Telechargé par ouldyahialilia

abc-283540-14103-donnees actuelles sur le dosage de lexcretion urinaire de lalbumine-lilia.ould.yahia-u

publicité
abc
synthèse
Ann Biol Clin 2010 ; 68 (1) : 9-25
Données actuelles sur le dosage
de l’excrétion urinaire de l’albumine
Current issues in measurement and reporting of urinary albumin excretion
Copyright © 2020 John Libbey Eurotext. Téléchargé par Mlle lilia ould yahia le 26/05/2020.
W.G. Miller1
D.E. Bruns2
G.L. Hortin3
S. Sandberg4
K.M. Aakre4
M.J. McQueen5
Y. Itoh6
J.C. Lieske7
D.W. Seccombe8
G. Jones9
D.M. Bunk10
G.C. Curhan11
A.S. Narva12
on behalf of the National Kidney
Disease Education ProgramIFCC Working Group on
Standardization of Albumin
in Urine
1
Department of Pathology,
Virginia Commonwealth University,
Richmond, VA
doi: 10.1684/abc.2010.0402
2
Department of Pathology,
University of Virginia Medical School,
Charlottesville, VA
3
Department of Laboratory Medicine,
Warren Magnuson Clinical Center,
National Institutes of Health,
Bethesda, MD
4
Laboratory of Clinical Biochemistry,
Haukeland University Hospital
and The Norwegian Quality Improvement
of Laboratory Services in Primary Care
(NOKLUS), Bergen Norway
5
Hamilton Regional Laboratory
Medicine Program,
Department of Pathology and Molecular
Medicine, McMaster University,
Hamilton, Ontario, Canada
6
Department of Laboratory Medicine,
Asahikawa Medical College,
Asahikawa, Japan
Tirés à part : J.-L. Beaudeux
Ann Biol Clin, vol. 68, no 1, janvier-février 2010
Résumé. L’excrétion urinaire de l’albumine témoigne d’une atteinte rénale et
est reconnue comme un facteur de risque de la progression de la maladie
rénale et des pathologies cardiovasculaires. L’importance des dosages urinaires de l’albumine est démontrée par la nécessité pour les cliniciens de disposer
de résultats précis et facilement interprétables. Le programme national d’éducation sur les maladies rénales (National kidney disease education program) et
l’IFCC ont réalisé une conférence pour faire le point sur les données actuelles
à la fois préanalytiques, analytiques et post-analytiques concernant le dosage
urinaire de l’albumine, et pour dégager les besoins d’amélioration dans ce
domaine. Les aspects biochimiques de l’élimination urinaire de l’albumine
sont incomplètement connus. Les recommandations actuelles recommandent
l’utilisation du rapport albumine/créatinine pour pallier l’erreur liée aux imprécisions du recueil des échantillons. Cependant aucune standardisation de la
détermination de ce rapport n’est disponible bien que celui-ci puisse être
affecté par la préparation du patient et l’heure de recueil des échantillons
dans la journée. D’importantes différences inter essai ont été rapportées à la
fois pour le dosage de l’albumine et pour le dosage de la créatinine et nous
ne disposons pas aujourd’hui de procédure de référence pour le dosage de
l’albumine, comme pour celui d’autres paramètres dosés dans les urines.
Les intervalles de références recommandés pour les valeurs du ratio albumine/créatinine ne prennent pas en compte les différences parfois importantes
de l’excrétion de la créatinine selon les sujets (par exemple différences liées à
l’âge, au sexe et à l’ethnie). Hors l’utilisation en pratique clinique de ce
rapport nécessite la standardisation de : a) les méthodes de recueil de l’urine,
b) les méthodes de mesure urinaire de l’albumine et de la créatine sur la base
d’un système de référence préalablement établi, c) l’existence et la publication
des valeurs standardisées pour ces paramètres, et d) l’établissement des intervalles de référence pour le rapport albumine/créatinine.
Mots clés : albumine, dosage, urine, fonction rénale, standardisation
Cet article a été traduit par J.-L. Beaudeux (Hôpital universitaire gériatrique Charles Foix, APHP)
et J.-P. Cristol (CHU Montpellier) avec l’autorisation de l’AACC. L’AACC n’est pas responsable
de la qualité de cette traduction. Les opinions exprimées dans ce texte sont celles des auteurs, et
n’engagent pas l’AACC ni le journal.
Cet article a été repris de Clinical Chemistry sous la référence : Miller WG, Bruns DE, Hortin
GL, Sandber S, Aakre KM, McQueen MJ et al. Clin Chem 2009 : 55 : 24-38 avec l’accord de
l’éditeur. Original copyright 2009 American Association for Clinical Chemistry, Inc.
Pour citer cet article, indiquer la publication originale dans Clinical Chemistry.
Pour toute correspondance : <[email protected]>
9
synthèse
Copyright © 2020 John Libbey Eurotext. Téléchargé par Mlle lilia ould yahia le 26/05/2020.
7
Mayo Clinic Renal Function
Laboratory, Department of Laboratory
Medicine and Pathology,
Mayo Clinic Division of Nephrology
and Hypertension,
Department of Internal Medicine,
Rochester, MN
8
Canadian External Quality Assessment
Laboratory and Department of Pathology
and Laboratory Medicine,
University of British Columbia,
Vancouver, BC, Canada
9
Department of Chemical Pathology,
St Vincent’s Hospital Sydney,
Sydney, Australia
10
Analytical Chemistry Division,
National Institute of Standards
and Technology, Gaithersburg, MD
11
Renal Division,
Department of Medicine,
Brigham and Women’s Hospital,
Harvard Medical School,
Boston, MA
12
National Kidney Disease Education
Program, National Institute for Diabetes
and Digestive Diseases,
National Institutes of Health,
Bethesda, MD
Abstract. Urinary excretion of albumin indicates kidney damage and is recognized as a risk factor for progression of kidney disease and cardiovascular
disease. The role of urinary albumin measurements has focused attention
on the clinical need for accurate and clearly reported results. The National
Kidney Disease Education Program and the IFCC convened a conference to
assess the current state of preanalytical, analytical, and postanalytical issues
affecting urine albumin measurements and to identify areas needing improvement. The chemistry of albumin in urine is incompletely understood. Current
guidelines recommend the use of the albumin/creatinine ratio (ACR) as a surrogate for the erro-prone collection of timed urine samples. Although ACR
results are affected by patient preparation and time of day of sample collection, neither is standardized. Considerable intermethod differences has been
reported for both albumin and creatinine measurement, but trueness is unknown because there are no reference measurement procedures for albumin
and no referance materials for either analyte in urine. The recommanded reference intervals for the ACR do not take into account the large intergroup differences in creatinine excretion (e.g., related to differences in age, sex, and
ethicity) nor the continuous increase in risk related to albumin excretion.
Clinical needs have been identified for standardization of (a) urine collection
methodes, (b) urine albumin and creatinine measurements based on a complete reference system, (c) reporting of test results, and (d) reference intervals
for the ACR.
Key words: albumin, urine, standardization, measurements, reference
Article reçu le 16 octobre 2009,
accepté le 2 novembre 2009
Le dosage urinaire de l’albumine est couramment utilisé
pour mettre en évidence et suivre les patients ayant une
affection rénale. Une conférence sur l’utilisation clinique
et le dosage de l’albumine urinaire a été organisée par le
groupe de travail « laboratoire » du programme national
d’éducation pour les pathologies rénales (National kidney
disease education program) et l’IFCC, afin de faire le
point sur les pratiques actuelles de mesure de l’albumine
urinaire et de l’utilisation de ses résultats dans la prise en
charge de la maladie rénale. Les objectifs de cette conférence étaient de préciser les besoins de standardisation du
dosage et les recommandations de pratique clinique
concernant l’excrétion urinaire de l’albumine. Cet article
reprend les observations et les conclusions de cette
conférence.
Historiquement, l’albuminurie a été définie en terme
d’excrétion urinaire par unité de temps, classiquement
24 heures. La difficulté d’un recueil urinaire sur 24 heures
a donné lieu à des mesures de ratio de l’excrétion urinaire
de l’albumine (albumin excretion rate : AER) [13]. Un
ratio largement utilisé est le rapport entre les concentrations urinaires de l’albumine et de la créatinine (albumin
creatinin rate : ACR) [1]. Pour ce dernier rapport, le
10
recueil d’échantillon urinaire est souvent utilisé sans
prise en compte de l’heure dans la journée, et un intervalle
de référence unique pour l’homme et la femme est souvent utilisé. Cependant, plusieurs facteurs peuvent modifier le rapport albumine/créatinine [1] comme l’heure de
prélèvement dans la journée, l’excrétion plus importante
de créatinine chez l’homme que chez la femme, chez le
sujet de race noire par rapport aux sujets de race blanche,
ou à l’inverse la diminution d’excrétion de la créatinine
chez les sujets ayant eu une fonte musculaire, ou enfin les
effets de l’alimentation sur cette même excrétion urinaire.
Recommandations sur l’utilisation
du dosage urinaire de l’albumine
Des guides de bonne pratique clinique pour l’utilisation
du dosage urinaire de l’albumine ont été élaborés par
des organisations professionnelles de différents pays.
Ces recommandations ne sont pas uniformes quant au
type d’échantillon, temps de recueil, unité de présentation
des résultats, seuil utilisé pour l’interprétation clinique, et
Ann Biol Clin, vol. 68, no 1, janvier-février 2010
Copyright © 2020 John Libbey Eurotext. Téléchargé par Mlle lilia ould yahia le 26/05/2020.
Dosage de l’albumine urinaire
méthode utilisée pour le dosage de l’albumine et de la
créatinine.
Le tableau 1 reproduit 10 recommandations établies par
ces organisations depuis 2002 ; 5 recommandations sont
directement liées à la maladie diabétique et préconisent une
évaluation annuelle. Les 10 recommandations préconisent
l’utilisation de l’ACR, 8 conseillent le recueil des urines du
matin, 7 proposent un recueil d’un échantillon urinaire,
et 4 recommandent l’expression de l’ACR en mg/g ou
mg/mmol (1 mg/g = 1 μg/mg = 0,113 mg/mmol). Sept
recommandations mentionnent, avec un degré variable de
détails, la nécessité de réaliser plusieurs déterminations pour
confirmer les résultats ; 2 indiquent clairement que le recueil
des urines de 24 heures n’est pas nécessaire mais 1 recommandation propose ce recueil urinaire sur 24 heures comme la
plus pertinente parmi trois méthodes possibles pour ce
recueil.
Bien que la mesure de l’ACR soit généralement recommandée, l’absence de méthodes standardisées reconnues
pour le recueil d’échantillon, pour la mesure d’ACR et
l’expression des résultats peuvent limiter l’utilisation de
ce rapport en pratique clinique et en recherche. L’expression des résultats peut se faire en mg d’albumine par g
(ou μg/mg) ou par mmol de créatinine, et la signification
de ces deux modes d’expression est souvent obscure pour
les non spécialistes. Ainsi, les médecins généralistes ont
du mal à comprendre la signification d’un résultat d’albuminurie et éprouvent des difficultés dans l’interprétation
pratique du résultat (par exemple un résultat qui témoigne
d’un risque accru de maladies cardiovasculaires ou la progression d’une maladie rénale). Ils peuvent être perdus par
le nombre important de tests de mesure de la fonction
rénale et sont surpris qu’une valeur seuil commune et
unique telle que celle généralement citée de 30 mg/g
(30 μg/mg, 3,4 mg/mmol ou 3,4 g/mol), ne puisse être
appliquée pour les patients quel que soit leur âge, leur
sexe ou leur ethnie [1, 4]. De plus, la relation entre
l’excrétion urinaire de l’albumine et l’augmentation du
risque cardiovasculaire rénal est linéaire, et considérer
que toutes les valeurs d’ACR inférieures à 30 mg/g
constituent un résultat normal apparaît aujourd’hui
inapproprié [1].
Conditions préanalytiques affectant l’AER
Le tableau 2 reproduit les facteurs préanalytiques qui
peuvent influencer l’excrétion urinaire de l’albumine.
Variations biologiques intra-individuelles
La connaissance des variations biologiques intra-individuelles est importante pour convenir du type d’échantillon
Ann Biol Clin, vol. 68, no 1, janvier-février 2010
qui doit être utilisé pour le dosage urinaire de l’albumine,
pour l’interprétation d’un résultat de confirmation après une
première détermination, et pour savoir si une évolution de
l’excrétion urinaire de l’albumine a une signification clinique.
Le tableau S1 (dans la partie « supplément de données » qui
accompagne la version en ligne de cet article à l’adresse
http://www.clinchem.org/content/vol55/issue1) montre les
estimations de variabilité intra-individuelle (CVi) pour
l’excrétion urinaire de 4 % à 103 % avec 1 tertile central
de 28 % à 47 %. Les facteurs de variation les plus importants sont la période de recueil de l’échantillon urinaire
( jours, semaines, mois), le type d’échantillon (24 heures,
premières urines du matin, temps fixé dans la journée, ou
aléatoire), la nature de l’exploration, la concentration de
l’albumine dans les urines, les conditions de santé du
sujet, et les conditions préanalytiques de prise en charge et
de conservation des échantillons urinaires. La plupart de ces
études ne décrivent pas le mode du calcul du CVi de façon
suffisamment détaillée pour permettre de comprendre et
comparer les différences rapportées.
Néanmoins, certaines conclusions générales peuvent être
déduites des données du tableau S1. Le CVi de l’ACR est
le plus faible dans 22 des 30 études (73 %), dans lesquelles les CVi de l’excrétion des 24 heures, des rapports
d’excrétion nocturnes ou des concentrations ont été comparés au CVi de l’ACR. Les CVi de l’ACR d’un jour à
l’autre, essentiellement pour les déterminations nocturnes
et matinales, sont en général plus faibles que les CVi
d’ACR mesurées d’une semaine à l’autre ou d’un mois à
l’autre. Cependant, la variation des CVi pour les différentes études apparaît importante et probablement liée à la
différence des méthodes utilisées (par exemple les facteurs
préanalytiques tels que la conservation des échantillons
avant analyse) et des facteurs liés au mode de calcul des
CVi (tels que l’exclusion de résultats aberrants et l’évaluation de l’homogénéité des variances). La non prise en
compte de ces deux derniers facteurs est de nature à augmenter les CVi rapportés dans la littérature. De façon intéressante, l’ACR ou la concentration de l’albumine fournissent des CVi plus élevés dans le cas des échantillons
urinaires randomisés [34, 35] (S1 et S14 dans le supplément des données en ligne). Un second échantillon
des urines du matin s’est avéré comparable à l’utilisation
d’un échantillon des urines de 24 heures [36] et deux études du tableau S1 du supplément de données en ligne
qui ont utilisé un second échantillon des urines du matin
ont fourni des valeurs de CVi comparables aux autres
études qui n’ont utilisé que le premier échantillon des
urines matinales. Cependant, aucune comparaison directe
entre les premières urines et les secondes urines n’a été
réalisée.
11
12
Auteur/organisation
Recommandations pour le dépistage, le recueil des échantillons et les méthodes
American Diabetes Associationb Dépistage : réaliser un dépistage annuel de la présence d’albumine dans les urines chez les
patients ayant un diabète de type 1 avec une durée de diabète > 5 ans et chez tous les
patients ayant un diabète de type 2 à partir du moment du diagnostic et au cours de la
grossesse.
Méthodes : (a) dosage de l’ACR sur échantillon urinaire quelconque (méthode préférée) ;
(b) recueil des urines de 24h avec dosage de la créatinine, permettant une mesure de la
clairance de la créatinine ; (c) recueil urinaire en temps fixé (par exemple urines de 4h ou
urines de la nuit).
International Diabetes
Prise en charge médicale classique : recherche de protéinurie par bandelette sur échantillon
Federation
du matin (ou échantillon quelconque). La répétition et/ou confirmation de l’analyse, sont
recommandées incluant l’ACR ou la PCR.c
Prise en charge complète : dosage quantitatif de l’albumine urinaire (ACR).
Prise en charge minimale : recherche annuelle d’une protéinurie par bandelette ou par une
méthode à l’acide sulfoslicylique sur des urines du matin (ou des urines quelconques).
La répétition et/ou confirmation de l’analyse est recommandée incluant la PCR.
Kidney Disease :
Protéines recommandées : le dosage de l’abumine dans l’urine est préféré au dosage des
Improving Global Outcomes
protéines.
Dosage : les procédures de dosage de l’abumine doivent être reliées au matériel de référence
CRM 470. Plusieurs méthodes sont disponibles. Si nécessaire une bandelette, avec dosage
immunologique, peut être utilisée ; une bandelette urinaire conventionnelle peut être acceptée
si c’est la seule solution disponible. La répétion et/ou la confirmation de l’analyse sont
recommandées.
Recueil/échantillon : un recueil quelconque des urines est accepté pour un test initial.
Les premières urines du matin sont l’échantillon recommandé mais non imposé s’il nécessite
contrainte particulière. Un recueil d’échantillon à temps fixé pour l’albumine et la créatinine
urinaires peut être réalisé si une réduction de la variabilité des dosages l’impose.
National Kidney Foundation
Recommandation pour les adultes et les enfants : dans la plupart des circonstances, un
(US)
recueil urinaire quelconque doit être utilisé pour la détection et le suivi de la protéinurie chez
les adultes et les enfants. Habituellement il n’est pas nécessaire d’avoir un recueil urinaire en
temps fixé (urines de la nuit ou des 24h) pour une première évaluation. Les premières urines
du matin sont préférées. Dans la majorité des cas un dépistage par la détection de protéinurie
à l’aide de bandelette est acceptable. Les bandelettes urinaires conventionnelles sont
acceptables pour la détection d’une augmentation des protéines urinaires totales.
Les bandelettes urinaires spécifiques pour le dosage de l’albumine sont acceptables pour la
détection de l’albumine urinaire. La répétition et/ou confirmation des analyses sont
recommandées, incluant la PCR ou l’ACR.
Recommandations spécifiques pour les adultes : pour le screening des adultes ayant un
risque rénal accru, l’albumine urinaire doit être mesuré sur un échantillon quelconque par
utilisation d’une bandelette spécifque de l’albumine ou par l’ACR.
Recommandations pour les sujets diabétiques : un screening de dépistage de maladies
chroniques ou rénales doit être réalisé. Le screening initial débute 5 ans après le diagnostic
de diabète de type ou de type 2. Le screening doit comprendre le dosage de l’ACR sur
échantillon urinaire quelconque. La répétition et/ou confirmation sont recommandées.
Caring for Australians with Renal Dépistage d’une protéinurie : pour une population à haut risque, l’examen initial est la PCR.
Impairment
Pour les patients diabétiques et originaires d’Australie, le test initial est l’ACR. La répétition de
la recherche est recommandée.
Tableau 1. Résumé des recommandations de pratique clinique pour le dosage de l’albumine urinairea.
Référence
[2]
Un tableau au sein des recommandations utilise le [7]
mode d’expression g/J, mg/dL et mg/mmol pour les
tests de dépistage et de diagnostic respectivement.
[6]
[5]
Pas d’unité recommandée
mg/g
[4]
mg/g
Non directement défini, mais les valeurs usuelles de [3]
la section « soins » mentionnent mg/mmol et mg/g
Expression des résultats
Non précisément défini, mais un tableau indiquant
les critères pour les différents diagnostics utilise
l’expression mg/g
Copyright © 2020 John Libbey Eurotext. Téléchargé par Mlle lilia ould yahia le 26/05/2020.
synthèse
Ann Biol Clin, vol. 68, no 1, janvier-février 2010
Ann Biol Clin, vol. 68, no 1, janvier-février 2010
[8]
[9]
[10]
[11]
Pas de recommandation
mg/mmol
mg/g
Référence
mg/mmol
Expression des résultats
La recherche clinique de bonnes pratiques cliniques ou de recommandations incluant un dosage des protéines urinaires comme élément de diagnostic d’une pathologie rénale ou d’un risque cardiovasculaire est réalisée en utilisant la base de données PubMed. Les recherches informatisées incluaient les combinaisons de terme telles que albumine urinaire, protéine urinaire, guide de bonnes pratiques, dosage, maladie rénale et détection. Le site internet du Kidney Disease Improving Global Outcomes, qui liste les bonnes pratiques cliniques de différentes organisations a été
également consulté (http://www.kdigo.org/clinical_practice_guidelines/index.php).
b
Des recommandations similaires ont été trouvées dans les recommandations de l’Académie Nationale de Biochimie Clinique (Nation Acadmey of Clinical Biochemistry), qui ont été réalisées en
coopération avec l’ADA (American Diabetes Association) (http://www.aacc.org/members/ach/LMPG/Pages/default.aspx).
c
PCR : rapport protéines/créatinine ; CKD : maladie rénale chronique.
a
Recommandations pour le dépistage, le recueil des échantillons et les méthodes
Méthode d’évaluation : la méthode de choix doit prendre en compte les pratiques cliniques
telles que la facilité d’utilisation, l’acceptabilité par le patient coût. Pour un premier dosage de
l’albuminurie les urines de la première miction du matin sont préférées, cependant l’ACR sur
un échantillon quelconque est accepté. Une répétition et/ou confirmation de l’examen sont
recommandées ; le PCR apparaı̂t comme un examen adapté au diagnostic d’une protéinurie
significative.
Joint Specialty Committee on
Méthode de détection de l’albumine urinaire : l’albumine urinaire doit être mesurée au niveau
Renal Medicine of the Royal
d’un laboratoire par une méthode quantitative sur un échantillon urinaire du début de matinée
College of Physicians of London (préféré) ou quelconque de milieu de jet, et exprimée sous la forme de l’ACR. Si les
and the Renal Association (UK) bandelettes sont utilisées pour la détection de l’albumine urinaire, un résultat positif doit
susciter une confirmation par un examen de laboratoire.
Indications pour le dépistage : les patients diabétiques qui ont une protéinurie connue et
persistante ne relèvent pas des tests de dépistage de l’albumine urinaire. Tous les autres
patients diabétiques doivent au minimum annuellement un dépistage pour recherche
d’albuminurie. Il n’existe à ce jour aucune preuve concernant l’intérêt du dépistage
d’albuminurie chez les patients diabétiques.
Méthode de détection et de la quantification de la protéinurie : en première intention, les
urines de 24h ne sont pas nécessaires pour réaliser cette détection et quantification.
La répétition et/ou confirmation du dosage est recommandée incluant l’ACR ou le PCR.
Indications pour le dépistage : l’urinalyse par bandelette est indiquée chez les patients ayant
une découverte récente d’un débit par infiltration glomérulaire < 60 mL/min/1,73 m2, une
découverte récente d’hématurie et d’autres conditions plus spécifiques. L’urinalyse par
bandelette n’est pas recommandée pour le dépistage dans d’autres groupes de patients.
UK Renal Association Clinical
Les patients explorés ou traités pour une pathologie rénale chronique bénéficient d’une
Pratice Guidelines : Clinical
détection de la protéinurie par bandelette et d’une confirmation par mesure du PCR ou
Practice Guidelines for the Care spécifique de l’ACR, idéalement sur les premières urines du matin.
of Patients with Chronic Kidney
disease
National Institute for Clinical
Prévention de l’insuffisance rénale chez tous les diatbétiques de type 2 : détermination de
Excellence (UK)
l’ACR ou de la concentration urinaire de l’albumine annuellement. Utiliser les premières urines
du matin lorsque cela est possible ; utiliser un dosage quantitatif en laboratoire ou de biologie
délocalisée spécifique pour le dosage de l’albumine urinaire. La répétition et/ou confirmation
sont recommandées.
National Kindey Foundation (US) Recommandation 2, évaluation des patients ayant une pathologie rénale chronique ou une
hypertension artérielle : l’ACR ou le PCR des premières urines du matin ou d’un échantillon
urinaire quelconque est préconisé.
Auteur/organisation
Tableau 1. Résumé des recommandations de pratique clinique pour le dosage de l’albumine urinairea. (suite)
Copyright © 2020 John Libbey Eurotext. Téléchargé par Mlle lilia ould yahia le 26/05/2020.
Dosage de l’albumine urinaire
13
synthèse
Tableau 2. Eléments cliniques et paracliniques affectant l’excrétion urinaire de l’albuminea.
Exercice
Effet sur l’excrétion
urinaire de l’albumine
Augmentation
Fièvre
Bactériurie asymptomatique
Posture (orthostatisme)
Augmentation
Aucun
Augmentation
Conséquences sur l’analyse de l’albumine urinaire
Références
Ne doit pas être réalisé après un exercice physique intense
(la preuve du biais n’est pas complètement démontrée)
Ne doit pas être réalisé dans les 3 jours après un état fébrile
Le dépistage d’une bactériurie asymptomatique n’est pas nécessaire
Une augmentation de l’excrétion urinaire de l’albumine chez un
adolescent ou un jeune doit être répétée par un examen réalisé
sur les premières urines du matin
[12-22]
[23-25]
[26-28]
[29-33]
a
Copyright © 2020 John Libbey Eurotext. Téléchargé par Mlle lilia ould yahia le 26/05/2020.
Ces données ont été obtenues par une recherche informatique PubMed en utilisant les mots « albumine urinaire », « microalbuminurie », « microalbumine », en combinaison avec « exercice », « fièvre », « bactériurie », « infection du tractus urinaire ». Le terme « protéinurie » a été utilisé en combinaison
avec « orthostatic », « posture ». Pour toutes les recherches, les « articles reliés » et la liste des références des articles retrouvés ont été examinés.
Modification de la concentration urinaire
de l’albumine au cours du recueil
et de la conservation de l’échantillon
Pour de faibles concentrations urinaires de l’albumine,
l’adsorption à la surface du récipient peut entraîner
une perte significative. La fixation d’une simple couche
d’albumine à une surface nécessite environ 0,15 μg
d’albumine par cm2 [37]. L’adsorption non spécifique de
l’albumine urinaire apparaît inférieure à 1 mg/L sur des
surfaces hydrophiles et inférieure à 2 mg/L sur des surfaces hydrophobes [38]. La fixation aux surfaces induit également une dénaturation, les phénomènes d’adsorption et
de dénaturation pouvant être réduits en utilisant une surface hydrophile appropriée ou en ajoutant un détergent
non ionique [39, 40]. L’albumine semble relativement
stable à l’interface air-liquide alors qu’une agrégation
peut être observée après agitation vive [41].
De nombreuses recommandations différentes existent
concernant la conservation à long terme et la stabilité de
l’albumine dans les échantillons urinaires [42-46].
Les données récentes suggèrent que les échantillons urinaires sont stables à - 80 °C sur des périodes longues.
La conservation à des températures supérieures, en particulier - 20 °C semblent induire des modifications variables de l’albumine [46-50].
Dans la pratique quotidienne de laboratoire, les urines fraîches, recueillies en milieu de jet urinaire sont préférables.
L’albumine est généralement stable dans les échantillons
urinaires conservés entre 2 °C et 8 °C pendant 7 jours
[36, 42]. L’influence de la présence de bactéries et de protéases n’a pas été précisément étudiée, mais ces deux causes
peuvent induire des modifications de la concentration
d’albumine recueillie dans les urines. Des précipités se forment fréquemment au sein des urines conservées à + 4 °C
ou congelées, et leur existence sur le dosage de l’albumine
n’a pas été non plus été précisément étudiée. Ces précipités
se redissolvent le plus souvent lorsque l’urine est réchauffée
avant l’analyse ; la décongélation à 37°C des urines congelées semble réduire la précipitation [51] mais peut aug14
menter l’activité protéasique. La centrifugation d’urines
troubles peut être nécessaire pour diminuer le matériel
insoluble avant le dosage.
Recueil des échantillons urinaires
et évaluation des pratiques
Les enquêtes de pratique clinique ont montré de grandes
variations des modalités de recueil des échantillons, du
choix des méthodes d’analyse et des seuils décisionnels.
Une étude de 2002 rapporte une évaluation des pratiques
de dosages de l’albumine urinaire dans les hôpitaux et les
centres médicaux du Montana (États-Unis), et a montré que
seulement 43 % et 46 % d’entre eux, respectivement, utilisaient les seuils recommandés de la fondation nationale pour
le rein (National kidney foundation – États-Unis) ou de
l’association américaine du diabète (American diabetes association) [52]. Une étude française réalisée en 2003 auprès de
médecins de ville prenant en charge des patients diabétiques
a montré que seulement 36 % des patients avaient un dosage
d’albuminurie et que seul le recueil des urines de 24 heures
était considéré par les médecins comme approprié [53]. Une
enquête britannique sur la prévention du diabète chez
l’enfant a montré en 2005 que la détermination de l’ACR
sur des échantillons du matin était l’examen le plus courant
(81 %), alors que le recueil des urines de la nuit ou le recueil
des urines de 24 heures n’étaient mis en œuvre que dans
14 % et 5 % des cas, respectivement [54].
Au cours de l’année 2006, une évaluation par questionnaire de la détermination de l’albuminurie en prévention
primaire a été réalisée auprès de 2 078 médecins dans
9 pays européens [55]. Un échantillon urinaire était le
plus souvent réalisé pour une première évaluation de
l’albumine, alors que des recueils à temps fixé étaient
utilisés pour des tests répétés, particulièrement dans les
structures hospitalières. Seulement 45 % et 77 % des
médecins généralistes questionnés effectuaient un second
test lorsque le premier était positif. La prévalence des tests
réalisés au sein même du cabinet médical pour l’analyse
urinaire de l’albumine variait entre 4 et 88 % selon les
Ann Biol Clin, vol. 68, no 1, janvier-février 2010
Copyright © 2020 John Libbey Eurotext. Téléchargé par Mlle lilia ould yahia le 26/05/2020.
Dosage de l’albumine urinaire
pays avec les pourcentages les plus élevés en Norvège et
en Suède, et les plus faibles en France. Lorsque ces tests
étaient utilisés dans les cabinets médicaux, la détermination quantitative de l’ACR était le plus souvent réalisée en
Scandinavie, alors que les tests semi-quantitatifs étaient
plus largement répandus dans les autres pays. Dans tous
les pays à l’exception des Pays-Bas, 4 moyens d’expression
des résultats de l’albuminurie ont été utilisés : la concentration (mg/L), l’excrétion par 24 heures (mg/24h), l’excrétion
par minute (μg/min) et l’ACR (mg/mmol ou mg/g). Dans la
majorité des pays les cliniciens estimaient qu’une variation
de 33 % des résultats de l’albumine urinaire témoignait
d’une modification cliniquement significative de la fonction rénale, indépendamment du type d’échantillon utilisé
pour cette détermination.
En 2006, une enquête australienne/néo-zélandaise dans
55 laboratoires a montré une grande variabilité des pratiques de recueil et des types d’échantillon recommandés,
incluant le recueil des urines de 24 heures, les échantillons
à temps fixé, les échantillons urinaires simples, et le recueil
des urines du matin [56]. Le seuil rapporté par les laboratoires variait de 15 à 30 mg/L pour la concentration urinaire
d’albumine et de 1,0 à 3,6 mg/mmol (9 à 32 mg/g) pour
l’ACR. Il n’y avait pas dans cette étude de relation entre
les intervalles de référence et la méthodologie d’analyse
utilisée.
Formes moléculaires de l’albumine
dans l’urine
La quantité et les formes moléculaires de l’albumine présentes dans l’urine peuvent varier de celles présentes dans
le plasma à cause des processus de filtration et de réabsorption tubulaire de formes modifiées de l’albumine,
de la modification de l’albumine par protéolyse au cours
du passage dans le tractus urinaire, de la modification chimique par des agents oxydants, radicaux libres et autres
ligands présents dans les urines, et de la modification au
cours de la conservation de l’échantillon.
Structure de l’albumine
Les caractéristiques structurales de l’albumine plasmatique ont été rassemblées par Peters dans une revue de
synthèse [57]. Le gène de l’albumine sérique humaine
code pour un précurseur, la préproalbumine, qui subit
une maturation intracellulaire pour donner la protéine
mature de 585 acides aminés sécrétée par les hépatocytes.
Le polypeptide albumine ne subit pas de modification
posttraductionnelle intracellulaire. Un contenu élevé en
acides aminés acides confère à la molécule une charge
électrique de - 15 à - 20 à pH neutre, un point isoélecAnn Biol Clin, vol. 68, no 1, janvier-février 2010
trique proche de 5 et une grande solubilité en phase
aqueuse. Les études par cristallographie par rayons X
montrent une protéine en forme de cœur, avec 3 domaines
globulaires formant un V [58, 59]. L’albumine est stabilisée par 17 ponts disulfures internes et par un contenu
élevé en structure « hélice-α», conférant à la molécule
une résistance relativement importante à la dénaturation
[57]. L’albumine en solution se comporte hydrodynamiquement comme un cylindre de longueur 14 nanomètres.
La forme allongée et l’augmentation de la taille hydrodynamique semblent importantes pour limiter la filtration
glomérulaire rénale de l’albumine.
Des allèles mutés de l’albumine sont exprimés dans moins
1 pour 1 000 sujets [57], affectant rarement l’analyse
quantitative de cette protéine. Cependant, quelques
mutations ponctuelles ont été décrites qui modifient la
clairance rénale de l’albumine [60] et induisent des proportions variées de cette albumine modifiée dans le sérum
et dans l’urine.
Le pH usuel de l’urine (entre 5 et 8) ne modifie pas la
forme de l’albumine. En dessous de pH 4 et au-dessus de
pH 8, l’albumine subit des modifications conformationnelles importantes, qui sont pour la plupart d’entre elles réversibles [57]. La concentration maximale de l’urée dans
l’urine, environ 1 mol/L, ne provoque pas la dénaturation
de l’albumine [57].
L’albumine possède au moins 6 sites de fixation pour les
acides gras à longue chaîne par molécule. Dans le plasma,
seule une molécule d’acide gras est en général fixée par
molécule d’albumine, mais ce rapport peut augmenter de
façon importante au cours du stress, de l’exercice ou d’un
traitement par l’héparine. Une augmentation du nombre
d’acides gras fixés peut modifier la mobilité électrophorétique de l’albumine, en conditions non dénaturantes et en
isoélectrofocalisation [61, 62].
L’albumine est une molécule porteuse pour de nombreuses molécules organiques de petite taille et pour des ions
[57, 63-68]. La fixation de ces molécules peut modifier sa
conformation [57, 66, 69]. De nombreux composés endogènes, tels que le cuivre ou la thyroxine, se fixent également à l’albumine, mais sur un pourcentage très faible de
celle-ci, moins de 1 %. De même, la bilirubine se fixe
sur quelques molécules d’albumine sauf dans les états
d’hyperbilirubinémie dans lesquels plus de la moitié
des molécules d’albumine peuvent porter des molécules
de bilirubine. Aux concentrations physiologiques dans le
plasma, 1 à 2 ions calcium et 7 à 8 ions chlorure sont fixés
par molécules d’albumine [67, 68]. La fixation de ces ions
est dépendante du pH et donc variable au niveau urinaire ;
les ions peuvent rapidement se dissocier de l’albumine ou
être échangés avec d’autres ions au cours de la conservation de l’échantillon.
15
Copyright © 2020 John Libbey Eurotext. Téléchargé par Mlle lilia ould yahia le 26/05/2020.
synthèse
Comparativement au plasma, l’urine est enrichie en molécules peptidiques et dérivés acides aminés ou dérivés, tel
que l’acide hippurique et la phénylacétylglutamine [47,
70, 71]. Sur une base molaire, la concentration urinaire
de ces composés est en général supérieure à celle de
l’albumine, et ceux-ci peuvent être des ligands de l’albumine [70, 71]. Dans le plasma, l’albumine fixe différents
peptides mais les données de la littérature sont limitées
concernant l’affinité et la stœchiométrie de fixation de
ces molécules à l’albumine [72, 73]. L’albumine contient
2 sites (site 1 et 2 sutlow) capables de fixer de nombreux
médicaments et des composés endogènes [63]. Certains de
ces composés tels que les salicylates, les sulfamides antibactériens et la pénicilline sont présents dans l’urine à des
concentrations élevées.
Formes covalemment modifiées de l’albumine
L’albumine contient une cystéine non appariée en position 34.
Cet acide aminé possède un pKa proche de 5, inhabituellement faible, qui favorise sa réactivité et la rapidité de formation de ponts disulfures et d’échange avec d’autres composés
plasmatiques portant un groupement de thiols [57, 74, 75].
L’albumine peut également former des dimères liés par un
pont disulfure, à partir de deux monomères d’albumine
engageant le thiol de ce résidu cystéine en position 34 ou
cette cystéine peut être oxydée en acide sulfonique [57, 76].
L’albumine ainsi modifiée sur la cystéine 34 possède des propriétés de fixation différente vis-à-vis de multiples ligands, ce
qui suggère une modification conformationnelle de la molécule importante [57, 77]. Des dimères d’albumine formés
par liaison disulfure ont été retrouvés dans des échantillons
urinaires [47, 78-82].
L’albumine possède une demi-vie longue, d’environ
20 jours, dans la circulation sanguine [57, 83], ce qui lui
permet de subir de façon prolongée des modifications
chimiques. Les réactions au niveau des chaînes latérales
des acides aminés constitutifs permettent la formation de
groupement carbonyles, de carboxyméthyllysine et de produits de la glycation avancée sur une petite proportion des
molécules d’albumine circulante [76, 84, 85]. Des groupements dityrosines ont également été mis en évidence [77].
Dans le plasma, entre 1 et 10 % des molécules d’albumine
sont glyquées par réaction avec le glucose, et des concentrations plus élevées d’albumine glyquée sont retrouvées chez les patients diabétiques [57, 86]. La plus grande
proportion d’albumine glyquée dans l’urine par rapport
au plasma a été attribuée à une plus faible efficacité de la
réabsorption tubulaire rénale de la forme glyquée [86].
Cette réabsorption tubulaire de l’albumine est un processus médié par un récepteur avec une très grande
spécificité [87, 88].
16
Fragmentation de l’albumine
Différents fragments de l’albumine de masse moléculaire
supérieure à 5 kDa ont été retrouvés dans l’urine [47, 7881, 89-94]. La proportion de ces fragments augmente avec
l’existence d’une pathologie rénale [78-81] et peut-être
aussi avec une conservation prolongée des échantillons
urinaires à - 20 °C [47]. Les séquences polypeptidiques de
quelques-uns de ces fragments les plus importants ont été
identifiées et certains sont également retrouvés au niveau
plasmatique suggérant que certains fragments retrouvés au
niveau urinaire sont d’origine plasmatique [81].
Des fragments d’albumine de masse moléculaire comprise
entre 500 et 5 000 Da ont été retrouvés au niveau plasmatique et au niveau urinaire [95-103]. Certains s’accumulent au niveau plasmatique chez les patients souffrant
d’une atteinte rénale. La filtration glomérulaire rénale est
un processus dépendant de la taille et de la charge électrique des molécules : il est probable que les petits fragments chargés positivement formés au niveau plasmatique
soient rapidement éliminés par les reins en condition
physiologique [104, 105].
Des formes tronquées de l’albumine ont également été détectées au niveau plasmatique, caractérisées par la délétion de
1 ou 2 acides aminés N-terminaux [106], ou de 1, 6 ou 13 acides aminés C-terminaux [107, 108]. L’albumine ayant perdu
sa leucine C-terminale représente entre 4 et 15 % de l’albumine d’un plasma normal [107] et peut devenir la forme
majoritaire de l’albumine plasmatique et urinaire de patients
souffrant de pathologies aiguës [107, 108].
Les protéases du tractus urinaire et celles présentes dans
les urines peuvent elles-mêmes générer des fragments
d’albumine ou modifier des fragments préexistants soit
au niveau du tractus urinaire lui-même soit durant la
conservation des échantillons [109-111]. Certaines molécules d’albumine qui ont subi une réabsorption tubulaire
peuvent être partiellement protéolysées ; les fragments
peuvent alors être retrouvés au niveau urinaire [112].
Influence des différentes formes structurales
de l’albumine urinaire sur son dosage
L’immunodosage est la méthode de choix pour la quantification de l’albumine dans les urines. L’albumine humaine
est très antigénique dans de nombreuses espèces animales
[57]. La réponse polyclonale des lapins est dirigée contre au
moins 5 sites antigéniques différents [113], suggérant que les
immunodosages utilisant des antisérums polyclonaux
peuvent réagir avec de nombreuses formes modifiées de
l’albumine. L’existence de plusieurs sites antigéniques
explique également que les méthodes immunoturbidimétriques reconnaissent l’albumine clivée en trois peptides par le
bromure de cyanogène, l’albumine chimiquement modifiée et
les albumines d’origine animale qui différent dans leur
Ann Biol Clin, vol. 68, no 1, janvier-février 2010
Dosage de l’albumine urinaire
séquence polypeptidique de plus de 20 % de l’albumine
humaine [47].
Méthodes usuelles de quantification
de l’albumine urinaire
Copyright © 2020 John Libbey Eurotext. Téléchargé par Mlle lilia ould yahia le 26/05/2020.
Méthodes usuelles de l’albumine urinaire
Les concentrations urinaires de l’albumine, inférieures à
150 mg/L, sont inférieures au seuil de détection de méthodes colorimétriques utilisées dans les bandelettes pour
l’analyse urinaire de dépistage (urinanalyse). Les différents
dosages disponibles (méthode turbidimétrique, néphélométrique ou utilisant deux anticorps) ont des limites de
détection habituellement comprises entre 2 et 10 mg/L
[114, 115]. Ils utilisent des réactifs liquides pour les méthodes néphélémétriques ou la mesure spectrophotométrique,
et des réactifs immobilisés sur bandelette pour les déterminations semi-quantitatives visuelles. Les méthodes de routine utilisent des anticorps polyclonaux ou monoclonaux,
ce qui peut influencer leur sensibilité pour la mesure des
formes altérées et des fragments de l’albumine.
La chromatographie liquide d’exclusion stérique (exclusion
diffusion) a été proposée comme méthode alternative et fournit des valeurs plus élevées que les immunodosages pour la
majorité des échantillons. Une hypothèse, controversée, est
que la chromatographie d’exclusion détecterait une forme
d’albumine non détectée par la méthodologie immunologique
[114, 116-118]. Cette hypothèse remettrait en cause la réactivité des antisérums polyclonaux avec des sites antigéniques
multiples de l’albumine [82, 113]. Il faut cependant noter que
la chromatographie d’exclusion co-isole et mesure l’albumine
et d’autres protéines de même taille, notamment certaines
protéines urinaires [82].
Performance des méthodes de dosage
de l’albumine urinaire
Il n’existe pas de données dans la littérature concernant
la transférabilité des résultats entre les méthodes de
dosage et entre les laboratoires, même sur des échantillons fraîchement recueillis. En conséquence, nous avons
étudié la variation interlaboratoires et interméthodes des
résultats du contrôle de qualité externe Eqas. En théorie,
les échantillons utilisés dans ces spécimens de contrôle
de qualité doivent être similaires, quantitativement et
qualitativement, à l’albumine présente dans l’urine native,
et donc transférables aux urines natives de sujet. En pratique, les échantillons urinaires utilisés par l’Eqas sont
fréquemment préparés par ajout d’albumine purifiée et
de créatinine, et peuvent contenir d’autres analytes, agents
stabilisants et additifs d’ajustement du pH. Ces échantillons possèdent une matrice moins complexe et l’albumine
Ann Biol Clin, vol. 68, no 1, janvier-février 2010
contenue apparaît plus homogène que celle des urines
natives, ce qui fournit pour ce contrôle Eqas des résultats
plus uniformes que ce qui est observé avec des urines
de sujets.
Le tableau 3 montre que différents organisateurs du
contrôle Eqas utilisent des matériels différents et les traitent de différentes façons. Les échantillons utilisant une
urine native liquide avec ou sans addition de créatinine
et d’albumine purifiées sont plus aisément transférables.
L’expérience du centre norvégien pour l’assurance qualité
en santé publique (Noklus) indique que les échantillons de
patients présentant une albuminurie se comportent différemment avec différentes méthodes par rapport à des
urines normales surchargées avec de l’albumine purifiée.
Plus l’échantillon subit de traitements et s’écarte de la
réalité, moins le résultat est transférable. Les échantillons
qui ont subi une lyophilisation sont très souvent non
comparables aux échantillons natifs. Les échantillons non
transférables ne doivent donc être utilisés que pour les
comparaisons entre laboratoires utilisant la même méthode
ou le même appareillage, et ne peuvent pas être utilisés pour
évaluer l’homogénéité des résultats obtenus entre différentes
méthodes.
Le tableau 4 reproduit des exemples d’intervalles de résultats
obtenus au cours de différents programmes Eqas dans différents pays. Lorsque le matériel Eqas est considéré comme
ayant une probabilité forte d’être transférable, les résultats
de tous les participants au programme ont été regroupés
pour déterminer les performances interméthodes et interlaboratoires. Quand le matériel s’avérait moins transférable, les
résultats ont été séparés par méthode pour déterminer la performance interlaboratoire d’une même méthode. Tous les programmes Eqas éliminent les valeurs aberrantes (en utilisant
différentes procédures) avant l’exploitation statistique des
résultats. L’intervalle de ± 2 écarts types a été calculé pour
déterminer l’intervalle à 95 % des résultats.
Toutes les enquêtes ont montré une variabilité entre les
laboratoires et entre les méthodes de dosage (tableau 4).
La variation interlaboratoires pour une même méthode est
apparue plus faible que la variation interlaboratoires et
interméthodes, indiquant des différences de calibrage
entre les méthodes de dosage. Il est difficile d’évaluer si
les performances analytiques actuelles sont en accord avec
les besoins d’interprétation clinique des résultats car ceuxci n’ont pas été définis sur la base de preuves d’évolution
clinique. En considérant que l’imprécision de mesure de
l’albumine urinaire constitue la moitié de la variation biologique intra-individuelle, et que le CVi est pris à 40 %
(tableau S1 du supplément de données en ligne), alors les
résultats de l’Eqas remplissent totalement ce critère.
L’existence de biais ne peut pas être recherchée puisqu’il
n’existe pas de méthodologie de référence.
17
synthèse
Copyright © 2020 John Libbey Eurotext. Téléchargé par Mlle lilia ould yahia le 26/05/2020.
Tableau 3. Synthèse et programme EQAS de différents pays.
Programme
EQASa
Nature de l’échantillon
Conditions
de préparataion
de l’échantillon
Conditions de
Conditions analytiques
prétraitement avant envoi du transfert
aux participants
aux participants
EQUALIS (Suède)
Urine normale
Décongélation et dissolution Liquide à température
avec du chlorure du sodium, ambiante
et addition de créatinine
Labquality (Finlande,
Norvège…)
NOKLUS (Norvège :
médecins généralistes)
QMP-LS (Ontario, Canada)
Urine normale
Addition de chlorure de
benzamidinium. urine
congelée, décongelée et
filtrée. Addition d’albumine
et recongélation à - 80 ˚C
Urine fraı̂che
Digital PT (Colombie
britannique, Canada)
CAP (USA)
RCPA-QAP (Australie)
Supplémentation avec
albumine et créatinine
Urine de patients ayant une Congélation à – 80 ˚C
Décongélation et filtration
albuminurie
stériles
Simple donneur ayant une Deuxième échantillon d’un Conservation à 4 ˚C
albuminurie élevée
autre patient ayant une
albuminurie pouvant être
ajouté pour ajuster la
concentration
Urine synthétique stabilisée Liquide à 4 ˚C
Liquide à 4 ˚C
(ne provenant pas d’un
donneur)
Urine normale
Addition d’albumine,
Conservation à 4 ˚C
créatinine, Autres analytes
et conservateurs
Urine normale
Addition d’albumine,
Rien après la lyophilisation,
créatinine, autres
conservation à 4 ˚C
substances puis
lyophilisation
Facilités
d’application
des
conditionsb
Oui
Liquide à température
Oui
ambiante
Liquide à température
Oui
ambiante
Liquide et envoyé à 4 ˚C Oui
Liquide et envoyé à 4 ˚C Inconnu
Liquide et envoyé à 4 ˚C Inconnu
Lyophilisée
Non
a
EQUALIS, External Quality Assurance in Laboratory Medicine in Sweden ; NOKLUS, Norwegian Quality Improvement of Primary Care Laboratories ; GP,
general practitioner ; QMP-LS, Quality Management Programme, Laboratory Services ; CAP, College of American Pathologist ; RCPA-QAP, Royal College
of Pathologists of Australia Quality Assurance Programs.
b
La transférabilité à une urine native fraîche de patients ayant une augmentation de l’excrétion de l’albumine dansles urines est évaluée à partir des
considérations théoriques de la préparation de l’échantillion EQAS ; cette transférabilité n’a pas été évaluée.
Un système de référence
pour le dosage de l’albumine urinaire
Un système de référence pour le dosage de l’albumine
urinaire nécessite à la fois un matériel de référence primaire (albumine) et secondaire (matrice), et une procédure
de dosage de référence avec laquelle la valeur donnée
d’un matériel de référence peut être transférée de façon
précise à un échantillon de patients via les hiérarchies de
dosage de la chaîne de traçabilité [119]. A ce jour, le
comité de liaison pour la traçabilité dans les laboratoires
médicaux (Joint committee for traceability in laboratory
medicine ou JCTLM) ne fournit pas sur son site internet
une liste des matériaux de référence ou des procédures de
dosage de référence de l’albumine urinaire [120].
Un matériel de référence souhaitable pour le calibrage des
procédures de dosage en routine doit être transférable aux
urines natives pour toutes les procédures. Ceci implique
que les méthodes de routine doivent avoir une réactivité
immunochimique équivalente vis-à-vis de la molécule ou
des molécules d’albumine dans le matériel de référence et
pour l’albumine des échantillons d’urine native. La trans18
férabilité est plus difficile à définir pour les urines car la
matrice biologique est extrêmement variable dans différentes conditions pathologiques et car le mesurande n’est
pas totalement défini. Un matériel de référence qui utilise
de l’albumine hautement purifiée ne reflète pas les différentes formes moléculaires présentes dans les urines.
Cependant, l’utilisation d’albumine purifiée comme matériel de référence apparaît être l’approche plus pragmatique
pour effectuer un calibrage standardisé des procédures de
dosage de routine.
Matériels et méthodes actuellement utilisés
comme référence pour le calibrage des procédures
de dosage de l’albumine urinaire
Puisqu’aucun matériel de référence n’existe actuellement,
la majorité des méthodes de dosage utilise comme calibrant une dilution du CRM470 (maintenant appelé
ERM-DA470) ; Institut pour les méthodes et matériels
de référence, Geel, Belgique), un matériel de référence
protéique ferrique de haute qualité ayant une concentration en albumine de 39,7 g/L [121]. Il n’existe pas de
protocole de dilution publié pour la préparation de
Ann Biol Clin, vol. 68, no 1, janvier-février 2010
Dosage de l’albumine urinaire
Copyright © 2020 John Libbey Eurotext. Téléchargé par Mlle lilia ould yahia le 26/05/2020.
Tableau 4. Résultats des dosages de l’albumine urinaire des enquêtes EQAS de différents paysa.
Programme EQASb
EQUALIS
EQUALIS
LABQUALITY
LABQUALITY
QMP-LS
QMP-LS
QMP-LS
NOKLUS (médecins généralistes)
NOKLUS turbidimétrie
NOKLUS turbidimétrie
Digital PT
Digital PT
CAP méthode A, turbidimétrie
CAP méthode A, turbidimétrie
CAP méthode B, turbidimétrie
CAP méthode B, turbidimétrie
CAP méthode C, turbidimétrie
CAP méthode C, turbidimétrie
CAP méthode D, turbidimétrie
CAP méthode D, turbidimétrie
CAP méthode E, turbidimétrie
CAP méthode E, turbidimétrie
CAP méthode F, turbidimétrie
CAP méthode F, turbidimétrie
CAP méthode G, turbidimétrie
CAP méthode G, turbidimétrie
CAP méthode H, turbidimétrie
CAP méthode H, turbidimétrie
RCPA méthode A, turbidimétrie
RCPA méthode A, turbidimétrie
RCPA méthode B, turbidimétrie
RCPA méthode B, turbidimétrie
N
200
200
136
136
28
29
28
1012
430
424
38
37
262
207
203
194
162
123
118
86
76
112
96
82
95
79
97
69
30
30
30
20
Median ou moyenne (mg/L)
20
31
19
76
20
22
58
35
20
68
36
74
25
87
27
83
30
88
26
84
24
87
26
89
27
86
26
93
36
83
35
85
Coefficient de variation (%)
10,8
8,2
15,4
8,9
16,5
10,9
6,9
12,1
6,6
5,2
11,3
8,4
10,4
5,1
6,9
3,1
7,1
4,5
5,0
3,8
6,2
4,9
10,1
4,9
6,2
5,3
7
4,5
8,5
5,8
10,5
6,2
± 2 écarts types
16-25
26-37
14-25
63-89
14-26
17-26
50-66
27-44
17-44
61-74
28-44
61-86
20-27
79-92
23-29
78-85
26-32
80-92
24-28
78-87
21-25
78-91
21-29
81-94
23-28
76-90
23-28
84-97
30-42
73-93
28-42
74-95
a
Quand une méthode est donnée, les résultats reflètent la variation interlaboratoire pour une méthode ; dans le cas contraire la variation combinée interlaboratoire et toute méthode confondue est indiquée.
b
La liste des abréviations figure dans le tableau 3.
concentrations du CRM470 adaptées au calibrage des
méthodes de dosage urinaire. La concentration de l’albumine dans le CRM470 avait été initialement fixée sur la
base d’un matériel de référence protéique, sérique plus
ancien, le USNRP 12-0575C [122]. Cependant, la structure protéique, les propriétés physicochimiques et la procédure de détermination de la valeur précise d’albumine
dans ce dernier matériel de référence n’a pas été précisée
[121]. Un groupe de travail de l’IFCC a pour tâche
de définir un matériel de référence pour les protéines urinaires incluant l’albumine, mais ce travail n’est pas
achevé [123].
Une équipe de chercheurs japonais a montré que 5 à 10 %
des solutions de calibrage utilisées dans les immunodosages de routine contiennent de l’albumine polymérisée
Ann Biol Clin, vol. 68, no 1, janvier-février 2010
[51]. La même étude indique que certaines méthodologies
utilisent le CRM470 dilué comme point de départ de la
valeur de calibrage alors que d’autres méthodologies
utilisent le coefficient d’absorption molaire de l’albumine
sérique humaine.
Matériel de référence candidat
pour l’albumine urinaire
La Société japonaise de chimie clinique et le Comité japonais de standardisation ont coordonné le développement
d’un nouveau matériel de référence secondaire contenant
de l’albumine ayant des propriétés physicochimiques et
structurales bien définies [124]. Ce matériel de référence
a été préparé en utilisant de l’albumine sérique humaine
monomérique pure à plus de 97,5 % dans une matrice de
19
Copyright © 2020 John Libbey Eurotext. Téléchargé par Mlle lilia ould yahia le 26/05/2020.
synthèse
NaCl 0,5 mol/L, glucose 20 g/L et NaN3 0,5 g/L dans un
tampon phosphate 20 mol/L à pH 7,3. Ce matériel lyophilisé a une variation inférieure à 3 % entre les flacons et
une stabilité supérieure à 1 an entre 5 et 10 °C, et 20 heures
après reconstitution avec de l’eau à 10° ou 25 °C.
Puisqu’il n’existe pas de procédure de dosage de référence, ce matériel de référence potentiel a été mesuré par
rapport au CRM470 dilué en utilisant des procédures
immunométriques habituelles [124]. Brièvement, 13
systèmes de mesure usuels ont montré une réactivité
immunochimique identique à celle du matériel de référence
potentiel et au CRM470 dilué. Les concentrations déterminées pour le matériel de référence potentiel par chacune
des méthodes de routine, en regard du CRM470, ont été
moyennées pour définir la concentration de ce matériel de
référence de 226,1 (8,4) mg/L [moyenne (incertitude)]
après reconstitution avec 3 mL d’eau.
Les investigateurs japonais sont en cours de validation de
la transférabilité de ce nouveau matériel de référence et
vont le soumettre pour approbation au JCTLM. Une autre
approche est en cours, utilisant une albumine humaine
recombinante pour créer un matériel de référence primaire,
sur la base de méthodologies utilisées pour le matériel de
référence secondaire.
Procédure de dosage de référence potentielle
pour l’albumine urinaire
Une procédure de dosage de référence de l’albumine
urinaire doit mesurer spécifiquement la ou les molécules
d’albumine dans l’urine native. En raison de l’hétérogénéité des formes moléculaires de l’albumine dans
l’urine, le mesurande doit être défini. Les procédures
immunologiques ne sont pas utilisables en tant que référence, car les anticorps peuvent réagir avec différents épitopes de la molécule d’albumine ou de fragments et donc
donner des réponses différentes.
Une équipe de la Mayo Clinic (Rochester) a récemment
développé une procédure de dosage de type LC-MS qui
mesure le fragment des 24 acides aminés N-terminaux de
l’albumine. Cette méthode met en œuvre une fragmentation de l’albumine qui n’utilise pas la protéolyse trypsique, évitant ainsi les risques de digestion incomplète.
Des résultats similaires ont été obtenus avec l’albumine
sérique humaine marquée par l’azote 15 préparée chez la
levure [125] et par l’albumine sérique bovine, moins onéreuse, comme étalon interne. Le calibrage est effectué à
partir d’une urine après absorption sur du charbon supplémenté avec de l’albumine sérique humaine [126] dont la
concentration est quantifiée par mesure de l’absorption
moléculaire [38553 (L/mol-cm)] à 280 nM [127]. Cette
méthodologie quantifiant un fragment spécifique de
l’albumine, il était nécessaire de vérifier les urines physio20
logiques et pathologiques contiennent des fragments
d’albumine avec ces 24 acides aminés N-terminaux ou
des molécules d’albumine tronquée au niveau N-terminal.
L’utilisation de la LC-MS pour détecter d’autres fragments
de l’albumine pourrait faciliter l’étude de la nature, de la
quantité et de la signification clinique des différentes espèces de l’albumine au niveau urinaire au cours des pathologies rénales et cardiovasculaires. La technologie LC-MS,
qui n’est pas basée sur une réaction immunologie, peut
ainsi être une procédure de dosage de référence pour le
dosage de l’albumine urinaire.
Un système de référence pour le dosage
de la créatinine urinaire
La détermination de l’ACR impose le dosage à la fois
de l’albumine et de la créatinine dans l’urine. La variabilité
des valeurs calculées de l’ACR est l’addition des biais
et de l’imprécision de dosage de chacun des analytes.
C’est pourquoi une standardisation de dosage à la fois
de l’albuminurie et du dosage de la créatinine urinaire
est nécessaire pour obtenir des valeurs d’ACR comparables entre les différentes méthodes et entre les différents
laboratoires.
Le programme de standardisation de la créatinine sérique initié par le NKDEP est basé sur l’existence de procédure de
dosage de référence validé et sur le développement d’un
matériel de référence secondaire transférable pour la créatinine sérique. Un travail similaire est nécessaire pour disposer
d’une méthode de dosage de grande qualité de la créatinine au
niveau urinaire. Le JCTLM a établi une procédure de dosage
de référence pour la créatinine urinaire basé sur une méthodologie de type dilution isotopique-chromatographie en
phase gazeuse-spectrométrie de masse [128], et un matériel
de référence primaire (c’est-à-dire un composé pur) certifié
existe pour la créatinine (Institut national des standards et de
la technologie, États-Unis, SRM 914a). Cependant, il n’existe
pas à ce jour de matériels de référence secondaire pour la
créatinine urinaire.
En raison de l’absence de ces matériels de référence
secondaire, le calibrage des méthodes de dosage usuelles
pour la mesure urinaire est souvent réalisé avec des matériels de référence sériques. Cette pratique n’est cependant
pas idéale car il existe de nombreuses différences entre les
matrices sérique et urinaire.
Conclusion
De nombreuses questions nécessitent encore une clarification pour améliorer l’utilisation du dosage de l’albumine urinaire dans le cadre de l’évaluation de la maladie
rénale. Les données actuelles ne permettent pas de fournir
Ann Biol Clin, vol. 68, no 1, janvier-février 2010
Dosage de l’albumine urinaire
des conclusions définitives ou des recommandations pour
la pratique. Des études supplémentaires sont nécessaires
pour rendre possible la standardisation du dosage de
l’albumine urinaire et l’établissement de recommandations cliniques basées sur la mesure de l’excrétion urinaire
de l’albumine. Le groupe IFCC/NKTEP a pour objectif de
développer les programmes expérimentaux pour fournir
de telles informations.
Copyright © 2020 John Libbey Eurotext. Téléchargé par Mlle lilia ould yahia le 26/05/2020.
Éléments de pratiques actuelles reflétant
un consensus parmi les participants à la conférence
1. L’utilisation du terme « albumine urinaire » est recommandée ; éviter le terme « microalbumine ».
2. Les échantillons urinaires de la première miction du
matin fournissent une plus faible variabilité que les échantillons urinaires utilisés à différents temps de la journée.
3. Les échantillons urinaires de la deuxième miction du
matin sont également utilisables mais aucune évidence
n’a démontré leur supériorité par rapport aux urines de
la première miction.
4. L’albumine urinaire doit être mesurée sur des échantillons qui n’ont pas subi de congélation. L’albumine urinaire est stable lorsqu’elle est conservée entre 2 °C et 8 °C
pendant 7 jours avant le dosage. Un trouble de l’échantillon lié à la précipitation ou à des éléments cellulaires
doit être éliminé par centrifugation avant la conservation
réfrigérée.
5. Les échantillons urinaires réfrigérés doivent être ramenés à la température ambiante avant le dosage, afin de
dissoudre des précipités qui peuvent avoir été formés et
qui auraient aidé à absorber l’albumine. L’urine doit être
visuellement observée pour détecter de tels précipités et
centrifuger si nécessaire pour les éliminer.
6. Si l’urine doit être congelée avant le dosage, cela doit
être à une température inférieure ou égale à - 70 °C. Tout
trouble lié à une précipitation ou à des éléments cellulaires
doit être éliminé par centrifugation avant la conservation à
l’état congelé. Les échantillons décongelés doivent être
ramenés à température ambiante et parfaitement homogéinisés avant le dosage. L’effet de la congélation et de
la décongélation sur les formes moléculaires de l’albumine n’est pas totalement défini à ce jour.
7. Un rapport albumine/créatinine doit être associé à tous
les résultats des dosages d’albumine urinaire.
8. Une confusion existe dans l’expression des résultats en
unité de « mg d’albmumine/mmol de créatinine », « g d’albumine/mol de créatinine » ou « mg albumine/g créatinine » ou
« μg albumine/mg créatinine ». Cette situation est liée à des
préférences nationales ou régionales et n’est pas résolue à ce
jour. Idéalement, les unités du système international doivent
être adoptées. Dans l’attente, des recommandations d’uniforAnn Biol Clin, vol. 68, no 1, janvier-février 2010
misation doivent être mises en œuvre à l’intérieur d’un même
pays ou d’une même région.
9. Les concentrations d’albumine exprimées en mg/L sont
difficiles à interpréter, et ne doivent donc pas constituer le
seul mode d’expression de ces concentrations.
Problèmes à résoudre pour standardiser le dosage
et l’expression des résultats d’albumine urinaire
1. Clarification des contraintes préanalytiques :
– influence du type de récipient ;
– influence du moment de recueil (premières urines du
matin, secondes urines du matin, échantillon urinaire,
urines des 24 heures) en fonction de la variabilité
biologique ;
– influence de la présence du sang (d’origine menstruelle
ou liée à un saignement dans le tractus urinaire), de
liquide séminal ou de tout autre contaminant de l’urine.
2. Clarification des différentes formes moléculaires de
l’albumine dans les urines fraîchement émises et définition du mesurande.
3. Clarification du niveau de dégradation de l’albumine
urinaire en fonction des conditions de conservation.
4. Clarification des variations liées à la composition de la
matrice urinaire.
5. Clarification sur les données cliniques pour apprécier
l’erreur totale sur le dosage de l’albumine urinaire.
6. Développement d’une procédure de référence de dosages.
7. Développement d’un matériel de référence secondaire
de l’albumine urinaire incluant la validation de la transférabilité et son accréditation par le JCTLM.
8. Développement d’un matériel de référence secondaire
de la créatinine urinaire, incluant la validation de sa transférabilité et l’accréditation par le JCTLM.
9. Identification de matériaux EQAS appropriés permettant la comparaison des performances analytiques des
méthodes usuelles.
10. Des résultats de dosage standardisés sont nécessaires
pour permettre des études cliniques qui détermineront les
seuils optimaux de décision pour l’AER et l’ACR.
11. Différents seuils de décision sont nécessaires selon le
temps de recueil des échantillons (premières urines du
matin, recueil standardisé…), en raison de la grande variablité des modalités existantes de recueil.
12. L’ACR varie avec l’âge, le sexe et l’ethnie. Des seuils
de décision appropriés pour ces sous-groupes doivent être
déterminés. Un seuil de décision unique n’apparaît pas
apporter une sensibilité suffisante.
13. Le risque de pathologies rénales chroniques et de
maladies cardiovasculaires est associé à la concentration
urinaire d’albumine. Les seuils de risque appropriés pour
des populations données ( par exemple la popualtion géné21
synthèse
Copyright © 2020 John Libbey Eurotext. Téléchargé par Mlle lilia ould yahia le 26/05/2020.
rale ou des groupes à haut risque tels que les diabétiques,
les hypertendus ou les sujets atteints de maladies cardiovasculaires) doivent être terminés.
14. L’étude de l’utilité d’algorithme spécifique en fonction
du sexe et de l’âge pour la conversion de l’ACR en une
valeur estimée de l’AER pour lequel une limite unique de
référence peut être appropriée.
Remerciements. Les auteurs saluent la contribution des
participants à la conférence de mars 2007 sur le dosage
de l’albumine urinaire et l’expression de son résultat ;
leurs noms figurent dans le supplément de données en
ligne. Nous remercions également Elisa Gladstone et
Nancy Accetta pour leur excellent travail administratif.
Références
1. Linksde Jong PE, Curhan GC. Screening, monitoring, and treatment
of albuminuria : public health perspectives. J Am Soc Nephrol 2006 ;
17 : 2120-6.
2. American Diabetes Association Position Statement. Standards of
medical care in Diabetes. Diabetes Care 2007 ; 30 : 19-21.
3. International Diabetes Federation Clinical Guidelines Task Force.
Global guidelines for type 2 diabetes ; chapter 14 : kidney damage.
(Accessed November 2008).
4. Levey AS, Eckardt K, Tsukamoto Y, Levin A, Coresh J, Rossert J,
et al. Definition and classification of chronic kidney disease : a position
statement from kidney disease : improving global outcomes (KDIGO).
Kidney Int 2005 ; 67 : 2089-100.
5. National Kidney Foundation. Kidney disease outcomes quality
improvement (K/DOQITM) clinical practice guidelines for chronic
kidney disease : evaluation, classification and stratification. Am J Kidney
Dis 2002 ; 39 : 1-266.
6. National Kidney Foundation. Kidney disease outcomes quality
improvement (K/DOQITM) clinical practice guidelines and clinical
practice recommendations for diabetes and chronic kidney disease.
Am J Kidney Dis 2007 ; 49 : 1-180.
7. Caring for Australians with Renal Injury (CARI) Guidelines. Urine
protein as a diagnostic test. 2004 (Accessed November 2008).
8. Joint Specialty Committee on Renal Medicine of the Royal College
of Physicians and the Renal Association, and the Royal College of
General Practitioners. Chronic kidney disease in adults : UK guidelines
for identification, management and referral 2006 :112 p. Royal College
of Physicians London.
9. Taal M, Tomson C. Clinical practice guidelines : module 1 : chronic
kidney disease 2nd ed. final version 2007 The Renal Association
Petersfield (UK). (Accessed December 2008).
10. National Institute for Clinical Excellence. Management of type 2
diabetes : renal disease, prevention and early management (Guideline
F) ; 2002. (Derived from the guideline entitled Diabetic Renal Disease :
Prevention and Early Management commissioned from collaboration
between the Royal College of General Practitioners, the Royal College
of Physicians, and the Royal College of Nursing and Diabetes UK.)
(Accessed November 2008).
22
11. National Kidney Foundation. K/DOQITM clinical practice guidelines
on hypertension and antihypertensive agents in chronic kidney disease.
Am J Kidney Dis 2004 ; 43 : 1-290.
12. Estivi P, Urbino R, Tetta C, Pagano G, Cavallo-Perin P. Urinary protein excretion induced by exercise : effect of a mountain agonistic footrace in healthy subjects : renal function and mountain footrace. J Sports
Med Phys Fitness 1992 ; 32 : 196-200.
13. Poortmans J, Dorchy H, Toussaint D. Urinary excretion of total
proteins, albumin, and beta 2-microglobulin during rest and exercise in
diabetic adolescents with and without retinopathy. Diabetes Care 1982 ;
5 : 617-23.
14. Sentürk UK, Kuru O, Koçer G, Gündüz F. Biphasic pattern of
exercise-induced proteinuria in sedentary and trained men. Nephron
Physiol 2007 ; 105 : 22-32.
15. Poortmans JR, Ouchinsky M. Glomerular filtration rate and albumin
excretion after maximal exercise in aging sedentary and active men.
J Gerontol A Biol Sci Med Sci 2006 ; 61 : 1181-5.
16. Bertoluci MC, Friedman G, Schaan BD, Ribeiro JP, Schmid H.
Intensity-related exercise albuminuria in insulin dependent diabetic
patients. Diabetes Res Clin Pract 1993 ; 19 : 217-25.
17. Huttunen NP, Käär ML, Pietiläinen M, Vierikko P, Reinilä M.
Exercise-induced proteinuria in children and adolescents. Scand J Clin
Lab Invest 1981 ; 4 : 583-7.
18. Vittinghus E, Mogensen CE. Graded exercise and protein excretion
in diabetic man and the effect of insulin treatment. Kidney Int 1982 ;
21 : 725-9.
19. Robertshaw M, Cheung CK, Fairly I, Swaminathan R. Protein
excretion after prolonged exercise. Ann Clin Biochem 1993 ; 30 : 34-7.
20. Clerico A, Giammattei C, Cecchini L, Lucchetti A, Cruschelli L,
Penno G, et al. Exercise-induced proteinuria in well-trained athletes.
Clin Chem 1990 ; 36 : 562-4.
21. Garg SK, Chase HP, Shapiro H, Harris S, Osberg IM. Exercise
versus overnight albumin excretion rates in subjects with type 1 diabetes. Diabetes Res Clin Pract 1995 ; 28 : 51-5.
22. O’Brien SF, Watts GF, Powrie JK, Shaw KM. Exercise testing
as a long-term predictor of the development of microalbuminuria in
normoalbuminuric IDDM patients. Diabetes Care 1995 ; 18 : 1602-5.
23. Hemmingsen L, Skaarup P. Urinary excretion of ten plasma proteins
in patients with febrile diseases. Acta Med Scand 1977 ; 201 : 359-64.
24. Solling J, Solling K, Mogensen CE. Patterns of proteinuria and circulating immune complexes in febrile patients. Acta Med Scand 1982 ;
212 : 167-9.
25. Richmond JM, Sibbald WJ, Linton AM, Linton AL. Patterns of
urinary protein excretion in patients with sepsis. Nephron 1982 ; 31 :
219-23.
26. Hernandez C, Simo R. Albumin excretion rate is not affected by
asymptomatic urinary tract infection : a prospective study. Diabetes
Care 2004 ; 27 : 1565-9.
27. Carter JL, Tomson CR, Stevens PE, Lamb EJ. Does urinary tract
infection cause proteinuria or microalbuminuria ? A systematic review.
Nephrol Dial Transplant 2006 ; 21 : 3031-7.
28. Watts GF, O’Brien SF, Shaw KM. Urinary infection and albumin
excretion in insulin-dependent diabetes mellitus : implications for the
measurement of microalbuminuria. Diabet Med 1996 ; 13 : 520-4.
29. Dodge WF, West EF, Smith EH. Bruce Harvey, 3rd. Proteinuria and
hematuria in schoolchildren : epidemiology and early natural history.
J Pediatr 1976 ; 88 : 327-47.
Ann Biol Clin, vol. 68, no 1, janvier-février 2010
Dosage de l’albumine urinaire
30. Vehaskari VM, Rapola J. Isolated proteinuria : analysis of a schoolage population. J Pediatr 1982 ; 101 : 661-8.
31. Wagner MG, Smith Jr FG, Tinglof Jr BO, Cornberg E. Epidemiology of proteinuria : a study of 4,807 schoolchildren. J Pediatr 1968 ;
73 : 825-32.
32. Rytand DA, Spreiter S. Prognosis in postural (orthostatic) proteinuria : forty to fifty-year follow-up of six patients after diagnosis by Thomas Addis. N Engl J Med 1981 ; 305 : 618-21.
Copyright © 2020 John Libbey Eurotext. Téléchargé par Mlle lilia ould yahia le 26/05/2020.
33. Springberg PD, Garrett Jr LE, Thompson Jr AL, Collins NF,
Lordon RE, Robinson RR. Fixed and reproducible orthostatic proteinuria : results of a 20-year follow-up study. Ann Intern Med 1982 ; 97 :
516-9.
34. Watts GF, Shaw KM, Polak A. The use of random urine samples
to screen for microalbuminuria in the diabetic clinic. Practical Diabetes
1986 ; 3 : 86-8.
35. Witte EC, Lambers Heerspink HJ, Bakker SJL, De Jong PE,
De Zeeuw D, Gansevoort RT. Timed urine collections or spot urine samples to monitor albuminuria over time [Abstract] ? J Am Soc Nephrol
2007; 18 : 337A.
36. Hofmann W, Guder WG. A diagnostic programme for quantitative
analysis of proteinuria. J Clin Chem Clin Biochem 1989 ; 27 : 589-600.
37. Mura-Galelli MJ, Voegel JC, Behr S, Bres EF, Schaaf P. Adsorption/
desorption of human serum albumin on hydroxyapatite : a critical
analysis of the Langmuir model. Proc Natl Acad Sci USA 1991 ; 88 :
5557-61.
38. Hara F, Shiba K. Nonspecific binding of urinary albumin on preservation tube. Jpn J Clin Chem 2003 ; 32 : 28-9.
39. Nicholov R, Lum N, Veregin RPN, DiCosmo F. Human serum albumin adsorption at solid-liquid interface monitored by electron spin resonance spectroscopy. In : Horbett TA Brash JL, eds. Proteins at interfaces
II : fundamentals and applications 1995 : 280-295 American Chemical
Society Washington (DC). ACS symposium series, 0097-6165 ; 602.
40. Clark DC, Smith LJ, Wilson DR. A spectroscopic study of the
conformational properties of foamed bovine serum albumin. J Colloid
Interface Sci 1988 ; 121 : 136-7.
41. Lad MD, Birembaut F, Matthew JM, Frazier RA, Green RJ. The
adsorbed conformation of globular proteins at the air/water interface.
Phys Chem Chem Phys 2006 ; 8 : 2179-86.
47. Sviridov D, Drake SK, Hortin GL. Reactivity of urinary albumin
(microalbumin) assays with fragmented or modified albumin. Clin
Chem 2008 ; 54 : 61-8.
48. Brinkman JW, de Zeeuw D, Lambers Heerspink HJ, Gansevoort RT,
Kema IP, De Jong PE, et al. Apparent loss of urinary albumin during
long-term frozen storage : HPLC vs immunonephelometry. Clin Chem
2007 ; 53 : 1520-6.
49. Hara F, Nakazato K, Shiba K. Studies of diabetic nephropathy; I,
effects of storage time and temperature on microalbuminuria. Biol
Pharma Bull 1994 ; 17 : 1241-5.
50. Elving LD, Bakkeren JAJM, Jansen MJH, de Kat Angelino CM,
de Nobel E, et al. Screening for microalbuminuria in patients with diabetes mellitus : frozen storage of urine decreases their albumin content.
Clin Chem 1989 ; 35 : 308-10.
51. Uemura Y. Preparation of reference material for albumin without
lot difference. Laboratory Med 2004 ; 5 : 557-61.
52. Harwell TS, McDowall JM, Eyler N, Little RR, Helgerson SD,
Gohdes D. Laboratory testing for microalbuminuria in the general community. Diabetes Care 2000 ; 23 : 1028-30.
53. Fagnani F, Souchet T, Labed D, Gaugris S, Hannedouche T,
Grimaldi A. Management of hypertension and screening of renal complications by GPs in diabetic type 2 patients (France-2001). Diabetes
Metab 2003 ; 29 : 58-64.
54. Edge JA, Swift PG, Anderson W, Turner B. Youth and Family
Advisory Committee of Diabetes UK. Diabetes services in the UK :
fourth national survey ; are we meeting NSF standards and NICE guidelines ? Arch Dis Child 2005 ; 90 : 1005-9.
55. Aakre KM, Thue G, Subramaniam-Haavik S, Bukve T, Morris H,
Müller M, et al. Postanalytical external quality assessment of urine
albumin in primary health care : an international survey. Clin Chem
2008 ; 54 : 1630-6.
56. Jones G. Urine albumin sampling and reporting : current practice in
Australasia. Clin Biochem Newsl 2006 : 31-3.
57. Peters T. All about albumin : biochemistry, genetics, and medical
applications. San Diego (CA) : Academic Press, 1996.
58. Carter DC, He XM, Munson SH, Twigg PD, Gernert KM, Broom MB,
et al. Three-dimensional structure of human serum albumin. Science (Wash
DC) 1989 ; 244 : 1195-8.
42. Osberg I, Chase HP, Garg SK, DeAndrea A, Harris S, Hamilton R,
et al. Effects of storage time and temperature on measurement of small
concentrations of albumin in urine. Clin Chem 1990 ; 36 : 1428-30.
59. Curry S, Mandelkow H, Brick P, Franks N. Crystal structure of
human serum albumin complexed with fatty acid reveals an asymmetric
distribution of binding sites. Nature (Lond) Struct Biol 1998 ; 5 :
827-35.
43. MacNeil MLW, Mueller PW, Caudill SP, Steinberg KK. Considerations when measuring urinary albumin : precision, substances that may
interfere, and conditions for sample storage. Clin Chem 1991 ; 37 :
2120-3.
60. Iwao Y, Hiraike M, Kragh-Hansen U, Mera K, Noguchi T, Anraku M,
et al. Changes in net charge and alpha-helical content affect the pharmacokinetic properties of human serum albumin. Biochim Biophys Acta 2007 ;
1774 : 1582-90.
44. Giampietro O, Penno G, Clerico A, Cruschelli L, Cecere M. How
and how long to store urine samples before albumin radioimmunoassay :
a practical response. Clin Chem 1993 ; 39 : 533-6.
61. Merler E, Remington JS, Finland M, Gitlin D. Differences between
urinary albumin and serum albumin. Nature (Lond) 1962 ; 196 : 1207-8.
45. Tencer J, Thysell H, Andersson K, Grubb A. Long-term stability
of albumin, protein HC, immunoglobulin G, Kappa- and lambdachain-immunoreactivity, orosomucoid, and alpha 1-antitrypsin in urine
stored at –20 degrees C. Scand J Urol Nephrol 1997 ; 31 : 67-71.
46. Brinkman JW, de Zeeuw D, Duker JJ, Gansevoort RT, Kema IP,
Hillege HL, et al. Falsely low urinary albumin concentrations after
prolonged frozen storage of urine samples. Clin Chem 2005 ; 51 : 2181-3.
Ann Biol Clin, vol. 68, no 1, janvier-février 2010
62. Ghiggeri GM, Ginevri F, Candiano G, Oleggini R, Perfumo F,
Queirolo C, et al. Characterization of cationic albumin in minimal
change nephropathy. Kidney Int 1987 ; 32 : 547-53.
63. Sudlow G, Birkett DJ, Wade DN. Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol 1976 ;
12 : 1052-61.
64. Honoré B. Conformational changes in human serum albumin
induced by ligand binding. Pharmacol Toxicol 1990 ; 66 : 7-26.
23
synthèse
65. Kragh-Hansen U, Chuang VT, Otagiri M. Practical aspects of the
ligand-binding and enzymatic properties of human serum albumin. Biol
Pharm Bull 2002 ; 25 : 695-704.
66. Ahmed-Ouameur A, Dianmantoglou S, Dedaghat-Herati MR,
Nafishi SH, Carpentier R, Tajmir-Riahi HA. The effects of drug complexation on the stability and conformation of human serum albumin :
protein unfolding. Cell Biochem Biophys 2006 ; 45 : 203-13.
67. Fogh-Andersen N. Albumin/calcium association at different pH, as
determined by potentiometry. Clin Chem 1977 ; 23 : 2122-6.
Copyright © 2020 John Libbey Eurotext. Téléchargé par Mlle lilia ould yahia le 26/05/2020.
68. Fogh-Andersen N, Bjerrum PJ, Siggaard-Andersen O. Ionic binding,
net charge, and Donnan effect of human serum albumin as a function of
pH. Clin Chem 1993 ; 39 : 48-52.
69. Fujiwara S, Amisaki T. Molecular dynamics study of conformational changes in human serum albumin by finding of fatty acids. Proteins
2006 ; 64 : 730-9.
70. Hortin GL, Meilinger B. Cross-reactivity of amino acids and other
compounds in the biuret reaction : interference with urinary peptide
measurements. Clin Chem 2005 ; 51 : 1411-9.
71. Norden AGW, Sharratt P, Cutillas PR, Cramer R, Gardner SC,
Unwin RJ. Quantitative amino acid and proteomic analysis : very low
excretion of polypeptides > 750 Da in normal urine. Kidney Int 2004 ;
66 : 1994-2003.
72. Lowenthal MS, Mehta AL, Frogale K, Bandle RW, Araujo RP,
Hood BL, et al. Analysis of albumin-associated peptides and proteins
from ovarian cancer patients. Clin Chem 2005 ; 51 : 1933-45.
73. Lopez MF, Mikulski A, Kuzdzal S, Golenko E, Petricoin 3rd EF,
Liotta LA, et al. A novel, high-throughput workflow for discovery and
identification of serum carrier protein-bound peptide biomarker candidates in ovarian cancer samples. Clin Chem 2007 ; 53 : 1067-74.
74. Fiskerstrand T, Refsum H, Kvalheim G, Ueland PM. Homocysteine
and other thiols in plasma and urine : automated determination and sample stability. Clin Chem 1993 ; 39 : 263-71.
75. Hortin GL, Seam N, Hoehn GT. Bound homocysteine, cysteine, and
cysteinylglycine distribution between albumin and globulins. Clin Chem
2006 ; 52 : 2258-64.
76. Musante L, Candiano G, Petretto A, Bruschi M, Dimasi N, Caridi G,
et al. Active focal segmental glomerulosclerosis is associated with massive
oxidation of plasma albumin. J Am Soc Nephrol 2007 ; 18 : 799-810.
77. Oettl K, Stauber RE. Physiological and pathological changes in the
redox state of albumin critically influence its binding properties. Br
J Pharmacol 2007 ; 151 : 580-90.
78. Wiggins RC, Kshrisagar B, Kelsch RC, Wilson BS. Fragmentation
and polymeric complexes of albumin in human urine. Clin Chim Acta
1985 ; 149 : 155-63.
79. Ghiggeri GM, Candiano G, Delfino G, Queirolo C. Electrical charge
of serum and urinary albumin in normal and diabetic humans. Kidney
Int 1985 ; 28 : 168-77.
HPLC : implications for urine albumin analysis. Clin Chem 2006 ; 52 :
389-97.
83. Chaudhury C, Mahnaz S, Robinson JM, Hayton WL, Pearl AM,
Roopenian DC, et al. The major histocompatibility complex-related Fc
receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J Exp
Med 2003 ; 197 : 315-22.
84. Westwood ME, Thornalley PJ. Molecular characteristics of
methylglyoxal-modified bovine and human serum albumins : comparison with glucose-derived advanced glycation endproduct-modified
serum albumins. J Protein Chem 1995 ; 14 : 359-72.
85. Wagner Z, Molnar M, Molnar GA, Tamasko M, Laczy B, Wagner L,
et al. Serum carboxymethyllysine predicts mortality in hemodialysis
patients. Am J Kidney Dis 2006 ; 47 : 294-300.
86. Cha T, Tahara Y, Yamato E, Yoneda H, Ikegami H, Noma Y, et al.
Renal handling of glycated albumin in non-insulin-dependent diabetes
mellitus with nephropathy. Diabet Res Clin Pract 1991 ; 12 : 149-56.
87. Cutillas PR, Chalkley RJ, Hansen KC, Cramer R, Norden AG,
Waterfield MD, et al. The urinary proteome in Fanconi syndrome
implies specificity in the reabsorption of proteins by renal proximal
tubule cells. Am J Physiol Renal Physiol 2004 ; 287 : 353-64.
88. Gekle M. Renal tubule albumin transport. Ann Rev Physiol 2005 ;
67 : 573-94.
89. Hortin GL, Sviridov D. Analysis of molecular forms of albumin in
urine. Proteomics Clin Appl 2008 ; 2 : 950-5.
90. Thongboonkerd V, McLeish KR, Arthur JM, Klein JB. Proteomic
analysis of normal urinary proteins isolated by acetone precipitation or
ultracentrifugation. Kidney Int 2002 ; 62 : 1461-9.
91. Lafitte D, Dussol B, Andersen S, Vazi A, Dupuy P, Jensen ON,
et al. Optimized preparation of urine samples for two-dimensional electrophoresis and initial application to patient samples. Clin Biochem
2002 ; 35 : 581-9.
92. Khan A, Packer NH. Simple urinary sample preparation for proteomic analysis. J Proteome Res 2006 ; 5 : 2824-38.
93. Zerefos PG, Vougas K, Dimitraki P, Kossida S, Perolekas A,
Stravodimos K, et al. Characterization of the human urine proteome by
preparative electrophoresis in combination with 2-DE. Proteomics
2006 ; 6 : 4346-55.
94. Varghese SA, Powell TB, Budisavljevic MN, Oates JC, Raymond JR,
Almeida JS, et al. Urine biomarkers predict the cause of glomerular
disease. J Am Soc Nephrol 2007 ; 18 : 913-22.
95. Kausler E, Spiteller G. Fragments from albumin and β2-microglobulin : constituents of the middle molecule fraction in hemofiltrate.
Biol Chem Hoppe-Seyler 1991 ; 372 : 849-55.
96. Heine G, Raida M, Forssmann WG. Mapping of peptides and
protein fragments in human urine using liquid chromatography-mass
spectrometry. J Chromatogr A 1997 ; 776 : 117-24.
80. Yagame M, Suzuki D, Jinde K, Yano N, Naka R, Abe Y, et al.
Urinary albumin fragments as a new clinical parameter for the early
detection of diabetic nephropathy. Intern Med 1995 ; 34 : 463-8.
97. Raida M, Schulz-Knappe P, Heine G, Forssmann WG. Liquid
chromatography and electrospray mass spectrometric mapping of peptides from human plasma filtrate. J Am Soc Mass Spectrom 1999 ; 10 :
45-54.
81. Candiano G, Musante L, Bruschi M, Petretto A, Santucci L,
Del Boccio P, et al. Repetitive fragmentation products of albumin and
1-antitrypsin in glomerular diseases associated with nephritic syndrome.
J Am Soc Nephrol 2006 ; 17 : 3139-48.
98. Richter R, Schulz-Knappe P, Schrader M, Standker L, Jurgens M,
Tammen H, et al. Composition of the peptide fraction in human blood
plasma : database of circulating human peptides. J Chromatogr B 1999 ;
726 : 25-35.
82. Sviridov D, Meilinger B, Drake SK, Hoehn GT, Hortin GL.
Co-elution of other proteins with albumin during size-exclusion
99. Wittke S, Mischak H, Walden M, Kolch W, Radler T, Wiedemann K.
Discovery of biomarkers in human urine and cerebrospinal fluid by
24
Ann Biol Clin, vol. 68, no 1, janvier-février 2010
Dosage de l’albumine urinaire
capillary electrophoresis coupled to mass spectrometry : towards new diagnostic and therapeutic approaches. Electrophoresis 2005 ; 26 : 1476-87.
tion gives what outcome ? A comparison of immunonephelometry with
HPLC. Kidney Int 2004 ; 66 : 69-75.
100. Jurgens M, Appel A, Heine G, Neitz S, Menzel C, Tammen H,
et al. Towards characterization of the human urinary peptidome. Comb
Chem High Throughput Screen 2005 ; 8 : 757-65.
115. Giampietro O, Lucchetti A, Cruschelli L, Clerico A, Berni R,
Penno G, et al. Measurement of urinary albumin excretion (UAE)
in diabetic patients : immunonephelometry versus radioimmunoassay.
J Nucl Med Allied Sci 1989 ; 33 : 252-7.
101. Haubitz M, Wittke S, Weissinger EM, Walden M, Rupprecht HD,
Floege J, et al. Urine protein patterns can serve as diagnostic tools in
patients with IgA nephropathy. Kidney Int 2005 ; 67 : 2313-20.
Copyright © 2020 John Libbey Eurotext. Téléchargé par Mlle lilia ould yahia le 26/05/2020.
102. Chalmers MJ, Mackay CL, Hendrickson CL, Wittke S, Walden M,
Mischak H, et al. Combined top-down and bottom-up mass spectrometric approach to characterization of biomarkers for renal disease. Anal
Chem 2005 ; 77 : 7163-71.
103. Kemperman RF, Horvatovich PL, Hoekman B, Reijmers TH,
Muskiet FA, Bischoff R. Comparative urine analysis by liquid
chromatography-mass spectrometry and multivariate statistics : method
development, evaluation, and application to proteinuria. J Proteome
Res 2007 ; 6 : 194-206.
104. Brenner BM, Hostetter TH, Humes HD. Molecular basis of
proteinuria of glomerular origin. N Engl J Med 1978 ; 298 : 826-33.
105. Norden AG, Lapsley M, Lee PJ, Pusey CD, Scheinman SJ, Tam FW,
et al. Glomerular protein sieving and implications for renal failure in Fanconi syndrome. Kidney Int 2001 ; 60 : 1885-92.
106. Brennan SO, George PM, Peach RJ. Characterisation of a slow
component of normal human serum albumin. Clin Chim Acta 1988 ;
176 : 179-84.
107. Brennan SO, George PM. Three truncated forms of serum albumin
associated with pancreatic pseudocyst. Biochim Biophys Acta 2000 ;
1481 : 337-43.
108. Bar-Or D, Rael LT, Bar-Or R, Slone DS, Craun ML. The formation
and rapid clearance of a truncated albumin species in a critically ill
patient. Clin Chim Acta 2006 ; 365 : 346-9.
109. Vlaskou D, Hofmann W, Guder WG, Siskos PA, DinyssiouAsteriou A. Human neutral brush border endopeptidase EC 3.4.24.11
in urine, its isolation, characterization and activity in renal disease.
Clin Chim Acta 2000 ; 297 : 103-21.
110. Bond JS, Matters GL, Banerjee S, Dusheck RE. Meprin metalloprotease expression and regulation in kidney, intestine, urinary tract
infections and cancer. FEBS Lett 2005 ; 579 : 3317-22.
111. Trof RJ, Di Maggio F, Leemreis J, Goeneveld AB. Biomarkers of
acute renal injury and renal failure. Shock 2006 ; 26 : 245-53.
112. Russo LM, Bakris GL, Comper WD. Renal handling of albumin : a
critical review of basic concepts and perspective. Am J Kidney Dis
2002 ; 39 : 899-919.
113. Sakata S, Atassi MZ. Immunochemistry of serum albumin, X : five
major antigenic sites of human serum albumin are extrapolated from
bovine albumin and confirmed by synthetic peptides. Mol Immunol
1980 ; 17 : 139-42.
114. Brinkman JW, Bakker SJ, Gansevoort RT, Hillege HL, Kema IP,
Gans RO, et al. Which method for quantifying urinary albumin excre-
Ann Biol Clin, vol. 68, no 1, janvier-février 2010
116. Osicka TM, Comper WD. Characterization of immunochemically
nonreactive urinary albumin. Clin Chem 2004 ; 50 : 2286-91.
117. Clavant SP, Sastra SA, Osicka TM, Comper WD. The analysis and
characterization of immuno-unreactive urinary albumin in healthy
volunteers. Clin Biochem 2006 ; 39 : 143-51.
118. Owen WE, Roberts WL. Performance characteristics of an HPLC
assay for urinary albumin. Am J Clin Pathol 2005 ; 124 : 219-25.
119. In vitro diagnostic medical devices-measurement of quantities
in biological samples-metrological traceability of values assigned to
calibrators and control materials. ISO 17511 2003 International Organization for Standardization Geneva.
120. Joint Committee for Traceability in Laboratory Medicine
(JCTLM). Database of higher-order reference materials, measurement
methods/procedures and services. (Accessed November 2008).
121. Baudner S, Bienvenu J, Blirup-Jensen S, Carlström A, Johnson AM,
Ward AM, et al. The certification of a matrix reference material for immunochemical measurement of 14 human serum proteins. CRM470. BCR
Publication 92/92. BCR Brussels, 1992.
122. Reimer CB, Smith SJ, Wells TW, Nakamura RM, Keitges PW,
Ritchie RF, et al. Collaborative calibration of the US National and the
College of American Pathologists reference preparations for specific
serum proteins. Am J Clin Pathol 1982 ; 77 : 12-9.
123. Price CP, Newman DJ, Blirup-Jensen S, Gudar WG, Grubb A, Itoh Y,
et al. First international reference preparation for individual proteins in
urine. Clin Biochem 1998 ; 31 : 467-74.
124. Itoh Y, Hosogaya S, Kishi K, Hiroko S. Standardization of immunoassays for urine albumin. Jpn J Clin Chem 2008 ; 37 : 5-14.
125. Singh R, Crow FW, Babic N, Lutz WH, Lieske JC, Larson TS,
et al. A liquid chromatography-mass spectrometry method for the quantification of urinary albumin using a novel 15N-isotopically labeled
albumin internal standard. Clin Chem 2007 ; 53 : 540-2.
126. Babic N, Larson TS, Grebe SK, Turner ST, Kumar R, Singh RJ.
Application of liquid chromatography-mass spectrometry technology
for early detection of microalbuminuria in patients with kidney disease.
Clin Chem 2006 ; 52 : 2155-7.
127. Gill SC, von Hippel PH. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 1989 ; 182 :
319-26.
128. Siekmann L. Determination of creatinine in human serum
by isotope dilution-mass spectrometry : definitive methods in clinical
chemistry, IV. J Clin Chem Clin Biochem 1985 ; 23 : 137-44.
25
Téléchargement