 \Pisymbol{umrandb}{109} (m) . . . . . . . 206 \Pisymbol{umrandb}{110} (n) . . . . . . . 206 \Pisymbol{umrandb}{111} (o) . . . . . . . 206 322 \Pisymbol{WebOMintsGD}{72} (H) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{73} (I) . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{74} (J) . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{75} (K) . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{76} (L) . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{77} (M) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{78} (N) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{79} (O) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{80} (P) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{81} (Q) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{82} (R) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{83} (S) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{84} (T) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{85} (U) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{86} (V) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{87} (W) . . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{88} (X) . . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{89} (Y) . . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{90} (Z) . . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{91} ([) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{93} (]) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{97} (a) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{98} (b) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{99} (c) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{100} (d) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{101} (e) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{102} (f) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{103} (g) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{104} (h) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{105} (i) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{106} (j) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{107} (k) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{108} (l) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{109} (m) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{110} (n) . . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{111} (o) . . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{112} (p) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{113} (q) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{114} (r) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{115} (s) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{116} (t) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{117} (u) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{118} (v) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{119} (w) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{120} (x) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{121} (y) . . . . . . . . . . . 204 \Pisymbol{WebOMintsGD}{122} (z) . . . . . . . . . . . 204 \pitchfork (&) . . . . . . . . 119 \pitchfork (t) . . . . . . . . 50 \pitchfork (ß) . . . . . . . . 57 \pitchfork (⋔) . . . . . . . . 90 \pitchfork (⋔) . . . . . . . . 88 \pitchfork (⋔) . . . . . . . . 58 pitchforks 50, 88, 90, 113, 119 Pitman’s base 12 symbols 117, 180 \piup (π) . . . . . . . . . . . . 94 \planck (h̄) . . . . . . . . . . 19 \Plane ( ) . . . . . . . . . . . 146 planets . . . 126–128, 201–203 \plasmon (𝑝) . . . . . . . . 133 playing cards . . . . . . 145, 146 Plimsoll line . . . 224, see also “texttt“string“minuso \Plus (') . . . . . . . . . . . . 137 \plus (+) . . . . . . . . . . . . 157 \plus (+) . . . . . . . . . . . . 32 \plus (+) . . . . . . . . . . . . 32 plus-or-minus sign . . . see \pm \PlusCenterOpen (() . . . 137 \pluscirc (¯) . . . . . . . . 31 \pluscirc (è) . . . . . . . . . 33 \plusdot (⨥) . . . . . . . . . 33 \plusdot (⨥) . . . . . . . . . 34 \pluseqq (⩲) . . . . . . . . . 34 \plushat (⨣) . . . . . . . . . 34 \PlusOutline (&) . . . . . . 137 plusses . . . 137, 146, 199–200 \plussim (⨦) . . . . . . . . . 34 \plussubtwo (⨧) . . . . . . . 34 \PlusThinCenterOpen ()) 137 \plustrif (õ) . . . . . . . . . 33 \plustrif (⨨) . . . . . . . . . 34 \Pluto (I) . . . . . . . . . . . 127 \Pluto (É) . . . . . . . . . . . 126 \Pluto (J) . . . . . . . . . . . 128 \pluto (\) . . . . . . . . . . . 126 \pm (±) . . . . . . . . . . . . . 30 \pm (~) . . . . . . . . . . . . . . 33 \pm (±) . . . . . . . . . . . . . . 33 \pm (±) . . . . . . . . . . . . . . 32 \pm (±) . . . . . . . . . . . . . . 34 \pm ( ) . . . . . . . . . . . . . . 183 ˙ \pmb ¯. . . . . . . . . . . . . . . . 233 pmboxdraw (package) 185, 239, 240 \pmod . . . . . . . . . . . . . . . 91 \pod . . . . . . . . . . . . . . . . 91 \pointer ( ) . . . . . . . . . . 176 pointing finger . . . . . see fists \PointingHand ⨕ (Z) . . . . . 177 \pointint ( ) . . . . . . . . . 49 \pointint (⨕) . . . . . . . . . 46 \pointintsl (⨕) . . . . . . . 48 \pointintup (⨕) . . . . . . . 48 \pointright (☞) . . . . . . . 137 \Poland () . . . . . . . . . . 189 \polariton (𝜙) . . . . . . . . 133 \polaron (𝑘) . . . . . . . . 133 \polishhook (~) . . . . . . . 24 ) . . . . . . . . . 114 \polter ( polutonikogreek (babel package option) . . . . . 15, 93, 94 polygons . . . . . . . . . . . . . . . . . 140–142, 144–145, 169– 173, 199–200, 215–216 polynom (package) . . . . . . 107 polynomial division . . . . . 107 polytonic Greek . . . 15, 93, 94 \portato ( ) . . . . . . . . . . 164 \portatoDown ( ) . . . . . . . 164 \Portugal () . . . . . . . . . 189 \Poseidon (§) . . . . . . . . 128 \positron (𝑚) . . . . . . . . 133 \postalmark (〒) . . . . . . . 121 \Postbox ( ) . . . . . . . . . 187 PostScript . 94, 124, 134, 222, 232 PostScript fonts . . . . . . . . 134 \pot ( ) . . . . . . . . . . . . 191 \Pound ( ) . . . . . . . . . . . 26 \pounds . . . . . . . . . . . . . 15 \pounds (£) . . . . . . 235, 236 power set see alphabets, math \powerset (℘) . . . . . . . . . 96 \Pp (˙) . . . . . . . . . . . . . . 183 \pp (˙˙ ) . . . . . . . . . . . . . 183 \ppm (˙ ) . . . . . . . . . . . . . 183 ˙˙˙) . . . . . . . . . . . . . 183 \Ppp (¯ ˙ \ppp (˙˙ ) . . . . . . . . . . . . 183 # þ ˙˙ 323 \Pppp (˙) . . . . . . . . . . . . . 183 ˙ \pppp ( ˙ ) . . . . . . . . . . . 183 ˙ \Ppppp (˙) . . . . . . . . . . . . 183 ˙ \ppppp (˙˙ ) . . . . . . . . . . . 183 ˙ \Pr (Pr) ˙ . . . . . . . . . . . . . 91 \Prec (⪻) . . . . . . . . . . . . 58 \prec (≺) . . . . . . . . . . . 50 \prec (≺) . . . . . . . . . . . . 55 \prec (≺) . . . . . . . . . . . . 53 \prec (≺) . . . . . . . . . . . . 58 \precapprox (Æ) . . . . . . . 52 \precapprox (w) . . . . . . . 50 \precapprox (¸) . . . . . . . 57 \precapprox (⪷) . . . . . . . 55 \precapprox (⪷) . . . . . . . 53 \precapprox (⪷) . . . . . . . 58 \preccurlyeq (ď) . . . . . . 52 \preccurlyeq (4) . . . . . . 50 \preccurlyeq (Î) . . . . . . 57 \preccurlyeq (≼) . . . . . . 55 \preccurlyeq (≼) . . . . . . 53 \preccurlyeq (≼) . . . . . . 58 \precdot (Ì) . . . . . . . . . 52 \preceq (⪯) . . . . . . . . . . 50 \preceq (⪯) . . . . . . . . . . 55 \preceq (⪯) . . . . . . . . . . . 53 \preceq (⪯) . . . . . . . . . . 58 \preceqq () . . . . . . . . . 51 \preceqq (⪳) . . . . . . . . . . 55 \preceqq (⪳) . . . . . . . . . 58 \precnapprox (Ê) . . . . . . 52 \precnapprox () . . . . . . 51 \precnapprox () . . . . . . 57 \precnapprox (⪹) . . . . . . 55 \precnapprox (⪹) . . . . . . 54 \precnapprox (⪹) . . . . . . 58 \precneq (ň) . . . . . . . . . 52 \precneq (⪱) . . . . . . . . 55, 56 \precneq (⪱) . . . . . . . . . 58 \precneqq () . . . . . . . . 51 \precneqq () . . . . . . . . . 57 \precneqq (⪵) . . . . . . . 55, 56 \precneqq (⪵) . . . . . . . . . 58 \precnsim (Ä) . . . . . . . . 52 \precnsim () . . . . . . . . 51 \precnsim () . . . . . . . . . 57 \precnsim (⋨) . . . . . . . . . 55 \precnsim (⋨) . . . . . . . . . 54 \precnsim (⋨) . . . . . . . . . 58 \precsim (À) . . . . . . . . . 52 \precsim (-) . . . . . . . . . 50 \precsim (º) . . . . . . . . . 57 \precsim (≾) . . . . . . . . . . 55 \precsim (≾) . . . . . . . . . . 53 \precsim (≾) . . . . . . . . . 59 prescription . see \textrecipe present-value symbols . . 111, 227–228 \prime (′) . . . . . . . . . . . . 118 \prime (′) . . . . . . . . . . . . 120 \prime (′) . . . . . . . . . . . . 119 \prime (′) . . . . . . . . . . . . 117 primes . . . . . . . . . . 117–120 \Printer (Ò) . . . . . . . . . 129 printer’s fist . . . . . . see fists printer’s flowers . . see fleurons and flowers probabilistic independence 225 probability limit ( plim ) . see 𝑛→∞ \DeclareMathOperator ∏︀ \prod ( ) . . . . . . . . . . . . 40 \prod (∏) . . . . . . . . . . . 45 \prod (∏) . . . . . . . . . . . . 44 ∏ \prod ( ) . . . . . . . . . . . . 46 \PRODI . . . . . . . . . . . . . . 50 \PRODI (T) . . . . . . . . . \Prodi . . . . . . . . . . . . . . 50 50 \Prodi (R) . . . . . . . . . . 50 \prodi . . . . . . . . . . . . . . 50 \prodi (P) . . . . . . . . . . . 50 prodint (package) . . . . 50, 239 product integrals . . . . . . . 50 \profline (⌒) . . . . . . . . 121 \profsurf (⌓) . . . . . . . . 121 Project Gutenberg . . . . . . 222 projective space (P) . . . . see alphabets, math \projlim (proj lim) . . . . 91 pronunciation symbols . . . see phonetic symbols proof, end of . . . . . . 118, 121 proper subset/superset . . . see \subsetneq/\supsetneq proper vertices . . . . . . . . 132 \PropertyLine (⅊) . . . . . 121 \propfrom () . . . . . . . . 55 \propto (9) . . . . . . . . . . 119 \propto (∝) . . . . . . . . . . 50 \propto (∝) . . . . . . . . . . 55 \propto (∝) . . . . . . . . . . 53 \propto (∝) . . . . . . . . . . 59 \protein (Õ) . . . . . . . . . . 132 proto-Semitic symbols . . . 148 \proton (𝑑) . . . . . . . . . . 132 protosem (package) . 148, 239, 240 \ProvidesPackage . . . . . . 239 \PrtSc ( PrtSc ) . . . . . . . 129 \prurel (:) . . . . . . . . . . 57 \prurel (⊰) . . . . . . . . . . 59 \ps ( ) . . . . . . . . . . . . . 183 pseudographics . . . . . . . . 185 \Psi (Ψ) . . . . . . . . . . . . 93 \psi (𝜓) . . . . . . . . . . . . . 93 \psiup (ψ) . . . . . . . . . . . 94 psnfss (package) . . . . . . . . 138 PSTricks (package) . . . . . . 193 \Psyche (¿) . . . . . . . . . . 128 \Pu (‰ ) . . . . . . . . . . . . . . 160 \pullback (⟓) . . . . . . . . . 33 \pullback (⟓) . . . . . . . . . 59 pullback diagrams . . . . . . 226 pulse diagram symbols . . . 125 $ % \PulseHigh ( ) . . . . . . . 125 \PulseLow ( ) . . . . . . . 125 \pumpkin ( ) . . . . . . . . . 38 pumpkins . . . . . . . . . . . . 38 punctuation . . . . . . . . . . 16 punctum . . . . . . see musixgre \Purierstab ( ) . . . . . . . 191 \pushout (⟔) . . . . . . . . . 33 \pushout (⟔) . . . . . . . . . 59 pushout diagrams . . . . . . 226 \pwedge (U) . . . . . . . . . . 19 pxfonts (package) . . . . . . . 29, 31, 42, 51, 62, 65, 73, 90, 94–96, 118, 119, 123, 145, 219, 234 \Pxp (˙) . . . . . . . . . . . . . 183 ˙ \pxp ( ˙ ) . . . . . . . . . . . . 183 ˙ Q.E.D. . . \QED (∎) . \Qoppa (]) \qoppa (*) \qoppa (ϟ) Q ... ... .. ... ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118, ... ... ... ... 121 121 154 154 154 > \qp () . . . . . . . . . . . . . . . 159 \qprime (⁗) . . . . . . . . . . 117 \QQ (' ) . . . . . . . . . . . . . . 129 B \qqs () . . . . . . . . . . . . . . 159 @ \qs () . . . . . . . . . . . . . . . 159 \qside (M) . . . . . . . . . . . 181 \quaddot (<) . . . . . . . . . . 157 \quadeye (?) . . . . . . . . . . 157 \Quadrad (]]) . . . . . . . . . . 105 \quadrad (]]) . . . . . . . . . . 105 \Quadras ([[) . . . . . . . . . . 105 \quadras ([[) . . . . . . . . . . 105 \quadrupole (Ô) . . . . . . . 132 \quark (𝑂) . . . . . . . . . . . . 132 \quarkb (𝑃) . . . . . . . . . . . 132 \quarkc (𝑄) . . . . . . . . . . . 132 \quarkd (𝑅) . . . . . . . . . . . 132 \quarks (𝑆) . . . . . . . . . . . 132 \quarkt (𝑇) . . . . . . . . . . . 132 \quarku (𝑈) . . . . . . . . . . . 132 quarter note . . . . see musical symbols \quarterNote ( C ) . . . . . . 161 \quarternote (♩) . . . . . . 158 \quarternote (♩) . . . . . . . 158 \quarternote (♩) . . . . . . . 158 \quarterNoteDotted ( u ) . 162 \quarterNoteDottedDouble ( u u ) . . . . . . . . . . . 162 \quarterNoteDottedDoubleDown uu ( ) . . . . . . . . . . . 162 u \quarterNoteDottedDown ( ) . . . . . . . . 161 C \quarterNoteDown ( ) . . . 161 324 quasi-quotation marks (p q) . . . . . see \ulcorner and \urcorner quaternions (H) see alphabets, math quaver . see musical symbols \quaver ( ) . . . . . . . . . . 162 \quaverDotted ( ) . . . . . 162 \quaverDottedDouble ( ) 162 \quaverDottedDoubleDown ( ) . . . . . . . 162 \quaverDottedDown ( ) . . 162 \quaverDown ( ) . . . . . . . 162 \quaverRest ( ) . . . . . . . 163 \quaverRestDotted ( ) . . 163 queen . . . . . . . . 182, 217–218 \questeq (≟) . . . . . . . . . 59 \Question (⁇) . . . . . . . . 121 quilisma . . . . . . see musixgre \Quincunx (o) . . . . . . . . . 128 Quine corners (p q) . . . . see \ulcorner and \urcorner quotation marks . . 14, 16, 27, 190, 234, 237 \quotedblbase („) . . . 16, 237 \quotesinglbase (‚) . 16, 237 R R (R) . . . . . . . . . . . . . . . 157 \R (Ž) . . . . . . . . . . . . . . 157 \R (∼) . . . . . . . . . . . . . . 183 \r (å) . . . . . . . . . . . . . . . 20 \r (∼) . . . . . . . . . . . . . . 183 r (r) . . . . . . . . . . . . . . . . 157 r (r) . . . . . . . . . . . . . . . . 123 \Radiation ( ) . . . . . . . 178 \radiation (☢) . . . . . . . . 190 radicals . see \sqrt and \surd \Radioactivity (j) . . . . 131 \Radix ()) . . . . . . . . . . . 128 \Rain ( ) . . . . . . . . . . . . 178 \RainCloud ( ) . . . . . . . 178 raindrop . . . . . . . . . . . . . 217 raising . . . see \textraising \RaisingEdge ( ) . . . . . . 125 \Rangle (>) . . . . . . . . . . 124 \rAngle (⟩⟩) . . . . . . . . . . . 104 \rAngle (⟫) . . . . . . . . . . 101 ⟫ \rAngle ( ) . . . . . . . . . 103 \rangle (⟩) . . . . . . . . . 29, 99 \rangle (⟩) . . . . . . . . . . . 101 \rangle (⟩) . . . . . . . . . . . 100 ⟩ \rangle ( ) . . . . . . . . . . 103 \ranglebar (s) . . . . . . . . 101 \rangledot (⦒) . . . . . . . . 101 \rangledot (⦒) . . . . . . . . 98 \rangledownzigzagarrow (⍼) . . . . . . . 118 \rank (rank) . . . . . . . . . 92 \RArrow ( → ) . . . . . . . . 129 \rarrowfill . . . . . . . . . . 111 \ratio (:) . . . . . . . . . . . . 61 \RATIONAL ( ) . . . . . . . . . 92 \Rational ( ) . . . . . . . . . 92 rational numbers (Q) . . . . see alphabets, math rationalized Planck constant see \hbar Raw Font Tables . . . . 12, 123 \RB (}) . . . . . . . . . . . . . . 129 \Rbag (Q) . . . . . . . . . . . . 98 \rbag (O) . . . . . . . . . . . . 98 \rbag (ß) . . . . . . . . . . . . . 33 \rbag (⟆) . . . . . . . . . . . . 98 \rblackbowtie (í) . . . . . 33 \rblkbrbrak (⦘) . . . . . . . 98 ⦄ ½ Ñ \rBrace ( \rbrace (}) ) . . . . . . . . . 103 . . . . . . . . . . 101 \rbrace (}) . . . . . . . . . . . 102 ⎫ ⎪ ⎪ \rbrace ( ⎬) . . . . . . . . . 101 }⎪ ⎭ \rbrace ( ) . . . . . . . . . . 103 \Rbrack (]) . . . . . . . . . . . 124 \rBrack (]]) . . . . . . . . . . . 104 \rBrack (⟧) . . . . . . . . . . 102 \rBrack (⟧) . . . . . . . . . . . 102 ⟧ \rBrack ( ) . . . . . . . . . . 103 \rbrack (]) . . . . . . . . . . . 102 \rbrack (]) . . . . . \rbracklrtick (⦎) \rbrackubar (⦌) . \rbrackurtick (⦐) \Rbrbrak (⟭) . . . . ❳ \rbrbrak ( . . . . . . . . . . . . . . . . . . . . . . . . . . 102 . 98 . 98 . 98 . 98 ) . . . . . . . . . 103 \rc (a) . . . . . . . . . . . . . . 23 \rCeil (⌉⌉) . . . . . . . . . . . 104 \rceil (⌉) . . . . . . . . . . . 99 \rceil (⌉) . . . . . . . . . . . 102 ⎤⎥ \rceil ( ⎥⎥⎥) . . . . . . . . . . . 100 ⌉⎥ \rceil ( ) . . . . . . . . . . . 102 \rcirclearrowdown (û) . 75 \rcirclearrowleft (⟲) . 75 \rcirclearrowright (⤿) 75 \rcirclearrowup (↺) . . . 75 \rcircleleftint (∳) . . . 45 \rcircleleftint (∳) . . . . 44 \rcirclerightint (∳) . . . 45 \rcirclerightint (∳) . . . 44 \rcorners (w) . . . . . . . . . 98 \rcurvearrowdown (⤹) . . . 75 \rcurvearrowleft (↶) . . 75 \rcurvearrowne (Ä) . . . . 75 \rcurvearrownw (Å) . . . . 75 \rcurvearrowright (À) . . 75 \rcurvearrowse (Ç) . . . . 75 \rcurvearrowsw (Æ) . . . . 75 \rcurvearrowup (Á) . . . . . 75 \rcurvyangle (⧽) . . . . . . 98 \rdbrack (w) . . . . . . . . . . 100 \rdiagovfdiag (⤫) . . . . . 121 \rdiagovsearrow (⤰) . . . 84 \Rdsh (↳) . . . . . . . . . . . . 78 \Rdsh (↳) . . . . . . . . . . . . 84 \Re (Re) . . . . . . . . . . . . . 92 \Re (ℜ) . . . . . . . . . . . 92, 96 \Re (ℜ) . . . . . . . . . . . . . 97 \REAL ( ) . . . . . . . . . . . . 92 \Real ( ) . . . . . . . . . . . . 92 real numbers (R) . . . . . . . see alphabets, math realhats (package) 107, 239, 240 recipe . . . . . see \textrecipe \recorder () . . . . . . . . . 176 \Rectangle (u) . . . . . . . . 143 \RectangleBold (v) . . . . . 143 rectangles . 143, 144, 169–173, 199–200 \RectangleThin (t) . . . . . 143 \Rectpipe () . . . . . . . . . 131 \Rectsteel () . . . . . . . . 131 recycle (package) . . . 187, 239 \recycle (♻) . . . . . . . . . 190 ¾ Ò A \recycle ( ) . . . . 187 \Recycling (Þ) . . . . . . . 187 recycling symbols . . 186, 187, 190, 192–197, 199 reduced quadrupole moment see \rqm \reference (𝑙) . . . . . . . . 132 \reflectbox . . . . . . . . . . 222 registered trademark . 14, 26, 236 \Reibe ( ) . . . . . . . . . . . . 191 relational database symbols 121 relational symbols . . . . . . 50 binary . 50–53, 55, 57–69, 88–90 negated binary . . 51, 52, 54–57, 59 triangle . . . . . . . . 69–71 325 \relationleftproject ( « »&) . . . . . . . . . 113 \relationlifting ( $—##) . . 113 \relationrightproject ( $– #„) . . . . . . . . 113 relations . . . . . . . . . . . . . 113 \Relbar (=) . . . . . . . 90, 223 \Relbar (Ô) . . . . . . . . . . 53 \Relbar (⇐) . . . . . . . . . . . 91 \relbar (−) . . . . . . . 90, 223 \relbar (Ð) . . . . . . . . . . 53 \relbar (←) . . . . . . . . . . . 91 relsize (package) . . . . . . . . 23 \Request ( ) . . . . . . . . . 187 \resistivity (𝛯) . . . . . . 132 \resizebox . . . . . . . . 87, 219 \Respondens (∼) . . . . . . 183 \respondens ( ∼) . . . . . . . 183 response ( ) . . . . . . . . . . 238 \restoresymbol . . . . . . . 219 \restrictbarb (‰) . . . . . . 88 \restrictbarbup ()) . . . . 88 \restriction (æ) . . . . . . 73 \restriction (↾) . . . . . . 81 \restriction (↾) . . . . . . 77 \restriction (↾) . . . . . . 86 restrictions 73, 77, 81, 82, 86, 88 \restrictmallet (”) . . . . 88 \restrictmalletup (*) . . 88 \restrictwand () . . . . . . 88 \restrictwandup (() . . . . 88 rests . . . see musical symbols retracting . . . . . . . . . . . . see \textretracting \Retrograde (5) . . . . . . . 128 \Return ( ←˒ ) . . . . . . . 129 return . . . see carriage return \revangle (⦣) . . . . . . . . . 118 \revangle (⦣) . . . . . . . . . 118 \revangleubar (⦥) . . . . . 118 Ñ Ñ \revaw ( ÑÑ) . . . . . . . . . . . 103 ¿ \revD () . . . . . . . . . . \revddots ( . . ) . . . . . \reve () . . . . . . . . . \reveject (f) . . . . . . \revemptyset (⦰) . . . \revemptyset (⦰) . . . \revepsilon () . . . . \revepsilon () . . . . reverse solidus . . . . . . \textbackslash \reverseallabreve ( T . . . . . . . . . {) . . . . . . . . . . . . . . . . . . 19 227 19 19 120 117 19 222 see . 159 \reverseC ( ) ...... reversed symbols . . . . . . . \reversedvideodbend ( ) \reversemathcloud ( ) \reversemathwitch ( ) \reversemathwitch* ( ) \revglotstop (c) . . . . . . 159 222 176 38 38 38 19 \revmeasuredangle (⦛) . \revnmid (⫮) . . . . . . . . . \revsphericalangle (⦠) \Rewind (¶) . . . . . . . . . \RewindToIndex (´) . . \RewindToStart (µ) . . . \rfbowtie? (⧒) . . . . . . . ? \rfilet (??) . . . . . . . . . . . . . . . . . 118 59 118 177 177 177 59 . 100 \rFloor (⌋⌋) . . . . . . . . . . . 104 \rfloor (⌋) . . . . . . . . . . 99 \rfloor (⌋) . . . . . . . . . . . 102 ⎥⎥ \rfloor ( ⎥⎥⎥) . . . . . . . . . . 100 ⌋⎦ \rfloor ( ) . . . . . . . . . . 102 \rftimes ⎫ (⧕) . . . . . . . . . 59 ⎭ \rgroup ( ) . . . . . . . . . . 99 ⎫ ⎪ ⎪ ⎪ \rgroup ( ⎪ ⎭) . . . . . . . . . . 102 ⎫ ⎪ ⎪ ⎪ \rgroup ( ⎪ ⎭) . . . . . . . . . 100 ⎧ \rgroup ( ⎪) . . . . . . . . . 102 ⎩ \RHD () . . . . . . . . . . . . . 31 \rhd (B) . . . . . . . . . . . 30, 31 \rhd (⊳) . . . . . . . . . . . . . 67 \rhd (⊳) . . . . . . . . . . . 66, 70 \rhd (⊳) . . . . . . . . . . 34, 142 \Rho (P) . . . . . . . . . . . . . 93 \rho (𝜌) . . . . . . . . . . . . . 93 \rho (ρ ) . . . . . . . . . . . . . 94 \rhombus ( ) . . . . . . . . . 145 \rhombuscross ( ) . . . . . 145 \rhombusdot ( ) . . . . . . . 145 rhombuses . . . . . . 30, 31, 36– 38, 73, 118, 119, 140–147, 169–173, 176, 178, 199– 200, 215–216 \rhombusfill ( ) . . . . . . 145 \rhombusfillha ( ) . . . . 144 \rhombusfillhb ( ) . . . . 144 \rhombusfillhl ( ) . . . . 144 \rhombusfillhr ( ) . . . . 144 \rhombuslineh ( ) . . . . . 144 \rhombuslinev ( ) . . . . . 144 \rhombuslinevh ( ) . . . . 144 \rhomesonminus (æ) . . . . 132 \rhomesonnull (ç) . . . . . 132 \rhomesonplus (å) . . . . . 132 \rhook () . . . . . . . . . . . . 91 \rhookdownarrow (;) . . . . 79 \rhookdownarrow (;) . . . . 75 \rhookleftarrow (↩) . . . 79 \rhookleftarrow (↩) . . . 75 \rhooknearrow (⤤) . . . . . 79 \rhooknearrow (⤤) . . . . . 75 \rhooknwarrow (⤣) . . . . . 79 \rhooknwarrow (=) . . . . . 75 \rhookrightarrow (↪) . . 79 \rhookrightarrow (8) . . 75 \rhooksearrow (⤥) . . . . . 79 \rhooksearrow (?) . . . . . 75 \rhookswarrow (⤦) . . . . . 79 \rhookswarrow (⤦) . . . . . 74 \rhookuparrow (9) . . . . . 79 \rhookuparrow (9) . . . . . . 74 \rhoup (ρ) . . . . . . . . . . . 94 \right 99, 103, 104, 219, 221 \rightangle (à) . . . . . . . 118 \rightangle (∟) . . . . . . . 118 \rightangle (∟) . . . . . . . 122 \rightangle (∟) . . . . . . . 118 \rightanglemdot (â) . . . . 118 \rightanglemdot (⦝) . . . 118 \rightanglemdot (⦝) . . . . 118 \rightanglesqr (ã) . . . . 118 \rightanglesqr (⦜) . . . . 118 \rightanglesqr (⦜) . . . . 118 \rightanglesquare (⦜) . . 118 \RIGHTarrow () . . . . . . . 176 \Rightarrow (⇒) . . . . 29, 72 \Rightarrow (⇒) . . . . . . 78 \Rightarrow (⇒) . . . . . . 74 \Rightarrow (⇒) . . . . . . . 84 \rightarrow (Ñ) . . . . . . 73 \rightarrow (→) . . . . . . 72 \rightarrow (→) . . . . . . . 78 \rightarrow (→) . . . . . . . 74 \rightarrow (→) . . . . . . 87 \rightarrow (→) . . . . . . . 84 \rightarrowapprox (⥵) . 84 \rightarrowbackapprox (⭈) . . . . . . . . . 84 \rightarrowbar () . . . . 82 \rightarrowbar (⇥) . . . . 84 \rightarrowbsimilar (⭌) 84 \rightarrowcircle ( ) . 82 \rightarrowdiamond (⤞) . 84 \rightarrowgtr (⭃) . . . . 69 \rightarrowonoplus (⟴) 84 \rightarrowplus (⥅) . . . 84 \rightarrowshortleftarrow (⥂) . . . . . . . . . . . . 84 \rightarrowsimilar (⥴) . 84 \rightarrowsupset (⭄) . 64 \rightarrowtail () . . . 72 \rightarrowtail () . . . 82 \rightarrowtail (↣) . . . 78 \rightarrowtail (↣) . . . 74 \rightarrowtail (↣) . . . 84 \rightarrowTriangle (û) 82 \rightarrowtriangle (_) 73 \rightarrowtriangle (þ) 82 \rightarrowtriangle (⇾) 84 \rightarrowx (⥇) . . . . . . 84 \rightAssert (⊩) . . . . . . 55 \rightassert (⊦) . . . . . . 55 \rightbarharpoon (Ý) . . 74 \rightbkarrow (⇢) . . . . . 78 \rightbkarrow (⤍) . . . . . 84 \rightblackarrow (.) . . 82 \rightblackspoon (l) . . 89 326 \rightbroom (− >−−) . . . . . 90 \RIGHTCIRCLE (H) . . . . . . 140 \RIGHTcircle (H #) . . . . . . 140 \Rightcircle (J) . . . . . . 140 \rightcurvedarrow (↝) . 79 \rightcurvedarrow (⤳) . 84 \rightdasharrow (!) . . . 82 \rightdasharrow (⇢) . . . 84 \rightdbltail (⤜) . . . . . 59 \RightDiamond ( ) . . . . . 143 \rightdotarrow (⤑) . . . . 84 \rightdowncurvedarrow (⤷) . . . . . . . . . 79 \rightdowncurvedarrow (⤷) 84 Ñ Ñ \rightevaw ( ÑÑ) . . . . . . . . 103 ? \rightfilledspoon (p) . 88 \rightfishtail (⥽) . . . . 58 \rightfootline (­) . . . . 55 \rightfootline (x) . . . . 53 \rightfree () . . . . . . . . 53 \righthalfcap (⌝) . . . . . 32 \righthalfcup (⌟) . . . . . 32 \righthand (U) . . . . . . . 137 \rightharpoonaccent (⃑) 106 \rightharpoonccw (⇀) . . 77 \rightharpooncw (⇁) . . . 77 \rightharpoondown (ã) . 74 \rightharpoondown (⇁) . 72 \rightharpoondown () . . 83 \rightharpoondown (⇁) . 81 \rightharpoondown (⇁) . 86 \rightharpoondownbar (⥗) 86 \rightharpoonsupdown (⥤) 86 \rightharpoonup (á) . . . 74 \rightharpoonup (⇀) . . . 72 \rightharpoonup () . . . 83 \rightharpoonup (⇀) . . . 81 \rightharpoonup (⇀) . . . 86 \rightharpoonupbar (⥓) . 86 \rightharpoonupdash (⥬) 86 \rightimply (⥰) . . . . . . . 58 \rightlcurvearrow () . 79 \rightleftarrows (Õ) . . 73 \rightleftarrows () . . 72 \rightleftarrows () . . 82 \rightleftarrows (⇄) . . 78 \rightleftarrows (⇄) . . 74 \rightleftarrows (⇄) . . 84 \rightleftcurvearrow (¦) 79 \rightleftharpoon (á) . 74 \rightleftharpoons (é) 74 \rightleftharpoons ( ) 72 \rightleftharpoons (⇀ 72 ↽) \rightleftharpoons () . 83 \rightleftharpoons (⇌) . 81 \rightleftharpoons (⇌) . 77 \rightleftharpoons (⇌) . 86 \rightleftharpoonsdown (⥩) . . . . . . . . 86 \rightleftharpoonsfill . 111 \rightleftharpoonsup (⥨) 86 \rightleftsquigarrow (↭) 79 \rightlsquigarrow (↝) . \rightlsquigarrow (↝) . . \Rightmapsto (⤇) . . . . . \rightmapsto (↦) . . . . . . \rightmapsto (↦) . . . . . . \rightModels (⊫) . . . . . . \rightmodels (⊧) . . . . . . \rightmodels (⊧) . . . . . . \rightmoon (L) . . . . . . . . \rightmoon (☽) . . . . . . . . \rightmoon (%) . . . . . . . . \rightouterjoin (⟖) . . . \rightp (w) . . . . . . . . . . . \rightpentagon (⭔) . . . . \rightpentagonblack (⭓) \rightpitchfork (t) . . . \rightpitchfork () . . . \rightpointleft ( ) .. L 79 74 78 79 74 53 55 53 127 127 126 121 24 142 142 90 88 136 \rightpointright (N) . 136 \rightpropto () . . . . . . 52 \rightrcurvearrow (⤻) . 79 \rightrightarrows (Ñ) . 73 \rightrightarrows (⇒) . 72 \rightrightarrows () . . 82 \rightrightarrows (⇉) . 78 \rightrightarrows (⇉) . . 74 \rightrightarrows (⇉) . 84 \rightrightharpoons (Ù) 74 \rightrsquigarrow (↝) . 79 \rightrsquigarrow (¨) . . 74 \RightScissors (S) . . . . 135 \rightslice (3) . . . . . . . 30 \rightslice (Ñ) . . . . . . . 33 \rightslice (⪧) . . . . . . . 52 \rightspoon (⊸) . . . . . . . 89 \rightspoon (⊸) . . . . . . 88 \rightsquigarrow (ù) . 73 \rightsquigarrow ( ) . . 72 \rightsquigarrow () . . 82 \rightsquigarrow (↝) . . 79 \rightsquigarrow (↝) . . 75 \rightsquigarrow (⇝) 84, 85 \rightt (o) . . . . . . . . . . . 24 \righttail (⤚) . . . . . . . 58 \righttherefore ( ) . . . 115 \righttherefore ( ) . 31, 115 \rightthreearrows () . . 82 \rightthreearrows (⇶) . 84 \rightthreetimes (%) . . 119 \rightthreetimes (i) . . 30 \rightthreetimes (Ô) . . . 33 \rightthreetimes (⋌) . . . 33 \rightthreetimes (⋌) . . . 31 \rightthreetimes (⋌) . . 34 \rightthumbsdown ( ) . 136 \rightthumbsup ( ) . . . 136 \righttoleftarrow (ý) . 73 \righttoleftarrow (æ) . . 82 \Righttorque (') . . . . . . 131 \rightturn (!) . . . . . . . 176 \rightupcurvedarrow () 79 \rightVDash (⊫) . . . . . . 55 \rightVdash (⊩) . . . . . . 55 d u (⊩) (⊨) (⊢) (⊢) Ð Ð \rightwave ( ÐÐ) . \rightVdash \rightvDash \rightvdash \rightvdash . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 55 55 52 . . . . . . . 103 \rightwavearrow (↝) . . . 78 \rightwavearrow (↝) . . . 84 \rightwhitearrow (ã) . . 82 \rightwhitearrow (⇨) . . 84 \rightwhiteroundarrow (å) 82 \rightY (,) . . . . . . . . . . 33 \rightY (() . . . . . . . . . . 31 rinforzando () . . . . . . . . . 163 \ring (˚) . . . . . . . . . . . . 106 ring (å) . . . . . . . . see accents ring equal to . . . see \circeq ring in equal to . see \eqcirc ring sum . . . . . . . see \oplus \ringplus (⨢) . . . . . . . . . 34 \riota (}) . . . . . . . . . . . . 120 \riota ( ) . . . . . . . . . . . . 19 \rip (O) . . . . . . . . . . . . . 181 \risingdotseq («) . . . . . 52 \risingdotseq (:) . . . . . 50 \risingdotseq (Ü) . . . . . 57 \risingdotseq (≓) . . . . . 55 \risingdotseq (≓) . . . . . 52 \risingdotseq (≓) . . . . . 58 \rJoin (Y) . . . . . . . . . . . 51 \rJoin (⋊) . . . . . . . . . . . 33 \RK () . . . . . . . . . . . . . . 129 \rlap . . 24,⎫ 25, 143, 225, 226 \rmoustache (⎩) . . . . . . . 99 ⎫ ⎪ ⎪ ⎪ \rmoustache ( ⎪ ⎩) . . . . . . 102 ⎫ ⎪ ⎪ ⎪ \rmoustache ( ⎪ ⎩) . . . . . . 100 ⎫ \rmoustache ( ⎪) . . . . . . 102 ⎩ \RO ( ) . . . . . . . . . . . . . . 129 rock/paper/scissors . . . . . 137 ) . . . . . 191 \rollingpin ( Roman coins . . . . . . . . . . 26 \Romania ( ) . . . . . . . . . 189 Romanian comma-belo accent (a, ) . . . . . . . see accents rook . . . . . . . . . 182, 217–218 roots . . . . . . . . . . . see \sqrt roshambo . . . . . . . . . . . . 137 #» \rot (rot) . . . . . . . . . . . . 92 \rotatebox . . . . 24, 222, 226 rotated symbols 17–19, 24, 222 rotating (package) . . . 27, 129 \rotm (m) . . . . . . . . . . . . 19 \rotOmega ( ) . . . . . . . . . 19 \rotr (r) . . . . . . . . . . . . 19 \rotvara (A) . . . . . . . . . . 19 \rotw (w) . . . . . . . . . . . . 19 \roty (y) . . . . . . . . . . . . 19 \RoundedLsteel () . . . . . 131 \RoundedLsteel () . . . . . 131 327 \RoundedTsteel () \RoundedTsteel () \RoundedTTsteel () \roundz (O) . . . . . . . \Rparen ()) . . . . . . . ⦆ \rParen ( . . . . . . . . . . . . . . . . . . . . 131 131 131 19 124 ) . . . . . . . . . . 102 \rparen ()) . . . . . . . . . . . 101 \rparen ()) . . . . \rparengtr (⦔) . \Rparenless⨒ (⦖) \rppolint ( ) . . \rppolint (⨒) . . \rppolintsl (⨒) \rppolintup (⨒) - ...... \rqm (𝐼) \RR (z) . . . . . . . \rrangle (⟫) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 . 98 . 98 . 49 . 46 . 47 . 47 . 224 . 157 . . . . . . . . . 100 \rrangle (⦊) . . . . . . . . . . \rrbracket () . . . . . . . . 98 99 \rrbracket ( ) . . . . . . . . 104 \rrceil (W) . \RRelbar (⭅) \Rrelbar (⇚) \rrfloor (U) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 91 91 98 \rrhD ( ) . . . . . . . . . . 198 \rrhDa ( ) . . . . . . . . . 198 \rrhDap ( ) . . . . . . . . 198 \rrhDp ( ) . . . . . . . . . 198 \rrhDs ( ) . . . . . . . . . 198 \rrhDsp ( \rrhDw ( \rrhDwp ( ) . . . . . . . . 198 ) . . . . . . . . . 198 ) . . . . . . . . 198 \rrhE ( ) . . . . . . . . . . 198 \rrhEp ( ) . . . . . . . . . 198 \rrhF ( ) . . . . . . . . . . 198 \rrhFp ( ) . . . . . . . . . 198 \rrhFw ( ) . . . . . . . . . 198 \rrhFwp ( ) . . . . . . . . 198 \rrhL ( ) . . . . . . . . . . 198 \rrhLa ( ) . . . . . . . . . 198 \rrhLap ( ) . . . . . . . . 198 \rrhLp ( ) . . . . . . . . . 198 \rrhLs ( ) . . . . . . . . . 198 \rrhLsp ( \rrhLw ( \rrhLwp ( \rrhM ( ) . . . . . . . . 198 ) . . . . . . . . . 198 ) . . . . . . . . 198 ) . . . . . . . . . . 198 \rrhMp ( ) . . . . . . . . . 198 \rrhR ( ) . . . . . . . . . . 198 \rrhRa ( ) . . . . . . . . . 198 ) \rrhRap ( . . . . . . . . 198 \rrhRp ( ) . . . . . . . . . 198 \rrhRs ( ) . . . . . . . . . 198 \rrhRsp ( ) \rrhRw ( . . . . . . . . 198 ) . . . . . . . . . 198 ) \rrhRwp ( \rrhSd ( . . . . . . . . 198 ) . . . . . . . . . 198 ) \rrhSdp ( . . . . . . . . 198 ) . . . . . . . . . 198 \rrhSl ( \rrhSlp ( ) \rrhSr ( . . . . . . . . 198 ) . . . . . . . . . 198 ) \rrhSrp ( \rrhSu ( . . . . . . . . 198 ) . . . . . . . . . 198 \rrhSup ( ) . . . . . . . . 198 \rrhU ( ) . . . . . . . . . . 198 \rrhUa ( ) . . . . . . . . . 198 \rrhUap ( ) . . . . . . . . 198 \rrhUp ( ) . . . . . . . . . 198 \rrhUs ( ) . . . . . . . . . 198 \rrhUsp ( ) \rrhUw ( . . . . . . . . 198 ) . . . . . . . . . 198 \rrhUwp ( ) . . . . . . . . 198 \RRightarrow (⭆) . . . . . . 84 \Rrightarrow (V) . . . . . 73 \Rrightarrow (¯) . . . . . . 82 \Rrightarrow (⇛) . . . . . 78 \Rrightarrow (⇛) . . . . . . 74 \Rrightarrow (⇛) . . . . . . 84 \rrparenthesis (M) . . . . . 98 \rrparenthesis (⦈) . . . . . 98 \RS (␞) . . . . . . . . . . . . . . 130 \rsem (⟧) . . . . . . . . . . . . 102 M Q \rsem ( Q ) . . . . . . . . . . . 100 Q Q O . . . see \rdbrack \rsemantic rsfs (emf package option) . 126 rsfso (package) . . . . . 123, 239 \Rsh (é) . . . . . . . . . . . . . 73 \Rsh () . . . . . . . . . . . . . 72 \Rsh () . . . . . . . . . . . . . 82 \Rsh (↱) . . . . . . . . . . . . . 78 \Rsh (↱) . . . . . . . . . . . . . 74 \Rsh (↱) . . . . . . . . . . . . . 85 \rsolbar (⧷) . . . . . . . . . . 34 \rsqhook (⫎) . . . . . . . . 58 \rsub (⩥) . . . . . . . . . . . 38 ) \rtborder ( . . . . . . . . 183 \rtbotcorner ( ) . . . . . 183 \rtimes (¸) . . . . . . . . . . 31 \rtimes (o) . . . . \rtimes (Õ) . . . . \rtimes (⋊) . . . . \rtimes (⋊) . . . . \rtimes (⋊) . . . . \rtimesblack (ê) \rtriltri (⧎) . . \rtriple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 . . 33 32, 33 . . 31 . . 34 . . 33 . . 71 . . 104 \rttopcorner ( ) . . . . . 183 \RU () . . . . . . . . . . . . . . 129 Rubik’s Cube . . . . . . . . . 198 rubikcube (package) . 198, 239, 240 \ruledelayed (⧴) . . . . . . 58 runes . . . . . . . . . . . . . . . 157 Anglo-Frisian . . . . . . 157 Danish . see normal runes Germanic . . . . . . . . . 157 Hälsinge . . see staveless runes long-branch . see normal runes medieval . . . . . . . . . 157 normal . . . . . . . . . . . 157 short-twig . . . . . . . . 157 staveless . . . . . . . . . 157 Swedo-Norwegian . . . see short-twig runes \rupee (|) . . . . . . . . . . . 26 \RV (| ) . . . . . . . . . . . . . . 129 \rVert (||) . . . . . . . . . . . . 104 \rVert (‖) . . . . . . . . . . . 99 ∥ ∥ ∥ ∥ \rVert ( ∥ ∥) . . . . . . . . . . 101 \rvert (|) . . . . . . . . . . . . 99 ∣∣ ∣ \rvert ( ∣∣∣) . . . . . . . . . . . 101 Å Å Å Å Å \rVvert ( Å) . . . . . . . . . 101 \Rvzigzag (⧛) . . . . . . . . . 98 \rvzigzag (⧙) . . . . . . . . . 98 \rWalley Ð( ) . . . . . . . . . 191 Ð \rwave ( ÐÐ) . . . . . . . . . . . 103 _ _ \rWavy ( _ _ _) . . . . . . . . . . 100 ^^_ \rwavy ( ^^^) . . . . . . . . . . . 100 ^ S (S) . \S (§) \S (S) \s (Ã) s (s) . – . . . . . . . . . . . . . . . . . . . . \sA ( ) . . \SAa (a) . . \SAb (b) . . \SAd (d) . . \SAdb (D) . \SAdd (B) . \Sadey ( ) S .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 15, ... ... ... 157 236 15 157 157 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 154 154 154 154 154 191 . . . . . . . 328 . . . . . . . . . . . . . . \sadface (☹) . . . . . . . . . 190 \SAf (f) . . . . . . . . . . . . . 154 safety-related symbols . . . 131 \Saftpresse ( ) . . . . . . . 191 \SAg (g) . . . . . . . . . . . . . 154 \SAga (G) . . . . . . . . . . . . 154 \Sagittarius (V) . . . . . . 128 \Sagittarius (è) . . . . . . 126 \sagittarius (c) . . . . . . 126 \SAh (h) . . . . . . . . . . . . . 154 \SAhd (H) . . . . . . . . . . . . 154 \SAhu (I) . . . . . . . . . . . . 154 \SAk (k) . . . . . . . . . . . . . 154 \SAl (l) . . . . . . . . . . . . . 154 \SAlq (‘) . . . . . . . . . . . . 154 \SAm (m) . . . . . . . . . . . . . 154 \samebishops (s) . . . . . . 181 \Sampi (^) . . . . . . . . . . . 154 \Sampi (Ϡ) . . . . . . . . . . . 154 \sampi (+) . . . . . . . . . . . 154 \sampi (ϡ) . . . . . . . . . . . 154 \SAn (n) . . . . . . . . . . . . . 154 sans (dsfont package option) 123 \sansLmirrored (⅃) . . . . . 121 \sansLturned (⅂) . . . . . . 121 \SAo (o) . . . . . . . . . . . . . 154 \Sappho (˝) . . . . . . . . . . 128 \SAq (q) . . . . . . . . . . . . . 154 \SAr (r) . . . . . . . . . . . . . 154 \sarabfamily . . . . . . . . . 154 sarabian (package) . . 154, 239, 240 \SAs (s) . . . . . . . . . . . . . 154 \SAsa (X) . . . . . . . . . . . . 154 \SAsd (x) . . . . . . . . . . . . 154 \SAsv (S) . . . . . . . . . . . . 154 \SAt (t) . . . . . . . . . . . . . 154 \SAtb (J) . . . . . . . . . . . . 154 \SAtd (T) . . . . . . . . . . . . 154 \satellitedish (I) . . . . 146 satisfies . . . . . . . see \models \Saturn (F) . . . . . . . . . . 127 \Saturn (S) . . . . . . . . . . 128 \Saturn (Æ) . . . . . . . . . . 126 \saturn (Y) . . . . . . . . . . 126 \SavedStyle . . . . . . . . . . 226 savesym (package) . . . . . . 219 \savesymbol . . . . . . . . . . 219 \SAw (w) . . . . . . . . . . . . . 154 \SAy (y) . . . . . . . . . . . . . 154 \SAz (z) . . . . . . . . . . . . . 154 \SAzd (Z) . . . . . . . . . . . . 154 \Sborder (S) . . . . . . . . . 146 \scalebox . . . . . . . . . . . . 219 scaled (CountriesOfEurope package option) . . . . . . 190 scalerel (package) . . . . . . . 226 scaling . . . . . . . . . . 229, 231 mechanical . . . . 229, 231 optical . . . . . . . . . . . 229 \scd () . . . . . . . . . . . . . 19 \scg () . . . . . . . . . . . . . 19 \Schaler ( ) . . . . . . . . . . 191 \Schneebesen ( ) . . . . . . . 191 \SchrodingersCat ( ) . . 191 \Schussel ( ) . . . . . . . . 191 \schwa (e) . . . . . . . . . . . 19 \schwa () . . . . . . . . . . . . 19 Schwartz distribution spaces see alphabets, math \sci (*) . . . . . . . . . . . . . 19 scientific symbols . . . 125–133, 215–216 \ScissorHollowLeft () 135 \ScissorHollowRight () 135 \ScissorLeft () . . . . . 135 \ScissorLeftBrokenBottom () . . . . . . . . . . . 135 \ScissorLeftBrokenTop () . . . . . . . . 135 \ScissorRight () . . . . . 135 \ScissorRightBrokenBottom ( ) . . . . . . . . . . . 135 \ScissorRightBrokenTop () . . . . . . . 135 scissors . . . . . . . 135, 194–197 \scn (:) . . . . . . . . . . . . . 19 \scoh (˝) . . . . . . . . . . . . 61 \Scorpio (C) . . . . . . . . . 128 \Scorpio (ç) . . . . . . . . . 126 \scorpio (b) ⨓ . . . . . . . . . 126 \scpolint ( ) . . . . . . . . . 49 \scpolint (⨓) . . . . . . . . . 46 \scpolintsl (⨓) . . . . . . . 47 \scpolintup (⨓) . . . . . . . 47 scr (rsfso package option) . 123 \scr (J) . . . . . . . . . . . . . 19 script letters . . see alphabets, math \scripta () . . . . . . . . . . 19 \scriptg () . . . . . . . . . . 19 \scriptscriptstyle . . . . 225 \scriptstyle . . . . . . . . . 225 \scriptv (Y) . . . . . . . . . . 19 \Scroll ( Scroll ) . . . . . . 129 \scross ( ) . . . . . . . . . . . 146 \scrossvh ( ) . . . . . . . . . 146 scsnowman (package) 192, 239, 240 \scsnowman ( ) . . . . . . . . 192 \scsnowman ( ) . . . . . . . . 192 \scu (W) . . . . . . . . . . . . . 19 \scurel (;) . . . . . . . . . . 57 \scurel (⊱) . . . . . . . . . . 58 \scy (]) . . . . . . . . . . . . . 19 \sddtstile ( ) . . . . . . . 60 \sDep () . . . . . . . . . . . . . 159 h \sdststile ( ) ....... 60 \sdtstile ( ) ........ 60 \sdttstile ( ) . . . . . . . 60 seagull . . . see \textseagull \Searrow (u) . . . . . . . . . 73 \Searrow () . . . . . . . . . 82 \Searrow (⇘) . . . \Searrow (⇘) . . . \Searrow (⇘) . . . \searrow (Œ) . . . \searrow (↘) . . \searrow (↘) . . . \searrow (↘) . . . \searrow (↘) . . . \searrow (↘) . . . \searrowtail (') \searrowtail (') \sebkarrow (g) . \sec (sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. 72, ... ... ... ... ... ... ... ... 78 74 85 73 226 78 74 87 85 78 74 78 91 \Sech (ˇ “) ) . . . . . . . . . . . . 160 \sech (sech) == . . . . . . . . . . 92 == = \SechBl ( ˇ “ ) == \SechBR ( ˇ “ ==) = \SechBr ( ˇ “ ) \SechBL (==ˇ “ ) . . . . . . . . . . 160 . . . . . . . . . . 160 . . . . . . . . . . 160 . . . . . . . . . . 160 \second (2) . . . . . . . . . . . 119 seconds, angular see \second \secstress (i) . . . . . . . . . 24 section mark . . . . . . . . see \S \SectioningDiamond ( ) 178 \sector (⌔) . . . . . . . . . . 120 sedenions (S) . see alphabets, math \sefilledspoon (w) . . . . 88 \sefootline () . . . . . . . 52 \sefree () . . . . . . . . . . 52 Segletes, Steven B. . . . . . 226 segmented numerals . . . . . 125 n) . . . . . . . . . . . 159 \Segno ( V \segno () . . . . . . . . . . . . 159 \seharpoonccw (G) . . . . . 77 \seharpooncw (O) . . . . . . 77 \seharpoonne (G) . . . . . . 81 \seharpoonsw (O) . . . . . . 81 \seight (ô) . . . . . . . . . . . 157 \selcurvearrow (⤵) . . . . 79 \selectfont . . . . . . . . . . 12 \selsquigarrow (§) . . . . 74 semaf.fd (file) . . . . . . . . 215 semantic valuation 99, 100, 104 semaphor (package) . 213, 215, 239 semaphore symbols . 213–215 \semapsto (/) . . . . . . . . 74 semibreve see musical symbols \semibreve ( ) . . . . . . . . 162 \semibreveDotted ( ) . . 162 semidirect products 30, 31, 119 semiquaver . . . . . see musical symbols © \semiquaver ( ) . . . . . . . 162 © \semiquaverDotted ( ) . 162 \semiquaverDottedDouble © ( ) . . . . . . . . . . . 162 329 \semiquaverDottedDoubleDown ( ) . . . . . . . . . . . 162 \semiquaverDottedDown ( ) . . . . . . . . 162 \semiquaverDown ( ) . . . . 162 \semiquaverRest ( ) . . . . 163 \semiquaverRestDotted ( ) . . . . . . . . 163 \Semisextile (w) . . . . . . 128 \Semisquare (e) . . . . . . . 128 semitic transliteration . 20, 24 \seModels (÷) . . . . . . . . 52 \semodels (ç) . . . . . . . . 52 semtrans (package) 20, 24, 239, 240 \senwarrows () . . . . . . 78 \senwarrows () . . . . . . 74 \senwcurvearrow («) . . . 79 \senwharpoons ([) . . . . . 81 \senwharpoons ([) . . . . . 77 \seovnearrow (⤭) . . . . . . 85 \SePa ( @ ) . . . . . . . . . . . . 160 \separated () . . . . . . . . 52 separation vector (r) . . . . 123 \sepitchfork () . . . . . . 88 \seppawns (q) . . . . . . . . 181 \Serbia (¡) . . . . . . . . . . . 189 \sercurvearrow (⤷) . . . . 79 \SerialInterface (Î) . . 129 \SerialPort (Ð) . . . . . . . 129 \sersquigarrow (¯) . . . . 74 \sesearrows () . . . . . . 78 \sesearrows () . . . . . . 74 \sespoon (o) . . . . . . . . . 88 \Sesquiquadrate (i) . . . . 128 set interior . . . see \mathring set operators intersection . . . see \cap membership . . . . see \in union . . . . . . . . see \cup \setBold . . . . . . . . . . . . 233 \setminus (∖) . . . . . . . . . 30 \setminus (\) . . . . . . . . . 32 \setminus (∖) . . . . . . . . . 32 \setminus (⧵) . . . . . . . . . 34 \seVdash (ï) . . . . . . . . . 52 \sevdash (ß) . . . . . . . . . 53 \Sextile (r) . . . . . . . . . 128 \Sey ( ) . . . . . . . . . . . . . 191 \sfive (ó) . . . . . . . . . . . . 157 \sfour (ã) . . . . . . . . . . . . 157 SGML . . . . . . . . . . . . . . 235 \sgn (sgn) . . . . . . . . . . . 92 \sh ( ) . . . . . . . . . . . . . . 160 sha ( ) . . . . . . . . . . . . . 222 \Shake () . . . . . . . . . . . . 159 \shake () . . . . . . . . . . . . 159 \Shakel () . . . . . . . . . . . 159 \Shakene () . . . . . . . . . . . 159 \Shakenw () . . . . . . . . . . . 159 \Shakesw () . . . . . . . . . . . 159 \sharp (♯) . . . . . . . . . . . 158 \sharp (û) . . . . . . . . . . . . 158 X \ W X j l k m \sharp (♯) . . . . . . . . . . . 158 \sharp ( ) . . . . . . . . . . . . 163 \sharp (♯) . . . . . . . . . . . . 158 \sharp (♯) . . . . . . . . . . . . 158 \sharpArrowboth ( ) . . . . 163 \sharpArrowdown ( ) . . . . 163 \sharpArrowup ( ) . . . . . . 163 Sharpe, Michael . . . . . . . . 23 \sharpSlashslashslashStem ( ) . . . . . . . . . . . . 163 \sharpSlashslashslashStemstem ( ) . . . . . . . . . . . . 163 \sharpSlashslashStem ( ) 163 \sharpSlashslashStemstemstem ( ) . . . . . . . . . . . . 163 \shfermion () . . . . . . . . . 132 \Shift ( Shift ⇑ ) . . . . . . 129 \shift (˜) . . . . . . . . . . . 29 \Shilling (¡) . . . . . . . . . 25 \shneg (ˆ) . . . . . . . . . . . 29 short-twig runes . . . . . . . 157 \shortcastling (O-O) . . 181 \shortdownarrow () . . . . 73 \shortdowntack (⫟) . . . . 55 \shortdowntack (⫟) . . . . 58 \ShortFifty (×) . . . . . . 177 \ShortForty (Ù) . . . . . . 177 \shortleftarrow ( ) . . . 73 \shortlefttack (⫞) . . . . 55 \shortlefttack (⫞) . . . . . 58 \shortmid (p) . . . . . . . . . 50 \shortmid (¾) . . . . . . . . . 57 \shortmid (∣) . . . . . . . . . 55 \shortmid (∣) . . . . . . . . . 32 \shortmid (∣) . . . . . . . . . 58 \ShortNinetyFive (Ô) . . 177 \shortparallel (q) . . . . . 50 \shortparallel (¿) . . . . . 57 \shortparallel (∥) . . . . 55 \shortparallel (∥) . . . . 53 \shortparallel (∥) . . . . . 58 \ShortPulseHigh ( ) . . . 125 \ShortPulseLow ( ) . . . . 125 \shortrightarrow () . . 73 \shortrightarrowleftarrow (⥄) . . . . . . . . . . . . 85 \shortrighttack (⊦) . . . . 55 \ShortSixty (Ö) . . . . . . 177 \ShortThirty (Û) . . . . . 177 \shortuparrow () . . . . . 73 \shortuptack (⫠) . . . . . . 55 \shortuptack (⫠) . . . . . . 58 \showclock . . . . . . . . . . . 178 \shpos (´) . . . . . . . . . . . 29 shuffle (package) 35, 239, 240 \shuffle (⧢) . . . . . . . . . 34 \shuffle ( ) . . . . . . . . . 35 shuffle product ( ) . . . . . 35 \SI (␏) . . . . . . . . . . . . . . 130 \Sieb ( ) . . . . . . . . . . . 191 ↕ " # \sieve ( ) . . . . . . . . . . \Sigma (Σ) . . . . . . . . . . . \sigma (𝜎) . . . . . . . . . . . \sigmaup (σ) . . . . . . . . . . \sim (∼) . . 50, 224, 226, \sim (∼) . . . . . . . . . . . . . \sim (∼) . . . . . . . . . . . . . \sim (∼) . . . . . . . . . . . . . \simbot (‹) . . . . . . . . . . \simcolon (∼:) . . . . . . . . \simcoloncolon (∼::) . . . \simeq (≃) . . . . . . . . . . . \simeq (≃) . . . . . . . . . . . \simeq (≃) . . . . . . . . . . . \simeq (≃) . . . . . . . . . . . \simgE (⪠) . . . . . . . . . . . \simgtr (⪞) . . . . . . . . . . \similarleftarrow (⭉) . \similarrightarrow (⥲) . \simlE (⪟) . . . . . . . . . . . \simless (⪝) . . . . . . . . . \simminussim (⩬) . . . . . . \simneqq (≆) . . . . . . . . . . \simneqq (≆) . . . . . . . . . \simperp (‹) . . . . . . . . . simplewick (package) 228, \simplus (⨤) . . . . . . . . . simpsons (package) . . 184, Simpsons characters . . . . . \simrdots () . . . . . . . . \simrdots (⩫) . . . . . . . . . \sin (sin) . . . . . . . . . . . . \sincoh (ˇ) . . . . . . . . . . \sinewave (ñ) . . . . . . . . \sinewave (∿) . . . . . . . . . \sinh (sinh) . . . . . . . . . . 191 93 93 94 234 55 53 58 98 61 61 50 55 53 58 69 69 85 85 69 69 58 56 58 61 229 34 239 184 57 58 91 61 120 121 91 \SixFlowerAlternate (O) 139 \SixFlowerAltPetal (U) 139 \SixFlowerOpenCenter (M) . . . . . . . . . 139 \SixFlowerPetalDotted (Q) . . . . . . . . 139 \SixFlowerPetalRemoved (L) . . . . . . . 139 \SixFlowerRemovedOpenPetal ([) . . . . . . . . . . . 139 \SixStar (G) . . . . . . . . . 139 \SixteenStarLight (K) . 139 sixteenth note . . . see musical symbols © \sixteenthNote ( ) . . . . 161 \sixteenthnote (♬) . . . . 158 © \sixteenthNoteDotted ( ) . . . . . . . . . 161 \sixteenthNoteDottedDouble © ( ) . . . . . . . . . . . 161 \sixteenthNoteDottedDoubleDown ( ) . . . . . . . . . . . 161 \sixteenthNoteDottedDown ( ) . . . . . . . . . . . . 161 \sixteenthNoteDown ( ) . 161 330 skak (package) . 181, 182, 239, 240 skull (package) . . 181, 239, 240 \skull ( ) . . . . . . . . . . . 38 \skull (☠) . . . . . . . . . . . 190 \skull ( ) . . . . . . . . . . . 181 skulls . . . . . 38, 181, 190, 217 \slash (/) . . . . . . . . . . . 234 \slashb () . . . . . . . . . . . 19 \slashc ( ) . . . . . . . . . . . 19 \slashd () . . . . . . . . . . . 19 \slashdiv () . . . . . . . . . 31 slashed (package) . . . . . . . 224 \slashed . . . . . . . . . . . . 224 slashed letters . . . . . . . . . 224 slashed.sty (file) . . . . . . 224 \slashu (U) . . . . . . . . . . . 19 \Sleepey ( ) . . . . . . . . . 191 \Sleet ( ) . . . . . . . . . . . 178 \sliding (ā) . . . . . . . . . . 22 \Slovakia (¢) . . . . . . . . . 189 \Slovenia (£) . . . . . . . . . 189 A L) \smallaltoclef ( \smallawint (⨑) . \smallawintsl (⨑) \smallawintup (⨑) .. ..... .... ..... J . 159 . 39 . 39 . 39 \smallbassclef ( ) . . . 159 \smallblackcircle (•) . . 36 \smallblackdiamond (⬩) . 36 \smallblacklozenge (⬪) . 141 \smallblacksquare (▪) . . 36 \smallblackstar (⋆) . . . . 36 \smallblacktriangledown (▾) . . . . . . 36, 71 \smallblacktriangleleft (◂) . . . . . . 36, 71 \smallblacktriangleleft (◂) . . . . . . . 142 \smallblacktriangleright (▸) . . . . . . . . . . 36, 71 \smallblacktriangleright (▸) . . . . . . . . . . . . 142 \smallblacktriangleup (▴) . . . . . . . 36, 71 \smallbosonloop () . . . . . 132 \smallbosonloopA () . . . . 132 \smallbosonloopV () . . . . 132 \SmallCircle ( ) . . . . . . 143 \smallcircle (◦) . . . . . . 36 \smallcirfnint (⨐) . . . . . 39 \smallcirfnintsl (⨐) . . . 39 \smallcirfnintup (⨐) . . . 39 \SmallCross ( ) . . . . . . 143 smallctrbull (bullcntr package option) . . . . . . . . . . 180 \smallctrbull . . . . . . . . 180 \smalldiamond (⋄) . . . . . 36 \smalldiamond (◇) . . . . . 36 \SmallDiamondshape ( ) 143 \smalldivslash (∕) . . . . 33 ♣ E ∩ ≪ F \smallfint (⨏) . . . . . . . . 39 \smallfintsl (⨏) . . . . . . 39 \smallfintup (⨏) . . . . . . 39 \smallfrown (a) . . . . . . . 50 \smallfrown (½) . . . . . . . 57 \smallfrown (⌢) . . . . . 55, 90 \smallfrown (⌢) . . . . . . . 89 \smallfrown (⌢) . . . . . . . 58 \SmallHBar ( ) . . . . . . . 143 \smalliiiint (⨌) . . . . . 39 \smalliiiintsl (⨌) . . . . 39 \smalliiiintup (⨌) . . . . 39 \smalliiint (∭) . . . . . . 39 \smalliiintsl (∭) . . . . . 39 \smalliiintup (∭) . . . . . 39 \smalliint (∬) . . . . . . . . 39 \smalliintsl (∬) . . . . . . 39 \smalliintup (∬) . . . . . . 39 \smallin ( ) . . . . . . . . . . 97 \smallin (∊) . . . . . . . . . . 58 \smallint (∫) . . . . . . . . . 120 \smallint (∫) . . . . . . . . . 119 \smallint (∫) . . . . . . . . . 39 \smallintBar (⨎) . . . . . . 39 \smallintbar (⨍) . . . . . . 39 \smallintBarsl (⨎) . . . . . 39 \smallintbarsl (⨍) . . . . . 39 \smallintBarup (⨎) . . . . . 39 \smallintbarup (⨍) . . . . . 39 \smallintcap (⨙) . . . . . . 39 \smallintcapsl (⨙) . . . . . 39 \smallintcapup (⨙) . . . . . 39 \smallintclockwise (∱) . 39 \smallintclockwisesl (∱) 39 \smallintclockwiseup (∱) 39 \smallintcup (⨚) . . . . . . 39 \smallintcupsl (⨚) . . . . . 39 \smallintcupup (⨚) . . . . . 39 \smallintlarhk (⨗) . . . . 39 \smallintlarhksl (⨗) . . . 39 \smallintlarhkup (⨗) . . . 39 \smallintsl (∫) . . . . . . . 39 \smallintup (∫) . . . . . . . 39 \smallintx (⨘) . . . . . . . . 39 \smallintxsl (⨘) . . . . . . 39 \smallintxup (⨘) . . . . . . 39 \SmallLowerDiamond ( ) 143 \smalllowint (⨜) . . . . . . 39 \smalllowintsl (⨜) . . . . . 39 \smalllowintup (⨜) . . . . . 39 \smalllozenge (⬫) . . . . . 141 \smalllozenge (◊) . . . . . . 140 \smallni (∍) . . . . . . . . . . 58 \smallnpolint (⨔) . . . . . 39 \smallnpolintsl (⨔) . . . . 39 \smallnpolintup (⨔) . . . . 39 \smalloiiint (∰) . . . . . . 39 \smalloiiintsl (∰) . . . . 39 \smalloiiintup (∰) . . . . 39 \smalloiint (∯) . . . . . . . 39 \smalloiintsl (∯) . . . . . 39 \smalloiintup (∯) . . . . . 39 \smalloint (∮) . . . . . . . . 39 \smallointctrclockwise (∳) . . . . . . . . . 39 \smallointctrclockwisesl (∳) . . . . . . . . 39 \smallointctrclockwiseup (∳) . . . . . . . . 39 \smallointsl (∮) . . . . . . 39 \smallointup (∮) . . . . . . 39 \smallowns () . . . . . . . . 97 \smallpencil ( ) . . . . 136 \smallpointint (⨕) . . . . . 39 \smallpointintsl (⨕) . . . 39 \smallpointintup (⨕) . . . 39 \smallprod (∏) . . . . . . . . 31 \SmallRightDiamond ( ) 143 \smallrppolint (⨒) . . . . . 39 \smallrppolintsl (⨒) . . . 39 \smallrppolintup (⨒) . . . 39 \smallscpolint (⨓) . . . . . 39 \smallscpolintsl (⨓) . . . 39 \smallscpolintup (⨓) . . . 39 \smallsetminus (r) . . . . 30 \smallsetminus (Ú) . . . . 33 \smallsetminus (∖) . . . . 33 \smallsetminus (∖) . . . . 32 \smallsetminus (∖) . . . . . 34 \smallsmile (`) . . . . . . . 50 \smallsmile (¼) . . . . . . . 57 \smallsmile (⌣) . . . . . 55, 90 \smallsmile (⌣) . . . . . . . 89 \smallsmile (⌣) . . . . . . . 58 \smallsqint (⨖) . . . . . . . 39 \smallsqintsl (⨖) . . . . . 39 \smallsqintup (⨖) . . . . . . 39 \SmallSquare ( ) . . . . . . 143 \smallsquare (▫) . . . . . . 36 \smallsquare (◽) . . . . . . 36 \smallstar (☆) . . . . . . . . 36 \smallsumint (⨋) . . . . . . 39 \smallsumintsl (⨋) . . . . . 39 \smallsumintup (⨋) . . . . . 39 P O @ \smalltrebleclef ( H) C . 159 \SmallTriangleDown ( ) 143 \smalltriangledown (Ź) . 35 \smalltriangledown (▿) . 36, 71 \smalltriangledown (▿) 36, 70 \SmallTriangleLeft ( ) 143 \smalltriangleleft (Ž) . 35 \smalltriangleleft (◃) . 36, 71 \smalltriangleleft (◃) 36, 70 \smalltriangleleft (◃) . 141 \SmallTriangleRight ( ) 143 \smalltriangleright (Ż) 35 \smalltriangleright (▹) 36, 71 \smalltriangleright (▹) 36, 70 \smalltriangleright (▹) 141 B D 331 A \SmallTriangleUp ( ) . . 143 \smalltriangleup (Ÿ) . . . 35 \smalltriangleup (▵) . 36, 71 \smalltriangleup (▵) . 36, 70 \smallupint (⨛) . . . . . . . 39 \smallupintsl (⨛) . . . . . . 39 \smallupintup (⨛) . . . . . . 39 \smallvarointclockwise (∲) . . . . . . . . . 39 \smallvarointclockwisesl (∲) . . . . . . . . 39 \smallvarointclockwiseup (∲) . . . . . . . . 39 \SmallVBar ( ) . . . . . . . 143 \smallwhitestar (⭒) . . . 36 smartctrbull (bullcntr package option) . . . . . . . . . . 180 \smartctrbull . . . . . . . . 180 \smashtimes (ö) . . . . . . . 33 \smashtimes (⨳) . . . . . . . 34 \smblkcircle (•) . . . . . . 37 \smblkcircle (•) . . . . . . 38 \smblkdiamond (⬩) . . . . . 37 \smblkdiamond (⬩) . . . . . 141 \smblklozenge (⬪) . . . . . 141 \smblklozenge (⬪) . . . . . . 141 \smblksquare (▪) . . . . . . 37 \smblksquare (▪) . . . . . . 141 \smeparsl (⧤) . . . . . . . . . 58 \smile (⌣) . . . . . . . . . . 50 \smile (ü) . . . . . . . . . . . 57 \smile (⌣) . . . . . . . . . 55, 90 \smile (⌣) . . . . . . . . . . . 89 \smile (⌣) . . . . . . . . . . . 58 smile symbols . . . . . . . 89, 90 \smileeq () . . . . . . . . 55, 90 \smileeq ( ) . . . . . . . . . . 89 \smileeqfrown (&) . . . . . 89 \smileface (☺) . . . . . . . . 190 \smilefrown (≍) . . . . . 55, 90 \smilefrown (≍) . . . . . . . 89 \smilefrowneq (() . . . . . 89 \Smiley (©) . . . . . . 177, 191 \smiley (,) . . . . . . . . . . 176 smiley faces 121, 130, 176, 177, 186, 190–197, 201–203 \smt (⪪) . . . . . . . . . . . . . 69 \smte (⪬) . . . . . . . . . . . . 69 \smwhitestar (⭒) . . . . . . 37 \smwhitestar (⭒) . . . . . . 141 \smwhtcircle (◦) . . . . . . 37 \smwhtcircle (◦) . . 141, 142 \smwhtdiamond (⋄) . . . . . 37 \smwhtdiamond (⋄) . 141, 142 \smwhtlozenge (⬫) . . . . . 141 \smwhtlozenge (⬫) . . . . . . 141 \smwhtsquare (▫) . . . . . . 37 \smwhtsquare (▫) . . . . . . 141 snakes . . . . . . . . . . . . . . . 205 \sndtstile ( ) . . . . . . . 60 \Snow ( ) . . . . . . . . . . . . 178 \SnowCloud ( ) . . . . . . . 178 \Snowflake (`) . . . . . . . 139 \SnowflakeChevron (^) . 139 \SnowflakeChevronBold (_) . . . . . . . . 139 snowflakes . . . . . . . . . . . . 139 \Snowman ( ) . . . . . . . . . . 192 snowmen . . . . . . . . . . . . . 192 \SNPP ( ) . . . . \snststile ( ) \sntstile ( ) . \snttstile ( ) \SO () . . . . . . . ˝ . . . . . . . . . . . . . . . . . . . ... ... ... ... 129, \sO ( ) . . . . . . . . . . . \SOH (␁) . . . . . . . . . . . \SOH (␁) . . . . . . . . . . . \solid (𝑡) . . . . . . . . . sombrero . . . . . . . . . . . South Arabian alphabet \SouthNode (?) . . . . . # . . . . . . . . . . . . . . 184 60 60 60 130 187 130 130 132 107 154 128 \Soyombo ( ) . . . . . . . . 187 soyombo (package) . . 187, 239, 240 Soyombo (font) . . . . . . . . 187 Soyombo symbols . . . . . . 187 \spa (span) . . . . . . . . . . 92 space . . . . . . . . . . . . . . . 232 thin . . . . . . . . . . . . . 232 visible . . . . . . . . . . . see \textvisiblespace \Spacebar ( ) . . 129 spades . . . . 145, 146, 192–193 \spadesuit (♠) . . . . . . . 145 \spadesuit (÷) . . . . . . . . 145 \spadesuit (♠) . . . . . . . . 145 \spadesuit (♠) . . . . . . . . 145 \spadesuit (♠) . . . . . . . . 146 \Spain (¤) . . . . . . . . . . . 190 \Sparkle (]) . . . . . . . . . 139 \SparkleBold (\) . . . . . . 139 sparkles . . . . . . . . . . . . . 139 “special” characters . . . . . 14 \SpecialForty (Ú) . . . . 177 \sPed () . . . . . . . . . . . . . 159 \sphericalangle (?) . . . 119 \sphericalangle (^) . . . 117 \sphericalangle (×) . . . . 118 \sphericalangle (∢) . . . 118 \sphericalangle (∢) . . . 117 \sphericalangle (∢) . . . . 118 \sphericalangledown (§) 118 \sphericalangleleft (⦠) 118 \sphericalangleup (⦡) . . 118 \sphericalangleup (⦡) . . 118 \spin (𝜐) . . . . . . . . . . . . 132 \SpinDown () . . . . . . . . . . 143 \spindown (𝑍) . . . . . . . . . 132 \SpinUp () . . . . . . . . . . . 143 \spinup (𝑜) . . . . . . . . . . 132 " * ) spirals . . . . . . . . . . . . –) . . \spirituslenis (a \spirituslenis (—) . . \splitvert (¦) . . . . . \Spoon ( ) . . . . . . . . . spoon symbols . . . . . . \spreadlips (ȧ) . . . . \Springtree ( ) . . . . \sqbullet (‚) . . . . . . \Sqcap (⩎) . . . . . . . . \Sqcap (⩎) . . . . . . . . \sqcap ([) . . . . . . . . \sqcap (⊓) . . . . . . . . \sqcap (⊓) . . . . . . . . \sqcap (⊓) . . . . . . . . \sqcap (⊓) . . . . . . . . \sqcapdot (I) . . . . . . \sqcapdot (E) . . . . . . \sqcapplus (}) . . . . . \sqcapplus (K) . . . . . \sqcapplus (G) . . . . . \Sqcup (⩏) . . . . . . . . \Sqcup (⩏) . . . . . . . . \sqcup (\) . . . . . . . . \sqcup (⊔) . . . . . . . . \sqcup (⊔) . . . . . . . . \sqcup (⊔) . . . . . . . . \sqcup (⊔) . . . . . . . . \sqcupdot (H) . . . . . . \sqcupdot (D) . . . . . . \sqcupplus (|) . . . . . \sqcupplus (J) . . . . . \sqcupplus (F) . . . . . \sqdoublecap (^) . . . \sqdoublecup (_) . . . \sqdoublefrown (-) . . \sqdoublefrowneq (7) \sqdoublesmile (,) . . \sqdoublesmileeq (6) \sqeqfrown (5) . . . . . \sqeqsmile (4) . . . . . \sqfrown (+) . . . . . . . \sqfrowneq (3) . . . . . \sqfrowneqsmile (9) . \sqfrownsmile R (1) . . \sqiiint ( ) . . . . . P \sqiint ( ) . . . . . . . ⨖ \sqiint (”) . . . . . . . \sqiint ( ) . . . . . . . \sqint ( ) . . . . . . . . ⨖ \sqint (›) . . . . . . . . \sqint ( ) . . . . . . . . . \sqint (⨖) . . . . . . . . \sqintsl (⨖) . . . . . . . \sqintup (⨖) . . . . . . . \sqlozenge (⌑) . . . . . √ \sqrt ( ⃖⃖⃖⃖) . . . . . . . . √ \sqrt ( ) . . . 107, √ \sqrt* ( ) . . . . . . . \sqsmile (*) . . . . . . . \sqsmileeq (2) . . . . . \sqsmileeqfrown (8) . 332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 . 106 . 106 . 130 . 191 88, 89 . . 22 . . 192 . . 31 . . 33 . . 34 . . 31 . . 30 . . 32 . . 31 . . 34 . . 32 . . 31 . . 31 . . 32 . . 31 . . 33 . . 34 . . 31 29, 30 . . 32 . . 31 . . 34 . . 32 . . 32 . . 31 . . 32 . . 32 . . 31 . . 31 . . 89 . . 89 . . 89 . . 89 . . 89 . . 89 . . 89 . . 89 . . 89 . . 89 . . 42 . . 42 . . 49 . . 43 . . 42 . . 49 . . 43 . . 46 . . 48 . . 48 . . 141 . . . 109 225–226 . . . 110 . . . 89 . . . 89 . . . 89 \sqsmilefrown (0) \Sqsubset (J) . . . . \Sqsubset (^) . . . . \sqSubset (Ť) . . . \sqSubset (´) . . . . \sqsubset (Ă) . . . \sqsubset (@) . . . \sqsubset (à) . . . . \sqsubset (⊏) . . . . \sqsubset (⊏) . . . . \sqsubset (⊏) . . . . \sqsubseteq (Ď) . . \sqsubseteq (⊑) . \sqsubseteq (⊑) . . \sqsubseteq (⊑) . . \sqsubseteq (⊑) . . \sqsubseteqq (Ň) . \sqsubseteqq (H) . \sqsubseteqq (\) . \sqsubsetneq (Ĺ) . \sqsubsetneq (⋤) . \sqsubsetneq (⋤) . \sqsubsetneq (⋤) . \sqsubsetneqq (Ř) \sqsubsetneqq (Þ) \sqsubsetneqq (ö) \Sqsupset (K) . . . . \Sqsupset (_) . . . . \sqSupset (Ţ) . . . \sqSupset (µ) . . . . \sqsupset (Ą) . . . \sqsupset (A) . . . \sqsupset (á) . . . . \sqsupset (⊐) . . . . \sqsupset (⊐) . . . . \sqsupset (⊐) . . . . \sqsupseteq (Ě) . . \sqsupseteq (⊒) . \sqsupseteq (⊒) . . \sqsupseteq (⊒) . . \sqsupseteq (⊒) . . \sqsupseteqq (Ŋ) . \sqsupseteqq (I) . \sqsupseteqq (]) . \sqsupsetneq (Ľ) . \sqsupsetneq (⋥) . \sqsupsetneq (⋥) . \sqsupsetneq (⋥) . \sqsupsetneqq (Ś) \sqsupsetneqq (ß) \sqsupsetneqq (÷) \sqtriplefrown (/) \sqtriplesmile (.) \squad ( ) . . . . . . \squadcross ( ) . . \squaddot ( ) . . . . \squadfill ( ) . . . \squadfillha ( ) . \squadfillhb ( ) . \squadfillhl ( ) . \squadfillhr ( ) . \squadlineh ( ) . . \squadlinev ( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 . 63 . 63 . 62 . 63 . 62 61, 62 . . 63 . . 63 . . 63 . . 64 . . 62 . . 61 . . 63 . . 63 . . 64 . . 62 . . 63 . . 63 . . 62 . . 63 . . 63 . . 64 . . 62 . . 63 . . 63 . . 63 . . 63 . . 62 . . 63 . . 62 61, 62 . . 63 . . 63 . . 63 . . 64 . . 62 . . 61 . . 63 . . 63 . . 64 . . 62 . . 63 . . 63 . . 62 . . 63 . . 63 . . 64 . . 62 . . 63 . . 63 . . 89 . . 89 . . 144 . . 144 . . 144 . . 144 . . 144 . . 144 . . 144 . . 144 . . 144 . . 144 \squadlinevh ( ) . . \Square (t) . . . . . . \Square () . . . . . . \Square (f) . . . . . . \Square ( ) . . . . . . \Square ( ) . . . . . . \Square ( vs. f vs. \square (˝) . . . . . . . \square () . . . . . . \square (ó) . . . . . . \square (□) . . . . . . 0 0 ~ . . . . . . . . . . . . . . . . . . ) .. .. .. .. 0 . . . . . . . . . . . . . . . 144 128 138 143 143 143 220 31 119 141 37 \square ( ) . . . . . . . . . . 183 \square (◻) . . . . . . . . . . 36 \square (□) . . . . . . . . . . 142 square impulse . . . . . . . . 125 square root . . . . . . see \sqrt hooked . . . see \hksqrt \squarebotblack (⬓) . . . 141 \SquareCastShadowBottomRight (k) . . . . . . . . . . . 143 \SquareCastShadowTopLeft (m) . . . . . . . . . . . 143 \SquareCastShadowTopRight (l) . . . . . . . . . . . 143 \squarecrossfill (▩) . . 141 \squaredots (∷) . . . . . . . 115 \squaredots (∷) . . . . 32, 115 \squarehfill (▤) . . . . . . 141 \squarehvfill (▦) . . . . . 141 \squareleftblack (◧) . . 141 \squarellblack (⬕) . . . . 141 \squarellquad (◱) . . . . . 141 \squarelrblack (◪) . . . . 141 \squarelrquad (◲) . . . . . 141 \squareneswfill (▨) . . . 141 \squarenwsefill (▧) . . . 141 \Squarepipe () . . . . . . . 131 \squarerightblack (◨) . 142 squares . . . 140–144, 146, 147, 169–173, 182, 183, 199– 200, 205, 215–216 \SquareShadowA ( ) . . . . 143 \SquareShadowB ( ) . . . . 143 \SquareShadowBottomRight (h) . . . . . . . . . . . 143 \SquareShadowC ( ) . . . . 143 \SquareShadowTopLeft (j) . . . . . . . . . 143 \SquareShadowTopRight (i) . . . . . . . . 143 \SquareSolid (g) . . . . . . 143 \Squaresteel () . . . . . . 131 \squaretopblack (⬒) . . . 142 \squareulblack (◩) . . . . 142 \squareulquad (◰) . . . . . 142 \squareurblack (⬔) . . . . 142 \squareurquad (◳) . . . . . 142 \squarevfill (▥) . . . . . . 142 \squarewithdots (B) . . . 146 \squeezer ( ) . . . . . . . . 191 \squigarrowdownup (³) . 74 \squigarrowleftright (↭) 74 \squigarrownesw (´) . . . 74 \squigarrownwse (µ) . . . . 74 \squigarrowrightleft (²) 74 \squigarrowsenw (·) . . . 74 \squigarrowswne (¶) . . . 74 \squigarrowupdown (±) . . 74 \squoval (▢) . . . . . . . . . 142 \squplus (]) . . . . . . . . . 31 \squplus (¿) . . . . . . . . . . 33 \SS (SS) . . . . . . . . . . 15, 129 \ss (ß) . . . . . . . . . . . . . . 15 \ssdtstile ( \ssearrow (%) \ssearrow (í) \sseven (ä) . . \ssix (Ô) . . . \sslash ( ) . \sslash (<) . \sslash (⫽) . ) .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 . 73 . 83 . 157 . 157 . 30 . 33 . 34 \ssststile ( ) ....... 60 \sststile ( ) ........ 60 \ssttstile ( ) . . . . . . . 60 \sswarrow ($) . . . . . . . . . 73 \sswarrow (ï) . . . . . . . . . 83 \staccatissimo ( ) . . . . . 164 stackengine (package) . . . . 226 \stackengine . . . . . . . . . 226 \stackrel . . . . . 29, 223, 227 standard state . . . . . . . . . 224 \star (⋆) . . . . . . . . . 30, 227 \star ($) . . . . . . . . . . . . 157 \star (ø) . . . . . . . . . 37, 141 \star (⋆) . . . . . . . . . . . . 37 \star (⋆) . . . . . . . . . . . . 36 \star (⋆) . . . . . . . . . . . . 38 Star of David . . . . . . . . . 139 \stareq (≛) . . . . . . . . . . 55 \stareq (≛) . . . . . . . . . . 58 starfont (package) 128, 239, 240 \starlet ( ) . . . . . . . . . 144 \starletcross ( ) . . . . . 145 \starletdot ( ) . . . . . . . 145 \starletfill ( ) . . . . . . 145 \starletfillha ( ) . . . . 145 \starletfillhb ( ) . . . . 145 \starletfillhl ( ) . . . . 145 \starletfillhr ( ) . . . . 145 \starletlineh ( ) . . . . . 145 \starletlinev ( ) . . . . . 145 \starletlinevh ( ) . . . . 145 \starofdavid (✡) . . . . . . 141 \starredbullet (D) . . . . . 140 stars . . . . . 119, 128, 139–142, 144–145, 199–200 \stater (῝) . . . . . . . . . . . 26 \Station (6) . . . . . . . . . 128 statistical independence . . 225 \staveI ( ) . . . . . . . . 185 333 \staveII () . . . . . . . . 185 \staveIII () . . . . . . 185 \staveIV () . . . . . . . 185 \staveIX () . . . . . . . . 185 \staveL (1) . . . . . . . . 185 \staveL (1) . . . . . . . . 186 staveless runes . . . . . . . . . 157 \staveLI (2) . . . . . . . 185 \staveLII (3) . . . . . . 185 \staveLIII (4) . . . . . . 185 \staveLIV (5) . . . . . . 185 \staveLIX (:) . . . . . . 186 \staveLV (6) . . . . . . . . 185 \staveLVI (7) . . . . . . . 185 \staveLVII (8) . . . . . . 185 \staveLVIII (9) . . . . . 186 \staveLX (;) . . . . . 186 \staveLXI (<) . . . . . . . 186 \staveLXII (=) . . . . . . 186 \staveLXIII (>) . . . . . 186 \staveLXIV (?) . . . . . . . 186 \staveLXV (@) . . . . . . . 186 \staveLXVI (A) . . . . . . 186 \staveLXVII (B) . . . . . . 186 \staveLXVIII (C) . . . . . 186 staves . . . . . . . . . . . . . . . 185 staves (package) . . . . 185, 239 \staveV () . . . . . . . . 185 \staveVI () . . . . . . . 185 \staveVII () . . . . . . 185 \staveVIII () . . . . . 185 \staveX ( ) . . . . . . . . 185 \staveXI ( ) . . . . . . . . 185 \staveXII ( \staveXIII ( ) . . . . . . . 186 ) . . . . . . 186 \staveXIV ( ) . . . . . . 186 \staveXIX () . . . . . . 186 \staveXL (') . . . . . . . . 186 \staveXLI (() . . . . . . . 186 \staveXLII ()) . . . . . 186 \staveXLIII (*) . . . . . . 186 \staveXLIV (+) . . . . . 186 \staveXLIX (0) . . . . . . 185 \staveXLV (,) . . . . . . 186 \staveXLVI (-) . . . . . . 186 \staveXLVII (.) . . . . . 185 \staveXLVIII (/) . . . 185 \staveXV () . . . . . . . 186 \staveXVI () . . . . . . . 186 \staveXVII () . . . . . . 186 \staveXVIII () . . . . . 186 \staveXX () . . . . . . . 186 \staveXXI () . . . . . . 186 \staveXXII () . . . . . . 186 \staveXXIII () . . . 186 \staveXXIV () . . . . . . 185 \staveXXIX () . . . . . 185 \staveXXV () . . . . . . 185 \staveXXVI () . . . . . 185 \staveXXVII () . . . . . 185 \staveXXVIII () . . . . 185 \staveXXX () . . . . . . 185 \staveXXXI () . . . . . . 185 \staveXXXII () . . . . 185 \staveXXXIII ( ) . . . . . 185 \staveXXXIV (!) . . . . 185 \staveXXXIX (&) . . . . 186 \staveXXXV (") . . . . . 186 \staveXXXVI (#) . . . . 186 \staveXXXVII ($) . . . 186 \staveXXXVIII (%) . . 186 \stdtstile ( ) ....... 60 \steaming (♨) . . . . . . . . 190 steinmetz (package) . 126, 239, 240 Steinmetz phasor notation 126 sterling . . . . . . . see \pounds \sthree (Ó) . . . . . . . . . . . 157 stick figures 148, 192, 211–215 \Stigma () . . . . . . . . . . 154 \Stigma (Ϛ) . . . . . . . . . . 154 \stigma (-) . . . . . . . . . . . 154 \stigma (ϛ) . . . . . . . . . . . 154 stix (package) . . . . . . 34, 38, 39, 46, 47, 58, 59, 64, 68, 69, 71, 84–86, 91, 95–98, 102, 106, 109, 115, 117, 118, 121, 127, 128, 131, 141, 142, 146, 158, 179, 239, 240 stmaryrd (package) . 30, 40, 51, 62, 69, 73, 87, 90, 98, 99, 220, 224, 238, 239 stochastic independence . . see \bot \StoneMan ( ) . . . . . . . . . 178 \Stopsign (!) . . . . . . . . 131 \StopWatchEnd ( ) . . . . . 178 \StopWatchStart ( ) \stress (h) . . . . . . . . \Strichmaxerl ( ) . . . strict implication . . . . \strictif \strictfi (K) . . . . . \strictfi (ì) . . . . . . \strictif (J) . . . . . \strictif (í) . . . . . . \strictiff (L) . . . . \StrikingThrough (_) . \strns (⏤) . . . . . . . . \strokedint (⨏) . . . . \StrokeFive ( ) . . . \StrokeFour ( ) . . . . \StrokeOne ( ) . . . . . . \StrokeThree ( ) . . . ; :::: : ::: . . . . . . . . . 178 . 24 . 192 . see . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 57 51 57 51 25 121 44 178 178 178 178 \strokethrough (̸) . . . . . 106 \StrokeTwo ( ) . . . . . . . . 178 ∘ \stst (− ) . . . . . . . . . . . . 224 :: \stststile ( ) ....... 60 \sttstile ( ) ........ 60 ) ....... 60 \stttstile ( \STX (␂) . . . . . . . . . . . . . 130 .sty files . . . . . . . . . . . . 12 \SUB (␚) . . . . . . . . . . . . . 130 subatomic particles . 132–133 \subcorner (a) . . . . . . . . 22 ^ (a) . . . . . 22 \subdoublebar ¯ \subdoublevert (a) . . . . . 22 \subedot (⫃) . . "". . . . . . . 64 \sublptr (a) . . . . . . . . . . 22 ¡ \submult (⫁) . . . . . . . . . 64 \subrarr (⥹) . . . . . . . . . 64 \subrptr (a) . . . . . . . . . . 22 subscripts ¿ new symbols used in . 225 \Subset (Ť) . . . . . . . . . . 62 \Subset (b) . . . . . . . . . . 62 \Subset (È) . . . . . . . . . . 63 \Subset (⋐) . . . . . . . . . . 63 \Subset (⋐) . . . . . . . . . . . 63 \Subset (⋐) . . . . . . . . . . 64 \subset (Ă) . . . . . . . . . . 62 \subset (⊂) . . . . . . . . . . 61 \subset (⊂) . . . . . . . . . . 63 334 \subset (⊂) . . . . . . \subset (⊂) . . . . . \subsetapprox (⫉) \subsetcirc (⟃) . . \subsetdot (⪽) . . . \subseteq (Ď) . . . \subseteq (⊆) . . . \subseteq (⊆) . . . . \subseteq (⊆) . . . . \subseteq (⊆) . . . . \subseteqq (Ň) . . . \subseteqq (j) . . \subseteqq (Ì) . . . \subseteqq (⫅) . . . \subseteqq (⫅) . . . \subseteqq (⫅) . . . \subsetneq (Ĺ) . . . \subsetneq (() . . \subsetneq (¨) . . . \subsetneq (⊊) . . . \subsetneq (⊊) . . . \subsetneq (⊊) . . . \subsetneqq (Ř) . . \subsetneqq ($) . . \subsetneqq (¤) . . \subsetneqq (⫋) . . \subsetneqq (⫋) . . \subsetneqq (⫋) . . \subsetplus (D) . . \subsetplus (º) . . \subsetplus (⪿) . . \subsetpluseq (F) \subsetpluseq (¼) subsets . . . . . . . . . \subsim (⫇) . . . . . \subsub (⫕) . . . . . \subsup (⫓) . . . . . \Succ (⪼) . . . . . . . \succ (≻) . . . . . . \succ (≻) . . . . . . . \succ (≻) . . . . . . . \succ (≻) . . . . . . . \succapprox (Ç) . . \succapprox (v) . . \succapprox (¹) . . \succapprox (⪸) . . \succapprox (⪸) . . \succapprox (⪸) . . \succcurlyeq (ě) . \succcurlyeq (<) . \succcurlyeq (Ï) . \succcurlyeq (≽) . \succcurlyeq (≽) . \succcurlyeq (≽) . \succdot (Í) . . . . \succeq (⪰) . . . . . \succeq (⪰) . . . . . \succeq (⪰) . . . . . . \succeq (⪰) . . . . . \succeqq () . . . . \succeqq (⪴) . . . . . \succeqq (⪴) . . . . \succnapprox (Ë) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 . 64 . 64 . 64 . 64 . 62 . 61 . 63 . 63 . 64 . 62 . 62 . 63 . 63 . 63 . 64 . 62 . 62 . 63 . 63 . 63 . 64 . 62 . 62 . 63 . 63 . 63 . 64 . 62 . 63 . 64 . 62 . 63 61–64 . . 64 . . 64 . . 64 . . 58 . . 50 . . 55 . . 53 . . 58 . . 52 . . 50 . . 57 . . 55 . . 53 . . 58 . . 52 . . 50 . . 57 . . 55 . . 53 . . 58 . . 52 . . 50 . . 55 . . 53 . . 58 . . 51 . . 55 . . 58 . . 52 \succnapprox () . . . . . . 51 \succnapprox () . . . . . . 57 \succnapprox (⪺) . . . . . . 56 \succnapprox (⪺) . . . . . . 54 \succnapprox (⪺) . . . . . . 58 \succneq (ŋ) . . . . . . . . . 52 \succneq (⪲) . . . . . . . . . . 56 \succneq (⪲) . . . . . . . . . 58 \succneqq () . . . . . . . . 51 \succneqq () . . . . . . . . . 57 \succneqq (⪶) . . . . . . . . . 56 \succneqq (⪶) . . . . . . . . . 58 \succnsim (Å) . . . . . . . . 52 \succnsim () . . . . . . . . 51 \succnsim () . . . . . . . . . 57 \succnsim (⋩) . . . . . . . . . 56 \succnsim (⋩) . . . . . . . . . 54 \succnsim (⋩) . . . . . . . . . 58 \succsim (Á) . . . . . . . . . 52 \succsim (%) . . . . . . . . . 50 \succsim (») . . . . . . . . . 57 \succsim (≿) . . . . . . . . . . 55 \succsim (≿) . . . . . . . . . . 53 \succsim (≿) . . . . . . . . . 58 such that . . . . . . . . 222, 224 \suchthat − −) . . . . . . . . 224 ∑︀ (∋ \sum ( ) . . . . . . . . . . . . 40 \sum (∑) . . . . . . . . . . . . . 45 \sum (∑) . . . . . . . . . . . . . 44 ∑ \sum ( ) ⨋ . . . . . . . . . . . . . 46 \sumint ( ) . . . . . . . . . . 49 \sumint (⨋) . . . . . . . . . . 45 \sumint (⨋) . . . . . . . . . . . 44 \sumint (⨋) . . . . . . . . . . 46 \sumintsl (⨋) . . . . . . . . . 47 \sumintup (⨋) . . . . . . . . . 47 \Summertree ( ) . . . . . . . 192 \Summit ( ) . . . . . . . . . . 178 \SummitSign ( ) . . . . . . . 178 \Sun (@) . . . . . . . . . . . . . 127 \Sun (s) . . . . . . . . . . . . 128 \Sun (À) . . . . . . . . . . . . . 126 \Sun ( ) . . . . . . . . . . . . 178 \Sun (À vs. vs. @) . . . 220 sun . . 126–128, 146, 176, 178, 192–193, 217, 220 \sun (☼) . . . . . . . . . . . . . 127 \sun (☼) . . . . . . . . . . . . . 176 \SunCloud ( ) . . . . . . . . 178 \SunshineOpenCircled (T) . . . . . . . . . 146 \sup (sup) . . . . . . . . . . . 91 \supdsub (⫘) . . . . . . . . . 64 \supedot (⫄) . . . . . . . . . 64 superscripts new symbols used in . 225 supersets . . . . . . . . . . . 61–64 \suphsol (⟉) . . . . . . . . . 64 \suphsub (⫗) . . . . . . . . . 64 \suplarr (⥻) . . . . . . . . . 64 \supmult (⫂) . . . . . . . . . 64 supremum . . . . . . . . see \sup \Supset (Ţ) . . . . . \Supset (c) . . . . . \Supset (É) . . . . . \Supset (⋑) . . . . . \Supset (⋑) . . . . . . \Supset (⋑) . . . . . \supset (Ą) . . . . . \supset (⊃) . . . . . \supset (⊃) . . . . . \supset (⊃) . . . . . . \supset (⊃) . . . . . \supsetapprox (⫊) \supsetcirc (⟄) . . \supsetdot (⪾) . . . \supseteq (Ě) . . . \supseteq (⊇) . . . \supseteq (⊇) . . . . \supseteq (⊇) . . . . \supseteq (⊇) . . . . \supseteqq (Ŋ) . . . \supseteqq (k) . . \supseteqq (Í) . . . \supseteqq (⫆) . . . \supseteqq (⫆) . . . \supseteqq (⫆) . . . \supsetneq (Ľ) . . . \supsetneq ()) . . \supsetneq (©) . . . \supsetneq (⊋) . . . \supsetneq (⊋) . . . \supsetneq (⊋) . . . \supsetneqq (Ś) . . \supsetneqq (%) . . \supsetneqq (¥) . . \supsetneqq (⫌) . . \supsetneqq (⫌) . . \supsetneqq (⫌) . . \supsetplus (E) . . \supsetplus (») . . \supsetplus (⫀) . . \supsetpluseq (G) \supsetpluseq (½) \supsim (⫈) . . . . . \supsub (⫔) . . . . . \supsup (⫖) . . . . . ‘ \surd ( ) . . . . . . . \surface (𝑧) . . . . \SurveySign ( ) . . \svrexample (Ì) . . \svrphoton (𝑏) . . . svrsymbols (package) 240 \Swarrow (w) . . . . \Swarrow () . . . . \Swarrow (⇙) . . . . \Swarrow (⇙) . . . . \Swarrow (⇙) . . . . \swarrow (Ö) . . . . \swarrow (↘) . . . \swarrow (↙) . . . . \swarrow (↙) . . . . \swarrow (↘) . . . . \swarrow (↙) . . . . 335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 . . . . 62 . . . . 63 . . . . 63 . . . . 63 . . . . 64 . . . . 62 . . . . 61 . . . . 63 . . . . 63 . . . . 64 . . . . 64 . . . . 64 . . . . 64 . . . . 62 . . . . 61 . . . . 63 . . . . 63 . . . . 64 . . . . 62 . . . . 62 . . . . 63 . . . . 63 . . . . 63 . . . . 64 . . . . 62 . . . . 62 . . . . 63 . . . . 63 . . . . 63 . . . . 64 . . . . 62 . . . . 62 . . . . 63 . . . . 63 . . . . 63 . . . . 64 . . . . 62 . . . . 63 . . . . 64 . . . . 62 . . . . 63 . . . . 64 . . . . 64 . . . . 64 . . . . 118 . . . . 133 . . . . 178 . . . . 133 . . . . 133 132, 239, . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. 72, ... ... ... ... 73 83 78 74 85 73 226 78 74 87 85 \swarrowtail (&) . . . . . . \swarrowtail (&) . . . . . . \swbkarrow (f) . . . . . . . 78 74 78 \Sweden (¥) . . . . . . . . . . . 190 Swedo-Norwegian runes . . see short-twig runes \swfilledspoon (v) . . . . 88 \swfootline (~) . . . . . . . 53 \swfree () . . . . . . . . . . 53 \swharpoonccw (F) . . . . . 77 \swharpooncw (N) . . . . . . 77 \swharpoonnw (N) . . . . . . 81 \swharpoonse (F) . . . . . . 81 \Switzerland (¦) . . . . . . . 190 \swlcurvearrow (⤶) . . . . 79 \swlsquigarrow (¦) . . . . 74 \swmapsto (.) . . . . . . . . 74 \swModels (ö) . . . . . . . . 53 \swmodels (æ) . . . . . . . . 53 \swnearrows () . . . . . . 78 \swnearrows () . . . . . . 74 \swnecurvearrow (ª) . . . 79 \swneharpoons (^) . . . . . 81 \swneharpoons (^) . . . . . 77 swords . . . . . . . . . . . . . . 177 \swords (⚔) . . . . . . . . . . 190 \swpitchfork () . . . . . . 88 \swrcurvearrow (¢) . . . . 79 \swrsquigarrow (®) . . . . 74 \swspoon (n) . . . . . . . . . 88 \swswarrows (~) . . . . . . 78 \swswarrows () . . . . . . 74 swung dash . . . . . . . see \sim \swVdash (î) . . . . . . . . . 53 \swvdash (Þ) . . . . . . . . . 53 \syl (a) . . . . . . . . . . . . . 23 \syllabic (j) . . . . . . . . . 24 \symA ( ) . . . . . . . . . . . . 123 \symAE ( ) . . . . . . . . . . . 124 \symB ( ) . . . . . . . . . . . . 123 \symbishop (B) . . . . . . . . 182 Symbol (font) . . . . . . 94, 222 symbols 14–148, 158–199, 201, 216, 217, 219, 221, 227, 232–233, 236 actuarial . . 111, 227–228 alpine . . . . . . . . . . . 178 ancient language 148–157 annuity . . . 111, 227–228 APL . . . 58–59, 128, 129 astrological . . . 126–128, 201–203 astronomical . . 126–128, 186, 201–203 Begriffsschrift . . . . . . 116 biological . . . . . . . . . 131 block-element . . . . . . 185 body-text . . . . . . . 14–28 bold . . . . . . . . . . . . 233 box-drawing . . . . . . . 185 chess . 181, 182, 217–218 cipher . . . . . . . . . . . 186 Á Û Â musical 158–175, 192–197 non-commutative division . . . . . . . 114 particle physics 132–133 Phaistos disk . . . . . . 148 phonetic . . . . . . . 17–20 physical . . . . . . . . . . 125 Pitman’s base 12 117, 180 present value 111, 227–228 proto-Semitic . . . . . . 148 pulse diagram . . . . . 125 recycling . 186, 187, 190, 192–197, 199 relational . . . . . . . . . 50 relational database . . 121 reversed . . . . . . . . . . 222 rotated . . 17–19, 24, 222 runes . . . . . . . . . . . . 157 safety-related . . . . . . 131 scientific . . . . . 125–133, 215–216 semaphore . . . . 213–215 Simpsons characters . 184 smile . . . . . . . . . . 89, 90 Soyombo . . . . . . . . . 187 spoon . . . . . . . . . 88, 89 staves . . . . . . . . . . . 185 subset and superset 61–64 technological . . 125–133 TEXbook . . . . . . . . . 176 transliteration . . . . . 20 upside-down . . 17–19, 24, 222, 233–234 variable-sized 40–50, 219, 221 weather . . . 178, 192–193 Web . . . . . . . . 194–197 yin-yang . . . . . 177, 190, 192–193, 205 zodiacal 126–128, 201–203 symbols.tex (file) . . 219, 239 \symC ( ) . . . . . . . . . . . . 123 \symking (K) . . . . . . . . . 182 \symknight (N) . . . . . . . 182 \symOE ( ) . . . . . . . . . . . 124 \sympawn (p) . . . . . . . . . 182 \symqueen (Q) . . . . . . . . 182 \symrook (R) . . . . . . . . . 182 \symUE ( ) . . . . . . . . . . . 124 \SYN (␖) . . . . . . . . . . . . . 130 Ã Ü Ý T T (T) . . . . . . . . . \T . . . . . . . . . . . . \T ( ) . . . . . . . . . \T (⊗) . . . . . . . . \t (a) ......... \t (⊗) . . . . . . . . t (t) . . . . . . . . . t4phonet (package) 240 − ) ... \Tab ( → −→ \tabcolsep . . . . . a clock . 176–179, 192–193 communication . . . . . 130 computer . . . . . 194–197 computer hardware . . 129 contradiction . . . . 29, 90 cooking . . . 191, 194–197 countries . . . . . . . . . 188 crystallography 215–216 currency 25, 26, 121, 124 dangerous bend . . . . 176 database . . . . . . . . . 121 definition . . . . . . 29, 227 dictionary . . 17–20, 184 dingbat . . . . . . 134–147 dot 14, 114–116, 226–227 electrical . . . . . . . . . 125 engineering 121, 125, 131 Epi-Olmec . . . . 154–156 extensible . 87, 107–114, 126, 221, 227–229 Feynman diagram . . . 132 file . . . . . . . . . . 194–197 Frege logic . . 87, 97, 116, 117, 122 frown . . . . . . . . . . 89, 90 game-related . . 145, 146, 178, 179, 181–183, 194– 197, 216–218 gates, digital logic . . 130 genealogical . . . . . . . 176 general . . . . . . . . . . 176 Go stones . . . . 182, 183 Halloween . 38, 113, 114 information . . . . . . . 177 informator . . . . . . . . 181 inverted . . 17–19, 24, 222 Isthmian . . . . . 154–156 keyboard . . . . . . . . . 129 knitting . . . . . . . . . . 188 Knuth’s . . . . . . . . . . 176 laundry . . . . . . . . . . 177 legal . 14, 15, 26, 27, 236 letter-like 96–98, 194–197 life insurance . . . . . 111, 227–228 linear logic 29–31, 35, 36, 40, 44–45, 50, 61, 96, 97 linguistic . . . . . . . 17–20 log-like . . . . 91, 92, 232 logic . . . . . . . . . . . . 130 Magic: The Gathering 217 magical signs . . . . . . 185 map . . . . . . . . 199–200 maps . . . . . . . . . . . . 188 mathematical . . . 29–124 media control . . . . . 177, 194–197 METAFONTbook . . . 176 metrical . . . . . . 183, 184 miscellaneous . . . . . 118– 120, 122, 146, 147, 176– 193, 198 monetary . . . 25, 26, 124 336 . . . . . . . . . . . . 157 . . . . . 16 . . . . . 24 . . . . . 183 . . . . . 20 . . . . . 183 . . . . . 157 20, 23, 239, . . . . . . 129 . . . . . . 223 \tachyon (Ï) . . . . . . . . . . 133 tacks . . . . . . . . . . . . . . 50, 96 \taild () . . . . . . . . . . . 19 tailed z . . . . . . . see \roundz \tailinvr (H) . . . . . . . . . 19 \taill (0) . . . . . . . . . . . . 19 \tailn (9) . . . . . . . . . . . 19 \tailr (F) . . . . . . . . . . . . 19 \tails (L) . . . . . . . . . . . . 19 \tailt (P) . . . . . . . . . . . . 19 \tailz (_) . . . . . . . . . . . 19 \Takt . . . . . . . . . . . . . . . 161 \talloblong (8) . . . . . . . 30 \talloblong (;) . . . . . . . 37 \talloblong (⫾) . . . . . . . 38 \tally (1 2 3 4 5 6) . . . 180 tally markers . . . 152, 178, 180 \tan (tan) . . . . . . . . . . . 91 \tanh (tanh) . . . . . . . . . 91 \Tape ( ) . . . . . . . . . . . . 146 \Taschenuhr ( ) . . . . . . 178 Tate-Shafarevich group see sha \Tau (T) . . . . . . . . . . . . . 93 \tau (𝜏 ) . . . . . . . . . . . . . 93 \tauleptonminus (×) . . . 133 \tauleptonplus (Ö) . . . . 133 \Taurus (Q) . . . . . . . . . . 127 \Taurus (c) . . . . . . . . . . 128 \Taurus (á) . . . . . . . . . . 126 \taurus (]) . . . . . . . . . . 126 tautology . . . . . . . . see \top \tauup (τ) . . . . . . . . . . . . 94 \tccentigrade (℃) . . . . . 116 \tcmu (µ) . . . . . . . . . . . . 116 \tcohm (Ω) . . . . . . . . . . . 116 \tcpertenthousand (‱) 116 \tcperthousand (‰) . . . . 116 \td (a ..) . . . . . . . . . . . . . . 23 \tddtstile ( ) ...... 60 \tdststile ( ) ....... 60 ....... 60 \tdtstile ( ) \tdttstile ( ) . . . . . . 60 technological symbols 125–133 \Telefon (T) . . . . . . . . . 130 ( \Telephone ( ) \Telephone ( ) Tennent, Bob . . tensor product . . @ . . . . . . 178 . . . . . . . 187 . . . . . . . 29 see \otimes \Tent ( ) . . . . . . . \tenuto ( ) . . . . . . \Terminus (⊗) . . . \terminus (⊗) . . . \Terminus* (⊕) . . \terminus* (⊕) . . . \Terra (L) . . . . . . \tesh (Q) . . . . . . . testfont.dvi (file) testfont.tex (file) \tetartemorion (Β) . . . . . . . . . . . . . . . . . . . . ... ... ... ... ... ... ... ... ... 230, .... 178 164 183 183 183 183 128 19 231 231 26 teubner (package) 26, 116, 154, 184, 239, 240 TEX . . . . 12, 70, 71, 87, 115, 123, 126, 185, 219, 222– 232, 234, 235, 238, 241 .tex files . . . . . . . . 235, 237 TEXbook, The . 223, 225–228, 232 symbols from . . . . . . 176 \text . . . . . . . . 29, 224, 226 \textacutedbl (˝) . . . . . 24 \textacutemacron (´ ā) . . . 21 \textacutewedge (´ ǎ) . . . . 21 \textadvancing (affi) . . . . . 21 \textAlpha (Α) . . . . . . . . 15 \textalpha (α) . . . . . . . . 15 \textaolig (") . . . . . . . . 18 \textara . . . . . . . . . . . . 157 \textarc . . . . . . . . . . . . 157 \textarl . . . . . . . . . . . . 157 \textarm . . . . . . . . . . . . 157 \textarn . . . . . . . . . . . . 157 \textart . . . . . . . . . . . . 157 \textasciiacute (´) . 24, 236 \textasciibreve (˘) . . . . 24 \textasciicaron (ˇ) . . . . 24 \textasciicircum . . . . . . 14 \textasciicircum (^) 14, 234, 237 \textasciidieresis (¨) . 24, 236 \textasciigrave (`) . . . . 24 \textasciimacron . . . . . . 235 \textasciimacron (¯) 24, 236 \textasciitilde . . . . . . 14 \textasciitilde (˜) 14, 234, 237 \textasteriskcentered (*) 14 \textasteriskcentered (∗) 14 \textbabygamma (È) . . . . . 17 \textbackslash . . . . . . . 14 \textbackslash (∖) . . . . . 234 \textbaht (฿) . . . . . . . . . 25 \textbar . . . . . . . . . . . . 14 \textbar (|) . . . . . . . . . . 234 \textbarb (b) . . . . . . . . . 17 \textbarc (c) . . . . . . . . . 17 \textbard (d) . . . . . . . . . 17 \textbardbl (‖) . . . . . . . 14 \textbardbl (‖) . . . . . . . 14 \textbardotlessj (é) . . . 17 \textbarg (g) . . . . . . . . . 17 \textbarglotstop (Ü) . . . 17 \textbari (1) . . . . . . . . . 17 \textbarl (ł) . . . . . . . . . 17 \textbaro (8) . . . . . . . . . 17 \textbarrevglotstop (Ý) 17 \textbaru (0) . . . . . . . . . 17 \textbeltl (ì) . . . . . . . . 17 \textbenttailyogh (B) . . 18 \textBeta (Β) . . . . . . . . . 15 \textbeta (β) . . . . . . . 15, 17 \textbigcircle (○) . . . . 14 \textbigcircle (○) . . . . 14 \textbktailgamma (.) . . . 18 \textblank (␢) . . . . . . . . 27 \textblock ( ) . . . . . . . 185 \textborn (b) . . . . . . . . . 176 \textbottomtiebar (a <) . . 21 \textbraceleft . . . . . . . 14 \textbraceright . . . . . . 14 \textbrevemacron (˘ ā) . . . 21 \textbrokenbar (¦) . . 27, 236 \textbullet (∙) . . . . . . . 14 \textbullet (•) . . . . 14, 237 \textbullseye (ò) . . . . . 17 \textcelsius (℃) . . 125, 237 \textceltpal ( ) . . . . . . . 17 \textcent (¢) . . . . . . 25, 236 \textcentoldstyle () . . 25 \textChi (Χ) . . . . . . . . . 15 \textchi (χ) . . . . . . . . 15, 17 \textcircled (○) . . . . . . 20 \textcircledP . . . . . . . . 26 \textcircledP (℗) . . . . 26 \textcircumacute (Ż a) . . . 21 \textcircumdot (ˆ ȧ) . . . . . 21 \textcloseepsilon (Å) . . 17 \textcloseomega (Ñ) . . . . 17 \textcloserevepsilon (Æ) 17 \textcolonmonetary (₡) . 25 \textcommatailz (Þ) . . . . 17 textcomp (package) . . . . . 12, 14, 15, 20, 24–27, 72, 104, 121, 125, 158, 176, 219, 234, 235, 239 \textcopyleft . . . . . . . . 26 \textcopyleft («) . . . . 26 c . . 14, 26 \textcopyright (○) \textcopyright (©) . 14, 26, 236 \textcorner (^) . . . . . . . . 17 \textcrb (ă) . . . . . . . . . . 17 \textcrd () . . . . . . . . . . 20 \textcrd (ą) . . . . . . . . . . 17 \textcrg (g) . . . . . . . . . . 17 \textcrh (§) . . . . . . . . . . 20 \textcrh (è) . . . . . . . . . . 17 \textcrinvglotstop (Û) . 17 \textcrlambda (ň) . . . . . 17 \textcrtwo (2) . . . . . . . . 17 \textctc (C) . . . . . . . . . . 17 \textctd (ć) . . . . . . . . . . 17 \textctdctzlig (ćý) . . . . 17 \textctesh (š) . . . . . . . . 17 \textctinvglotstop (D) . 18 \textctj (J) . . . . . . . . . . 17 \textctjvar (2) . . . . . . . 18 \textctn (ő) . . . . . . . . . . 17 \textctstretchc (%) . . . . 18 \textctstretchcvar (&) . 18 \textctt (ť) . . . . . . . . . . 17 \textcttctclig (ťC) . . . . 17 \textctturnt (@) . . . . . . . 18 \textctyogh (ÿ) . . . . . . . 17 \textctz (ý) . . . . . . . . . . 17 337 \textcurrency (¤) . . 25, 236 \textcypr . . . . . . . . . . . . 153 \textdagger (†) . . . . . . . 14 \textdagger (†) . . . . . . . 14 \textdaggerdbl (‡) . . . . . 14 \textdaggerdbl (‡) . . . . . 14 \textdbend ( ) . . . . . . . 176 \textdblhyphen (-) . . . . . 27 \textdblhyphenchar () . . 27 \textdblig ()) . . . . . . . 18 \textdctzlig (dý) . . . . . . 17 \textdegree (°) . . . 121, 236 \textDelta (Δ) . . . . . . . 15 \textdelta (δ) . . . . . . . . 15 \textdied (d) . . . . . . . . . 176 \textdiscount () . . . . . 27 \textdiv (÷) . . . . . . . . . 121 \textdivorced (c) . . . . . 176 \textdkshade ( ) . . . . . 185 \textdnblock ( ) . . . . . 185 \textdollar ($) . . . . . . . 14 \textdollar ($) . . . . . 14, 25 \textdollaroldstyle () 25 \textdong (₫) . . . . . . . . . 25 \textdotacute (§ a) . . . . . 21 ˙ . . . . . 21 \textdotbreve (ă) \textdoublebaresh (S) . . 17 \textdoublebarpipe (}) . 17 \textdoublebarpipevar (H) 18 \textdoublebarslash (= / ) 17 \textdoublegrave (‚ a) . . . 21 \textdoublegrave (a ) . . . 23 \textdoublepipe ({) . . . . 17 \textdoublepipevar (G) . 18 \textdoublevbaraccent (İ a) 21 \textdoublevbaraccent (a ¼) 23 \textdoublevertline (Ş) 17 \textdownarrow (↓) . . . . . 72 \textdownfullarrow (ˇ) . 18 \textdownstep (Ť) . . . . . . 17 \textdyoghlig (Ã) . . . . . 17 \textdzlig (dz) . . . . . . . . 17 \texteightoldstyle () . 27 \textellipsis . . . . . . . . 14 \textemdash . . . . . . . . . . 14 \textendash . . . . . . . . . . 14 \textEpsilon (Ε) . . . . . . 15 \textepsilon (¢) . . . . . . 20 \textepsilon (ε) . . . . 15, 17 \textesh (¬) . . . . . . . . . . 20 \textesh (S) . . . . . . . . . . 17 \textestimated (℮) . . . . 27 \textEta (Η) . . . . . . . . . 15 \texteta (η) . . . . . . . . . . 15 \texteuro (€) . . . . . . . . . 26 \texteuro (€) . . . . . . . . 25 \texteuro (€) . 25, 235, 237 \textexclamdown . . . . . . 14 \textfallrise (Ż a) . . . . . 21 \textfemale (7) . . . . . . . 18 \textfishhookr (R) . . . . . 17 \textfiveoldstyle () . . 27 \textfjlig () . . . . . . . . 20 \textflorin (ƒ) . . . . . . . . 25 \textfouroldstyle () . . 27 \textfractionsolidus (⁄) 121 \textfrak . . . . . . . . . . . . 123 \textfrbarn (5) . . . . . . . 18 \textfrhookd (’) . . . . . . 18 \textfrhookdvar (() . . . . 18 \textfrhookt (?) . . . . . . 18 \textfrtailgamma (-) . . . 18 \textg (ě) . . . . . . . . . . . 18 \textGamma (Γ) . . . . . . . . 15 \textgamma (γ) . . . . . . 15, 18 \textglobfall (Ů) . . . . . 18 \textglobrise (Ű) . . . . . 18 \textglotstop (P) . . . . . 17 \textglotstopvari (T) . . 18 \textglotstopvarii (U) . 18 \textglotstopvariii (V) 18 \textgoth . . . . . . . . . . . . 123 \textgravecircum (Ž a) . . . 21 \textgravedbl () . . . . . 24 \textgravedot (đ a) . . . . . 21 \textgravemacron (` ā) . . . 21 \textgravemid (Ź a) . . . . . 21 \textgreater . . . . . . . . . 14 \textgreater (>) . . . . . . 234 textgreek (package) 15, 94, 239, 240 \textgrgamma (,) . . . . . . 18 \textguarani () . . . . . . 25 \texthalflength (;) . . . . 17 \texthardsign (ż) . . . . . 17 \textheng (0) . . . . . . . . . 18 \texthighrise (Ÿ a) . . . . . 21 \texthmlig (4) . . . . . . . 18 \texthooktop (#) . . . . . . . 17 \texthtb ( ) . . . . . . . . . . 20 \texthtb (á) . . . . . . . . . . 17 \texthtbardotlessj (ê) . . 17 \texthtbardotlessjvar (3) 18 \texthtc (°) . . . . . . . . . . 20 \texthtc (Á) . . . . . . . . . . 17 \texthtd (¡) . . . . . . . . . 20 \texthtd (â) . . . . . . . . . . 17 \texthtg (ä) . . . . . . . . . . 17 \texthth (H) . . . . . . . . . . 17 \texththeng (Ê) . . . . . . . 17 \texthtk (¨) . . . . . . . . . . 20 \texthtk (Î) . . . . . . . . . . 17 \texthtp (±) . . . . . . . . . . 20 \texthtp (Ò) . . . . . . . . . . 17 \texthtq (Ó) . . . . . . . . . . 17 \texthtrtaild (č) . . . . . 17 \texthtscg (É) . . . . . . . . 17 \texthtt (º) . . . . . . . . . . 20 \texthtt (Ö) . . . . . . . . . . 17 \texthvlig (ß) . . . . . . . . 17 \textifsym . . . . . . . . . . . 125 \textinterrobang (‽) . . . 27 \textinterrobangdown () 27 \textinvglotstop (Û) . . . 17 \textinvomega (;) . . . . . 18 \textinvsca (p) . . . . . \textinvscr (K) . . . . . \textinvscripta (!) . . \textinvsubbridge (a „) \textIota (Ι) . . . . . . . \textiota (à) . . . . . . . \textiota (ι) . . . . . . . \textKappa (Κ) . . . . . . \textkappa (κ) . . . . . . \textknit . . . . . . . . . . \textknit{2} (2 2) . . . \textknit{3} (3 3) . . . \textknit{4} (4 4) . . . \textknit{5} (5 5) . . . \textknit{6} (6 6) . . . \textknit{7} (7 7) . . . \textknit{8} (8 8) . . . \textknit{9} (9 9) . . . \textknit{"} (" ") . . . \textknit{(} (( () . . . \textknit{)} () )) . . . \textknit{*} (* *) . . . \textknit{-} (-) . . . \textknit{:} (: :) . . . \textknit{;} (; ;) . . . \textknit{<} (< <) . . . \textknit{@} (@ @) . . . \textknit{[} ([ [) . . . \textknit{]} (] ]) . . . \textknit{A} (A A) . . . \textknit{a} (a a) . . . \textknit{B} (B B) . . . \textknit{b} (b b) . . . \textknit{E} (E E) . . . \textknit{F} (F F) . . . \textknit{f} (f f) . . . \textknit{H} (H H) . . . \textknit{h} (h h) . . . \textknit{I} (I I) . . . \textknit{i} (i i) . . . \textknit{J} (J J) . . . \textknit{j} (j j) . . . \textknit{L} (L L) . . . \textknit{l} (l l) . . . \textknit{M} (M M) . . . \textknit{m} (m m) . . . \textknit{O} (O O) . . . \textknit{Q} (Q Q) . . . \textknit{q} (q q) . . . \textknit{R} (R R) . . . \textknit{r} (r r) . . . \textknit{S} (S S) . . . \textknit{s} (s s) . . . \textknit{T} (T T) . . . \textknit{t} (t t) . . . \textknit{U} (U U) . . . 338 . . . . . . . 18 . 17 . 18 . 21 . 15 . 20 15, 17 . . 15 . . 15 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 . . 188 \textknit{u} (u u) . . . . . 188 \textknit{V} (V V) . . . . . 188 \textknit{v} (v v) . . . . . 188 \textknit{W} (W W) . . . . . 188 \textknit{w} (w w) . . . . . 188 \textknit{X} (X X) . . . . . 188 \textknit{x} (x x) . . . . . 188 \textknit{Y} (Y Y) . . . . . 188 \textknit{y} (y y) . . . . . 188 \textknit{Z} (Z Z) . . . . . 188 \textknit{z} (z z) . . . . . 188 \textLambda (Λ) . . . . . . . 15 \textlambda (λ) . . . . . 15, 17 \textlangle (〈) . . . 104, 234 \textlbrackdbl (〚) . . . . . 104 \textleaf (l) . . . . . . . . 176 \textleftarrow (←) . . . . 72 \textlengthmark (:) . . . . 17 \textless . . . . . . . . . . . . 14 \textless (<) . . . . . . . . 234 \textlfblock ( ) . . . . . 185 \textlfishhookrlig (I) . 18 ~ \textlhdbend ( ) . . . . . 176 \textlhookfour (#) . . . . . 18 \textlhookp (<) . . . . . . . 18 \textlhookt (ş) . . . . . . . 17 \textlhti (1) . . . . . . . . . 18 \textlhtlongi (ę) . . . . . . 17 \textlhtlongy (ű) . . . . . 17 \textlinb . . . . . . . . 152, 153 \textlira (₤) . . . . . . . . . 25 \textlnot (¬) . . . . . 121, 236 \textlonglegr (Ô) . . . . . . 17 \textlooptoprevesh (>) . . 18 \textlowering (afl) . . . . . 21 \textlowrise (Ź a) . . . . . . 21 \textlptr (¡) . . . . . . . . . 17 \textlquill (⁅) . . . . . . . 104 \textltailm (M) . . . . . . . 17 \textltailn (©) . . . . . . . 20 \textltailn (ñ) . . . . . . . 17 \textltilde (ë) . . . . . . . 17 \textltshade ( ) . . . . . 185 \textlyoghlig (Ð) . . . . . 17 \textmarried (m) . . . . . . 176 \textmho (℧) . . . . . . . . . 125 \textmicro (μ) . . . . . . . . 15 \textmidacute (Ÿ a) . . . . . 21 \textminus (−) . . . . . . . . 121 \textMu (Μ) . . . . . . . . . . 15 \textmu (µ) . . . . . . . 125, 236 \textmu (μ) . . . . . . . . . . . 15 \textmugreek (μ) . . . . . . 15 \textmusicalnote (♪) . . . 158 \textnaira (₦) . . . . . . . . 25 \textnineoldstyle () . . 27 \textnrleg (6) . . . . . . . . 18 \textNu (Ν) . . . . . . . . . . 15 \textnu (ν) . . . . . . . . . . . 15 \textnumero (№) . . . . . . . 27 \textObardotlessj (Í) . . 17 \textObullseye (9) . . . . 18 \textohm (Ω) . . . . . . . . . 125 \textOlyoghlig (ŋ) . . . . . 17 \textOmega (Ω) . . . . . . . . 15 \textomega (ω) . . . . . . 15, 17 \textOmikron (Ο) . . . . . . 15 \textomikron (ο) . . . . . . 15 \textonehalf (½) . . 121, 236 \textoneoldstyle . . . . . . 27 \textoneoldstyle () . . . 27 \textonequarter (¼) 121, 236 \textonesuperior (¹) 121, 236 \textopenbullet (◦) . . . . 27 \textopencorner (_) . . . . 17 \textopeno (ª) . . . . . . . . 20 \textopeno (O) . . . . . . . . 17 \textordfeminine (a ) . . . 14 \textordfeminine (ª) 14, 236 \textordmasculine (o ) . . 14 \textordmasculine (º) 14, 236 \textovercross a) . . . . . 21 — (‰ \textoverw (a) . . . . . . . . 21 \textpalhook (%) . . . . . . . 17 \textpalhooklong (ˆ) . . . 18 \textpalhookvar (˜) . . . . 18 \textparagraph (¶) . . . . 14 \textparagraph (¶) . . . . 14 \textperiodcentered (·) . 14 \textperiodcentered (·) . 14, 236 \textpertenthousand (%) 14 \textpertenthousand (‱) 14 \textperthousand (%) . . 14 \textperthousand (‰) . . 14, 237 \textpeso () . . . . . . . . . 25 \textPhi (Φ) . . . . . . . . . 15 \textphi (φ) . . . . . . . . 15, 17 \textPi (Π) . . . . . . . . . . 15 \textpi (π) . . . . . . . . . . . 15 \textpilcrow (¶) . . . . . . 27 \textpipe (|) . . . . . . . . . 20 \textpipe (|) . . . . . . . . . 17 \textpipevar (F) . . . . . . . 18 \textpm (±) . . . . . . 121, 236 \textpmhg . . . . . . . . . . . . 149 \textpolhook (a˛ ) . . . . . . 21 \textprimstress (") . . . . 17 \textproto . . . . . . . . . . . 148 \textPsi (Ψ) . . . . . . . . . 15 \textpsi (ψ) . . . . . . . . . . 15 \textqplig (=) . . . . . . . 18 \textquestiondown . . . . . 14 \textquotedbl (") . . 16, 233 \textquotedblleft . . . . . 14 \textquotedblright . . . . 14 \textquoteleft . . . . . . . 14 \textquoteright . . . . . . 14 \textquotesingle (') 27, 233 \textquotestraightbase (‚) . . . . . . . . . 27 \textquotestraightdblbase („) . . . . . . . . . . . . . 27 \textraiseglotstop (ij) . 17 \textraisevibyi (ğ) . . . . 17 \textraising (afi) . . . . . . 21 \textramshorns (7) . . . . . 17 \textrangle (〉) . . . 104, 234 \textrbrackdbl (〛) . . . . . 104 \textrecipe () . . . . 27, 221 \textrectangle (¨) . . . . . 18 \textreferencemark (※) . 27, 29 r . 14, 26 \textregistered (○) \textregistered (®) 14, 26, 236 \textretracting (affl) . . . . 21 \textretractingvar (˚) . 18 \textrevapostrophe (\) . . 17 \textreve (9) . . . . . . . . . 17 \textrevepsilon (3) . 17, 222 \textreversedvideodbend ( ) . . . . . . . . . . 176 \textrevglotstop (Q) . . . 17 \textrevscl (v) . . . . . . . 18 \textrevscr (z) . . . . . . . 18 \textrevyogh (ź) . . . . . . 17 \textRho (Ρ) . . . . . . . . . 15 \textrho (ρ) . . . . . . . . . . 15 \textrhooka ( ) . . . . . . . 18 \textrhooke (*) . . . . . . . 18 \textrhookepsilon (+) . . 18 \textrhookopeno (:) . . . . 18 \textrhookrevepsilon (Ç) 17 \textrhookschwa (Ä) . . . . 17 \textrhoticity (~) . . . . . 18 \textrightarrow (→) . . . 72 \textringmacron (˚ ā) . . . . 21 \textrisefall (Ž a) . . . . . 21 \textroundcap (“ a) . . . . . 21 \textrptr (¿) . . . . . . . . . 18 \textrquill (⁆) . . . . . . . 104 \textrtaild (ð) . . . . . . . 20 \textrtaild (ã) . . . . . . . 18 \textrtailhth (/) . . . . . 18 \textrtaill (í) . . . . . . . . 18 \textrtailn (ï) . . . . . . . 17 \textrtailr (ó) . . . . . . . 17 \textrtails (ù) . . . . . . . 17 \textrtailt (») . . . . . . . 20 \textrtailt (ú) . . . . . . . 17 \textrtailz (ü) . . . . . . . 17 \textrtblock ( ) . . . . . 185 \textrthook ($) . . . . . . . . 17 \textrthooklong (´) . . . . 18 \textRubikUa (Ua \textsarab . . . . . \textsca (À) . . . . \textscaolig (q) \textscb (à) . . . . \textscdelta (r) \textsce (ď) . . . . \textscf (s) . . . . \textscg (å) . . . . \textsch (Ë) . . . . 339 ) . . 198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 . 17 . 18 . 17 . 18 . 17 . 18 . 17 . 17 \textschwa (¡) . . . . . . \textschwa (@) . . . . . . \textsci (I) . . . . . . . . \textscj (ĺ) . . . . . . . . \textsck (t) . . . . . . . . \textscl (Ï) . . . . . . . . \textscm (w) . . . . . . . \textscn (ð) . . . . . . . . \textscoelig (Œ) . . . . \textscomega (ś) . . . . \textscp (x) . . . . . . . . \textscq (y) . . . . . . . . \textscr (ö) . . . . . . . . \textscripta (A) . . . . \textscriptg (g) . . . . \textscriptv (¬) . . . . . \textscriptv (V) . . . . \textscu (Ú) . . . . . . . . \textscy (Y) . . . . . . . . \textseagull (a ) . . . . \textsecstress (­) . . . \textsection (Ä) . . . . \textsection (S) . . . . \textsection (§) . . . . \textservicemark . . . . \textservicemark (℠) . \textsevenoldstyle () \textSFi ( ) . . . . . . . . \textSFii ( ) . . . . . . . \textSFiii ( ) . . . . . . \textSFiv ( ) . . . . . . . \textSFix ( ) . . . . . . . \textSFl ( ) . . . . . . . . \textSFli ( ) . . . . . . . \textSFlii ( ) . . . . . . \textSFliii ( ) . . . . . \textSFliv ( ) . . . . . . \textSFv ( ) . . . . . . . . \textSFvi ( ) . . . . . . . \textSFvii ( ) . . . . . . \textSFviii ( ) . . . . . \textSFx ( ) . . . . . . . . \textSFxi ( ) . . . . . . . \textSFxix ( ) . . . . . . \textSFxl ( ) . . . . . . . \textSFxli ( ) . . . . . . \textSFxlii ( ) . . . . . \textSFxliii ( ) . . . . \textSFxliv ( ) . . . . . \textSFxlix ( ) . . . . . \textSFxlv ( ) . . . . . . \textSFxlvi ( ) . . . . . \textSFxlvii ( ) . . . . \textSFxlviii ( ) . . . \textSFxx ( ) . . . . . . . \textSFxxi ( ) . . . . . . \textSFxxii ( ) . . . . . \textSFxxiii ( ) . . . . \textSFxxiv ( ) . . . . . \textSFxxv ( ) . . . . . . \textSFxxvi ( ) . . . . . \textSFxxvii ( ) . . . . \textSFxxviii ( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 17 17 17 18 17 18 17 17 17 18 18 17 17 17 20 17 17 17 21 17 157 14 14 26 26 27 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 \textSFxxxix ( ) . . . . . . 185 \textSFxxxvi ( ) . . . . . . 185 \textSFxxxvii ( ) . . . . . 185 \textSFxxxviii ( ) . . . . . 185 \textshade ( ) . . . . . . . 185 \textSigma (Σ) . . . . . . . . 15 \textsigma (σ) . . . . . . . . 15 \textsixoldstyle () . . . 27 \textsoftsign (ž) . . . . . . 17 \textspleftarrow (˝) . . . 18 \textsterling ($) . . . . . 14 \textsterling (£) . . . 14, 25 \textstretchc (Â) . . . . . 17 \textstretchcvar ($) . . . 18 \textstyle . . . . 225, 226, 232 \textsubacute (a) . . . . . 21 \textsubarch (a)› . . . . . . 21 \textsubbar (a)“ . . . . . . . 21 ¯ \textsubbridge (a ”) . . . . . 21 \textsubcircum (a) . . . . . 21 \textsubdot (a) ˆ. . . . . . . 21 ˙ \textsubdoublearrow (˙) 18 \textsubgrave (a) . . . . . 21 ‹ (a) . . 21 \textsublhalfring – \textsubplus (aff) . . . . . . 21 \textsubrhalfring (a» ) . . 21 \textsubrightarrow (¯) . 18 \textsubring (a) . . . . . . 21 \textsubsquare˚(a «) . . . . . 22 \textsubtilde (a) . . . . . 22 \textsubumlaut ˜(a) . . . . . 22 \textsubw (a —) . . ¨. . . . . . . 22 \textsubwedge (a) . . . . . 22 ˇ \textsuperimposetilde (a &) 22 \textsuperscript . . . . . . 23 \textsurd (√) . . . . . . . . . 121 \textswab . . . . . . . . . . . . 123 \textsyllabic (a) . . . . . 22 \textTau (Τ) . ". . . . . . . . 15 \texttau (τ) . . . . . . . . . . 15 \texttctclig (tC) . . . . . . 17 \textteshlig () . . . . . . 20 \textteshlig (Ù) . . . . . . 17 \textTheta (Θ) . . . . . . . . 15 \texttheta (θ) . . . . . . 15, 17 \textthing (.) . . . . . . . . 177 \textthorn (þ) . . . . . . . . 17 \textthornvari (P) . . . . . 18 \textthornvarii (Q) . . . . 18 \textthornvariii (R) . . . 18 \textthornvariv (S) . . . . 18 \textthreeoldstyle () . 27 \textthreequarters (¾) 121, 236 \textthreequartersemdash () . . . . . . . . . . . . 27 \textthreesuperior (³) 121, 236 \texttildedot (˜ ȧ) . . . . . 22 \texttildelow (~) . . 27, 234 \texttimes (×) . . . . . . . . 121 \texttoneletterstem (£) . 17 \texttoptiebar (> a) . . . . . 22 \texttrademark (TM ) . 14, 26 \texttrademark (™) . 14, 26, 237 \texttslig (ţ) . . . . . . . . 17 \textturna (5) . . . . . . . . 17 \textturncelig (ŕ) . . . . 17 \textturnglotstop (E) . . 18 \textturnh (4) . . . . . . . . 17 \textturnk (ľ) . . . . . . . . 17 \textturnlonglegr (Õ) . . 17 \textturnm (W) . . . . . . . 17 \textturnmrleg (î) . . . . 17 \textturnr (ô) . . . . . . . . 17 \textturnrrtail (õ) . . . . 17 \textturnsck (u) . . . . . . 18 \textturnscripta (6) . . . 17 \textturnscu ({) . . . . . . 18 \textturnt (Ø) . . . . . . . . 17 \textturnthree (C) . . . . . 18 \textturntwo (A) . . . . . . 18 \textturnv (2) . . . . . . . . 17 \textturnw (û) . . . . . . . . 17 \textturny (L) . . . . . . . . 17 \texttwelveudash () . . . 27 \texttwooldstyle . . . . . . 27 \texttwooldstyle () . . . 27 \texttwosuperior (²) 121, 236 \textuncrfemale (8) . . . . 18 \textunderscore . . . . . . 14 \textuparrow (↑) . . . . . . 72 \textupblock ( ) . . . . . 185 \textupfullarrow (˘) . . . 18 \textUpsilon (Υ) . . . . . . 15 \textupsilon (υ) . . . . 15, 17 \textupstep (Ţ) . . . . . . . 17 \textvbaraccent (IJ a) . . . . 22 \textvbaraccent (a ¿) . . . . 23 \textvertline (Š) . . . . . . 17 \textvibyi (ğ) . . . . . . . . 17 \textvibyy (ů) . . . . . . . . 18 \textvisiblespace . . . . . 14 \textwon (₩) . . . . . . . . . 25 \textwynn (ß) . . . . . . . . . 18 \textXi (Ξ) . . . . . . . . . . 15 \textxi (ξ) . . . . . . . . . . . 15 \textxswdown (6) . . . . . . 177 \textxswup (5) . . . . . . . 177 \textyen (¥) . . . . . . 25, 236 \textyogh (¶) . . . . . . . . . 20 \textyogh (Z) . . . . . . . . . 18 \textzerooldstyle () . . 27 \textZeta (Ζ) . . . . . . . . . 15 \textzeta (ζ) . . . . . . . . . 15 .tfm files 12, 123, 199, 219, 238 tfrupee (package) 26, 239, 240 \TH (Þ) . . . . . . . . . . . 15, 236 \th (þ) . . . . . . . . . . . . . . 157 \th (þ) . . . . . . . . . . . 15, 236 Thành, Hàn Th´ ^e . . . . . . . 227 \therefore (6) . . . . . . . . 52 \therefore (∴) . . . . . 50, 114 \therefore (µ) . . . . . . . . 57 \therefore (∴) . . . . . . . . 115 340 \therefore (∴) . . \therefore (∴) . . \Thermo . . . . . . . \thermod (⧧) . . . . \Theta (Θ) . . . . . \theta (𝜃) . . . . . \thetaup (θ) . . . . \thething (.) . . \thickapprox (≈) \thickapprox (Â) \thickapprox (≈) \thickapprox (≈) \thicksim (∼) . . \thicksim (Ð) . . \thicksim (∼) . . . \thicksim (∼) . . . \thickvert (~) . . thin space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 115 178 121 93 93 94 177 50 57 55 58 50 57 55 58 100 232 \ThinFog ( ) . . . . . . . . . 178 \thinstar (⋆) . . . . . . . . . 36 \third (3) . . . . . . . . . . . 119 thirty-second note see musical symbols \thirtysecondNote ( Z ) . . 161 \thirtysecondNoteDotted ( Z ) . . . . . . . 161 \thirtysecondNoteDottedDouble ( Z ) . . . . . . . . . . . 161 \thirtysecondNoteDottedDoubleDown Z ( ) . . . . . . . . . . . 161 \thirtysecondNoteDottedDown Z ( ) . . . . . . . . . . . . 161 Z \thirtysecondNoteDown ( ) . . . . . . . . . 162 \ThisStyle . . . . . . . . . . . 226 \Thorn (Þ) . . . . . . . . . . . 19 \thorn (p) . . . . . . . . . . . 19 \thorn (B) . . . . . . . . . . . 19 \thorn (þ) . . . . . . . . . . . 19 thousandths . . . . . . . . . . see \textperthousand \threeBeamedQuavers ( Z Z Z) . . . . . . . . 162 \threeBeamedQuaversI ( Z Z Z ) . . . . . . . 162 \threeBeamedQuaversII ( Z Z Z) . . . . . . . . . 162 \threeBeamedQuaversIII ( Z Z Z) . . . . . . . . . 162 \threedangle (⟀) . . . . . . 118 \threedotcolon (⫶) . . . . 34 ∼ \threesim (∼ ∼) . . . . . . . . 224 thumb pizzicato . . . . . . . . see \lilyThumb tick . . . . . . . see check marks \tieinfty (⧝) . . . . . . . . 117 Tik Z (package) . 12, 145, 146, 191–193, 198 tikzsymbols (package) 191, 192, 239, 240 tilde 14, 17, 19, 21–22, 24, 27, 105, 107, 110, 227, 234 extensible . . . . 107, 110 vertically centered . . 234 \tilde ( ̃ ) . . . . . . . . . . . 106 \tilde (˜) . . . . . . . 105, 227 \tildel (-) . . . . . . . . . . 19 time of day . . . . . . . 178, 179 time signatures 158, 161, 163, 164 \timelimit (T) . . . . . . . 181 \times (×) . . . . . . . . . . . 30 \times (z) . . . . . . . . . . . 33 \times (×) . . . . . . . . . . . 32 \times (×) . . . . . . . . . . . 32 \times (×) . . . . . . . . . . . 34 Times Roman (font) . 25, 221 \timesbar (⨱) . . . . . . . . . 32 \timesbar (⨱) . . . . . . . . . 34 timing (package) . . . . . . . 125 tipa (package) . 17, 18, 20–23, 222, 239, 240 tipx (package) . . 18, 239, 240 \Tmesonminus (à) . . . . . 133 \Tmesonnull (á) . . . . . . 133 \Tmesonplus (ß) . . . . . . 133 \tminus (⧿) . . . . . . . . . . 34 ) . . . . . . 60 \tndtstile ( \tnststile ( ) . . . . . . . 60 \tntstile ( ) . . . . . . . 60 \tnttstile ( ) . . . . . . 60 \to . . . . . . . see \rightarrow \to (→) . . . . . . . . . . . . . 79 \ToBottom (½) . . . . . . . . . 177 \toea (⤨) . . . . . . . . . . . . 85 \tona (⤧) . . . . . . . . . . . . 85 \tone . . . . . . . . . . . . . . . 18 \Tongey ( ) . . . . . . . . . . 191 \top (⊤) . . . . . . 30, 96, 225 \top (⊤) . . . . . . . . . . . . . 97 \top (⊺) . . . . . . . . . . . . . 96 \top (⊤) . . . . . . . . . . . . . 97 top hat . . . . . . . . . . . . . . 107 \topborder ( ) . . . . . . . 183 \topbot (⊥ ⊤) . . . . . . 225, 226 \topbot (⌶) . . . . . . . . . . 97 \Topbottomheat () . . . . 191 \topcir (⫱) . . . . . . . . . . . 121 \topdoteq (“) . . . . . . . . 52 \topfork (ÿ) . . . . . . . . . . 57 \topfork (⫚) . . . . . . . . . . 58 \Topheat () . . . . . . . . . 191 \topsemicircle (◠) . . . . 142 torus (T) see alphabets, math \tosa (⤩) . . . . . . . . . . . . 85 \ToTop (¼) . . . . . . . . . . . 177 \towa (⤪) . . . . . . . . . . . . 85 \tplus (⧾) . . . . . . . . . . . 34 \TR (\ ) . . . . . . . . . . . . . . 129 \tr (tr) . . . . . . . . . . . . . 92 trademark . . . 14, 26, 236, 237 registered . . . 14, 26, 236 \TransformHoriz ( ) . . 61 transforms . 61, 112, see also alphabets, math \TransformVert ( ) . . . . 61 transliteration . . . . . . . 20, 24 semitic . . . . . . . . . 20, 24 transliteration symbols . . 20 transpose . . . . . . . . . . . . 30 transversal intersection . . see \pitchfork \trapezium (⏢) . . . . . . . 142 \trebleclef ( G) trees . . . . . . . . . trema (ä) . . . . . trfsigns (package) 239 \triangle (△) . \triangle (△) . . . . . . 159 . . . 192, 217 . see accents . 61, 97, 112, . . . . . . . 118 . . . . . 37, 71 \triangle ( ) . . . . . . . . 183 \triangle (△) . . . . . . . . 70 \triangle (△) . . . . . 38, 142 triangle relations . . . . . 69–71 \trianglecdot (◬) . . . . 142 \TriangleDown (o) . . . . . 143 \TriangleDown ( ) . . . . . 143 \TriangleDown (o vs. ) 220 \triangledown (O) . . . . . 119 \triangledown (í) . . . . . 141 \triangledown (▽) . . . 37, 71 \triangledown (▽) . . . . . 70 \triangledown (▿) . . . . . 142 \triangleeq (≜) . . . . . . . 71 \triangleeq (≜) . . . . . . . 70 \TriangleLeft ( ) . . . . . 143 \triangleleft (Ÿ) . . . . . 69 \triangleleft (▷) . . . . . 30 \triangleleft (ÿ) . . 71, 141 \triangleleft (◁) . . . 37, 71 \triangleleft (◁) . . . . . 70 \triangleleftblack (◭) 142 \trianglelefteq (IJ) . . . 69 \trianglelefteq (E) . . . 69 \trianglelefteq (ç) . . . 71 \trianglelefteq (⊴) . . . . 71 \trianglelefteq (⊴) . . 66, 70 \trianglelefteq (⊴) . . . . 71 \trianglelefteqslant (P) 69 \trianglelefteqslant (Ò) 71 \triangleminus (⨺) . . . . 38 3 3 2 \triangleodot (⧊) . . \trianglepa ( ) . . . . . \trianglepacross ( ) \trianglepadot ( ) . . \trianglepafill ( ) . \trianglepafillha ( ) \trianglepafillhb ( ) \trianglepafillhl ( ) \trianglepafillhr ( ) \trianglepalineh ( ) . 341 . . . . . . . . . . . . . . . . . . . . 142 145 145 145 145 145 145 145 145 144 \trianglepalinev ( ) . . . 144 \trianglepalinevh ( ) . . 144 \trianglepb ( ) . . . . . . . 144 \trianglepbcross ( ) . . 144 \trianglepbdot ( ) . . . . 144 \trianglepbfill ( ) . . . 144 \trianglepbfillha ( ) . . 144 \trianglepbfillhb ( ) . . 144 \trianglepbfillhl ( ) . . 144 \trianglepbfillhr ( ) . . 144 \trianglepblineh ( ) . . . 144 \trianglepblinev ( ) . . . 144 \trianglepblinevh ( ) . . 144 \trianglepl ( ) . . . . . . . 144 \triangleplcross ( ) . . . 144 \trianglepldot ( ) . . . . 144 \triangleplfill ( ) . . . 144 \triangleplfillha ( ) . . 144 \triangleplfillhb ( ) . . 145 \triangleplfillhl ( ) . . 145 \triangleplfillhr ( ) . . 145 \trianglepllineh ( ) . . . 145 \trianglepllinev ( ) . . . 145 \trianglepllinevh ( ) . . 145 \triangleplus (⨹) . . . . 38 \trianglepr ( ) . . . . . . . 145 \triangleprcross ( ) . . . 145 \triangleprdot ( ) . . . . 145 \triangleprfill ( ) . . . 145 \triangleprfillha ( ) . . 145 \triangleprfillhb ( ) . . 145 \triangleprfillhl ( ) . . 145 \triangleprfillhr ( ) . . 145 \triangleprlineh ( ) . . . 145 \triangleprlinev ( ) . . . 145 \triangleprlinevh ( ) . . 145 \triangleq (,) . . . . . 29, 69 \triangleq (Ø) . . . . . . . . 57 \triangleq (≜) . . . . . . . . 71 \triangleq (≜) . . . . . . . . 70 \triangleq (≜) . . . . . . . . 71 \TriangleRight ( ) . . . . 143 \triangleright (Ź) . . . . 69 \triangleright (◁) . . . . 30 \triangleright (þ) . . 71, 141 \triangleright (▷) . . 37, 71 \triangleright (▷) . . . . 70 \trianglerightblack (◮) 142 \trianglerighteq (İ) . . 69 \trianglerighteq (D) . . 69 \trianglerighteq (æ) . . . 71 \trianglerighteq (⊵) . . . 71 \trianglerighteq (⊵) . 66, 70 \trianglerighteq (⊵) . . . 71 \trianglerighteqslant (Q) 69 \trianglerighteqslant (Ó) 71 triangles 119, 128, 130, 140–145, 169–173, 182, 183, 199– 200, 215–216 \triangles (⧌) . . . . . . . 142 \triangleserifs (⧍) . . . 38 \triangletimes (⨻) . . . . 38 \triangleubar (⧋) . . . . 142 4 \TriangleUp (n) . . . . . . 143 \TriangleUp ( ) . . . . . . 143 \TriangleUp (n vs. ) . . 220 \Tribar ( ) . . . . . . . . . . 192 \trident ( ) . . . . . . . . . . 191 trigonometric functions 91, 92 \trill ( ) . . . . . . . . . . . 159 \Trine (u) . . . . . . . . . . . 128 \triple . . . . . . . . . . . . . 104 \triplebar (#) . . . . . . . . 157 \triplecovbond (Æ) . . . 133 \triplecross (&) . . . . . . 157 \tripledot (;) . . . . . . . . 157 \tripleeye (>) . . . . . . . . 157 \triplefrown () . . . . . . 89 \tripleplus (-) . . . . . . . 157 \tripleplus (⧻) . . . . . . . 34 \triplesim (≋) . . . . . . . . 55 \triplesim (≋) . . . . . . . . 53 \triplesmile () . . . . . . 89 \trprime (‴) . . . . . . . . . 117 \trslash (⫻) . . . . . . . . . 34 trsym (package) . 61, 239, 240 \tsbm ( ) . . . . . . . . . . . . 183 1 1 E \tsdtstile ( ) . . . . . . 60 \tsmb ( ) . . . . . . . . . . . . 183 \tsmm ( ) . . . . . . . . . . . . 183 \tsststile ( ) . . . . . . . 60 \Tsteel () . . . . . . . . . . 131 \tststile ( ) ....... 60 \tsttstile ( ) ...... 60 \ttdtstile ( ) ...... 60 \ttimes (() . . . . . . . . . . 33 \TTsteel () . . . . . . . . . 131 \ttststile ( \tttstile ( \ttttstile ( ) ) ....... 60 ....... 60 ) ...... 60 TUGboat . . . . . . . . 107, 241 \Tumbler () . . . . . . . . . 177 \turn () . . . . . . . . . . . . . 159 \turnangle (⦢) . . . . . . . . 118 \turnedbackneg (⨽) . . . . 120 \turnediota (℩) . . . . . . . 95 \turnedneg (⨼) . . . . . . . . 120 \turnednot (⌙) . . . . . . . . 121 turnstile (package) 60, 239, 240 \TwelweStar (J) . . . . . . 139 twiddle . . . . . . . . . . see tilde \twoBeamedQuavers ( C C ) . 162 \twocaps (⩋) . . . . . . . . . 34 \twocups (⩊) . . . . . . . . . 34 \twoheaddownarrow () . . 83 \twoheaddownarrow (↡) . . 78 \twoheaddownarrow (↡) . . 74 \twoheaddownarrow (↡) . . 85 \twoheadleftarrow () . 72 \twoheadleftarrow () . 83 \twoheadleftarrow (↞) . 78 \twoheadleftarrow (↞) . 75 D \twoheadleftarrow (↞) . 85 \twoheadleftarrowtail (⬻) . . . . . . . . . 85 \twoheadleftdbkarrow (⬷) 85 \twoheadmapsfrom (⬶) . . 85 \twoheadmapsto (⤅) . . . . 85 \twoheadnearrow () . . . 78 \twoheadnearrow () . . . 75 \twoheadnwarrow () . . . 78 \twoheadnwarrow () . . . 75 \twoheadrightarrow () 72 \twoheadrightarrow () . 83 \twoheadrightarrow (↠) 78 \twoheadrightarrow (↠) 75 \twoheadrightarrow (↠) . 85 \twoheadrightarrowtail (⤖) . . . . . . . . 85 \twoheadsearrow () . . . 78 \twoheadsearrow () . . . 75 \twoheadswarrow () . . . 78 \twoheadswarrow () . . . 75 \twoheaduparrow ( ) . . . . 83 \twoheaduparrow (↟) . . . . 78 \twoheaduparrow (↟) . . . . 75 \twoheaduparrow (↟) . . . . 85 \twoheaduparrowcircle (⥉) 85 \twoheadwhiteuparrow (*) 83 \twoheadwhiteuparrowpedestal (+) . . . . . . . . . . . . . 83 \twonotes (♫) . . . . . . . . 158 \twonotes () . . . . . . . . . 158 txfonts (package) . . . . . . . 29, 31, 42, 51, 62, 65, 73, 90, 94–96, 118, 119, 123, 145, 219, 221, 234, 239, 240 type1cm (package) . . . . . . 219 \typecolon (⦂) . . . . . . . . 34 Type 1 (font) . . . . . . . . . 232 U U (U) . . . . . . . . . . \U (a) . . . . . . . . . . ˘ \U (a ¼) . . . . . . . . . . \U ( a) . . . . . . . . . . \u (ă) . . . . . . . . . . u (u) . . . . . . . . . . . \UA (^) . . . . . . . . . \UArrow ( ↑ ) . . \UB (<) . . . . . . . . . \ubar (u) . . . . . . . \ubarbbrevis (ε) \ubarbrevis (δ) . . \ubarsbrevis (φ) \ubrbrak (⏡) . . . . \ubrevislonga (κ) ubulb.fd (file) . . . ucs (package) . . . . . \udesc (u) . . . . . . udingbat.fd (file) . \udot (¨) . . . . . . . . \udotdot () . . . . . \udotdot () . . . . . \udots (⋰) . . . . . . 342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 32, 32, ... 157 24 20 20 20 157 129 129 160 19 184 184 184 121 184 231 237 19 207 31 115 115 115 \udots (⋰) . . . . . . . . \udtimes (]) . . . . . . \UHORN (Ư) . . . . . . . . \uhorn (ư) . . . . . . . . \ularc (◜) . . . . . . . . \ulblacktriangle (◤) \ulcorner (x) . . . . . . \ulcorner (p) . . . . . . \ulcorner (Ø) . . . . . . . . . . . . . . . . . .. .. .. . 115 . 34 . 16 . 16 . 121 . 142 . 98 . 98 . 98 \ulcorner (⌜) . . . . . . . . . 101 \ulcorner (⌜) . . . . . . . . . 100 \ulcorner (⌜) . . . . . . . . . 98 \ullcorner (S) . . . . . . . . 101 \ullcorner (6) . . . . . . . . 100 \ulrcorner (Y) . . . . . . . . 101 \ulrcorner (;) . . . . . . . . 100 ulsy (package) 35, 90, 222, 239 \ultriangle (◸) . . . . . . . 142 \Umd ( ̃︂ a) . . . . . . . . . . . . 161 \uminus (⩁) . . . . . . . . . . 34 umlaut (ä) . . . . . see accents umranda (package) . . 205, 239 umrandb (package) . . 206, 239 unary operators . . . . . . . . 29 \unclear (k) . . . . . . . . . 181 \underaccent . . . . . . . . . 227 ) . . . . . . . . . 23 \underarc (a ⌣ \underarch (a ) . . . . . . . . 22 \underbat ( ) . . . . . . . . . 106 \underbat* ( ) . . . . . . . 106 \underbrace (loomoon) . . . . 109 \underbrace ( ) . . ÍÑÏ \underbrace ( ) . . . ® \underbrace (⏟ ⏞ ) . . \underbrace ( ) ⏟⏟⏟ \underbrace (⏟ ⏞ ) . . \underbracket ( ) . . . . 108 . . . . 108 . . . . 109 . . . 109 . . . . 107 . . . . . 109 \underbracket ( ) . . . 109 ⎵ \underbracket ( ) . . . . . 228 \underdots (r) . . . . . . . . 24 \undergroup (looon) . . . . . 109 \undergroup ( ) ÍÏ \undergroup ( ) ´¶ \underleftarrow \underleftarrow . . . . . . . 108 . . . . . . 108 ( ) .... ⃖⃖ ( ) 87, ← − \underleftbroom ( ) . . . − < \underleftflutteringbat ( ) .......... \underleftharp (↼) . . . . . 109 108 113 114 87 \underleftharpdown (↽) . 87 \underleftharpoon ( ) . . 109 ⃐⃖ \underleftpitchfork ( ) 113 ∈ − \underleftrightarrow ( ) 109 \underleftrightarrow (⃖⃗ ) . ← → . . . . . . 87, 108 \underleftswishingghost ( ) . . . . . . . . . . . 114 \underleftwitchonbroom ( ) . . . . . . . . . . 113 −−< − \underleftwitchonbroom* ) . . . . . . . . . . 113 ( −−< − \underleftwitchonpitchfork ( ) . . . . . . . . . . 113 −−∈ \underleftwitchonpitchfork* ( ) . . . . . . . . . . 113 −−∈ underline . . . 14, 29, 107, \underline ( ) . . . . . . . . \underlinesegment ( ) . . ­ ¬ \underlinesegment ( ) . . x z \underparen ( ) ... ⏝⏝ \underparenthesis (⏟ ) . \underrightarrow \underrightarrow 108 \underrightbroom 110 107 108 108 109 228 ( ) . . . 109 ⃖⃗ ( ) . . 87, → − ( ) . . 113 − > \underrightflutteringbat ) . . . . . . . . . . 114 ( \underrightharp (⇀) . . . . 87 \underrightharpdown (⇁) 87 \underrightharpoon ( ) . 109 ⃖⃑ \underrightpitchfork ( ) 113 − ∋ \underrightswishingghost ( ) . . . . . . . . . . . 114 \underrightwitchonbroom ( ) . . . . . . . . . . 113 >−− − \underrightwitchonbroom* ( ) . . . . . . . . . . 113 >−− − \underrightwitchonpitchfork ( ) . . . . . . . . . . 113 ∋−− \underrightwitchonpitchfork* ( ) . . . . . . . . . . 113 ∋−− \underring (y) . . . . . . . . 24 underscore . . . see underline underscore (package) . . . . 14 \underscriptleftarrow (← ) . − . . . . . . . 112 \underscriptleftrightarrow (← ) . . . . . . . . . . . 112 → \underscriptrightarrow (→ ) − . . . . . . . 112 \underset . . . . . . . . . . . . 223 undertilde (package) . 110, 239, 240 \undertilde (|) . . . . . . . 24 \underwedge (}) . . . . . . . 24 Unicode . . . 12, 185, 235–238 union . . . . . . . . . . . see \cup unit disk (D) . . see alphabets, math \unitedpawns (u) . . . . . . 181 units (package) . . . . . . . . 121 unity (1) see alphabets, math universa (package) . . 144, 177, 239, 240 \unlhd (E) . . . . . . . . . 30, 31 \unlhd (⊴) . . . . . . . . . . . 68 \unlhd (⊴) . . . . . . . . . 66, 70 \unlhd (⊴) . . . . . . . . . . . 34 \unrhd (D) . . . . . . . . . 30, 31 \unrhd (⊵) . . . . . . . . . . . 68 \unrhd (⊵) . . . . . . . . . 66, 70 \unrhd (⊵) . . . . . . . . . . . 34 \upalpha (α) . . . . . . . . . 94 \upand (⅋) . . . . . . . . . . . 34 \UParrow (K) . . . . . . . . . . 176 \Uparrow (⇑) . . . . . . . 72, 99 \Uparrow (⇑) . . . . . . . . . . 78 ⇑ Ë Ë Ë Ë) . . . . . . . . 101 \Uparrow ( Ë \Uparrow (⇑) . . . . . . . . . . 75 \Uparrow (⇑) . . . . . . . . . 85 ⇑ ⇑ \Uparrow ( ⇑ ) . . . . . . . . 103 ⇑ ⇑ ⇑ \uparrow (↑⇑) . . 72, 99, 219 ↑ È È È È) . . . . . . . . . 101 \uparrow ( È \uparrow (↑) . . \uparrow (↑) . . \uparrow (↑) . . ↑ \uparrow ( ⏐ ) . ⏐ ⏐ ⏐ \uparrow (↑)⏐ . . ........ ........ ........ ..... ..... \uparrowbarred (⤉) . . \uparrowoncircle (⦽) \uparrowtail (!) . . . \uparrowtail (!) . . . \upAssert (⫨) . . . . . \upassert (⫠) . . . . . \upbackepsilon (϶) . . \upbar . . . . . . . . . . . \upbeta (β) . . . . . . . \upbkarrow (⇡) . . . . . \upblackarrow (/) . . . \upblackspoon (m) . . \upbow () . . . . . . . . . \upbowtie (⧖) . . . . . . \upbracketfill . . . . \upchi (χ) . . . . . . . . \updasharrow (") . . . \updasharrow (⇡) . . . \Updelta (∆) . . . . . . \updelta (δ) . . . . . . . \Updownarrow (⇕) . . . \Updownarrow (⇕) . . . ⇑ Ë Ë Ë \Updownarrow ( Ë ⇓) . . \Updownarrow (⇕) . . . 343 78 75 87 . . . 103 . . . 85 . . . 85 . . 142 . . . 78 . . . 75 . . . 55 . . . 55 . . . 95 . . . 23 . . . 94 . . . 78 . . . 83 . . . 89 . . . 159 . 32, 33 . . . 228 . . . 94 . . . 83 . . . 85 . . . 94 . . . 94 . 72, 99 . . . 78 . . . 102 . . . 75 \Updownarrow (⇕) . ⇑ ⇑ ⇑ ⇑ \Updownarrow ( ⇑ ⇑) \updownarrow (↕)⇓ . ↑ È È È \updownarrow ( È ↓) ..... 85 . . . . . 103 . . . 72, 99 . . . . . 102 \updownarrow (↕) . . . . . . 78 \updownarrow (↕) . . . . . . 75 \updownarrow (↕) . . . . . . 87 ↑ ⏐ ⏐ \updownarrow ( ⏐ ⏐ ⏐) . . . . . . 103 \updownarrow (↕)↓ . . . . . . 85 \updownarrowbar () . . . . 83 \updownarrowbar (↨) . . . . 85 \updownarrows (Ö) . . . . . 73 \updownarrows (⇅) . . . . . 78 \updownarrows () . . . . . 75 \updownarrows (⇅) . . . . . 85 \updownblackarrow (2) . . 83 \updowncurvearrow (¥) . . 79 \updownharpoonleftleft (⥑) . . . . . . . . . 86 \updownharpoonleftright (⥍) . . . . . . . . 81 \updownharpoonleftright (Q) . . . . . . . . 77 \updownharpoonleftright (⥍) . . . . . . . . 86 \updownharpoonrightleft (⥌) . . . . . . . . 81 \updownharpoonrightleft (U) . . . . . . . . 77 \updownharpoonrightleft (⥌) . . . . . . . . 86 \updownharpoonrightright (⥏) . . . . . . . . 86 \updownharpoons (ê) . . . . 74 \updownharpoons (⥮) . . . 81 \updownharpoons (⥮) . . . . 77 \updownharpoonsleftright (⥮) . . . . . . . . . . . . 81 \updownharpoonsleftright (⥮) . . . . . . . . . . . . . 86 \Updownline (∥) . . . . . . . 53 \updownline (∣) . . . . . . . 53 \updownsquigarrow () . . 79 \updownwavearrow () . . . 78 \updownwhitearrow (,) . . 83 \upepsilon () . . . . . . . . 94 \upeta (η) . . . . . . . . . . . 94 \upfilledspoon (q) . . . . . 88 \upfishtail (⥾) . . . . . . . 58 \upfootline (y) . . . . . . . 53 \upfree () . . . . . . . . . . 53 \Upgamma (Γ) . . . . . . . . . . 94 \upgamma (γ) . . . . . . . . . 94 upgreek (package) 15, 94, 239, 240 \upharpoonccw (↿) . . . . . . 77 \upharpooncw (↾) . . . . . . 77 \upharpoonleft (ä) . . . . . 74 \upharpoonleft () . . . . . 72 \upharpoonleft () . . . . . 83 \upharpoonleft (↿) . . . . . 81 \upharpoonleft (↿) . . . . . 86 \upharpoonleftbar (⥠) . . 86 \upharpoonright (æ) . . . . 74 \upharpoonright () . . . . 72 \upharpoonright () . . . . 83 \upharpoonright (↾) . . . . 81 \upharpoonright (↾) . . . . 86 \upharpoonrightbar (⥜) . 86 \upharpoonsleftright (⥣) 86 \upin (⟒) . . . . . . . . . . . . 58 upint (stix package option) 39, 46,⨛ 48 \upint ( ) . . . . . . . . . . . . 49 \upint (⨛) . . . . . . . . . . . . 46 \upintsl (⨛) . . . . . . . . . . 48 \upintup (⨛) . . . . . . . . . . 48 \upiota (ι) . . . . . . . . . . . 94 \upkappa (κ) . . . . . . . . . 94 \Uplambda (Λ) . . . . . . . . 94 \uplambda (λ) . . . . . . . . . 94 \uplcurvearrow () . . . . . 79 \upleftcurvedarrow () 79 \uplett . . . . . . . . . . . . . 23 \uplsquigarrow () . . . . . 79 \uplsquigarrow (¡) . . . . . 75 \uplus (Z) . . . . . . . . . . . 31 \uplus (⊎) . . . . . . . . . . . 30 \uplus ( ) . . . . . . . . . . . 33 \uplus (⊎) . . . . . . . . . . . 33 \uplus (⊎) . . . . . . . . . . . 32 \uplus (⊎) . . . . . . . . . . . 34 \Upmapsto (-) . . . . . . . . . 78 \upmapsto (↥) . . . . . . . . . 78 \upmapsto (↥) . . . . . . . . . 75 \upModels (ñ) . . . . . . . . . 53 \upmodels (í) . . . . . . . . 55 \upmodels (á) . . . . . . . . . 53 \upmu (µ) . . . . . . . . . . . . 94 \upnu (ν) . . . . . . . . . . . . 94 \Upomega (Ω) . . . . . . . . . 94 \upomega (ω) . . . . . . . . . 94 \upp (t) . . . . . . . . . . . . . 24 \upparenthfill . . . . . . . 228 \Upphi (Φ) . . . . . . . . . . . 94 \upphi (φ) . . . . . . . . . . . 94 \Uppi (Π) . . . . . . . . . . . . 94 \uppi (π) . . . . . . . . . . . . 94 \uppitchfork (⋔) . . . . . . 90 \uppitchfork (⋔) . . . . . . 88 \uppropto () . . . . . . . . . 53 \Uppsi (Ψ) . . . . . . . . . . . 94 \uppsi (ψ) . . . . . . . . . . . 94 upquote (package) . . . . . . 235 \uprcurvearrow () . . . . . 79 \uprho (ρ) . . . . . . . . . . . 94 upright Greek letters . . 15, 94 \uprightcurvearrow (⤴) 79 \uprightcurvearrow (⤴) . 85 \uprsquigarrow () . . . . . 79 \uprsquigarrow (©) . . . . . 75 upside-down symbols 233–234 upside-down symbols . 24, 222 \Upsigma (Σ) . . . . . . \upsigma (σ) . . . . . . \Upsilon (ϒ) . . . . . . \upsilon (𝜐) . . . . . . \Upsilonmeson (â) . . \upsilonup (υ) . . . . . \upslice (À) . . . . . . \upspoon (⫯) . . . . . . . \upspoon (⫯) . . . . . . . \upt (l) . . . . . . . . . . \uptau (τ) . . . . . . . . \uptherefore (∴) . . . \uptherefore (∴) . . . \Uptheta (Θ) . . . . . . \uptheta (θ) . . . . . . \uptodownarrow (þ) . \uptodownarrow (ê) . \upuparrows (Ò) . . . . \upuparrows () . . . \upuparrows () . . . . \upuparrows (⇈) . . . . \upuparrows (⇈) . . . . \upuparrows (⇈) . . . . \upupharpoons (Ú) . . \Upupsilon (Υ) . . . . \upupsilon (υ) . . . . . \upvarepsilon (ε) . . \upvarphi (ϕ) . . . . . \upvarpi ($) . . . . . . \upvarrho (ρ) . . . . . . \upvarsigma (σ) . . . . \upvartheta (ϑ) . . . . \upVDash (ù) . . . . . . \upVdash (⍊) . . . . . . \upVdash (⍊) . . . . . . \upvDash (⫫) . . . . . . \upvdash (⊥) . . . . . . \upvdash (⊥) . . . . . . . \upwavearrow () . . . \upwhitearrow ($) . . . \upwhitearrow (⇧) . . \Upxi (Ξ) . . . . . . . . . \upxi (ξ) . . . . . . . . . \upY (-) . . . . . . . . . . \upY ()) . . . . . . . . . . \upzeta (ζ) . . . . . . . \Uranus (G) . . . . . . . \Uranus (F) . . . . . . . \Uranus (Ç) . . . . . . . . \uranus (Z) . . . . . . . . \urarc (◝) . . . . . . . . \urblacktriangle (◥) \urcorner (y) . . . . . . \urcorner (q) . . . . . . \urcorner (Ù) . . . . . . 17–19, . . . . . . . . . . . . .. .. .. .. .. .. .. .. .. .. .. .. 32, ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .. ... ... ... 94 94 93 93 133 94 36 89 88 24 94 115 115 94 94 73 83 73 72 83 78 75 85 74 94 94 94 94 94 94 94 94 55 55 53 55 55 53 78 83 85 94 94 32 32 94 127 128 126 126 121 142 98 98 98 \urcorner (⌝) . . . . . . . . . 102 \urcorner (⌝) . . . . . . . . . 100 \urcorner (⌝) . . . . . . . . . 98 url (package) . . . . . . . . . . 234 344 \urtriangle (◹) . . . urwchancal (package) \US () . . . . . . . . . . \US () . . . . . . . . . . \usepackage . . . . . . .... 123, 129, .... .... 142 239 130 130 12 ffi \usf () . . . . . . . . . . . . . . 159 » \usfz () . . . . . . . . . . . . . 159 ushort (package) 110, 239, 240 \ushort ( ) . . . . . . . . . . . 110 \ushortdw ( ) . . . . . . . . . 110 \ushortw ( ) . . . . . . . . . . 110 \ut (a) . . . . . . . . . . . . . . 23 ˜ . . . . . . . . . . 237, 238 UTF-8 utf8x (inputenc package option) . . . . . . . 237 \utilde ( ) . . . . . . . . . . . 110 ̃︀ \utimes (() . . . . . . . . 32, 33 \utimes (^) . . . . . . . . . . 34 \utimes ($) . . . . . . . . . . 32 Utopia (font) . . . . . . . . 25, 49 \UU () . . . . . . . . . . . . . . 129 \UUparrow (⟰) . . . . . . . . 85 ⟰ ⟰ \UUparrow ( ⟰ ) . . . . . . 103 ⟰ ⟰ ⟰ \Uuparrow (⤊)⟰. . . . . . . . . 78 \Uuparrow (⤊) . . . . . . . . 85 ⤊ ⤊ \Uuparrow ( ⤊ ) . . . . . . . 103 ⤊ ⤊ ⤊ uwebo.fd (file)⤊ . . . . . . . . 204 V \v (ǎ) . . . . . . . . . . . . . . . \Var (Var) . . . . . . . . . . . \vara (a) . . . . . . . . . . . . \varamalg (⨿) . . . . . . . . . \varangle () . . . . . . . . \varbarwedge (⌅) . . . . . . \varbeta (/) . . . . . . . . . . \varbigcirc (,) . . . . . . \varbigtriangledown (▽) \varbigtriangleup (△) . \varcap (±) . . . . . . . . . . \varCapricorn (Z) . . . . . \varcarriagereturn (⏎) . \VarClock ( ) . . . . . . . . \varclub (♧) . . . . . . . . . \varclubsuit (p) . . . . . . \varclubsuit (♧) . . . . . . \varcoppa (ϙ) . . . . . . . . . \varcoprod (∐) . . . . . . . \varcup (°) . . . . . . . . . . \varcurlyvee () . . . . . . \varcurlywedge ( ) . . . . \vardiamond (♦) . . . . . . . \vardiamondsuit (q) . . . . \vardiamondsuit (♦) . . . \vardiamondsuit (♦) . . . . \vardigamma ()) . . . . . . . \vardoublebarwedge (⌆) . \vardownarrow (↓) . . . . . \vardownwavearrow () . . \varEarth (J) . . . . . . . . . \varepsilon (𝜀) . . . . . . . 20 92 19 32 119 34 95 30 142 142 33 128 85 178 146 145 146 154 45 33 30 30 146 145 145 146 154 34 87 78 127 93 \varepsilon (") . . . . . . . 95 \varepsilon (𝜀) . . . . . . . 95 \varepsilonup (ε) . . . . . . 94 \VarFlag ( ) . . . . . . . . . 178 varg (txfonts/pxfonts package option) . . . . . . . . . . . 95 \varg (1) . . . . . . . . . . . . 95 \varg () . . . . . . . . . . . . 95 \varg (G) . . . . . . . . . . . . 19 \vargeq (ľ) . . . . . . . . . . 65 \varhash (#) . . . . . . . . . 119 \varhash (?) . . . . . . . . . 57 \varheart (♥) . . . . . . . . 146 \varheartsuit (r) . . . . . 145 \varheartsuit (♥) . . . . . 145 \varheartsuit (♥) . . . . . 146 \varhexagon (⬡) . . . . . . . 142 \varhexagon (9) . . . . . . . 140 \varhexagonblack (⬢) . . 142 \varhexagonlrbonds (⌬) . 142 \varhexstar (B) . . . . . . . 139 \varhookdownarrow (3) . . 78 \varhookleftarrow (↩) . 78 \varhookleftarrow (←˒) . 87 \varhooknearrow (⤤) . . . 78 \varhooknwarrow (⤣) . . . 78 \varhookrightarrow (↪) . 78 \varhookrightarrow (˓→) 87 \varhooksearrow (⤥) . . . 78 \varhookswarrow (⤦) . . . 78 \varhookuparrow (9) . . . . 78 \vari (i) . . . . . . . . . . . . . 19 variable-sized symbols 40–50, 219, 221 \VarIceMountain ∬( ) . . . 178 \varidotsint ( ) . . . . . 49 \varinjlim (lim) . . . . 87, 91 → r − \varint ( ) . . . . . . . . . . . 40 \varintercal (ó) . . . . . . 33 \various (R) . . . . . . . . . . 181 \varisinobar (⋶) . . . . . . 58 \varisins (¸) . . . . . . . . . 57 \varisins (⋳) . . . . . . . . . 58 \varkappa (κ) . . . . . . . . 93 \varkappa (.) . . . . . . . . . 95 \varkappa (𝜘) . . . . . . . . . 95 \varleftarrow (←) . . . . . 87 \varleftrightarrow (↔) 87 \varleftrightwavearrow (↭) . . . . . . . . 78 \varleftwavearrow (↜) . 78 \varleq (ĺ) . . . . . . . . . . 65 \varliminf (lim) . . . . . . 91 \varlimsup (lim) . . . . . . 91 \varlongleftarrow (←−) 87 \varlongleftrightarrow (←→) . . . . . . . . . . . 87 \varlongmapsfrom (←−[) . 87 \varlongmapsto (↦−→) . . . 87 \varlongrightarrow (−→) 87 \varlrtriangle (⊿) . . . . 142 \varlrttriangle (ä) . 71, 141 \varmapsfrom (←[) . . . . . . 87 \varmapsto (↦→) . . . . . . . 87 \varmathbb . . . . . . . . . . . 123 \varmodtwosum (⨊) . . . . . 45 \varMoon (a) . . . . . . . . . . 128 \VarMountain ( ) . . . . . . 178 \varnearrow (↗) . . . . . . 87 \varniobar (⋽) . . . . . . . . 58 \varnis (¹) . . . . . . . . . . . 57 \varnis (⋻) . . . . . . . . . . 58 \varnothing (∅) 29, 118, 119 \varnothing (Á) . . . . . . . 120 \varnothing (∅) . . . . . . . 120 \varnothing (∅) . . . . . . . 119 \varnothing (∅) . . . . . . . 117 \varnotin (T) . . . . . . . . . 96 \varnotowner (U) . . . . . . 96 \varnwarrow (↖) . . . . . . 87 \varoast () . . . . . . . . . 30 \varobar () . . . . . . . . . 30 \varobslash () . . . . . . . 30 \varocircle () . . . . . . . 30 \varodot () . . . . . . . . . 30 \varogreaterthan (5) F. . 30 \varoiiintclockwise ( )N42 \varoiiintctrclockwise ( ) . . . . .!. . . 42 \varoiint ( ) . . . . B . . . . 43 \varoiintclockwise ( ) J 42 \varoiintctrclockwise ( ) . . . . .u. . . . 42 \varoint ( ) . . . . .- . . . . 40 \varointclockwise (∲ ) . . 42 \varointclockwise (ff) . . 49 \varointclockwise ( ) . . 43 \varointclockwise (∲) . . 45 \varointclockwise (∲) . . 46 \varointclockwisesl (∲) 47 \varointclockwiseup (∲)+ . 47 \varointctrclockwise (∳ ) 42 \varointctrclockwise (fl) 49 \varointctrclockwise ( ) 43 \varointctrclockwise (∳) 45 \varolessthan (4) . . . . . 30 \varomega () . . . . . . . . . 19 \varominus () . . . . . . . . 30 \varopeno (C) . . . . . . . . . 19 \varoplus () . . . . . . . . 30 \varoslash () . . . . . . . . 30 \varosum (⨊) . . . . . . . . . 45 \varotimes () . . . . . . . . 30 \varovee (6) . . . . . . . . . 30 \varowedge (7) . . . . . . . . 30 \varparallel (∥) . . . . . . 51 \varparallelinv ( ) . . . 51 \varpartialdiff (Ç) . . . . 98 \varphi (𝜙) . . . . . . . . . . 93 \varphi (') . . . . . . . . . . . 95 \varphi (𝜑) . . . . . . . . . . 95 \varphiup (ϕ) . . . . . . . . . 94 \varphoton (𝐿) . . . . . . . . 133 \varpi (𝜛) . . . . . . . . . . 93 \varpi ($) . . . . . . . . . . . 95 345 \varpi ($) . . . . . . . . . . . 94 \varpi (𝜛) . . . . . . . . . . . 95 \varpiup ($) . . . . . . . . . 94 \varPluto (H) . . . . . . . . . 128 \varprod ( ) . . . . . . . . . 42 \varprod (∏) . . . . . . . . . 45 \varprojlim (lim) . . . 87, 91 ← − \varpropto (∝) . . . . . . . 50 \varpropto (ß) . . . . . . . . 57 \varpropto (∝) . . . . . . . 55 \varpropto (∝) . . . . . . . . 53 \varpropto (∝) . . . . . . . . 58 \varrho (𝜚) . . . . . . . . . . 93 \varrho (%) . . . . . . . . . . . 95 \varrho (%) . . . . . . . . . . . 94 \varrho (𝜚) . . . . . . . . . . . 95 \varrhoup (%) . . . . . . . . . 94 \varrightarrow (→) . . . . 87 \varrightwavearrow (↝) . 78 \Varsampi (_) . . . . . . . . . 154 \varsampi (,) . . . . . . . . . 154 \varsearrow (↘) . . . . . . 87 \varsigma (𝜍) . . . . . . . . . 93 \varsigma (&) . . . . . . . . . 95 \varsigma (𝜍) . . . . . . . . . 95 \varsigmaup (ς) . . . . . . . 94 \varspade (♤) . . . . . . . . 146 \varspadesuit (s) . . . . . 145 \varspadesuit (♤) . . . . . 146 \varsqcap (³) . . . . . . . . . 33 \varsqcup (²) . . . . . . . . . 33 \varsqsubsetneq (Ł) . . . 62 \varsqsubsetneqq (Š) . . 62 \varsqsupsetneq (Ń) . . . 62 \varsqsupsetneqq (Ş) . . 62 \varstar (›) . . . . . . . . . . 31 \varstar (✶) . . . . . . . . . 142 \varstigma (ϛ) . . . . . . . . 154 \varsubsetneq (Ł) . . . . . 62 \varsubsetneq ( ) . . . . . 62 \varsubsetneq ( ) . . . . . 63 \varsubsetneq (⊊) . . . . . 63 \varsubsetneq (⊊) . . . . . 63 \varsubsetneq (⊊) . . . . . 64 \varsubsetneqq (Š) . . . . 62 \varsubsetneqq (&) . . . . 62 \varsubsetneqq (¦) . . . . 63 \varsubsetneqq (⫋) . . . . 63 \varsubsetneqq (⫋) . . . . . 63 \varsubsetneqq (⫋) . . . . 64 \varsum (∑) . . . . . . . . . . 45 \varsumint (⨋) . . . . . . . . 45 \VarSummit ( ) . . . . . . . 178 \varsupsetneq (Ń) . . . . . 62 \varsupsetneq (!) . . . . . 62 \varsupsetneq (¡) . . . . . 63 \varsupsetneq (⊋) . . . . . 63 \varsupsetneq (⊋) . . . . . 63 \varsupsetneq (⊋) . . . . . 64 \varsupsetneqq (Ş) . . . . 62 \varsupsetneqq (') . . . . 62 \varsupsetneqq (§) . . . . 63 \varsupsetneqq (⫌) . . . . 63 \varsupsetneqq (⫌) . . . . . \varsupsetneqq (⫌) . . . . \varswarrow (↘) . . . . . . 63 64 87 \VarTaschenuhr ( ) . . . . 178 \varTerra (l) . . . . . . . . . 128 \vartheta (𝜗) . . . . . . . . 93 \vartheta (#) . . . . . . . . . 95 \vartheta (𝜗) . . . . . . . . . 95 \varthetaup (ϑ) . . . . . . . 94 \vartimes (") . . . . . . . . . 30 \vartimes () . . . . . . . . . 33 \vartriangle (M) . . . . . . 119 \vartriangle (ì) . . . . . . 71 \vartriangle (△) . . . . 37, 71 \vartriangle (△) . . . . . . 70 \vartriangle (▵) . . . . . . 71 \vartriangleleft (Ÿ) . . 69 \vartriangleleft (C) . . 69 \vartriangleleft (å) . . . 71 \vartriangleleft (⊲) . . . 71 \vartriangleleft (⊲) . 66, 70 \vartriangleleft (⊲) 71, 142 \vartriangleright (Ź) . . 69 \vartriangleright (B) . 69 \vartriangleright (ä) . . 71 \vartriangleright (⊳) . . 71 \vartriangleright (⊳) 66, 70 \vartriangleright (⊳) . . 71, 142 \varuparrow (↑) . . . . . . . 87 \varupdownarrow (↕) . . . . 87 \varupdownwavearrow () 78 \varupwavearrow () . . . . 78 \varUranus (A) . . . . . . . . 128 \varv (3) . . . . . . . . . . . . 95 \varvarpi (È) . . . . . . . . 94 \varvarrho (Æ) . . . . . . . . 94 \varVdash (⫦) . . . . . . . . . 58 \varveebar (⩡) . . . . . . . . 34 \varw (4) . . . . . . . . . . . . 95 \vary (2) . . . . . . . . . . . . 95 \VBar ( ) . . . . . . . . . . . . 143 \Vbar (⫫) . . . . . . . . . . . . 55 \Vbar (⫫) . . . . . . . . . . . . 58 \vBar (⫨) . . . . . . . . . . . . 55 \vBar (⫨) . . . . . . . . . . . . 58 \vBarv (⫩) . . . . . . . . . . . 58 \vbipropto () . . . . . . . . 32 \vbrtri (⧐) . . . . . . . . . . 71 \vcentcolon (:) . . . . . . . 59 \vcenter . . . . . . . . 223, 224 \vcrossing () . . . . . . . . 53 \VDash (() . . . . . . . . . . . 52 \VDash (º) . . . . . . . . . . . 57 \VDash (⊫) . . . . . . . . . . . 55 \VDash (⊫) . . . . . . . . . . . 53 \VDash (⊫) . . . . . . . . . . . 59 \Vdash (,) . . . . . . . . . . . 52 \Vdash ( ) . . . . . . . . . . . 50 \Vdash (¸) . . . . . . . . . . . 57 \Vdash (⊩) . . . . . . . . . . . 55 \Vdash (⊩) . . . . . . . . . . . 53 \Vdash (⊩) . . . . . . \vDash (() . . . . . . \vDash () . . . . . . \vDash (») . . . . . . \vDash (⊨) . . . . . . \vDash (⊧) . . . . . . \vDash (⊨) . . . . . . \vdash (⊢) . . . . . . \vdash (⊢) . . . . . . \vdash (⊢) . . . . . . \vdash (⊢) . . . . . . \vDdash (⫢) . . . . . \vDdash (⫢) . . . . . \vdotdot (∶) . . . . . \vdotdot (∶) . . . . . . \vdots (..) . . . . . . . . \vdots (..) . . . . . . . \vdots (⋮) . . . . . . . \vdots (⋮