
ORCID
Mamiko Yamada https://orcid.org/0000-0002-4039-8899
Hisato Suzuki https://orcid.org/0000-0002-8122-7180
Tomoko Uehara https://orcid.org/0000-0002-1497-7686
Toshiki Takenouchi https://orcid.org/0000-0002-7311-4135
Kenjiro Kosaki https://orcid.org/0000-0002-6798-8151
REFERENCES
Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P.,
Kondrashov, A. S., & Sunyaev, S. R. (2010). A method and server for
predicting damaging missense mutations. Nature Methods,7, 248–249.
Ahn, Y., Sims, C., Murray, M. J., Kuhlmann, P. K., Fuentes-Antras, J.,
Weatherbee, S. D., & Krumlauf, R. (2017). Multiple modes of Lrp4
function in modulation of Wnt/beta-catenin signaling during tooth
development. Development,144, 2824–2836.
Angle, E. H. (1899). Classification of malocclusion. Dental Cosmos,41,
248–264.
Bollerslev, J., Henriksen, K., Nielsen, M. F., Brixen, K., & Van Hul, W.
(2013). Autosomal dominant osteopetrosis revisited: Lessons from
recent studies. European Journal of Endocrinology,169, R39–R57.
Chen, C., Sun, L., Li, S., Huang, L., Zhang, T., Wang, Z., Yu, B., & Ding, X.
(2020). The spectrum of genetic mutations in patients with asymptom-
atic mild familial exudative vitreoretinopathy. Experimental Eye
Research,192, 107941.
Chen, C., Wang, Z., Sun, L., Huang, S., Li, S., Zhang, A., Luo, X., Huang, L., &
Ding, X. (2019). Next-generation sequencing in the familial exudative
Vitreoretinopathy-associated Rhegmatogenous retinal detachment.
Investigative Ophthalmology & Visual Science,60, 2659–2666.
Cingolani, P., Platts, A., Wang, l., Coon, M., Nguyen, T., Wang, L., Land, S. J.,
Lu, X., & Ruden, D. M. (2012). A program for annotating and predicting
the effects of single nucleotide polymorphisms, SnpEff: SNPs in the
genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly
(Austin),6,80–92.
Costantini, A., Kekalainen, P., Makitie, R. E., & Makitie, O. (2017). High
bone mass due to novel LRP5 and AMER1 mutations. European Journal
of Medical Genetics,60, 675–679.
de Lau, W., Peng, W. C., Gros, P., & Clevers, H. (2014). The R-
spondin/Lgr5/Rnf43 module: Regulator of Wnt signal strength.
Genes & Development,28, 305–316.
Fournier, B. P., Bruneau, M. H., Toupenay, S., Kerner, S., Berdal, A.,
Cormier-Daire, V., Hadj-Rabia, S., Coudert, A. E., & de La Dure-Molla, M.
(2018). Patterns of dental agenesis highlight the nature of the causative
mutated genes. Journal of Dental Research,97,1306–1316.
Gregson, C. L., Wheeler, L., Hardcastle, S. A., Appleton, L. H., Addison, K. A.,
Brugmans, M., Clark, G. R., Ward, K. A., Paggiosi, M., Stone, M., Thomas,
J., Agarwal, R., Poole, K. E., McCloskey, E., Fraser, W. D., Williams, E.,
Bullock, A. N., Davey Smith, G., Brown, M. A., Tobias, J. H., …Duncan,
E. L. (2016). Mutations in known monogenic high bone mass loci only
explain a small proportion of high bone mass cases. Journal of Bone
and Mineral Research,31, 640–649.
He, X., Semenov, M., Tamai, K., & Zeng, X. (2004). LDL receptor-related
proteins 5 and 6 in Wnt/beta-catenin signaling: Arrows point the way.
Development,131, 1663–1677.
Jing, J., Feng, J., Li, J., Han, X., He, J., Ho, T. V., Du, J., Zhou, X., Urata, M.,
& Chai, Y. (2019). Antagonistic interaction between Ezh2 and Arid1a
coordinates root patterning and development via Cdkn2a in mouse
molars. eLife,8, e46426. https://doi.org/10.7554/eLife.46426.
Kantaputra, P. N., Kaewgahya, M., Hatsadaloi, A., Vogel, P., Kawasaki, K.,
Ohazama, A., & Ketudat Cairns, J. R. (2015). GREMLIN 2 mutations
and dental anomalies. Journal of Dental Research,94, 1646–1652.
Kim, T. H., Bae, C. H., Lee, J. C., Ko, S. O., Yang, X., Jiang, R., & Cho, E. S.
(2013). Beta-catenin is required in odontoblasts for tooth root forma-
tion. Journal of Dental Research,92, 215–221.
Kircher, M., Witten, D. M., Jain, P., O'Roak, B. J., Cooper, G. M., &
Shendure, J. (2014). A general framework for estimating the relative
pathogenicity of human genetic variants. Nature Genetics,46,
310–315.
Landrum, M. J., Lee, J. M., Riley, G. R., Jang, W., Rubinstein, W. S.,
Church, D. M., & Maglott, D. R. (2014). ClinVar: Public archive of rela-
tionships among sequence variation and human phenotype. Nucleic
Acids Research,42, D980–D985.
Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A.,
McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R.,
Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and
Clustal X version 2.0. Bioinformatics,23, 2947–2948.
Lek,M.,Karczewski,K.J.,Minikel,E.V.,Samocha,K.E.,Banks,E.,Fennell,T.,
O'Donnell-Luria, A. H., Ware, J. S., Hill, A. J., Cummings, B. B.,
Tukiainen, T., Birnbaum, D. P., Kosmicki, J. A., Duncan, L. E., Estrada, K.,
Zhao, F., Zou, J., Pierce-Hoffman, E., Berghout, J., Cooper, D. N., …
Exome Aggregation Consortium. (2016). Analysis of protein-coding
genetic variation in 60,706 humans. Nature,536,285–291.
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with
burrows-Wheeler transform. Bioinformatics,25, 1754–1760.
Li, J., Parada, C., & Chai, Y. (2017). Cellular and molecular mechanisms of
tooth root development. Development,144, 374–384.
Little, R. D., Carulli, J. P., Del Mastro, R. G., Dupuis, J., Osborne, M.,
Folz, C., Manning, S. P., Swain, P. M., Zhao, S. C., Eustace, B., Lappe,
M. M., Spitzer, L., Zweier, S., Braunschweiger, K., Benchekroun, Y.,
Hu, X., Adair, R., Chee, L., FitzGerald, M. G., Tulig, C., …Johnson, M. L.
(2002). A mutation in the LDL receptor-related protein 5 gene results
in the autosomal dominant high-bone-mass trait. American Journal of
Human Genetics,70,11–19.
MacDonald, B. T., Tamai, K., & He, X. (2009). Wnt/beta-catenin
signaling: Components, mechanisms, and diseases. Developmental
Cell,17,9–26.
McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K.,
Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., &
DePristo, M. A. (2010). The genome analysis toolkit: A MapReduce
framework for analyzing next-generation DNA sequencing data.
Genome Research,20, 1297–1303.
Pekkinen, M., Grigelioniene, G., Akin, L., Shah, K., Karaer, K., Kurto
glu, S.,
Ekbote, A., Aycan, Z., Sa
gsak, E., Danda, S., Åström, E., & Mäkitie, O.
(2017). Novel mutations in the LRP5 gene in patients with
osteoporosis-pseudoglioma syndrome. American Journal of Medical
Genetics. Part A,173, 3132–3135.
Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody,
W. W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K., Rehm, H. L., &
ACMG Laboratory Quality Assurance Committee. (2015). Standards
and guidelines for the interpretation of sequence variants: A joint con-
sensus recommendation of the American College of Medical Genetics
and Genomics and the Association for Molecular Pathology. Genetics
in Medicine,17, 405–424.
Roetzer, K. M., Uyanik, G., Brehm, A., Zwerina, J., Zandieh, S., Czech, T.,
Roschger, P., Misof, B. M., & Klaushofer, K. (2018). Novel familial
mutation of LRP5 causing high bone mass: Genetic analysis, clinical
presentation, and characterization of bone matrix mineralization. Bone,
107, 154–160.
San Lucas, F. A., Wang, G., Scheet, P., & Peng, B. (2012). Integrated anno-
tation and analysis of genetic variants from next-generation sequenc-
ing studies with variant tools. Bioinformatics,28, 421–422.
Schwarz, J. M., Cooper, D. N., Schuelke, M., & Seelow, D. (2014).
MutationTaster2: Mutation prediction for the deep-sequencing age.
Nature Methods,11, 361–362.
Stenson, P. D., Mort, M., Ball, E. V., Evans, K., Hayden, M., Heywood, S.,
Hussain, M., Phillips, A. D., & Cooper, D. N. (2017). The human gene
mutation database: Towards a comprehensive repository of inherited
mutation data for medical research, genetic diagnosis and next-
generation sequencing studies. Human Genetics,136, 665–677.
YAMADA ET AL.5