Calculus 1, Chapter 1 Fall 2021
1
Table des matières
Chapter 1: Functions of one real variable: differentiability and related topics ...................................... 1
1. Inverse functions ............................................................................................................................. 1
1.1 Bijections (bijective functions, invertible functions) ............................................................. 1
1.2 Continuous bijection ................................................................................................................. 3
1.3 Examples of inverse functions ................................................................................................ 3
2. Differentiability ................................................................................................................................ 5
2.1. Differentiability at a point ........................................................................................................ 5
2.2 Digression: Variables vs functions ............................................................................................. 7
2.3. Applying derivatives to computation of limits ....................................................................... 10
Chapter 1: Functions of one real variable: differentiability and related
topics
1. Inverse functions
1.1 Bijections (bijective functions, invertible functions)
Definition: a bijection is a function between the elements of
two sets, where each element of one set is paired with exactly
one element of the other set, and each element of the other set
is paired with exactly one element of the first set. There are no
unpaired elements.
Definition 1.1.1 (formal):
a bijective function f: X → Y is a one-to-one (injective) and onto (surjective) mapping of a set X to a
set Y:
X such that