Telechargé par Zineddine Menani

Duw Dimensioning

publicité
Duw Dimensioning
Mapping basebands
S
l
o
PlugIn
t
Unit
LogicalBo
ard
RaxDeviceGr
oup
R
i
c
LogicalBo
ard
LogicalBo
ard
DuiDeviceGr
oup
R
X
M
DBMs are NOT visible in MOM, may
however
be visible in MP SW for resource
handling
LogicalBo
ard
RaxDeviceGr
oup
R
X
M
Managed
/
Objects
fRO
Subsystem appl. s /
HW
S
W
LogicalBo
ard
TxDeviceGr
oup
RaxDeviceGr
oup
R
X
M
T
X
M
T
X
M
T
X
M
T
X
M
Proposed
One RaxDeviceGroup per RXM on
•mapping:
One TxDeviceGroup for all
• DUW.
T
X
M
Future possibility to distribute TXMs over
• TXMs
two TxDeviceGroups
hW capability
Duw capacity
DUW 30
DUW 20
DUW 10
768 DL
384 DL
128 DL
512 UL
384 UL
128 UL
DL Peak/cc (Mbps)
42
42
42
DL Peak Throughput (Mbps)
UL Peak/cc (Mbps)
252
12
126
12
42
12
UL Peak Throughput (Mbps)
48
36
12
Number HSPA users with CPC
1152
576
192
Peak Users/cc
256
256
192
Channel Elements
Each DUW can control up to 6 cc
Each RU 4 carriers (60w)
Resource_ID
›
A resource_ID (TXM) on a DUW can be used for the
following purposes
–
–
–
›
Up to 6 cell carriers HSDPA with a maximum of 30 HS codes and up to
128 users (max 96 users per cell)
R99 DCH with a capacity of 128CE
6 cell carriers EUL with up to 96 users (max 48 users per cell carrier)
We can treat one TXM on a DUW as HSPDA processing
resource.
Resources per duw
DUW 10 01 = Low capacity = 128CE = 1 RXM + 3 TXM (at most 1 for DCH)
DUW 20 01 = Medium capacity = 384CE = 3 RXM + 5 TXM (3)
DUW 30 01 = High capacity = 768CE = 4 RXM + 8 TXM (6)
DUW
Type
Total
Resource_ID
available in
DUW
DUW 10
DUW 20
DUW 30
3
5
8
Maximum Resource_ID that
can be configured for
R99
HS
EUL
1
3
6
1
3
4
1
1
1
Duw10
HS
EUL
1 HS Resource (128 CE)
1 Eul Resource (128CE)
1 R99 Resources (128 CE)
R99
Maximum Resource_ID
configurable
DUW Type
DUW 10
DUW10 (3 Resources Id)
Total Resources_ID
available in DUW
3
R99
HS
EUL
1
1
1
duw20
HS
EUL
1 HS Resource (128 CE)
1 Eul Resource (128CE)
3 R99 Resources (384 CE)
R99/HS
R99/HS
Maximum Resource_ID
configurable
DUW Type
DUW 20
R99
DUW20 (5 Resources Id)
Total Resources_ID
available in DUW
5
R99
HS
EUL
3
3
1
duw30
HS
EUL
1 HS Resource (128 CE)
1 Eul Resource (128CE)
6 R99 Resources (768 CE)
R99/HS
R99/HS
R99/HS
R99
R99
R99
DUW30 (8 Resources Id)
Maximum Resource_ID
configurable
DUW Type
DUW 30
Total Resources_ID
available in DUW
8
R99
HS
EUL
6
4
1
A-dch ce reservation
•
A-DCH are dedicated channels, used for UL/DL signaling (SRB) when using HSDPA service.
•
A-DCH channels consume CEs both for UL/DL, but in DL these CEs are reserved from the
DL R99 CE pool.
•
It is important to calculate the amount of R99 CE as this A-DCH reservation effectively
reduces the CE capacity for R99.
A-DCHs for UL&DL
With W11B feature “SRB on
HSDPA”, no A-DCH CEs
reservation is necessary!!
A-dch ce reservation
•
The cost for 1 A-DCH in RBS6000 is 0.5CE.
•
The amount of A-DCH resources is reserved by default in a Baseband pool the minimum of Criteria
1 and Criteria 2 below:
•
Criteria 1
A-DCH CE reserved = 1.3 * sum of the lowest of the values of either the RBS License Key
“Number of HSDPA users per Cell” or RbsLocalCell::maxNumHsdpaUsers, determined cell-by-cell * 0.5
For eg,
1st cell:
RBS License Key “Number of HSDPA users per Cell” = 64 and MO
parameter RBSLocalCell:: maxNumHsdpaUsers = 32
2nd cell: RBS License Key “Number of HSDPA users per Cell” = 64 and MO
parameter RBSLocalCell:: maxNumHsdpaUsers = 64
Therefore, A-DCH CE reserved = (32 + 64) x 1.3 x 0.5 = 63 CE
•
Criteria 2
A-DCH CE reserved = 1.3 * number of HS Resource_ID * 128 * 0.5
Therefore, A-DCH CE reserved = (32 + 64) x 1.3 x 0.5 = 63 CE
Example 1
HS
EUL
Example 1:
DUW20
3 cc (32 HS users)
2 HS resources
1 EUL resource
2 R99 resources
5 resources
HS
R99
R99
DUW20 (5 Resources Id)
numHScodesresources=2
numEulresources=1
2 R99 x 128 = 256 CE
63 CE required for A-DCH
256-63 =193 CE for R99
Example 2
HS
EUL
Example 2:
DUW20
6 cc (32 HS users)
2 HS resources
1 EUL resource
2 R99 resources
5 resources
HS
R99
R99
DUW20 (5 Resources Id)
numHScodesresources=2
numEulresources=1
2 R99 x 128 = 256 CE
A-DCH:
min(2*128*1.3*0.5,32*6*1.3*0.5)=
min(165,125)=125 for A-DCH
256-125 =131 CE for R99
Dual carrier
Example 4:
For Dual Carrier:
The two cells involved in the MC connection must be
configured in the same HSDPA resource_ID. For a 3
sector site, ideally we should define 3 HS Resources.
DUW2
0
2 HS Resources
1 EUL Resource
2 R99
Resources
1R99 x 128 = 128 CE
125 CE required for A-DCH
256-125 =131 CE for R99
3 HS Resources
1 EUL Resource
4 R99
Resources
4R99 x 128 = 512 CE
125 CE required for A-DCH
256-125 =387 CE for R99
DUW3
0
Not possible to define 3 HS
resources with 32 HS users,
just 3CEs
Foa 3rd carrier
2 OSP Carriers and 1 VDF Carrier
Dual DUW
DUW20 + DUW10
6 cc (32 HS users) 1st DUW (HS only on 2nd carrier)
3 cc (32 HS users) 2nd DUW (HS)
1
1
3
1
0
HS resource
EUL resource
R99 resources
HS resources
EUL resource
1 R99 resource
DUW20 (5 Resources Id) +
DUW10 (3 Rerouces Id)
3R99 x 128 = 384 CE
63 CE required for A-DCH
384-125 =321 CE for R99
1 R99 x 128 = 128 CE
63 CE required for A-DCH
128-63 =65 CE for R99
CEs on different DUWs do not work
as a pool!!
Dual duw legacy – mad0226
2 OSP Carriers
Dual DUW
DUW20 + DUW20
3 cc (64 HS users) 1st DUW (HS)
3 cc (non HS) 2nd DUW
2
1
2
0
0
HS resource
EUL resource
R99 resources
HS resource
EUL resource
3 R99 resource
2R99 x 128 = 256 CE
125 CE required for A-DCH
256-84=131 CE for R99
3R99 x 128 = 384 CE
0 CE required for A-DCH
384 CE for R99
Total DL = 131+384=515
DUW20 (5 Resources Id) +
DUW20 (5 Rerouces Id)
Even though there are two idle
resource (not used for EUL), the
Maximum number of R99 resource is
3.
Dual duw legacy – mad0226
Dual duw legacy – mad0226
Final comments
• In order to make a proper DUW dimensioning, it has to be taken into
account:
• Number of HS Users per cell
• Number of HSDPA Resources
• Number of EUL Resources
• Number of Carriers per sector
• Number of sectors
• Number of necessary UL&DL CEs
appendix I power parameters
• maxDlPowerCapability: The maximum downlink power capability for
the cell. The attribute is calculated by the RBS and reported to the
RNC.
(maxDlPowerCapability = Nominal power (carrier) - ∑ dlattenuation )
• maximumtransmissionpower: This parameter allows the operator to
limit the maximum used power in the cell. In normal cases this is not
necessary.
* 1 carrier node
maximumtransmissionpowe
r
maxTotalOutputPower=
20W
Maxdlpowercapabilit
y
dlattenuatio
n
appendix I power parameters
maxTotalOutputPower=
20W
Maxdlpowercapabilit
y
1 carrier node
dlattenuatio
n
2 carriers node
maxTotalOutputPower=
40W
20
W
20
W
Maxdlpowercapabilit
y
for F1 cells
dlattenuatio
n
Maxdlpowercapabilit
y
for F2 cells
dlattenuatio
n
appendix II ce fract dual duw
Parameter ul/dlLicFractbbpool2 (DUW same capacity)
Fraction (%) of licensed CE assigned to 2nd BaseBandpool
CE UL
BbPool1
BbPool2
DUW10
DUW10
BbPool1
BbPool2
DUW20
DUW20
BbPool1
BbPool2
DUW30
DUW30
UL
128
128
256
CE UL
CE DL
0.5
0.5
UL
384
384
768
CE UL
512
512
1024
DL
128
128
256
CE DL
0.5
0.5
UL
ulLicFractBbPool2
DlLicFractBbPool2
50%
50%
0.5
0.5
ulLicFractBbPool2
DlLicFractBbPool2
50%
50%
0.5
0.5
ulLicFractBbPool2
DlLicFractBbPool2
50%
50%
DL
384
384
768
CE DL
0.5
0.5
0.5
0.5
768
768
1536
DL
*This parameter must be adjusted/optimized depending on the
CE consumption per BBPool.
appendix II ce fract dual duw
Parameter ul/dlLicFractbbpool2 (DUW different capacity)
CE UL
BbPool1
BbPool2
DUW20
DUW10
UL
384
128
512
DUW10
DUW20
BbPool1
BbPool2
DUW10
DUW30
ulLicFractBbPool2
DlLicFractBbPool2
25%
25%
0.25
0.75
ulLicFractBbPool2
DlLicFractBbPool2
75%
75%
DL
128 0.142857
768 0.857143
896
ulLicFractBbPool2
DlLicFractBbPool2
80%
86%
UL
CE DL
DL
384 0.428571
384 0.333333
512 0.571429
768 0.666667
896
1152
ulLicFractBbPool2
DlLicFractBbPool2
57%
67%
UL
128
384
512
CE UL
BbPool1
BbPool2
DUW20
DUW30
384
128
512
CE DL
0.25
0.75
UL
128
512
640
CE UL
DL
0.75
0.25
CE UL
BbPool1
BbPool2
CE DL
0.75
0.25
128
384
512
CE DL
0.2
0.8
DL
Téléchargement