2-Stage Opamp Design & Modeling: ESE 568 Lecture

Telechargé par atharapi
1
ESE 568: Mixed Signal Design and
Modeling
Lec 6: September 19th, 2018
Basic 2-stage Opamp (con’t) and Advanced
Opamp Design
Penn ESE 568 Fall 2018 – Khanna adapted from Perrot
CPPSim Lecture notes
Basic 2-stage Opamp
Basic 2-Stage Opamp
!This is a common “workhorse” opamp for
medium!performance!applications
"Relatively simple structure with reasonable performance!
3 Penn ESE 568 Fall 2018 - Khanna
Basic 2-Stage Opamp
!Key issue: two-stages lead to two poles that are
relatively close to each other
"This leads to very poor phase margin
!Inclusion of a compensation capacitor across
the!second stage leads!to pole splitting such that
stable!performance can be achieved
"A compensation resistor is also desirable to help!eliminate
the impact of a!RHP zero that occurs due
to!compensation
4 Penn ESE 568 Fall 2018 - Khanna
2-Stage Opamp Frequency Response
5 Penn ESE 568 Fall 2018 - Khanna
Key Specifications of Opamps (Open Loop)
!DC small signal gain
!Unity gain frequency
!Dominant pole frequency
!Parasitic pole frequencies
6 Penn ESE 568 Fall 2018 - Khanna
2
2-Stage Opamp Frequency Response
7 Penn ESE 568 Fall 2018 - Khanna
DC gain
Dominant pole
Unity-gain frequency
Parasitic pole
2-Stage Opamp Frequency Response
8 Penn ESE 568 Fall 2018 - Khanna
Dominant Pole
ω
0=gm1
CC
Unity-gain frequency
DC gain
Parasitic pole
Key Specifications of Opamps (Closed Loop)
!Offset voltage
!Settling time (closed loop bandwidth)
!Common-Mode Rejection Ratio (CMRR)
!Power Supply Rejection Ratio (PSRR)
!Equivalent Input-Referred Noise
9 Penn ESE 568 Fall 2018 - Khanna
2-Stage Opamp
10 Penn ESE 568 Fall 2018 - Khanna
!Settling Time/Slew Rate
2-Stage Opamp – Slew Rate
11 Penn ESE 568 Fall 2018 - Khanna
2-Stage Opamp
12 Penn ESE 568 Fall 2018 - Khanna
!Settling Time/Slew Rate
SR dvout
dt max
=
ICCmax
CC
=ID5
CC
3
Finite Slew Rate Effect
!Ex. Unity-gain Follower
13 Penn ESE 568 Fall 2018 - Khanna
vI=Asin(
ω
t)
dvo
dt MAX
=A
ω
Unity Gain Freq and Slew Rate
!Relationship between unity gain frequency and slew
rate:
14 Penn ESE 568 Fall 2018 - Khanna
ω
0=gm1
CC
SR =ID5
CC
Unity Gain Freq and Slew Rate
!Relationship between unity gain frequency and slew
rate:
!For 45° phase margin:
15 Penn ESE 568 Fall 2018 - Khanna
ω
0=gm1
CC
SR =ID5
CC
ω
0=p2
SR =ID5
gm1
p2
p2≈ − gm7CC
C1C2+C1CC+CCC2
gm7
C2
2-Stage Opamp Offset: Systematic
16 Penn ESE 568 Fall 2018 - Khanna
2-Stage Opamp Offset: Systematic
17 Penn ESE 568 Fall 2018 - Khanna
2-Stage Opamp Offset: Random
18 Penn ESE 568 Fall 2018 - Khanna
VOS =ΔVt(12)
+ΔVt(34)
gm3
gm1
#
$
%&
'
(
+(VGS Vt)(12)
2
−Δ W
L(12 )
W
L(12 )
ΔW
L(34)
W
L(34)
#
$
%
%
%
%
&
'
(
(
(
(
4
2-Stage Opamp Offset: Random
19 Penn ESE 568 Fall 2018 - Khanna
VOS =ΔVt(12)
+ΔVt( 34)
gm3
gm1
#
$
%&
'
(
+(VGS Vt)(12)
2
−Δ W
L(12 )
W
L(12 )
ΔW
L(34)
W
L(34)
#
$
%
%
%
%
&
'
(
(
(
(
Minimize by making
gm3,4<gm1,2
Minimize by operating
input transistors at small
Vgs-Vt
2-Stage Opamp CMRR
20 Penn ESE 568 Fall 2018 - Khanna
2-Stage Opamp CMRR
21 Penn ESE 568 Fall 2018 - Khanna
2-Stage Opamp PSRR+
22 Penn ESE 568 Fall 2018 - Khanna
2-Stage Opamp PSRR+
23 Penn ESE 568 Fall 2018 - Khanna
2-Stage Opamp PSRR-
24 Penn ESE 568 Fall 2018 - Khanna
5
2-Stage Opamp PSRR-
25 Penn ESE 568 Fall 2018 - Khanna
@ high frequencies M6 looks diode connected
2-Stage Opamp Noise Analysis
!Each opamp stage will contribute noise
"Typically the spectral density of the noise will be of the same order at
each stage
26 Penn ESE 568 Fall 2018 - Khanna
2-Stage Opamp Noise Analysis
!Each opamp stage will contribute noise
"Typically the spectral density of the noise will be of the same order at
each stage
!Input referral of the noise reveals that the second!stage noise
will!have much less impact than the first!stage noise
"Input-referred noise calculations of an opamp need only!focus on the
first!stage
27 Penn ESE 568 Fall 2018 - Khanna
Noise Sources
!Shot Noise
"Discrete random event of charge jumping potential
barrier (i.e PN junction)
!Thermal Noise
"Random thermal motion of electrons
!Flicker Noise: 1/F Noise
"Usually due to impurities causing traps in material which
capture and emit carriers randomly
28 Penn ESE 568 Fall 2018 - Khanna
MOSFET Noise Model
29 Penn ESE 568 Fall 2018 - Khanna
!Flicker noise as voltage on the gate
!Thermal noise as current in the channel
MOSFET Noise Model
30 Penn ESE 568 Fall 2018 - Khanna
!Flicker noise as voltage on the gate
!Thermal noise as current in the channel
1 / 13 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans l'interface ou les textes ? Ou savez-vous comment améliorer l'interface utilisateur de StudyLib ? N'hésitez pas à envoyer vos suggestions. C'est très important pour nous!