!
"##$%!&'()*&'&'! ! +,-%!2!./0!16!
!
Introduction
!
1%.!20345%.!2%!0$-0%..43#!64#$,40%!.3#5!507.!/5464.$%.!630.!28$5,63##,-%.!9!:/34!2%!;6/.!.4<;6%!:/%!
2%!50,=%0!=%55%!>,<%/.%!?!20345%!28$5,63##,-%!@!,A%=!6%.!0$;3#.%.!2%!6,!-,<<%!$5,63#!%5!%#./45%!
2%!0%;305%0!6%!.4-#,6!2%!684#=3##/%!./0!6,!20345%!;3/0!503/A%0!.,!A,6%/0!0%6,54A%!B!
C6!#8%.5!;3/05,#5!;,.!>30=$<%#5!D/24=4%/E!28/5464.%0!6,!0$-0%..43#!64#$,40%!.4!6%!<3276%!#%!.8F!;0G5%!
;,.!9! #3/.! ,663#.! A340! 2,#.! =%! =3/0.! 6,! >,H3#! 23#5! les* droites* d’étalonnages* de* type!
régression*linéaire!.3#5!=3#.50/45%.!,4#.4!:/%!6,!:/,645$!2%!=%55%!2%0#470%I!
!
I. Cas général : la méthode des moindres carrés
!
J#%!%E;$04<%#5,543#!=3#2/45!K!L!<%./0%.M!=N,=/#%!2%!=33023##$%.!OE4M!F4PI!1830-,#4.,543#!2%!
=%.!L!<%./0%.!;%/5!G50%!<32$64.$%!;,0!/#%!20345%!28$:/,543#!9!
!
y’*=*a.x*+*b!
!
Q%55%!20345%!.%!2345!28G50%!6%!;6/.!;03=N%!;3..4R6%!2%!53/5%.!6%.!<%./0%.!%E;$04<%#5,6%.!O23#=!
2%.!A,6%/0.!2%!FPM!<,4.!#%!#$=%..45%!;,.!3R64-,5340%<%#5!2%!;,..%0!;,0!6%.!A,6%/0.!2%!F!S!
+3/0!2%.!0,4.3#.!2%!.4<;64=45$M!46!%.5!./;;3.$!:/%!68%00%/0!#%!.%!0$;%0=/5%!/#4:/%<%#5!:/8%#!F!
%5!:/8%66%!%.5!4#2$;%#2,#5%!2%!E!O:/4!.3#5!=3##/%.!;0$=4.$<%#5PI!+3/0!=N,:/%!A,6%/0!2%!E!%.5!
<%./0$%!/#%!A,6%/0!F!9!6,!moyenne!2%!53/5%.!6%.!<%./0%.!2%!F!%.5!#35$%!ym!;,0!6,!./45%I!
!
Rappel& de& statistiques&:!6,!moyenne!2$>4#45!6,!A,6%/0!:/8,/0,4%#5! 53/5%.!6%.!<%./0%.! .4!%66%.!
23##,4%#5!K!=N,:/%!>34.!6%!<G<%!0$./65,5I!T66%!.%!=,6=/6%!;,0!6,!0%6,543#!9!
!
$
!
!
!
1,!A,6%/0!yi’!>,45!0$>$0%#=%!K!6,!valeur*ajustée!./0!6,!20345%!O:/4!;%/5!,/..4!G50%!,;;%6$%!A,6%/0!
;0$245%!3/!%.54<$%!-0U=%!,/!<3276%PM!=8%.5VKV240%!6,!;03D%=543#!2%!6,!A,6%/0!%E;$04<%#5,6%!2%!F4!
./0!6,!20345%!2%!0$-0%..43#I!
!
C6!%.5!;3..4R6%!2%!2$>4#40!;6/.4%/0.!5F;%.!28$=,05.!%#50%!6%.!A,6%/0.!%E;$04<%#5,6%.!%5!6%.!A,6%/0.!
,D/.5$%.!OFigure*1P!9!
!
´ l’écart*résiduel!O3/!0$.42/!eiP!9!! ! yi*–*yi’!!
!
!
´ l’écart*expliqué!O;,0!6%!<3276%P!9!! ! yi’*-*ym*
*
*
´ l’écart*total!9!!!!!!yi*-*ym*
*
!