Telechargé par youssef.elassfouri

ANALYSE VIB

publicité
S.ELHIDAOUI
EST DESAFI
05/03/2019
 Notes
de DS (60%)
 Note des mini projets(40%)
(y compris la discipline et les questions de
recherche)
1-Une étude théorique des vibrations( historique, jusqu’à
2019)
2-Description des différents modes de vibrations en machines
tournantes
3-Les capteurs piézoélectriques et leur utilité en analyse
vibratoire
4-Les nouvelles technologies utilisées en analyse vibratoire
5-Etude des signaux vibratoires dans le domaine temporel(Un
cas d’étude)
6-Description des différents niveaux de vibration
existants et normes appliquées
7-Analyse vibratoire en défauts de desserrage (un
exemple concret et détaillé)
8-Etude du signale vibratoire d’un roulement
9-Analyse d’un signal vibratoire à partir d’un
diagnostique de fonctionnement d’une machine
10-Les différentes méthodes d’évaluation des
vibrations
la vibration fait partie de la vie de tous les jours. Elle peut
être:
 Utile: rasoir électrique, haut parleur,...
 Agréable: balançoire, instrument de musique,...
 Désagréable: marteau-piqueur, mal de mer...
 Fatigante ou nuisible pour l'homme, les machines, les
bâtiments: transport, tremblement de terre
Une vibration est un mouvement autour d'une
position d'équilibre.

Les objectifs d’une démarche d’analyse vibratoire sont
de :
 réduire
le nombre d’arrêts sur casse ;
 fiabiliser l’outil de production ;
 augmenter son taux de disponibilité ;
 mieux gérer le stock de pièces détachées, etc.
En effet, à partir des vibrations régulièrement recueillies
sur une machine tournante, l’analyse vibratoire consiste à
détecter d’éventuels dysfonctionnements.
Le signal vibratoire:

Définition de la norme NFE 90-001: une vibration avec
le temps d'une grandeur caractéristique du mouvement
ou de la position d'un système mécanique lorsque la
grandeur est alternativement plus grande et plus petite
qu'une certaine valeur moyenne ou de référence.
Vibration:
 Résultat du mouvement d’une masse de part et d’autre
d’un point central.
 ‹ Une oscillation complète (aller-retour) correspond à un
CYCLE.
 y=Asin(2πft)
 y: amplitude
 A:amplitude maximale
 f: fréquence
=1/T=ɷ/2π
T: période
ɷ:vitesse angulaire

Un mouvement vibratoire est caractérisé par le
déplacement suivant:
 X(t)=5cos(25t+π/3)
1-Déterminer l’amplitude maximale.
2- Donner la pulsation propre, la fréquence et la période
du mouvement.
3- Exprimer la phase initiale(déphasage à l’origine)

1- l’amplitude maximale est 5.

2-La pulsation propre est ɷ0 =25rad/s
La fréquence f=3.98 Hz et
la période propre 𝑇0 =0.25 s.
3-la pulsation initiale ɸ=π/3rad.
 x(0)=Xcos(ɷ0 t+ɸ)

Distribution inégale de masse au tour du centre de gravité
(débalancement) :
Par exemple, ce type de vibration sera fonction de :
Masse excédentaire causant le débalancement
Sa distance du centre de gravité
La vitesse de rotation
 Impact
Par exemple, ce type de vibration sera fonction de :
Hauteur de la chute
Masse tombante vs masse réceptive
Élasticité des deux masses
 Mouvement alternatif

Maintenance
Maintenance
préventive
Maintenance
systématique
Appliquée à
intervalles réguliers
de façon
systématique
Maintenance
corrective
Maintenance
conditionnelle
Appliquée en
fonction de l’état du
matériel
Appliquée après la
panne




Maintenance corrective
Réparation après l’incident
Maintenance Préventive
systématique
Intervention à intervalles
réguliers n’évite pas certains
incidents
Maintenance Préventive
conditionnelle
 Mesures à intervalles
réguliers.
Détection du problèmes
avant la défaillance prévue


Afin de détecter un défaut de la machine, il convient de
définir un ou plusieurs indicateurs d’états de la machine
qui pourrons être suivi selon la figure suivante:
L’indicateur d’état évolue dans le temps. On définit alors au
moins 2 seuils:
-Un seuil d’alarme: il nous prévient que l’état de la machine se
dégrade et qu’il va falloir prévoir une intervention de maintenance.
On a le temps de programmer l’arrêt de la machine afin de de
pénaliser le moins possible la production
-un seuil de danger: il nous prévient de l’imminence d’une panne.
Ile nous faut intervenir rapidement; on peut également définir des
seuils intermédiaire afin d’être plus précis dans notre analyse.


En
analyse
vibratoire:
cette
technique(MPC:maintenance
préventive
conditionnelles) est principalement utilisée
pour la surveillance des machines tournante.
Toute machine tournante vibre. Ces vibrations
sont les conséquences de défauts de la
machine. Plus la machine vibre et plus les
défauts sont importants.

La détection des défauts à un stade précoce
offre la possibilité de planifier et de préparer
les interventions nécessaires en les intégrant
dans les arrêts techniques de fabrication ou en
provoquant des arrêts programmés en
fonction notamment des impératifs de
production.
 L’analyse
vibratoire permet notamment le diagnostic :
 d’un désalignement ou d’un déséquilibre sur un arbre
de transmission,
 de l’état des roulements et engrenages
 des défauts de serrage,
 des défauts de courroies,
 de l’état général de fonctionnement d’une machine
par comparaison avec des niveaux vibratoires
admissibles (normes).
Définitions
une vibration est une oscillation mécanique autour d’une
position de référence :
 résultat ennuyeux et destructeur utilisation fréquente
 produit parfois intentionnellement pour effectuer une
tâche (sonnettes, compacteurs, bains ultrasoniques,
convoyeurs)
Dénominat Définition
ion
Amplitude
Moyenne
Valeur moyenne arithmétique du signal
positif
Amplitude
Efficace
Amplitude continue Notions
fondamentales Amplitude efficace
équivalente en puissance, appelé aussi
valeur efficace
Amplitude
Amplitude maximale positive, appelé
aussi valeur maximale
Amplitude
crête à
crête
Amplitude maximale positive et négative

L’origine de ses mouvements peut être très
divers (jeu, desserrage, déséquilibre…).

Une partie de l’énergie fournie va être
consommer pour effectuer ces mouvements ce
qui va entraîner une modification de la
répartition de l’énergie initialement prévue
pour effectuer la tache demandée, cela peut
nuire au bon fonctionnement des installations.
 Les
vibrations sont le résultat de forces dynamiques à
l’intérieur des machines qui comprennent des
éléments roulants et à l’intérieur des structures qui
sont connectées à la machine.
 Les différents éléments vibreront à des fréquences et
des amplitudes différentes.
 Les vibrations créent de la fatigue et de l’usure et
elles sont souvent à l’origine de la rupture de la
machine.
o
Les vibrations engendrées par une machine
tournante traduisent les efforts dynamiques
engendrés par les pièces en mouvement.
o
L’analyse de cette signature vibratoire permet
de dresser un diagnostic de l’état de
fonctionnement de la machine et de déceler
des défauts à un stade précoce.




si l'on considère un système mécanique
simple constitué d'une masselotte "M"
suspendue à un ressort, on constate que le
mouvement de la masselotte se traduit par:
-Un déplacement: la position de la
masselotte varie de part et d'autre du point
d'équilibre, de la limite supérieure à la limite
inférieure du mouvement.
-Une vitesse de déplacement: cette vitesse
sera nulle au point haut au point bas du
mouvement de la masselotte et sera maximale
autour du point d'équilibre.
 Une accélération: celle-ci permet à la
masselotte de passer de sa vitesse minimale à
sa vitesse maximale.

Comme la vibration est le mouvement d’une
structure résultant d’un effort, on peut déduire
qu’elle pourra être caractérisée par l’un des
trois paramètres physiques suivants :
 le
déplacement
 la vitesse
 l’accélération
La mesure de vibration implique deux paramètres:
L ’amplitude et la fréquence ( la phase est un 3ième
optionnel)
 Fréquence
Nombre d’évènements (cycles) par unité de temps
l RPM, CPM, CPS (Hz), ...
 Amplitude
Valeur maximale d’une grandeur qui varie périodiquement
l Déplacement, vitesse ou accélération

Sur les machines tournantes industrielles, on
utilise souvent le tour par minute pour
exprimer une vitesse de rotation, parfois noté
CPM(cycle par minute) ou PRM (rotation par
minute)

Donc pour décrire l’amplitude, nous avons le choix :
Déplacement, vitesse, et accélération
Déplacement
Exprimé en mm, ou dB
Basses fréquences, lent, peu d ’accélération

Vitesse
Exprimé en mm/sec, ou dB
Vitesse plus élevée, déplacement plus faible, accélération un
peu plus grande

Accélération
Exprimé en mm/sec², ou dB
Déplacement presque nul, vitesse moyenne, et changement de
vitesse très grand



Domaine d’utilisation
Le paramètre à mesurer dépendra de la fréquence du
phénomène à étudier.
100Hz<fréquence<1000Hz

Domaine d’utilisation
fréquence<100Hz
1000Hz<fréquence
g: accélération gravitationnelle =9,81m/s²
 si
un signal vibratoire a subi une
augmentation de 6dB,
 Déterminer l'amplification du signal.

on a 20log(X/𝑋𝑟𝑒𝑓 )
X/𝑋𝑟𝑒𝑓 = 106/20 =2

Les vibrations mécaniques sont des
mouvements oscillant autour d'une position
moyenne d'équilibre. Ces mouvements
oscillants caractéristiques de l'effort qui les
génère, peuvent être, soit périodiques , soit
apériodiques (transitoires ou aléatoires) selon
qu'ils se répètent ou non, identiquement à eux
mêmes après une durée déterminée.

Les vibrations périodiques peuvent correspondre à un
mouvement sinusoïdal pur ou, plus généralement, à un
mouvement complexe périodique que l'on peut
décomposer en une somme de mouvements
sinusoïdaux élémentaires, plus faciles à analyser.
Vibrations périodiques: système ressort
Le mouvement sinusoïdale






D = amplitude
w = pulsation = 2 πf = 2 π /T
Φ= phase
d = D sin ( w t + Φ )
f = fréquence (Hz)
T= période (s)



Les vibrations transitoires (comme par exemple la vibration
provoquée par un marteau pilon) sont générées par des forces
discontinues (chocs). Elles peuvent présenter un aspect
oscillatoire revenant à une position d'équilibre après
amortissement.
Lorsqu'il existe des oscillations, pour laquelle le coefficient
d'amortissement est faible, on dit qu'il y a un amortissement
sub-critique, et le mouvement est pseudo-périodique.
Si l'amortissement est très important, la structure revient à sa
position d'équilibre sans oscillation, on dit alors que
l'amortissement est sur-critique et le mouvement est
apériodique.

Ces deux types de mouvements transitoires peuvent
être décrits par des fonctions mathématiques.

système amorti (amortissement visqueux)

Les vibrations aléatoires sont caractérisées par
un mouvement oscillant aléatoire qui ne se
produit pas identiquement à lui-même comme
les mouvements Nature des vibrations
périodiques. Les vibrations aléatoires ne
peuvent être représentées mathématiquement
que par une série de relations de probabilités.
Une onde vibratoire peut-être étudiée par
plusieurs méthodes qui correspondent à des
niveaux différents de connaissance du
phénomène et à l'utilisation de matériels
d'analyse plus ou et à l'utilisation de matériels
d'analyse plus ou moins sophistiqués :
 Mesure de la valeur globale
 Technique de résonance
 Analyse spectrale

La mesure de la valeur globale est une méthode
approximative d'analyse du signal pour mesurer l'amplitude
évaluée :
 en valeur crête à crête (1) en mesurant l'amplitude maximum
de l'onde fondamentale, mesure utile lorsque le déplacement
vibratoire d'une machine est critique en Analyse des
vibrations le déplacement vibratoire d'une machine est
critique en regard des contraintes de charge ou de jeu
mécanique.
 en valeur crête (2), mesure pour indiquer par exemple le
niveau d'un choc de courte durée.
 en valeur efficace (3), mesure qui tient compte de
l'évaluation de la valeur des composantes harmoniques et
reliée au contenu énergétique de la vibration.


Définitions du RMS, PEAK, KURTOSIS
 Valeur
crête (Peak)
égale à l ’amplitude du signal souvent utilisée pour
les déplacements
 Valeur
crête à crête (Peak to peak)
égale à deux fois l’amplitude du signal souvent
utilisée pour les vitesses
 Valeur
RMS (Root mean square)
l ’amplitude du signal (surface sous la courbe)représente
l ’énergie du mouvement souvent utilisée pour les
accélérations

il s'agit d'un traitement statistique de signal
temporel des vibrations, se basant sur la
courbe de densité de probabilité de la
répartition
des
niveaux
vibratoires
d'accélération.

Valeur efficace (ou RMS) est la racine carré de la
moyenne du carré du signal:

𝒀𝒆𝒇𝒇 ou 𝒀𝑹𝑴𝑺 = 𝟏/𝑻 ‫𝒕𝒅 𝒕 𝟐𝒀 ׬‬
Exemple:
 Calculez la valeur efficace d'un signal
harmonique de la forme

y(t)=Ysin wt





Groupe 1 : Les moteurs électriques produits en série,
de puissance allant jusqu’à 15 kW, sont des exemples
typiques de machines de ce groupe
Groupe 2 : Machines de taille moyenne, (en particulier
moteurs électriques de puissance comprise entre 15 et
75 kW) sans fondations spéciales. Moteurs montés de
façon rigide ou machines (puissances jusqu’à 300 kW)
sur fondations spéciales.
Groupe 3 : Moteurs de grandes dimensions et autres
grosses machines ayant leurs masses tournantes
montées sur des fondations rigides,
Groupe 4 : Moteurs de grandes dimensions et autres
grosses machines ayant leurs masses tournantes
montées sur des fondations relativement souples dans
le sens de la vibration
Techniques de résonance utilisées pour le dépistage des
défauts de roulements
 Les fréquences engendrées au-delà de 20000 Hz sont des
fréquences dues principalement, sur une machine
tournante, à un défaut de roulement ou d'engrenage,
 La méthode de mesure par technique de résonance est
donc basée sur l'utilisation d'un filtre éliminant les
fréquences inférieures à 20000 Hz et d'un capteur de
vibrations dont la fréquence est de l'ordre de 30000 Hz.
 La mesure de l'évolution de cette onde de choc
caractéristique des paliers défectueux permet de suivre
avec précision l'état d'un roulement sans se préoccuper de
la complexité de l'ensemble de la machine.


Dans la plupart des mesures de vibrations, il est
beaucoup plus aisé de travailler dans le domaine des
fréquences que dans le domaine des temps. De ce fait
est née l'idée de l'analyse en fréquence
De ce fait est née l'idée de l'analyse en fréquence
(spectrale) où le signal amplitude/temps est converti en
signal amplitude/fréquence.



Analyse fréquentielle très répandue :
domaine de fréquence en relation avec les défauts Si
h(t) est le signal,
sa Transformée de Fourier la transformée de Fourier
FFT Si h(t) est le signal, sa Transformée de Fourier
H(w) sera définie par:
avec la pulsation ω= 2πf où f est la fréquence (Hz si t
en s)

Les signatures à basses fréquences (< 500 Hz)
Balourd
Lorsque le centre de gravité n'est pas sur l'axe de
rotation

Les signatures à basses fréquences (< 500 Hz)
Désalignement

Lorsqu'un élément fixe ou tournant n'est pas fixé
correctement.
les engrènements
Le spectre normal présente des pics à la fréquence
d'engrènement :
 GMF = Nombre de dents x Vitesse engrenage
 (Geometric Mean Frequency)(Fréquence
d’engrènement)
 RPM1 et RPM2.(Fréquence de rotation)


les engrènements


les problèmes de courroie
Le spectre se caractérise par : des harmoniques de la
fréquence de la courroie Fcour (maximum à 2 Fcour).
des pics correspondant à la vitesse de rotation des
poulies RPM1/2
Sur le spectre associe au
motocompresseur:
 un pic d'amplitude élevée dont la
fréquence est de 50 Hz (3 000
tr/mn) correspond a la fréquence de
rotation du moteur ou du premier
arbre du multiplicateur;
 un pic a 100 Hz (2 fois la frequence
de rotation) est representatif de l'etat
d'alignement de l'arbre du moteur;
 le pic a 4450 Hz correspond a la
fréquence
d'engrenement
du
multiplicateur (fréquence = nombre
de dents x fréquence de rotation de
l'arbre correspondant, soit 89 x 50).



L'énergie vibratoire des systèmes mécaniques est
généralement contenue dans une gamme de fréquences
relativement étroite entre 10 et 1000hz, mais les mesures
doivent souvent être prises jusqu'à 10kHz. En effet, il y a
souvent d'intéressantes composantes de vibration à ces
fréquences supérieures,
notamment lorsqu'on analyse des vibrations de
roulements ou d'engrenages.
C’est la raison pour laquelle on doit s'assurer, en choisissant un
accéléromètre, que la gamme de fréquence de l'accéléromètre couvre la
gamme désirées(Voir figure suivante).
Pour les accéléromètre courants, des fréquences de résonance de 20 à
30 kHz sont typiques.
Téléchargement
Random flashcards
Ce que beaucoup devaient savoir

0 Cartes Jule EDOH

aaaaaaaaaaaaaaaa

4 Cartes Beniani Ilyes

TEST

2 Cartes Enrico Valle

Créer des cartes mémoire