Telechargé par Riadelecrocom

OTN Newbies

publicité
OTN NEWBIES
1
FOREWORD







According to the ITU-T Recommendation G.709, an Optical
Transport Network (OTN) is composed of a set of optical
network elements connected by optical fiber links. The network
provides functionality of transport, multiplexing, routing,
management, supervision, and survivability of optical channels
carrying client signals.
This architecture can be seen as a combination of the
advantages of SDH/SONET technology with the flexibility of
DWDM. Using OTN, the OAM&P functionality of SDH/SONET is
applied to DWDM optical networks.
Compared to SDH/SONET, OTN has the following advantages:
• Stronger error correction mechanisms
• More levels of tandem connection monitoring
• Transparent transport of client signals
• Switching scalabilityIntroduction
Page2
ABOUT THIS COURSE

This course is based on the following ITU-T
recommendations:




ITU-T G.709
ITU-T G.805
ITU-T G.806
ITU-T G.798
Page3
LEARNING GUIDE
Just little Basics
4
CONTENTS
1. OTN Introduction
2. Typical OTN Scenarios
Page5
CONTENTS
1. OTN Introduction
1.1 OTH
1.2 OTN Port Structure
1.3 Multiplexing/Mapping Principles and Bit Rates
1.4 Overhead Description
1.5 Maintenance Signals and Functions of Different
Layers
1.6 Alarms and Performance Events
Page6
OTN

Optical transport network (OTN)
 An
OTN network is composed of a set of optical
NEs connected by optical fiber links. These NEs
are able to provide functions such as transport,
multiplexing, routing, management, supervision,
and protection (survivability) of client signals,
according to the requirements specified in REC.
G.872.
Page7
FEATURES OF OTN


Compared with SDH and SONET networks, an OTN
network has the following features:

Ultra capacity with high accuracy, T-bit/second per fiber over
DWDM lines

Service transparency for client signals

Asynchronous mapping, powerful FEC function, simplified
network design, and reduced costs
Compared with traditional WDM networks, an OTN
network has the following features:

Enhanced OAM and networking capabilities for all services

Dynamic electrical/optical-layer grooming
Page8
OTN STANDARD SYSTEM
OTN
Equipment
G.874
Management features of NEs on an OTN network
management
G.874.1
OTN network: Protocol-neutral management
information model for the network element
Jitter and
G.8251
Jitter and shift control on an OTN network
performance
G.8201
Bit error performance parameters and specifications on
international channels of multiple carriers on an OTN network
Network
G.873.1
Linear protection on an OTN network
protection
G.873.2
Ring protection on an OTN network
Equipment
functions
and
features
G.798
Features of function blocks of equipment on an OTN network
G.806
Transport network equipment features: description methods and general functions
G.709
Ports on an OTN network
G.7041
Generic frame protocol (GFP)
G.7042
Link capacity adjustment
scheme (LCAS) for virtual concatenation signals
G.959.1
Physical-layer ports on an OTN network
G.693
Optical ports for intra-office systems
G.664
Optical security rule and requirements in an optical transport system
G.872
OTN network structure
G.8080
ASON network structure
Structure and
mapping
Physical-layer
features
Structure
9
OTN NETWORK LAYERS AND PORT STRUCTURE

OPUk: optical channel payload unit-k

ODUk: optical channel data unit-k

OTUk: completely standardized optical
channel transport unit-k

OTUkV: functionally standardized Optical
channel transport unit-k

OCh: optical channel with full
functionality

OChr: optical channel with reduced
functionality

OMS: optical multiplex section

OTS: optical transmission section

OPS: optical physical section

OTM: optical transport module
IP/MPLS ATM
Ethernet STM-N
OPUk
ODUk (ODUkP and ODUkT)
OTUk
OTUkV
OTUk
OTUkV
OCh
OChr
OMSn
OTSn
OPSn
OTM-n.m
OTM-0.m
OTM-nr.m
Page10
OTM-N.M CONTAINMENT RELATIONSHIPS
Client signal
ODUk
OTUk[V]
OH
OH
OMU-n.m
OTM-n.m
OCCo
OCCo
Non-associated OH
Common
management OCCo
OH
OCG-n.m
OPUk
ODUk
OCh
OChOH
ln
OPUk payload
FEC
OCh payload
OCCp
OCCp
OCCp
OTM-n. m
OH
OPUk
l2
l1
l
OSC
OTM overhead signal (OOS)
OMSn OH
OTSn OH
OOS



“n” represents the maximum number of wavelengths that can be supported at the lowest bit rate
supported by the wavelengths. “m” equals 1, 2, 3, 12, 23, or 123.
OTS_OH, OMS_OH, OCh_OH and COMMS OH information fields are contained in the OOS.
The optical supervisory channel (OSC) is used to transmit OOSs.
Page11
OTM-NR.M CONTAINMENT RELATIONSHIPS
Client signal
ODUk
OTUk[V]
OH
OPUk payload
OH
OH
OPUk
ODUk
OChr
OCG-nr.m
OTM-16r.m
OPUk
l 16
FEC
l
l
2
1
OCh payload
OCCp
OCCp
OCCp
OTM-nr.m

Fixed channel spacing, irrelevant to the signal rate

1 < n ≤ 16; m = 1, 2, 3, 12, 23, or 123

Without optical supervisory channels
Page12
OTM-0.M CONTAINMENT RELATIONSHIPS
OPUk
ODUk
OTUk[V]
OH
OH
OChr
OTM-0.m
OH
OTM-0.m
Client signal
OPUk payload
OPUk
ODUk
FEC
OCh payload
OPS0

The OTM 0.m supports a non-colored optical channel on a single optical span with 3R
regeneration at each end.

m = 1, 2, or 3

Without optical supervisory channels
Page13
OTN PORTS
Network Operator B
USER
A
OTM NNI
IaDI-IrVI
OTM
UNI



Vendors X
Vendors Y
Inter-domain interface (IrDI)
Intra-domain interface (IaDI)



OTM NNI
IaDI-IaVI
User to network interface (UNI)
Network node interface (NNI)


OTM NNI
IaDI-IaVI
OTM
NNI
IrDI
Network
Operator
C
Between equipment provided by different vendors (IrVI)
Within subnet of one vendor (IaVI)
The completely standardized OTUk is used at OTM IrDIs and OTM IaDIs.
The partly standardized OTUk is used at OTM IaDIs.
Page14
CONTENTS
1. OTN introduction
1.1 Optical transport hierarchy
1.2 OTN interface structure
1.3 Multiplexing/mapping principles and bit rates
1.4 Overhead description
1.5 Maintenance signals and function for different
layers
1.6 Alarm and performance events
Page15
OTN MULTIPLEXING AND MAPPING STRUCTURE
OTM-0.m
1 ≤ i+j+k ≤ n
OTM-nr.m
OCCr
i
OCG-nr.m
j
OCCr
1 OChr
1
OChr
k
OCCr
1
OChr
1
1
OTU3[V]
1
i
1 ≤ i+j+k ≤ n
OTM-n.m
OCG-n.m
j
OCC
OCC
k
1
OCC
OSC
1
1
1
1
OCh
OCh
OCh
ODU3
1
Client signal
OPU3
1
1
1
OTU1[V]
1
ODTUG3
16
4
ODU2
1
Client signal
OPU2
1
ODTUG2
4
1
ODU1
1
OPU1
1
Multiplexing
OOS
OTS, OMS, OCh, COMMS
Mapping
Page16
Client signal
OTU2[V]
1
OTN Multiplexing and Mapping Structure
17
OTN Multiplexing and Mapping Structure
18
OTN Service Bearing Capability (LO ODU)
Client service rate

LO ODU

New LO ODU signals

10.3G ODU2e

104G ODU4

ODUflex
OPU3
40.149G
OPUflex
10.312G
9.995G
OPU2
OPU2e
OPUflex
2.488G
1.238G
OPUflex(GFP)
1.25G ODU0
OPUflex

OPU4
104.134G
OPU1
OPU0
LO OPU
19
OTN LINE BEARING CAPABILITY
(HO ODU)
LO ODU rate
ODU4
New HO ODU signals

OPU4/21

104G ODU4

Signals with extended
OPU3/21
(ODU0, ODU1, ODU2, ODU2e, ODUflex)
OPU3e2/21
(ODU0, ODU1, ODU2, ODU2e, ODU3, ODU3e2, ODUflex)
41.7GG ODU3e2 (G.sup43)
–
10G ODU2
–
40G ODU3
ODU2e
ODU2
ODU1
(ODU0)
OPU1
ODU0
ODUflex
(ODU1)
OPU2/20
(ODU0, ODU1, ODUflex)
OPU2/21
(ODU1, ODU2)
OPU3/20
(ODU0, ODU1, ODU2, ODU2e, ODUflex)
capabilities
ODUflex(GFP)
ODUflex

ODUflex
2.5G ODU1
ODU3e2
ODU3

HO OPU
20
OTUK FRAME RATE
OTUk rate = 255/(239 - k) x STM-N frame rate
OTU Type
OTU Nominal Bit Rate
OTU1
255/238 x 2488320 kbit/s
OTU2
255/237 x 9953280 kbit/s
OTU3
255/236 x 39813120 kbit/s
OTU4
255/227 x 99532800 kbit/s
OTU Bit Rate Tolerance
20 ppm
Note 1: The nominal OTUk rates are approximately 2666057.143 kbit/s (OTU1), 10709225.316
kbit/s (OTU2), 43018413.559 kbit/s (OTU3) and 111809 973.568 kbit/s (OTU4).
Note 2: OTU0, OTU2e and OTUflex are not specified in this recommendation. ODU0 signals
are transported over ODU1, ODU2, ODU3 or ODU4 signals, ODU2e signals are transported
over ODU3 and ODU4 signals, and ODUflex signals are transported over ODU2, ODU3 and
ODU4 signals.
ODUK FRAME RATE
ODUk rate = 239/(239 - k) x STM-N frame rate
ODU Type
ODU Nominal Bit Rate
ODU0
1244160 kbit/s
ODU1
239/238 x 2488320 kbit/s
ODU2
239/237 x 9953280 kbit/s
ODU3
239/236 x 39813120 kbit/s
ODU4
239/227 x 99532800 kbit/s
ODU2e
239/237 x 10312500 kbit/s
ODUflex for CBR
client signals
239/238 x Client signal bit rate
ODUflex for GFP-F
mapped client
signals
Pre-set bit rate
ODU Bit Rate Tolerance
20 ppm
100 ppm
Client signal bit rate tolerance, with a
maximum of 100 ppm
20 ppm
OPUK FRAME RATE
OPUk payload rate = 238/(239 - k) x STM-N frame rate
OPU Type
OPU Payload Nominal Bit Rate
OPU0
238/239 x 1244160 kbit/s
OPU1
2488320 kbit/s
OPU2
238/237 x 9953280 kbit/s
OPU3
238/236 x 39813120 kbit/s
OPU4
238/227 x 99532800 kbit/s
OPU2e
238/237 x 10312500 kbit/s
OPUflex for CBR client
signals
Client signal bit rate
OPUflex for GFP-F
mapped client signals
238/239 x ODUflex signal rate
OPU1-Xv
X x 2 488 320 kbit/s
OPU2-Xv
X x 238/237 x 9953280 kbit/s
OPU Payload Bit Rate Tolerance
20 ppm
100 ppm
Client signal bit rate tolerance, with a
maximum of 100 ppm
20 ppm
20 ppm
ODUK (TDM)

Low-rate ODUk signals are multiplexed into highrate ODUk signals using time-division multiplexing:
A maximum of four ODU1 signals are multiplexed into
one ODU2 signal using time-division multiplexing.
 Hybrid j (j  4) ODU2 and 16-4j ODU1 signals are
multiplexed into one ODU3 signal using time-division
multiplexing.
 Multiple LO ODUi[j] signals at different levels are
multiplexed into one HO ODUk signal.

Page24
ODU1 MULTIPLEXED INTO ODU2



ODTU12: optical channel data tributary unit 1 into 2
ODTUG2: optical channel data tributary unit group 2
JOH: justification overhead
ODU1
OH
ODTU12
JOH
ODTU12
JOH
ODTU12
JOH
ODU1 payload
ODU1
ODTU12
ODU1
ODU1
ODU1
ODTUG2
ODTUG2
OPU2
OH
ODU2
OH
OPU2 payload
ODU2 payload
OPU2
ODU2
Page25
ODU1 MULTIPLEXED INTO ODU2
ODU1
OPU1 OH
Alignment
ODU1OH
Client-layer signal
(STM-16, ATM, or GFP)
Alignment
OTU2
OH
OTU2
ODU2 OH
ODU1 OH
ODU1 OH
ODU1 OH
ODU1 OH
Alignment
ODU1 OH
ODU1 OH
ODU1 OH
ODU1 OH
OPU1 OH
ODU2 OH
OPU1 OH
OPU1 OH
OPU1 OH
Alignment
OPU1 OH
OPU1 OH
OPU1 OH
ODU2
OPU2 OH
x4
OPU1 OH

ODU1 floats in one quarter of the OPU2 payload area.
An ODU1 frame travels cross multiple ODU2 frame boundaries.
OPU2 OH

Client Layer Signal
Client(for
Layer
SignalSTM-16)
example,
Client
Layer
SignalSTM-16)
(for
example,
Client-layer
signal
(for example,
STM-16)
(STM-16, ATM, or GFP)
Client Layer Signal
Client(for
Layer
SignalSTM-16)
example,
Client(for
Layer
SignalSTM-16)
example,
Client-layer
signal
OPU2
Payload
(for example, STM-16)
(STM-16, ATM, or GFP)
OTU2
FEC
Page26
ODU1 AND ODU2 MULTIPLEXED INTO ODU3

ODTU23: optical channel data tributary unit 2 into 3

ODTU13: optical channel data tributary unit 1 into 3
ODU2
OH
ODTU23
JOH
ODTU13
JOH
ODU2 payload
ODTU23
ODU2
ODTU13 ODTU23
JOH
JOH
ODTU23
JOH
ODU1 ODU1 payload
OH
ODU2
ODU2
ODTU13
JOH
ODU2
ODTU13
ODU1
ODU1
ODU1
ODU1
ODTUG3
ODTUG3
OPU3
OH
ODU3
OH
OPU3 payload
ODU3 payload
OPU3
ODU3
Page27
GMP Mapping
0
Payload Area
Pserver
OH
client data
stuff
Pserver?
enable
client
data
indication
=
read/write
enable
memory
payload area
frame start
clock
Cm(t)
server frame or multi-frame

GMP can automatically adapt CBR services to an OTN container. It is the key
technology for an OTN network to bear multiple services.

Service rate information transmitted in overheads

Sigma-delta algorithm

M byte bit width

Separation of data and clocks
28
ODUflex
TSi TSj
Services with
a fixed bit rate
BMP
OH
Client signals
Packet services
Client services
GMP
OH
ODUflex
GFP
TSi TSj
GMP
OH
OH
ODUflex

Map CBR services to ODUflex services using synchronized packet encapsulation.

Map packet services to ODUflex services using GFP.

Map ODUflex services to HO OPUk services using GMP.
29
CONTENTS
1. OTN introduction
1.1 Optical transport hierarchy
1.2 OTN interface structure
1.3 Multiplexing/mapping principles and bit rates
1.4 Overhead description
1.5 Maintenance signals and function for different
layers
1.6 Alarm and performance events
Page30
OOS
n
FDI-P
TTI
1
BDI-O
FDI-O
BDI-P
BDI-P
FDI-P
PMI
PMI
OCh
BDI-O
OMSn
OTSn
Non-associated
overhead
FDI-O
2
3
OOS functions subject to
standardization. Bit rate
and format are not
standardized.
OCI
General management communication







TTI: trail trace identifier
PMI: payload missing indication
OCI: open connection indication
BDI-O: backward defect indication - overhead
BDI-P: backward defect indication - payload
FDI-O: forward defect indication - overhead
FDI-P: forward defect indication - payload
Page31
OPTICAL-LAYER FUNCTION
OTSn OH
TTI
MI_TxTI
BDI-O
RI_BDI-O
BDI-P
OTSn
Payload
PMI
dLOS_P
RI_BDI-P
aPMI
OA, DCM
Payload and OH combined together

APR control
The OTS source function is used as an example.
Page32
Alignment
2
3
4
ODUk
OH
Client signal
mapped in
OPUk
payload
OPU
k payload
4080
3825
3824
14
15
16
17
OTUk
OH
OPUk OH
1
7
8
1
OTN FRAME FORMATS (K = 1, 2, OR 3)
OTUK
FEC
Client signal
OPUk - optical channel payload unit
ODUk - Optical Channel Data Unit
OTUk - Optical Channel Transport Unit
K:
1 - 2.5G
2 - 10G
3 - 40G
Alignment
Page33
33
OTN ELECTRICAL OVERHEAD OVERVIEW
1
2
4
5
6
FAS
1
2
RES
3
TCM3
GCC1
4

3
ODUk OH







TCM
ACT
7
9
TCM6
10
SM
MFAS
TCM2
GCC2
8
11
12
GCC0
TCM5
TCM4
TCM1
PM
APS/PCC
13
14
15
16
RES
JC
FTFL RES
JC
RES
EXP
RES

RES
17
JC
PSI NJO
Alignment OH
TCMACT: tandem connection monitoring
 FAS: frame alignment signal
activation/deactivation control channel
 MFAS: multiframe alignment signal
TCMi: tandem connection monitoring i
OPUk OH
FTFL: fault type and fault location reporting
 PSI: payload structure identifier
channel
 JC: justification control
PM: path monitoring
 NJO: negative justification opportunity
EXP: experimental
GCC1/2: general communication channel 1/2  OTUk OH
APS/PCC: automatic protection switching
 SM: section monitoring
coordination channel/protection
 GCC0: general communication channel 0
communication control channel
 RES: reserved for future international
standardization
Page34
FRAME ALIGNMENT SIGNAL
1
2
3
4
5
6
FAS
1
2
RES
3
TCM3
GCC1
4
Byte 1
7
8
9
MFAS
TCM
ACT
SM
TCM6
TCM1
APS/PCC
Byte 2
11
12
GCC0
TCM5
TCM2
GCC2
10
TCM4
PM
13
14
RES
15
Byte 4
17
RES JC
FTFL RES JC
EXP
RES JC
RES
Byte 3
16
PSI NJO
Byte 5
Byte 6
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
OA1

OA1
OA1
OA2
OA2
OA2
Frame alignment signal (FAS)

A six-byte OTUk-FAS signal is defined in row 1 and columns 1 to 6 of the
OTUk overhead.

OA1 is 0xF6 (1111 0110) and OA2 is 0x28 (0010 1000).
Page35
MULTIFRAME ALIGNMENT SIGNAL
1
2
3
4
5
6
FAS
1
RES
3
TCM3
GCC1
4
8
TCM1

1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
..
..
..
PM
13
14
RES
15
16
17
RES JC
FTFL RES JC
EXP
RES JC
PSI NJO
Multiframe alignment signal (MFAS)

It is defined in row 1 and column 7.

The value of the MFAS byte is increased by OTUk/ODUk
frame and the MFAS byte provides a maximum of 256
MFAS sequence
0
0
0
0
0
TCM4
RES
.
.
0
0
0
0
0
12
GCC0
APS/PCC
1 2 3 4 5 6 7 8
0
0
0
0
0
11
TCM5
TCM2
GCC2
10
SM
TCM6
MFAS OH byte
0
0
0
0
0
9
MFAS
TCM
ACT
2
7
multiframes.

Individual OTUk/ODUk overhead signals may use this
central multiframe to lock their 2, 4, 8, 16, or 32
multiframes to the main frame.
Page36
OTUK SECTION MONITORING OVERHEAD
1
2
3
4
5
6
FAS
1
2
RES
3
TCM3
GCC2
2
TTI
BIP-8
TCM1

BEI/BIAE
4
5
6
7
IAE
3
BDI
SAPI
15
16
2
RES
63
GCC0
TCM4
13
14
RES
15
16
17
RES JC
FTFL RES JC
EXP
RES JC
PSI NJO
Trail trace identifier (TTI)
A one-byte overhead is defined to transport 64-byte TTI
signals.
8

The 64-byte TTI signal should be aligned with the OTUk
multiframe and transmitted four times per multiframe.

Operator
specified
12
RES
DAPI
31
32
11
PM
APS/PCC
3
1
10
TCM5

0
9
SM
TCM6
TCM2
1
8
MFAS
TCM
ACT
GCC1
4
7
TTI structure:

16-byte SAPI: source access point identifier

16-byte DAPI: destination access point identifier

32-byte operator specified information
Page37
OTUK SECTION MONITORING OVERHEAD

Bit interleaved parity-8 (BIP-8)



For section monitoring and a one-byte error detection code signals are defined.
This byte provides a bit interleaved parity-8 (BIP-8) code.
OTUk BIP-8 is computed over bits in the OPUk (columns 15 to 3824) area of OTUk frame
i, and inserted in the OTUk BIP-8 overhead location in OTUk frame i+2.
1
Frame i
14
3824
15
OPUk
BIP8
Frame i+1
Frame i+2
Page38
OTUK SECTION MONITORING OVERHEAD
1
2
3
4
5
6
7
FAS
1
RES
3
TCM3
GCC2
TTI
BIP-8
SAPI
2
3
BEI/BIAE
4
GCC0
TCM4
13
14
RES
15
16
RES JC
FTFL RES JC
EXP
RES JC
PSI NJO
 Backward
error indication/backward incoming
alignment error (BEI/BIAE)
5
6
7
8
RES

A four-bit BEI and BIAE signal is defined.

This signal is used to transmit in the upstream direction
the count of interleaved-bit blocks and incoming
alignment error (IAE) conditions.

During an IAE condition the code "1011" is inserted into
the BEI/BIAE field and the error count is ignored.
Otherwise the error count (0-8) is inserted into the
BEI/BIAE field.
DAPI
Operator
specified
12
RES
15
16
31
32
11
PM
APS/PCC
3
1
SM
TCM1
IAE
2
10
TCM5
TCM2
1
0
TCM6
BDI
GCC1
4
9
MFAS
TCM
ACT
2
8
63
Page39
OTUK SECTION MONITORING OVERHEAD
1
2
3
4
5
6
FAS
1
RES
3
TCM3
GCC2
TTI
BIP-8
SAPI
15
16
APS/PCC

2
3
BEI/BIAE
4
5
6
7
RES
DAPI
12
GCC0
TCM4
PM
13
14
RES
15
16
17
RES JC
FTFL RES JC
EXP
RES JC
PSI NJO
defect indication (BDI)
A single-bit BDI signal is defined to transmit the
signal failure status detected by the section
8
termination sink function in the upstream direction.

31
32
11
RES
 Backward
3
1
0
TCM1
IAE
2
10
TCM5
BDI
1
9
SM
TCM6
TCM2
GCC1
4
8
MFAS
TCM
ACT
2
7
BDI is set to "1" to indicate an OTUk backward
defect indication; otherwise, it is set to "0".
Operator
specified
63
Page40
OTUK SECTION MONITORING OVERHEAD
1
2
3
4
5
6
7
FAS
1
2
RES
3
TCM3
9
MFAS
TCM
ACT
TCM6
GCC2
10
SM
TCM1
APS/PCC
BIP-8
1
0
SAPI
15
16

2
3
BEI/BIAE
4
5
6
7
RES
63
16
17
RES JC
FTFL RES JC
EXP
RES JC
PSI NJO
alignment error (IAE)
A single-bit IAE signal is defined to allow the S-CMEP
been detected.
DAPI
IAE is set to "1" to indicate a frame alignment error;
otherwise it is set to "0".
 RES
Operator
specified
RES
15
that an alignment error in the incoming signal has
8

31
32
TCM4
14
ingress point to inform its peer S-CMEP egress point
IAE
TTI
GCC0
13
RES
3
BDI
2
12
PM
 Incoming
1
11
TCM5
TCM2
GCC1
4
8

(reserved)
Two bits are reserved (RES) for future international
standardization. They are set to "00".
Page41
OTUK GCC0 AND RES OVERHEAD
1
2
3
2
RES
3
TCM3

5
6
FAS
1
4
4
GCC1
7
8
9
MFAS
TCM
ACT
TCM6
TCM2
GCC2
10
11
SM
13
GCC0
TCM5
TCM1
12
TCM4
PM
APS/PCC
RES
14
RES
15
16
17
RES JC
FTFL RES JC
EXP
RES JC
PSI NJO
General communication channel (GCC0)

Two bytes are allocated in the OTUk overhead to support a general
communications channel between OTUk termination points.


A clear channel is located in row 1 and columns 11 and 12.
RES (reserved)

Two bytes of the OTUk overhead are reserved for future international
standardization.

They are located in row 1 and columns 13 and 14.

They are set to all “0”s.
Page42
ODUK PATH MONITORING OVERHEAD
1
2
4
5
6
FAS
1
2
RES
3
TCM3
4
3
GCC1
7
TTI
BIP-8
APS/PCC
3
BDI
BEI

TCM4
14
RES
15
16
17
RES JC
FTFL RES JC
EXP
RES JC
PSI NJO
TTI / BIP-8 / BEI / BDI
For path monitoring, this overhead’s functions are the
same as those of the OTUk SM signal, except that BEI
signals do not support the BIAE function.
STAT
15
16
DAPI
GCC0
13
RES
1 2 3 4 5 6 7 8
SAPI
12
PM

0
11
TCM5
TCM1
GCC2
10
SM
TCM6
TCM2
2
9
MFAS
TCM
ACT
1
8

They are located in row 3 and columns 10 to 12.
31
32
Operator
specified
63
Page43
ODUK PATH MONITORING OVERHEAD
1
2
3
5
6
FAS
1
3
TCM3
GCC1
TCM2
GCC2
1
2
TTI
BIP-8
0
15
16
DAPI
31
32
Operator
specified
9
BEI
10
SM
11
TCM1
TCM4
PM
APS/PCC
STAT
13
14
RES
8
15
16
17
RES JC
FTFL RES JC
EXP
RES

5 6 7
12
GCC0
TCM5
3
1 2 3 4
SAPI
8
TCM6
BDI
RES
7
MFAS
TCM
ACT
2
4
63
4
RES JC
PSI NJO
Status (STAT)

For path monitoring, three bits are defined as status bits.

They indicate the presence of a maintenance signal.
Bit 678
Status
000
Reserved for future international standardization
001
Normal path signal
010
Reserved for future international standardization
011
Reserved for future international standardization
100
Reserved for future international standardization
101
Maintenance signal: ODUk - LCK
Page44
ODUK TCM OVERHEAD
1
2
3
4
5
6
FAS
1
2
RES
3
TCM3
GCC1
4
7
8
MFAS
TCM
ACT
GCC2
2
TTIi
BIP-8i
10
SM
TCM6
TCM1
RES

15
16
3
BEIi/BIAEi
4
5
BDIi
SAPI
2
6
7
31
32
13
14
RES
15
16
RES JC
FTFL RES JC
EXP
RES JC
PSI NJO
TTIi/BIP-8i/BEIi/BIAEi/BDIi
For each tandem connection monitoring field,
this overhead’s functions are the same as
8
those of OTUk SM signals.
STATi

DAPI
TCM4
PM
APS/PCC
3
1
12
GCC0

0
11
TCM5
TCM2
1
9
Six fields of the ODUk TCM overhead are
defined in row 2 and columns 5 to 13, and row
3 and columns 1 to 9 of the ODUk overhead.
Operator
specific
63
Page45
ODUK TCM OVERHEAD
1
2
4
5
6
FAS
1
2
RES
3
TCM3
4
3
GCC1
7
GCC2
TTIi
BIP-8i
5 6 7 8
BEIi/BIAEi
14
RES
15
16
17
RES JC
FTFL RES JC
RES JC
PSI NJO
STAT (status)

1 2 3 4
13
EXP
RES

STATi
TCM4
PM
APS/PCC
3
12
GCC0
TCM1
BDIi
SAPI
11
TCM5

0
10
SM
TCM6
TCM2
2
9
MFAS
TCM
ACT
1
8
For each tandem connection monitoring field, three
bits are defined as status bits.
They indicate the presence of a maintenance signal if
there is an incoming alignment error at the source
TC-CMEP, or if there is no source TC-CMEP active.
15
16
DAPI
31
32
Operator
specified
63
Bit 678
000
001
010
Status
No source TC
In use without IAE
In use without IAE
011
Reserved for future international standardization
100
Reserved for future international standardization
101
Maintenance signal: ODUk -LCK
110
Maintenance signal: ODUk -OCI
Page46
NESTED AND CASCADED ODUK MONITORED
CONNECTIONS
TCM6
TCM6
TCM6
TCM6
TCM6
TCM6
TCM6
TCM5
TCM5
TCM5
TCM5
TCM5
TCM5
TCM5
TCM4
TCM4
TCM4
TCM4
TCM4
TCM4
TCM4
TCM3
TCM3
TCM3
TCM3
TCM3
TCM3
TCM3
TCM2
TCM2
TCM2
TCM2
TCM2
TCM2
TCM2
TCM1
TCM1
TCM1
TCM1
TCM1
TCM1
TCM1
A1
B1
C1
C2
B2
B3
B4
A2
C1 - C2
B1 - B2
B3 - B4
A1 - A2
TCMi
TCM OH field not in use
TCMi
TCM OH field in use
Page47
OVERLAPPED ODUK MONITORED CONNECTIONS
TCM6
TCM6
TCM6
TCM6
TCM6
TCM5
TCM5
TCM5
TCM5
TCM5
TCM4
TCM4
TCM4
TCM4
TCM4
TCM3
TCM3
TCM3
TCM3
TCM3
TCM2
TCM2
TCM2
TCM2
TCM2
TCM1
TCM1
TCM1
TCM1
TCM1
A1
B1
C1
B2
C2
A2
C1 - C2
B1 - B2
A1 - A2
TCMi
TCM OH field not in use
TCMi
TCM OH field in use
Page48
ODUK TCM ACT COORDINATION PROTOCOL
1
2
2
RES
3
TCM3

4
5
6
FAS
1
4
3
GCC1
TCM
ACT
7
9
MFAS
TCM6
TCM2
GCC2
8
10
11
SM
GCC0
TCM5
TCM1
12
TCM4
PM
APS/PCC
RES
13
14
RES
15
16
17
RES JC
FTFL RES JC
EXP
RES JC
PSI NJO
TCM activation/deactivation (TCMACT)

A one-byte TCM activation/deactivation field is located in row 2 and
column 4.

Its definition is to be defined in future.
Page49
ODUK GCC1/GCC2
1
2
2
RES
3
TCM3

4
5
6
FAS
1
4
3
GCC1
TCM
ACT
7
9
MFAS
TCM6
TCM2
GCC2
8
SM
11
12
GCC0
TCM5
TCM1
APS/PCC
10
13
RES
TCM4
PM
14
15
16
17
RES JC
FTFL RES JC
EXP
RES
RES JC
PSI NJO
General communication channel (GCC1/GCC2)

Two fields of the two bytes are allocated in the ODUk overhead to support two
general communication channels between any two NEs with access to the ODUk
frame structure (for example, at 3R regeneration points).

The bytes for GCC1 are located in row 4 and columns 1 and 2, and the bytes for
GCC2 are located in row 4 and columns 3 and 4 of the ODUk overhead.
Page50
ODUK APS/PCC CHANNEL
1
2
2
RES
3
TCM3

4
5
6
FAS
1
4
3
GCC1
TCM
ACT
7
9
MFAS
TCM6
TCM2
GCC2
8
SM
11
12
GCC0
TCM5
TCM1
APS/PCC
10
TCM4
PM
RES
13
14
RES
15
16
17
RES JC
FTFL RES JC
EXP
RES JC
PSI NJO
Automatic protection switching/protection communication control
(APS/PCC)

A four-byte ODUk-APS/PCC signal is defined in row 4 and columns 5 to 8 of the ODUk
overhead.

For linear protection schemes, bit assignments for these bytes and the bit oriented
protocol are given in ITU-T G.873.1. Bit assignment and byte oriented protocol for ring
protection schemes are to be defined in future.

A maximum of eight levels of nested APS/PCC signals may be present in this field.
Page51
ODUK FTFL CHANNEL
1
2
2
RES
3
TCM3

4
5
6
FAS
1
4
3
GCC1
TCM
ACT
7
9
MFAS
TCM6
TCM2
GCC2
8
SM
10
11
GCC0
TCM5
TCM1
12
TCM4
PM
APS/PCC
RES
13
14
RES
15
16
17
RES JC
FTFL RES JC
EXP
RES JC
PSI NJO
Fault Type & Fault Location (FTFL)

One byte is allocated in the ODUk overhead to transport a 256-byte FTFL
message.

The byte is located in row 2 and column 14 of the ODUk overhead.

The 256-byte FTFL message consists of two 128-byte fields. The forward field is
allocated in bytes 0 to 127 of the FTFL message. The backward field is allocated
in bytes 128 to 255 of the FTFL message.
Page52
ODUK EXPERIMENTAL AND RESERVED OVERHEAD
1
2


4
5
6
FAS
1
2
RES
3
TCM3
4
3
GCC1
TCM
ACT
7
8
9
MFAS
TCM6
TCM2
GCC2
SM
11
12
GCC0
TCM5
TCM1
APS/PCC
10
TCM4
PM
RES
13
14
RES
15
16
17
RES JC
FTFL RES JC
EXP
RES JC
PSI NJO
Experimental (EXP)

Two bytes are allocated in the ODUk overhead for experimental use.

They are located in row 3 and columns 13 and 14 of the ODUk overhead.

There is no requirement for forwarding the EXP overhead over different (sub)networks.
RES

9 bytes are reserved in the ODUk overhead for future international standardization.

They are located in row 2 and columns 1 to 3, and row 4 and columns 9 to 14 of the ODUk
overhead.

They are set to all “0”s.
Page53
OPUK PAYLOAD STRUCTURE IDENTIFIER
1
2
3
4
5
6
FAS
1
2
RES
3
TCM3
GCC1
4
0
8
9
MFAS
TCM
ACT
TCM6
TCM2
GCC2
PT
10
11
SM
12
GCC0
TCM5
TCM4
TCM1
PM
APS/PCC
RES

13
14
RES
15
16
17
RES JC
FTFL RES JC
EXP
RES JC
PSI NJO
Payload structure identifier (PSI)

1
One byte is allocated in the OPUk overhead
to transport a 256-byte payload structure
Mapping
and concatenation
specific
255
7
identifier (PSI) signal.

It is aligned with the ODUk multiframe.

PSI[0] contains a one-byte payload type.
PSI[1] to PSI[255] are mapping and
concatenation specific.
Page54
PAYLOAD TYPE CODE POINTS
MSB 1234
LSB 1234
Hex Code
0000
0001
01
Experimental mapping
0000
0010
02
Asynchronous CBR mapping
0000
0011
03
Bit synchronous CBR mapping
0000
0100
04
ATM mapping
0000
0101
05
GFP mapping
0000
0110
06
Virtual Concatenated signal
0001
0000
10
Bit stream with octet timing mapping
0001
0001
11
Bit stream without octet timing mapping
0010
0000
20
ODU multiplex structure
0101
0101
55
Not available
0110
0110
66
Not available
1000
xxxx
80-8F
1111
1101
FD
NULL test signal mapping
1111
1110
FE
PRBS test signal mapping
1111 Page55
1111
FF
Not available
Meaning
Reserved codes for proprietary use
OPUK MAPPING SPECIFIC OVERHEAD
1
2

4
5
6
FAS
1
2
RES
3
TCM3
4
3
GCC1
TCM
ACT
7
9
MFAS
TCM6
TCM2
GCC2
8
SM
11
12
GCC0
TCM5
TCM1
APS/PCC
10
TCM4
PM
RES
13
14
RES
15
16
17
RES JC
FTFL RES JC
EXP
RES JC
PSI NJO
Justification control/negative justification opportunity/reserved
(JC/NJO/RES)

Seven bytes are reserved in the OPUk overhead for the mapping and concatenation
specific overhead.

These bytes are located in rows 1 to 3 and columns 15 and 16, and row 4 and column
16.

255 bytes in the PSI are reserved for mapping and concatenation specific purposes.
Page56
THANKS FOR BEING PATIENT
57
Téléchargement