Telechargé par boufakri abdelmounaim

03

publicité
```!&quot; #
&quot;
\$
&amp;
%
%
'
(&gt;
)
'
#
*
*
# %
*
+ ,
+
-.
/
-
0
%
,
+
!
*
1.
/
&amp;
%,
2
%
,
*/
1
0
/
#
&amp;
6
6
3
3
3
=
&amp;
'
!
&quot;&quot;
5
3
3
=
3
%
3
=
3
3
=
3
3
3
=
&amp; 3
= &times; &amp; &amp;
&amp;
0 \$
%
%
!
&quot;
* %
&quot;
&quot;!
6
6
&amp;
% )
=
−
&amp;
&amp;
=
=
8
&amp;
−
=;
/
6
&quot;
%)
&times;
8
&amp;
,
'
4
&quot; #
:9%7 %
%'
6
= 227
&amp;
−
6
=
'
=
&amp;
#
&quot;
\$&quot; #
&lt;
=
'
= 3?
)
=
/
= 2 3&gt;% 2&gt;
&gt;7 @ =
= 33 : :, &amp;/
3 .
&quot;
A
/
\$
=
B
.
=
/
%
=
&quot;
'
=
&quot;
C
=
&quot;
=
B
=
&amp;,
'
%
=
A
'
%
/
%
%
=
3
C
=
B
=
=
=
%
D
=
'
=
=
=
=
*
%
= 3; E %
&amp;
−
*
=
&gt;
=
&lt;
F
*
&quot;
*
\$
/
&amp;
1
&gt;
F
&amp;
F
*
=
%
=
/
.
=2%
&lt;
⇔
&lt;2
=
⇔
=2
&gt;
⇔
&gt;2
*
%
\$
∂
∂
*
#
&quot;
*
%
*
+ .
0
&lt;
G
C
/
/
&lt;
*
\$
%
,
G
≈ 2% 0
\$
/ H
*
/
&quot; #
/ H
≠2
%
/
*
*
% ,
%
&lt;
↓
ω
↓
&lt; G%
−ω
=
3
ω≈
3
!
&amp;
3
%
/
/
3
&quot;
3
,
/
&amp;
:
= π &amp;3
*
−
=
I
&amp;
=
&lt;
=
=
−
&amp;
:
J
=
%
/
%
J
&amp; −
J
=
J
⇔&amp; +
J
&amp; −
=
&amp;
.
&amp; +
&times;
G
*
/ H
&amp;
%
*
I
%
/
&times;
/
*
⇔
*
−
+
&lt;
J
−
J
G
=
:
)
F
2
+∞ &amp;\$
&quot;!
J
2
&amp; −
≈
'
'
−
2%
J
%
K
%
=
/ H
+∞
%
6
)
=
+
K
%
+
=
'
+
=2⇔ −
J
J J
−
=2⇔
J
−
=
J
+ &amp;
+
+ &amp;
=
J
−
=
+
+ &amp;
&amp; −
+ &amp; J
=
'&quot;
∂
∂
α=
&quot;&quot;
#
&quot;
χ =−
[χ ] =
0
∂
∂
&quot; L2
&quot;&quot;
#
&amp;
&quot;
%
% [α ] = 7 − %
=α &times; &times;
\$
%
−
&amp;
0
&quot; L2
= −χ &times; &times;
\$
%
+ I!
6
&quot;
=
α=
3 6
A
=
∂
∂
=
=
&lt;
)
%'
χ =−
∂
∂
=
∂
∂
=−
&times;
−
!
&quot;&quot;
0
=
J
#
α=
&quot;
&quot;
α=
%
χ =
=
J
=
*
*
%
\$
⇔
=
&amp;
=
&amp;
+ !&amp;
=
!&amp;
&times;
&gt;
%
&quot;
χ =−
\$
=
= #&amp;
&times;
=
⇔−
!
/
&times; \$&amp;
%
= &times;
&quot;
− &amp;
⇔
&times;
\$&amp;
/
=
&times;
=
=
#&amp;
=
=
=
&times; #&amp;
⇔
&times;
=
+ &quot;&amp;
&amp;
&amp; /
&amp;
=
&quot;&amp;
&times;
/
&times;
-
0
'
=
I
=
=−
χ
*
%
=∂
∂
+∂
∂
=α &times; &times;
χ ≈2 &amp;
&amp;
! χ &amp;
*
= : :% 2
− 2
\$
%α
@
−χ &times; &times;
0
% '
#
−
4
#
≈2
%'
#
+ I
%
&quot;
=
∂
∂
+
∂
∂
=
=2
=
```