Le Soleil

publicité
Introduction 19
Le Soleil
Le Soleil est l'étoile la plus près de nous. Son étude revêt une grande importance en
astronomie, car plusieurs phénomènes qui sont étudiés indirectement chez les
autres étoiles peuvent être observés directement sur le Soleil (e.g. la rotation, les
taches solaires, la structure de la surface). Notre modèle actuel est basé sur les
observations et sur les calculs théoriques. Bien qu'il y ait encore quelques écarts
entre les modèles théoriques et les observations détaillées, le portrait que nous
allons brosser constitue une représentation adéquate d'une étoile moyenne.
Continuer
Page 1 sur 1
Objectifs du Chapitre 19
Objectifs du chapitre 19
c Décrire schématiquement la structure interne du Soleil
d
e
f
g
c Décrire schématiquement la structure des couches externes du Soleil
d
e
f
g
c Décrire les manifestations de l'activité solaire
d
e
f
g
Cliquez pour imprimer
Yannick Dupont
V2.0, été 2001
Page 1 sur 1
Chapitre 19
La structure interne
Notre Soleil est une étoile typique de la séquence principale. Ses caractéristiques
sont résumées au Tableau 19.1. En combinant ces données aux équations de la
structure stellaire, les astronomes ont calculé le modèle solaire présenté à la Figure
19.1.
Table 19.1: Les caractéristiques du Soleil
Caractéristiques
Symbole
Valeur
masse
M
2 x 1030 kg
rayon
R
6.960 x 108 m
...
25 jours
période de rotation
à l'équateur
à 60 de latitude
...
29 jours
densité moyenne
...
1.4 x 103 kg m-3
densité centrale
ρc
1.6 x 105 kg m-3
luminosité
L
3.9 x 1027 joules s-1
température effective
Teff
5780 K
température centrale
Tc
1.5 x 107 K
magnitude absolue
Mv
4.79
classe spectrale
...
G2 V
indice de couleur
B-V
0.62
composition chimique
X
0.73
o
de la surface
Y
0.25
Z
0.02
Page 1 sur 11
Chapitre 19
Figure 19.1: Le modèle de l'intérieur du Soleil
L'énergie provient des réactions de fusion de la chaîne P-P au centre du Soleil. En
fait, 99% de l'énergie est générée à l'intérieur d'une région qui s'étend à moins du
quart du rayon solaire. Le taux de production est de 4 x 1026 Watts, ce qui
correspond à la transformation d'environ 4 millions de tonnes de matière en énergie
à chaque seconde. La masse du Soleil est énorme, environ 330,000 fois celle de la
Terre, et moins de 0.1% de sa masse sera changée en énergie au cours de sa vie
sur la séquence principale.
Au moment de sa formation, il y près de 5 milliards d'années, la composition
chimique du Soleil était homogène et semblable à celle de sa surface actuelle.
Actuellement, l'hydrogène est moins abondant dans le noyau car c'est à cet endroit
qu'il se fusionne en hélium. De la surface jusqu'au quart de son rayon l'abondance
d'hydrogène est uniforme, alors qu'elle diminue dans le noyau pour atteindre
seulement environ 36% de la masse. A ce jour, près de 5% de l'hydrogène du Soleil
a été transformé en hélium.
La zone radiative, où l'énergie est transportée par absorption et émission successive
des photons, s'étend jusqu'à 70% du rayon solaire. Au-delà, la température est trop
basse pour que le gaz soit complètement ionisé, l'opacité de la matière devient trop
grande pour que les photons puissent se propager efficacement. C'est à cet endroit
que commence la zone convective où les mouvements globaux des gaz transportent
l'énergie jusqu'à la photosphère de façon plus efficace.
L'atmosphère du Soleil
L'atmosphère solaire est divisée en deux régions principales, la photosphère et la
chromosphère. Au-dessus se trouve la couronne qui s'étend jusqu'à une grande
distance. La Figure 19.2 illustre cette structure et quelques phénomènes qu'on y
retrouve.
Figure 19.2: La structure de l'atmosphère du Soleil
Page 2 sur 11
Chapitre 19
La photosphère
La photosphère constitue la surface visible du Soleil; c'est la première couche de
l'atmosphère et elle mesure entre 300 et 500 km d'épaisseur. La densité augmente
rapidement dans cette couche et nous empêche de voir les régions plus internes du
Soleil. La température à la base, près de la zone convective, est de 8000 K et elle
diminue jusqu'à 4000 K près de sa partie supérieure. Le spectre continu de radiation
solaire (voir Chapitre 4) ainsi que les raies d'absorption sont produits dans la
photosphère. Les raies sont plutôt formées près du sommet, plus froid, et
apparaissent donc plus sombres que le continu.
Figure 19.3: La photosphère du soleil
La convection sous-jacente est visible à la surface dans le phénomène qu'on appelle
la granulation. La Figure 19.4 montre des régions plus claires, le centre des
granules, où le gaz chaud monte vers la surface; les rebords sombres des granules
sont formés de gaz plus froid qui redescend vers l'intérieur du Soleil.
Page 3 sur 11
Chapitre 19
Figure 19.4: La granulation de la surface solaire
Video 19.1: La surface du Soleil (0.5 Mo)
La différence de température entre le centre et le bord est de l'ordre de 100 K. La
taille des granules est d'environ 1000 km de diamètre. Leur structure n'est pas fixe
mais varie au gré des fluctuations dans la zone convective; la durée de vie d'un
granule est d'environ 10 minutes. Les gaz se déplacent surtout horizontalement à la
surface à des vitesses de quelques kilomètres à la seconde. Les granules se
regroupent en structures plus grandes, les supergranules, d'une taille 50 à 100
fois supérieure.
La chromosphère
Au-dessus de la photosphère, sur une épaisseur d'environ 500 km, la température
augmente à nouveau, passant de 4500 K à 6000 K; c'est le début de la
chromosphère. Au-delà de cette couche il y a une zone de transition de quelques
milliers de kilomètres où les gaz de la chromosphère deviennent très ténus et très
chauds pour atteindre 106 K dans la couronne.
Page 4 sur 11
Chapitre 19
Figure 19.5: La chromosphère su Soleil
En général la chromosphère n'est pas visible car son intensité lumineuse est
beaucoup moins grande que celle de la photosphère. Par contre, au cours d'une
éclipse totale, elle est observable durant quelques secondes au début et à la fin de
la phase de totalité, lorsque la photosphère est complètement cachée par la Lune.
Elle apparaît alors comme un mince anneau rougeâtre.
Les supergranules sont entourés de jets de gaz qui ont l'allure de flammes, les
spicules. Ces structures, illustrés à la Figure 19.6, s'élèvent à plus de 10000 km
au-dessus de la chromosphère et demeurent stables pour quelques minutes. Ils
apparaissent sombres lorsqu'on les observe en contraste surperposés à la surface
chaude et brillante.
Figure 19.6: Les spicules traversant la chromosphère
Page 5 sur 11
Chapitre 19
La couronne
La couronne est un prolongement de la chromosphère. Comme cette dernière, elle
est observée lors d'une éclipse totale du Soleil. La Figure 19.7 montre le halo de
lumière de la couronne qui s'étend parfois jusqu'à quelques rayons solaires au
dessus de la surface. La brillance de surface de la couronne est semblable à celle de
la pleine lune et est donc difficile à voir si la photosphère n'est pas cachée.
Figure 19.7: La couronne solaire
La température de la couronne atteint 106 K. A cette température, les atomes sont
ionisés, c'est-à-dire que les électrons ont été arrachés de leurs orbitales autour des
noyaux. Les atomes de fer perdent jusqu'à 13 de leurs 26 électrons. L'énergie
nécessaire au maintien de cette température élevée provient probablement des
puissants courants électriques induits par les variations du champ magnétique
solaire.
En dépit de cette température très chaude, les gaz de la couronne sont si diffus qu'il
y a peu d'énergie emmagasinée dans cette région. Les gaz sont animés de
mouvements radiaux qui les entraînent dans le vent solaire vers les planètes de
notre système. Les particules perdues de cette manière sont remplacées par du gaz
de la chromosphère. Au niveau de l'orbite terrestre, la densité du vent solaire est de
5 à 10 particules par centimètre cube et sa vitesse est de 500 km/s ; le vent solaire
est responsable du phénomène des aurores boréales. Le Soleil s'évapore donc à un
taux d'environ 10-13 M par année.
Video 19.2: Le vent solaire I (0.6 Mo)
Video 19.3: Le vent solaire II (1.1 Mo)
Page 6 sur 11
Chapitre 19
L'activité solaire
Les taches solaires
Le Soleil semble en apparence très stable, mais sa surface présente les signes d'une
activité variée. Les taches solaires sont une des manifestations les plus évidentes de
cette activité. Leur existence est connue depuis longtemps car les plus grosses
taches sont parfois visibles à l'oeil nu lorsque l'intensité lumineuse du Soleil est
diminuée par des nuages ou un épais brouillard. Galilée fut le premier à en faire
l'étude systématique au moyen d'un télescope.
Une tache solaire ressemble à un trou irrégulier dans la photosphère. La Figure
19.9 présente un groupe de taches. On remarque que la région centrale d'une tache
est très sombre, on l'appelle l'ombre; elle est entourée d'une zone plus claire, la
pénombre. La température au centre d'une tache est environ 1500 K plus basse que
le reste de la surface environnante et elle apparaît donc moins brillante que la
photosphère.
Figure 19.8: Tache solaire
Page 7 sur 11
Chapitre 19
Figure 19.9: Groupe de taches solaires
Video 19.4: Une tache solaire (0.3 Mo)
Les taches ont des diamètres typiques d'environ 10000 km. Leur durée de vie est en
général relié à leur taille et varie de quelques jours à quelques mois; les plus
grosses sont souvent celles qui vivent le plus longtemps. Les taches apparaissent
surtout en paires ou en groupes. C'est en suivant leur mouvement qu'on a pu
mesurer la période de rotation du Soleil.
Le nombre de taches solaires varie au gré de l'activité du Soleil. Les variations du
nombre de taches sont étudiées depuis plus de 250 ans. Le nombre de taches est
décrit par le nombre de Zürich, Z:
où S est le nombre de taches isolées, G est le nombre de groupes de taches, et C
est une constante, valant à peu près 1, qui dépend de l'observateur et des
conditions d'observation.
La Figure 19.10 illustre les variations du nombre de Zürich depuis le 18ième siècle
jusqu'à nos jours. On remarque clairement la quasi-régularité des variations sur une
période de 11 ans. Le nombre maximal de taches n'est pas toujours le même et la
durée du cycle est comprise entre 7 et 17 ans. Depuis quelques décennies la période
est de 10.5 années. Le maximum est atteint en 3 ou 4 ans et décline ensuite plus
lentement.
Page 8 sur 11
Chapitre 19
Figure 19.10: La variation du nombre de taches solaires en fonction du temps
Les variations du nombre de taches ont été assez régulières depuis le début du
18ième siècle. Toutefois, au 17ième siècle il y eut un long intervalle, appelé le
minimum de Maunder, au cours duquel on observa presqu'aucune tache solaire.
Nous savons qu'une diminution semblable s'est produite au 15ième siècle, le
minimum de Spörer, ainsi qu'à d'autres époques antérieures. La raison de ces
irrégularités dans le cycle solaire est inconnue.
Le champ magnétique solaire
Le cycle de 11 ans semble relié à l'activité magnétique solaire. Le champ
magnétique est produit par le déplacement des particules chargées à l'intérieur du
Soleil. Ce champ se déforme et s'enroule sur lui-même à cause de la rotation de
l'ensemble de notre étoile. Après environ 11 ans, la polarité du champ s'inverse et
le cycle recommence. Il faut donc près de 22 ans pour que le champ magnétique
reprenne son état initial.
Les paires de taches solaires sont le résultat d'une boucle du champ magnétique qui
entre et sort de la surface avec des polarités inverses, comme les deux pôles d'un
aimant. Le champ magnétique limite les mouvements des atomes du gaz de la
photosphère créant ainsi un refroidissement local où se trouve la tache. De plus, on
observe parfois des boucles de gaz le long des lignes du champ magnétique; ces
protubérances sont soulevées à quelques milliers de kilomètres au dessus de la
surface solaire comme le montre la Figure 19.11.
Page 9 sur 11
Chapitre 19
Figure 19.11: Une protubérance en forme de boucle au dessus de la surface du
Soleil
Les facules, les plages, les protubérances, les
éruptions
Les facules et les plages sont associées aux taches solaires. En général, il s'agit de
régions plus chaudes, donc plus brillantes, entourant les taches. Elles se forment,
respectivement, dans la photosphère et la chromosphère à l'endroit où de nouvelles
taches apparaissent.
Les protubérances constituent, sans contredit, un des phénomènes solaires les
plus spectaculaires. Elles sont formées de masses de gaz incandescent qui se
déplacent dans la couronne du Soleil. On identifie trois types de protubérances:
les protubérances quiescentes dans lesquelles le gaz tombe doucement vers la
surface en suivant les lignes du champ magnétique;
les protubérances bouclées reliées aux paires de taches solaires illustrées à la
Figure 19.9;
les protubérances éruptives où le gaz est soulevé violemment au dessus de la
surface solaire.
La température du gaz atteint environ 10000 à 20000 K dans les protubérances.
Leur durée de vie est de l'ordre de 20 à 30 minutes.
Page 10 sur 11
Chapitre 19
Video 19.5: Une protubérance solaire (0.2 Mo)
Finalement, les éruptions sont des éjections très violentes de gaz dans la couronne
et le vent solaire. Elles se produisent parfois en moins d'une seconde, mais peuvent
durer jusqu'à une heure. Le mécanisme responsable des éruptions, encore mal
connu de nos jours, semble relié à une libération soudaine d'énergie dans le champ
magnétique. Les éruptions solaires provoquent des interférences dans l'ionosphère
de notre planète et donnent lieu à des aurores boréales très spectaculaires dans les
jours suivants l'injection des particules dans le vent solaire.
Yannick Dupont
V2.0, été 2001
Page 11 sur 11
Téléchargement